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An endpoint estimate for

some maximal operators

Daniel M. Oberlin

Suppose g is a finite positive Borel measure on R™. It is proved in
[DR] that if the Fourier transform of 4 satisfies a decay estimate

(1) &) < ClEl™

for some a > 0, then the maximal operator

2) M () = sup / (@ — 2%)] du(y)

is bounded on LP(R™) for 1 < p < co. On the other hand, Theorem 4
in [C2] states that if y is the Lebesgue measure o,,_1 on the unit sphere
Yp—1 in R™, then (2) maps H'(R") into L1°°(R™). The purpose of this
paper is to adapt the method of [C2] to prove an H-L1* result for
(2) requiring, in the spirit of [DR], only a certain decay of /.

Theorem. Suppose i is a finite positive Borel measure on R™ with
support in [—1,1]". If

e < Clel=,
then (2) maps HY(R™) into L1 (R™).

As indicated, our proof follows the method of proof of Theorem 4
of [C2]. Our view is that the interest of this paper lies as much in a
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demonstration of the flexibility of that method (see [C2, Remark 7.2])
as in our result. Although many of the details differ, the main novelty
here lies in the use of the auxiliary functions ¢ to handle the control

(see (7)) of
(5 o)

r(Q)=j—s

2

The proof in [C2]| used the curvature of the support of o,_; in the
analogous estimate. Our argument proceeds, albeit in the same spirit,
with no knowledge of p aside from the decay of ji. But we pay by
requiring a higher rate of decay -,,_1(&) decays, as is well-known, like
|€ |(1_”)/ 2. Still, there exist singular measures on R" satisfying our
hypothesis. (This was proved in [I-M] for n = 1 - see Lemma 1 K,
p. 165] for the extension from Fourier coefficients to Fourier transform.
To get a singular measure p on R™ with (&) = O(|¢|7™/?), let v be
the measure from [[-M] translated to have support in [1,2] and define
the measure p on R* by

2
dp = doy_1(y) r™ =D 2du(r) .
R[ rap= [ E [ 1oy )

Then asymptotic estimates for Bessel functions such as those in [SW,
Lemma 3.11] combine with the decay of # to give |(¢)| = O(|¢]~"/?).)
It may be that our n/2 can be replaced by smaller a > 0, thus yielding
a more satisfying endpoint analog of the result of [DR]. The referee has
pointed out that the paper [S] contains a point of similarity to the proof
of our theorem (in its use of the Fourier transform for the L? estimate)
and that ideas equivalent to some of those in [DR] are present in [C1].
We begin with two lemmas.

Lemma 1. For any o > 0 and any finite collection of dyadic cubes
Q@ C R and associated positive scalars A\, there exists a collection S
of paitrwise disjoint dyadic cubes S such that

a) Y, Ag <2"a|S|,ifSeS,
@Cs

b) LISI < a7t X Ae,
o X Alelte| =

Q@ not contained
in any S
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PRrOOF. In the proof of Lemma 4.1 of [C2], simply replace 8 by 2" and
interpret dyadic in the n-dimensional Euclidean sense (instead of the
parabolic sense in R?).

NoTATION. If @ is a dyadic cube in R" with side-length 27, write o(Q)
to stand for 5. If 0 € Z, let R, be the collection of dyadic cubes () C R"
with 0(Q) = o. Finally, if Q € R,, define Q* = @ + [-27,27]". Thus
Q* is the union of 3" cubes in R, .

Lemma 2. (¢f. [C2, Lemma 5.1|) Suppose given the following: some
a >0, a collection S of pairwise disjoint dyadic cubes S C R™, a finite
collection C of dyadic cubes () C R™ such that each Q) € C is contained
in some S = S(Q) € S, and for each Q € C a positive number \g.
Then there exist a measurable E C R™ and a function k : C — Z such
that

a) [E| <3™(a™t Y g + 218D,
b) Q+[-29, 2" CE, if j <rk(Q) and Q € C,
) o(S(Q) <k(@)  (QeC),
d) forc €Z anyq € Ry, >, Ao < a2netD),

QCq
k(Q)<o

o

PROOF. The proof is an adaptation of (and simpler than) that of
Lemma 5.1 in [C2]. But we give the details for completeness and for
the convenience of the reader.

Let m = min{o(Q)}. Find oy € Z such that

Y Ao <2 oy > max{c(Q)}.

The proof is a stopping time argument on the descending parameter o
and proceeds by dividing C into disjoint subcollections C; and C,. We
begin with 0 = o9 — 1 and define, for ¢ € R,

0= -
QCq

Say that ¢ € R, is “selected at step o” if
As(q) > 2™,

Put into C; every @ such that () C ¢ for some ¢ selected at step o, and
for such @ define

(3) F(Q) = max{l + 0,1+ 0(5(Q))}-
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Next, put into Cs every @@ € C ~ Cy such that o(Q) > 0 - such a Q
will actually satisfy 0(Q) = o + 1 - and for such @ define

(4) r(Q) = 1+0(5(Q))-

Note that (3) and (4) guarantee that (c¢) holds. Now replace o by o —1
and repeat the process with

=) Ag= Z Ao, GER,.

QCq
Q&C, Q€01U62

(The last equality holds because @ € Cs at the beginning of step o
implies 0(Q) > o + 2.) After the step 0 = m we will have C = C; U Cy
and x defined on all of C. Next define

Ei= |J ¢, Ex=JS", E=E UE.

q selected
Then, since distinct selected ¢ are disjoint,

By <3" > 2"”(q)<% > AU((I)(Q)S%Z)‘Q-

q selected q selected

Now a) follows since |S*| = 3"|S].
If K(Q)=1+0(5(Q)) and if j < £(Q), then

Q+[-27,2|"C S* C Es.

If kK(Q) # 1 ( (Q)), then @ C ¢ for some ¢ selected at some step o
and k(Q) =14 o(qg). Thus if j < kK(Q),

Q+[-27, 2" C E, .

So b) is verified.
Finally, if ¢ € R, for ¢ > 0y — 1, then d) is clear from the choice
of ¢. So suppose 0 < g9 — 1 and ¢ € R,. Now

AU (q) <a 2n(a+1)

or else the ¢1 € R,41 that contains ¢ would have been selected at stage
o+ 1. Since £(Q) < o implies that @ ¢ C; at the beginning of step o,

Y. A <Aq(a)

QCq
k(Q)<o
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and so d) is proved.

Now suppose g is a positive Borel probability measure supported
on [—1,1]" and satisfying |(¢)| < C|¢|~™/2. Let f € H*(R™) have the

form of a finite sum
f=2_)eaq,

where A\g > 0 and ag, supported in a cube @, satisfies

e e
QR

As in [C2], a device of Garnett and Jones involving auxiliary dyadic
grids allows us to assume that each @) is dyadic. Fix a > 0. It is
enough to show that

) {MF > 20} < &3 g,

where C' depends only on g and n.
Following [C2], let S be as in Lemma 1 and define

b=>_> leag, g=f-b.

SeSQCS

Then ||g||cc < @ from Lemma 1.c) and so |Mg| < a (because p has
mass 1). Thus (5) will follow from

C
{Mb > a}| < EZ)‘Q-

Now, with § as above and with C the collection of )’s appearing in the
definition of b, let k and E be as in Lemma 2. Since |[E| < Ca™' " A,
it is enough to prove

(6) 1Ml G2 (nnpy < Ca ) Aq -

Let p; be the dilate of p defined by

(0, 1j) = / (27 ) du(x)

Rn
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so that p; is supported in [—27,27]™ and

Mb(z) = sup |b* pj(x)].
JEL

If @ € C, then, by Lemma 2.b), ag * p; is supported in E unless
j > k(Q). Thusifx ¢ F,

[Mb(z)|* < Z b pu ()

2

:; ( > AQQQ)*M(Q?)

w(Q)<J

2

:zj: i( > AQaQ>*uj(:p)

5=0 \ r(Q)=j—s
So, for z ¢
o0 2\ 1/2
Ml < (SN X dane) m)] )
=0\ N w@)=j-s

Now (6) will follow from

(5 o)

Q) =)~

2

2) 1/2 2

< Ca(s+1)27°) " Aq

and so from

(7) H( > AQ”Q)*M

w(Q)=j—s

2
< Ca(s+1)27° Z AQ -
2 R(Q)=j—s

The proof of (7) requires another lemma.

Lemma 3. For N = 1,2,..., there exist functions on € L' (R™) such
that

a) [on ()] = (1+[E)~/2/C, if ] <N —1,
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b) [en ()| < C ¢/,
and if Ly = on * ¢n (&n(2) = on (=), then
¢) supp(Ly) C [-1,1]",
d) [Ly(z) = Ln(y)| < C'lo — y|/ min{|z], [y[}.

PrRoOOF. We will construct Ly first and then ¢pn. Define hy € C(R™)
by

1, if €] <1,
hn(€) =14 €™, if1<|¢| <N,
0, if |¢] > N .

Choose a radial function p € C&F (R™) such that

[o=1. swp)clnar, pzo.
Now let Ly = php. Clearly c) holds. It is easy to check that

Ly(€) > (1+[¢))™/C if|g] <N -1,
0<Ly(&)<ClE|™ ifEeR™.

So if pn is the inverse Fourier transform of (Ly)/2, then a) and b)
hold. Since

| (x) = Ln ()| < [p(z) — p(y)| |hn ()| + p(y) |hn (2) = B (y)]

d) will follow from

®) h(@)] < c(log+ (%) +1),
and
) i) < S el <1
Now

1
hN(x):/ / e doy, 1 (w) r" " Ldr
0
21

N
. d
+/ / piTT W dan_l(w) _’F 7
1 T
En—l
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with the important contribution coming from the second integral. For
(8) just use the well-known estimate

C
(A + rla])r-D72

‘ / 6irm~w dO'n_l((.U) <
anl

For (9) note that

1
/ " doy, 1 ( /cos |z|rs)w(s)ds,
0

anl

for some w € L([0,1]). Now

d N 1
— trs)w
o /1 /0 cos(

‘/ / sin(trs) sdrw(s)ds
1 Ns
§/ / sin(tu) du
0 s

C
<.
2]

w(s)ds

Returning to (7) we have, because of our estimate on i combined with

Lemma 3.a),
(5 )l [( 5 one)

k(Q)=j—s
gc/\( )3 AQaQ)A@)

R™ K(Q)=j—s

1(27€)[2d¢

13 . ~ ]
hII]lvll’lf on(27€)

de .

Thus, letting pn j(z) = 27 pn(277z), (7) will follow from the esti-
mates, uniform in N,

(10) H( > )‘QaQ>*<PN,J

K(Q)=j—s

2
<Ca(s+1) Y Ag.
K(Q)=j~s
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So fix N, j, and s and write ¢ for pn, ¢; for pn ;. For ¢ € Rj_g, let

Aq = Z )\QaQ, )\q = Z )\Q .

K(Q)=j—s k(Q)=j—s
QCq QCq

Then

2

(5 o)

Q) =)~

S Z ‘(Aq*(pjaAq’ *(pj>

2 g q'€Rj_s

SIPVEIIDD

q" qC(q")* q¢'" qn(q')*=2

=1+1I.

The inequality _
lag * @;lls < C27™/2

follows easily from Lemma 3.b) and the well-known estimates

aQ@)\ < C¢|diam(Q).

C

2 _
||aQ||2 S |Q| .

This leads, via Lemma 2.d), to

I<C27™) Mg > A

a aC(q")*
SC2MY Ay D> Ag
q' QC(q")"
k(Q)=j—s

(12)

< C2—nj Z/\q,a2n(j—s+l)
ql

=Ca2"7) Y g
K(Q)=j—s
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To estimate II, begin by fixing ¢,¢" (€ R;_s) with ¢N (¢')* = @. We
write

(13) (Ag* ), Ay x pj) = | Ag(x)Ag * Lj(x) dx,

where L;(z) = ¢, * ¢j(x) = 27 L(277x) and so, by Lemma 3.d),
|Lj(x) = Lj(y)| < €27 | — y|/ min{ ], |y} .

Now if K(Q) =j — s, Q C ¢, x € ¢, and yp € Q, then

00+ Li(s) = [ a0(w)(Lyle ~ ) ~ Lo~ o) dy.

Thus
C 27 diam(Q) - C 2-mito(Q) - C2-(n=1)j-s
d(z, Q) T d@,Q) T d=,Q)

since 0(Q) < O'(S( )) < K(Q) = j—s by Lemma 2. Also, ifag*L;(z) #
0, then d(z,Q) < C27 (since L; is supported in [—27,27]"). Thus

lag * L;(x)] <

Cc2-s
d(z, Q)"

Now suppose x € ¢. If Q@ C ¢’ and 5(Q) = j—s, then 0(S(Q)) < K(Q) =
j—s=o0(q¢"). Since S(Q)Nq' # @, S(Q) C ¢'. Because ¢N (¢')* = @,
we must have d(z, S(Q)) > 277%. Coupled with d(z, S(Q)) < d(z,Q) <
C 27 if ag * Lj(x) # 0, we estimate, for fixed ¢ € Rs_; and = € g,

Yo gL < ) > Aglag * Lj(w)|

(a")*Ng=2 (@) *Ng=2  QCq',k(Q)=j—s
29°<d(z,5(Q))<C2’

2 S
<C A
= ,,Z_ ,Z_. Yd(z, Q)"
(@)*Ng=2  QCq',k(Q)=j—s
29 <d(2,5(Q))<C2

s 1
< C2 > 9" Yoo

2i—5<d(z,5)<C2 QCS
w(Q)=j—s

lag * Lj(z)| <
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By Lemma 1.a) this last term is dominated by

S| e gy
Ca27° Z W S Ca27° / T S Ca 2_8(3 + ].) .
2i—s<d(z,5)<C2i ’ 2

That is, if « € ¢, then

Y Ay xLj(z)] < Ca27(s+1)).

(¢")*Ng=2

Thus, from (13),

HIED DY XN SRV IR EITE

(¢")*Ng=2

<Ca27%(s+1) Z)\q =Ca27%(s+1) Z Ag -
g (Q)=j—s

With (11) and (12) this gives (10) and completes the proof of our the-
orem.
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