Revista Matemática Iberoamericana Vol. 12, N.º 3, 1996

An endpoint estimate for some maximal operators

Daniel M. Oberlin

Suppose μ is a finite positive Borel measure on \mathbb{R}^n . It is proved in [DR] that if the Fourier transform of μ satisfies a decay estimate

(1)
$$|\hat{\mu}(\xi)| \le C|\xi|^{-\alpha}$$

for some $\alpha > 0$, then the maximal operator

(2)
$$Mf(x) = \sup_{k \in \mathbb{Z}} \int_{\mathbb{R}^n} |f(x - 2^k y)| d\mu(y)$$

is bounded on $L^p(\mathbb{R}^n)$ for 1 . On the other hand, Theorem 4 $in [C2] states that if <math>\mu$ is the Lebesgue measure σ_{n-1} on the unit sphere Σ_{n-1} in \mathbb{R}^n , then (2) maps $H^1(\mathbb{R}^n)$ into $L^{1,\infty}(\mathbb{R}^n)$. The purpose of this paper is to adapt the method of [C2] to prove an $H^{1}-L^{1,\infty}$ result for (2) requiring, in the spirit of [DR], only a certain decay of $\hat{\mu}$.

Theorem. Suppose μ is a finite positive Borel measure on \mathbb{R}^n with support in $[-1,1]^n$. If

$$|\hat{\mu}(\xi)| \le C |\xi|^{-n/2}$$

then (2) maps $H^1(\mathbb{R}^n)$ into $L^{1,\infty}(\mathbb{R}^n)$.

As indicated, our proof follows the method of proof of Theorem 4 of [C2]. Our view is that the interest of this paper lies as much in a

demonstration of the flexibility of that method (see [C2, Remark 7.2]) as in our result. Although many of the details differ, the main novelty here lies in the use of the auxiliary functions φ_N to handle the control (see (7)) of

$$\left\| \left(\sum_{\kappa(Q)=j-s} \lambda_Q \, a_Q \right) * \mu_j \right\|_2$$

The proof in [C2] used the curvature of the support of σ_{n-1} in the analogous estimate. Our argument proceeds, albeit in the same spirit, with no knowledge of μ aside from the decay of $\hat{\mu}$. But we pay by requiring a higher rate of decay $-\hat{\sigma}_{n-1}(\xi)$ decays, as is well-known, like $|\xi|^{(1-n)/2}$. Still, there exist singular measures on \mathbb{R}^n satisfying our hypothesis. (This was proved in [I-M] for n = 1 - see Lemma 1 [K, p. 165] for the extension from Fourier coefficients to Fourier transform. To get a singular measure μ on \mathbb{R}^n with $|\hat{\mu}(\xi)| = O(|\xi|^{-n/2})$, let ν be the measure from [I-M] translated to have support in [1,2] and define the measure μ on \mathbb{R}^n by

$$\int_{\mathbb{R}^n} f \, d\mu = \int_1^2 \int_{\Sigma_{n-1}} f(ry) \, d\sigma_{n-1}(y) \, r^{(n-1)/2} d\nu(r) \, d\sigma_{n-1}(y) \, d\sigma_{$$

Then asymptotic estimates for Bessel functions such as those in [SW, Lemma 3.11] combine with the decay of $\hat{\nu}$ to give $|\hat{\mu}(\xi)| = O(|\xi|^{-n/2})$.) It may be that our n/2 can be replaced by smaller $\alpha > 0$, thus yielding a more satisfying endpoint analog of the result of [DR]. The referee has pointed out that the paper [S] contains a point of similarity to the proof of our theorem (in its use of the Fourier transform for the L^2 estimate) and that ideas equivalent to some of those in [DR] are present in [C1]. We begin with two lemmas.

Lemma 1. For any $\alpha > 0$ and any finite collection of dyadic cubes $Q \subseteq \mathbb{R}^n$ and associated positive scalars λ_Q , there exists a collection S of pairwise disjoint dyadic cubes S such that

$$\begin{split} &\text{a)} \; \sum_{Q \subseteq S} \lambda_Q \leq 2^n \alpha \left| S \right|, \; \text{if } S \in \mathcal{S} \;, \\ &\text{b)} \; \sum \left| S \right| \leq \alpha^{-1} \sum \lambda_Q \;, \\ &\text{c)} \; \left\| \sum_{\substack{Q \; \text{not contained} \\ \text{in any } S}} \lambda_Q \; |Q|^{-1} \chi_Q \right\|_{\infty} \leq \alpha \;. \end{split}$$

PROOF. In the proof of Lemma 4.1 of [C2], simply replace 8 by 2^n and interpret dyadic in the *n*-dimensional Euclidean sense (instead of the parabolic sense in \mathbb{R}^2).

NOTATION. If Q is a dyadic cube in \mathbb{R}^n with side-length 2^j , write $\sigma(Q)$ to stand for j. If $\sigma \in \mathbb{Z}$, let \mathcal{R}_{σ} be the collection of dyadic cubes $Q \subseteq \mathbb{R}^n$ with $\sigma(Q) = \sigma$. Finally, if $Q \in \mathcal{R}_{\sigma}$, define $Q^* = Q + [-2^{\sigma}, 2^{\sigma}]^n$. Thus Q^* is the union of 3^n cubes in \mathcal{R}_{σ} .

Lemma 2. (cf. [C2, Lemma 5.1]) Suppose given the following: some $\alpha > 0$, a collection S of pairwise disjoint dyadic cubes $S \subseteq \mathbb{R}^n$, a finite collection C of dyadic cubes $Q \subseteq \mathbb{R}^n$ such that each $Q \in C$ is contained in some $S = S(Q) \in S$, and for each $Q \in C$ a positive number λ_Q . Then there exist a measurable $E \subseteq \mathbb{R}^n$ and a function $\kappa : C \to \mathbb{Z}$ such that

a)
$$|E| \leq 3^{n} (\alpha^{-1} \sum \lambda_{Q} + \sum |S|)$$
,
b) $Q + [-2^{j}, 2^{j}]^{n} \subseteq E$, if $j < \kappa(Q)$ and $Q \in C$,
c) $\sigma(S(Q)) < \kappa(Q)$ $(Q \in C)$,
d) for $\sigma \in \mathbb{Z}$ any $q \in \mathcal{R}_{\sigma}$, $\sum_{\substack{Q \subseteq q \\ \kappa(Q) \leq \sigma}} \lambda_{Q} \leq \alpha 2^{n(\sigma+1)}$.

PROOF. The proof is an adaptation of (and simpler than) that of Lemma 5.1 in [C2]. But we give the details for completeness and for the convenience of the reader.

Let $m = \min\{\sigma(Q)\}$. Find $\sigma_0 \in \mathbb{Z}$ such that

$$\sum \lambda_Q < \alpha \, 2^{n\sigma_0}, \qquad \sigma_0 > \max\{\sigma(Q)\}.$$

The proof is a stopping time argument on the descending parameter σ and proceeds by dividing C into disjoint subcollections C_1 and C_2 . We begin with $\sigma = \sigma_0 - 1$ and define, for $q \in \mathcal{R}_{\sigma}$,

$$\Lambda_{\sigma}(q) = \sum_{Q \subseteq q} \lambda_Q \; .$$

Say that $q \in \mathcal{R}_{\sigma}$ is "selected at step σ " if

$$\Lambda_{\sigma}(q) > \alpha 2^{n\sigma}$$
.

Put into \mathcal{C}_1 every Q such that $Q \subseteq q$ for some q selected at step σ , and for such Q define

(3)
$$\kappa(Q) = \max\{1 + \sigma, 1 + \sigma(S(Q))\}.$$

Next, put into C_2 every $Q \in C \sim C_1$ such that $\sigma(Q) > \sigma$ - such a Q will actually satisfy $\sigma(Q) = \sigma + 1$ - and for such Q define

(4)
$$\kappa(Q) = 1 + \sigma(S(Q)).$$

Note that (3) and (4) guarantee that (c) holds. Now replace σ by $\sigma - 1$ and repeat the process with

$$\Lambda_{\sigma}(q) = \sum_{\substack{Q \subseteq q \\ Q \notin \mathcal{C}_1}} \lambda_Q = \sum_{\substack{Q \subseteq q \\ Q \notin \mathcal{C}_1 \cup \mathcal{C}_2}} \lambda_Q , \qquad q \in \mathcal{R}_{\sigma} .$$

(The last equality holds because $Q \in C_2$ at the beginning of step σ implies $\sigma(Q) \geq \sigma + 2$.) After the step $\sigma = m$ we will have $\mathcal{C} = \mathcal{C}_1 \cup \mathcal{C}_2$ and κ defined on all of \mathcal{C} . Next define

$$E_1 = \bigcup_{q \text{ selected}} q^*, \quad E_2 = \bigcup S^*, \quad E = E_1 \cup E_2.$$

Then, since distinct selected q are disjoint,

$$|E_1| \le 3^n \sum_{q \text{ selected}} 2^{n\sigma(q)} < \frac{3^n}{\alpha} \sum_{q \text{ selected}} \Lambda_{\sigma(q)}(q) \le \frac{3^n}{\alpha} \sum \lambda_Q .$$

Now a) follows since $|S^*| = 3^n |S|$.

If $\kappa(Q) = 1 + \sigma(S(Q))$ and if $j < \kappa(Q)$, then

$$Q + [-2^j, 2^j]^n \subseteq S^* \subseteq E_2$$
.

If $\kappa(Q) \neq 1 + \sigma(S(Q))$, then $Q \subseteq q$ for some q selected at some step σ and $\kappa(Q) = 1 + \sigma(q)$. Thus if $j < \kappa(Q)$,

$$Q + [-2^j, 2^j]^n \subseteq E_1$$
.

So b) is verified.

Finally, if $q \in \mathcal{R}_{\sigma}$ for $\sigma \geq \sigma_0 - 1$, then d) is clear from the choice of σ_0 . So suppose $\sigma < \sigma_0 - 1$ and $q \in \mathcal{R}_{\sigma}$. Now

$$\Lambda_{\sigma}(q) \le \alpha \ 2^{n(\sigma+1)}$$

or else the $q_1 \in \mathcal{R}_{\sigma+1}$ that contains q would have been selected at stage $\sigma + 1$. Since $\kappa(Q) \leq \sigma$ implies that $Q \notin \mathcal{C}_1$ at the beginning of step σ ,

$$\sum_{\substack{Q \subseteq q \\ \kappa(Q) \le \sigma}} \lambda_Q \le \Lambda_\sigma(q) \,,$$

and so d) is proved.

Now suppose μ is a positive Borel probability measure supported on $[-1, 1]^n$ and satisfying $|\hat{\mu}(\xi)| \leq C|\xi|^{-n/2}$. Let $f \in H^1(\mathbb{R}^n)$ have the form of a finite sum

$$f = \sum \lambda_Q a_Q \; ,$$

where $\lambda_Q > 0$ and a_Q , supported in a cube Q, satisfies

$$||a_Q||_{\infty} \le |Q|^{-1}, \qquad \int_Q a_Q = 0.$$

As in [C2], a device of Garnett and Jones involving auxiliary dyadic grids allows us to assume that each Q is dyadic. Fix $\alpha > 0$. It is enough to show that

(5)
$$|\{Mf > 2\alpha\}| \le \frac{C}{\alpha} \sum \lambda_Q ,$$

where C depends only on μ and n.

Following [C2], let \mathcal{S} be as in Lemma 1 and define

$$b = \sum_{S \in \mathcal{S}} \sum_{Q \subseteq S} \lambda_Q a_Q , \qquad g = f - b.$$

Then $||g||_{\infty} \leq \alpha$ from Lemma 1.c) and so $|Mg| \leq \alpha$ (because μ has mass 1). Thus (5) will follow from

$$|\{Mb > \alpha\}| \le \frac{C}{\alpha} \sum \lambda_Q \;.$$

Now, with S as above and with C the collection of Q's appearing in the definition of b, let κ and E be as in Lemma 2. Since $|E| \leq C\alpha^{-1} \sum \lambda_Q$, it is enough to prove

(6)
$$||Mb||_{L^2(\mathbb{R}^n \sim E)}^2 \le C\alpha \sum \lambda_Q .$$

Let μ_j be the dilate of μ defined by

$$\langle \varphi, \mu_j \rangle = \int\limits_{\mathbb{R}^n} \varphi(2^j x) \, d\mu(x)$$

so that μ_j is supported in $[-2^j, 2^j]^n$ and

$$Mb(x) = \sup_{j \in \mathbb{Z}} |b * \mu_j(x)|$$

If $Q \in \mathcal{C}$, then, by Lemma 2.b), $a_Q * \mu_j$ is supported in E unless $j \ge \kappa(Q)$. Thus if $x \notin E$,

$$|Mb(x)|^{2} \leq \sum_{j} |b * \mu_{j}(x)|^{2}$$
$$= \sum_{j} \left| \left(\sum_{\kappa(Q) \leq j} \lambda_{Q} a_{Q} \right) * \mu_{j}(x) \right|^{2}$$
$$= \sum_{j} \left| \sum_{s=0}^{\infty} \left(\sum_{\kappa(Q) = j-s} \lambda_{Q} a_{Q} \right) * \mu_{j}(x) \right|^{2}.$$

So, for $x \notin E$

$$|Mb(x)| \le \sum_{s=0}^{\infty} \left(\sum_{j} \left| \left(\sum_{\kappa(Q)=j-s} \lambda_Q a_Q \right) * \mu_j(x) \right|^2 \right)^{1/2}.$$

Now (6) will follow from

$$\left\| \left(\sum_{j} \left| \left(\sum_{\kappa(Q)=j-s} \lambda_Q a_Q \right) * \mu_j \right|^2 \right)^{1/2} \right\|_2^2 \le C\alpha(s+1)2^{-s} \sum \lambda_Q$$

and so from

(7)
$$\left\| \left(\sum_{\kappa(Q)=j-s} \lambda_Q a_Q \right) * \mu_j \right\|_2^2 \le C \alpha(s+1) 2^{-s} \sum_{\kappa(Q)=j-s} \lambda_Q .$$

The proof of (7) requires another lemma.

Lemma 3. For N = 1, 2, ..., there exist functions $\varphi_N \in L^1(\mathbb{R}^n)$ such that

a) $|\hat{\varphi}_N(\xi)| \ge (1+|\xi|)^{-n/2}/C$, if $|\xi| \le N-1$,

b)
$$|\hat{\varphi}_N(\xi)| \leq C |\xi|^{-n/2}$$
,
and if $L_N = \varphi_N * \tilde{\varphi}_N (\tilde{\varphi}_N(x) = \varphi_N(-x))$, then
c) $\operatorname{supp}(L_N) \subseteq [-1, 1]^n$,
d) $|L_N(x) - L_N(y)| \leq C |x - y| / \min\{|x|, |y|\}.$

PROOF. We will construct L_N first and then φ_N . Define $h_N \in C(\mathbb{R}^n)$ by

$$\hat{h}_N(\xi) = \begin{cases} 1 , & \text{if } |\xi| \le 1 ,\\ |\xi|^{-n} , & \text{if } 1 < |\xi| \le N ,\\ 0 , & \text{if } |\xi| > N . \end{cases}$$

Choose a radial function $\rho \in C^{\infty}_{C}(\mathbb{R}^{n})$ such that

$$\int \rho = 1$$
, $\operatorname{supp}(\rho) \subseteq [-1, 1]^n$, $\hat{\rho} \ge 0$.

Now let $L_N = \rho h_N$. Clearly c) holds. It is easy to check that

$$\hat{L}_N(\xi) \ge (1+|\xi|)^{-n}/C \quad \text{if } |\xi| \le N-1 ,$$

 $0 \le \hat{L}_N(\xi) \le C|\xi|^{-n} \quad \text{if } \xi \in \mathbb{R}^n .$

So if φ_N is the inverse Fourier transform of $(\hat{L}_N)^{1/2}$, then a) and b) hold. Since

$$|L_N(x) - L_N(y)| \le |\rho(x) - \rho(y)| |h_N(x)| + \rho(y) |h_N(x) - h_N(y)|,$$

d) will follow from

(8)
$$|h_N(x)| \le C\left(\log^+\left(\frac{1}{|x|}\right) + 1\right),$$

and

(9)
$$\left|\frac{\partial}{\partial |x|}h_N(x)\right| \le \frac{C}{|x|}, \qquad |x| \le 1.$$

Now

$$h_N(x) = \int_0^1 \int_{\sum_{n=1}}^{\infty} e^{irx \cdot \omega} d\sigma_{n-1}(\omega) r^{n-1} dr + \int_1^N \int_{\sum_{n=1}}^{\infty} e^{irx \cdot \omega} d\sigma_{n-1}(\omega) \frac{dr}{r},$$

with the important contribution coming from the second integral. For (8) just use the well-known estimate

$$\left| \int_{\sum_{n=1}} e^{irx \cdot \omega} d\sigma_{n-1}(\omega) \right| \leq \frac{C}{(1+r|x|)^{(n-1)/2}}.$$

For (9) note that

$$\int_{\sum_{n=1}} e^{irx \cdot \omega} d\sigma_{n-1}(\omega) = \int_{0}^{1} \cos(|x|rs)\omega(s) ds,$$

for some $\omega \in L^1([0,1])$. Now

$$\left|\frac{d}{dt}\int_{1}^{N}\int_{0}^{1}\cos(trs)\,\omega(s)\,ds\,\frac{dr}{r}\right| = \left|\int_{0}^{1}\int_{1}^{N}\sin(trs)\,s\,dr\,\omega(s)\,ds\right|$$
$$\leq \int_{0}^{1}\left|\int_{s}^{Ns}\sin(tu)\,du\right|\omega(s)\,ds$$
$$\leq \frac{C}{|t|}\,.$$

Returning to (7) we have, because of our estimate on $\hat{\mu}$ combined with Lemma 3.a),

$$\left\| \left(\sum_{\kappa(Q)=j-s} \lambda_Q a_Q \right) * \mu_j \right\|_2^2 = \int_{\mathbb{R}^n} \left| \left(\sum_{\kappa(Q)=j-s} \lambda_Q a_Q \right)^{\wedge}(\xi) \right|^2 |\hat{\mu}(2^j \xi)|^2 d\xi$$
$$\leq C \int_{\mathbb{R}^n} \left| \left(\sum_{\kappa(Q)=j-s} \lambda_Q a_Q \right)^{\wedge}(\xi) \right|^2$$
$$\cdot \liminf_N \left| \hat{\varphi}_N(2^j \xi) \right|^2 d\xi .$$

Thus, letting $\varphi_{N,j}(x) = 2^{-nj} \varphi_N(2^{-j}x)$, (7) will follow from the estimates, uniform in N,

(10)
$$\left\| \left(\sum_{\kappa(Q)=j-s} \lambda_Q a_Q \right) * \varphi_{N,j} \right\|_2^2 \le C\alpha(s+1) \sum_{\kappa(Q)=j-s} \lambda_Q .$$

So fix N, j, and s and write φ for φ_N , φ_j for $\varphi_{N,j}$. For $q \in \mathcal{R}_{j-s}$, let

$$A_q = \sum_{\substack{\kappa(Q)=j-s \\ Q \subseteq q}} \lambda_Q a_Q, \qquad \lambda_q = \sum_{\substack{\kappa(Q)=j-s \\ Q \subseteq q}} \lambda_Q \ .$$

Then

$$\left\| \left(\sum_{\kappa(Q)=j-s} \lambda_Q a_Q \right) * \varphi_j \right\|_2^2 \le \sum_{q,q' \in \mathcal{R}_{j-s}} \left| \langle A_q * \varphi_j, A_{q'} * \varphi_j \rangle \right.$$
$$\le \sum_{q'} \sum_{q \subseteq (q')^*} + \sum_{q'} \sum_{q \cap (q')^* = \emptyset}$$
$$= \mathbf{I} + \mathbf{II}.$$

The inequality

$$||a_Q * \varphi_j||_2 \le C \ 2^{-nj/2}$$

follows easily from Lemma 3.b) and the well-known estimates

$$\left| \hat{a}_Q(\xi) \right| \le C \left| \xi \right| \operatorname{diam}(Q) ,$$
$$\| a_Q \|_2^2 \le \frac{C}{|Q|} .$$

This leads, via Lemma 2.d), to

$$I \leq C 2^{-nj} \sum_{q'} \lambda_{q'} \sum_{q \subseteq (q')^*} \lambda_q$$
$$\leq C 2^{-nj} \sum_{q'} \lambda_{q'} \sum_{\substack{Q \subseteq (q')^* \\ \kappa(Q) = j - s}} \lambda_Q$$
$$\leq C 2^{-nj} \sum_{q'} \lambda_{q'} \alpha 2^{n(j-s+1)}$$
$$= C \alpha 2^{n(1-s)} \sum_{\kappa(Q) = j-s} \lambda_Q .$$

(12)

To estimate II, begin by fixing $q, q' \ (\in \mathcal{R}_{j-s})$ with $q \cap (q')^* = \emptyset$. We write

(13)
$$\langle A_q * \varphi_j, A_{q'} * \varphi_j \rangle = \int A_q(x) A_{q'} * L_j(x) \, dx \, ,$$

where $L_j(x) = \varphi_j * \tilde{\varphi}_j(x) = 2^{-nj} L(2^{-j}x)$ and so, by Lemma 3.d),

$$L_j(x) - L_j(y) \le C 2^{-nj} |x - y| / \min\{|x|, |y|\}$$

Now if $\kappa(Q) = j - s$, $Q \subseteq q'$, $x \in q$, and $y_0 \in Q$, then

$$a_Q * L_j(x) = \int a_Q(y) (L_j(x-y) - L_j(x-y_0)) dy.$$

Thus

$$|a_Q * L_j(x)| \le \frac{C \, 2^{-nj} \operatorname{diam}(Q)}{d(x,Q)} \le \frac{C \, 2^{-nj+\sigma(Q)}}{d(x,Q)} \le \frac{C \, 2^{-(n-1)j-s}}{d(x,Q)},$$

since $\sigma(Q) \leq \sigma(S(Q)) < \kappa(Q) = j-s$ by Lemma 2. Also, if $a_Q * L_j(x) \neq 0$, then $d(x,Q) \leq C 2^j$ (since L_j is supported in $[-2^j, 2^j]^n$). Thus

$$|a_Q * L_j(x)| \le \frac{C 2^{-s}}{d(x,Q)^n}.$$

Now suppose $x \in q$. If $Q \subseteq q'$ and $\kappa(Q) = j-s$, then $\sigma(S(Q)) < \kappa(Q) = j - s = \sigma(q')$. Since $S(Q) \cap q' \neq \emptyset$, $S(Q) \subseteq q'$. Because $q \cap (q')^* = \emptyset$, we must have $d(x, S(Q)) \ge 2^{j-s}$. Coupled with $d(x, S(Q)) \le d(x, Q) \le C 2^j$ if $a_Q * L_j(x) \neq 0$, we estimate, for fixed $q \in \mathcal{R}_{s-j}$ and $x \in q$,

$$\sum_{(q')^* \cap q = \varnothing} |A_{q'} * L_j(x)| \leq \sum_{(q')^* \cap q = \varnothing} \sum_{\substack{Q \subseteq q', \kappa(Q) = j - s \\ 2^{j-s} \leq d(x, S(Q)) \leq C2^j}} \lambda_Q |a_Q * L_j(x)|$$
$$\leq C \sum_{(q')^* \cap q = \varnothing} \sum_{\substack{Q \subseteq q', \kappa(Q) = j - s \\ 2^{j-s} \leq d(x, S(Q)) \leq C2^j}} \lambda_Q \frac{2^{-s}}{d(x, Q)^n}$$
$$\leq C2^{-s} \sum_{2^{j-s} \leq d(x, S) \leq C2^j} \frac{1}{d(x, S)^n} \sum_{\substack{Q \subseteq S \\ \kappa(Q) = j - s}} \lambda_Q$$

By Lemma 1.a) this last term is dominated by

$$C\alpha \, 2^{-s} \sum_{2^{j-s} \le d(x,S) \le C2^j} \frac{|S|}{d(x,S)^n} \le C\alpha \, 2^{-s} \int_{2^{j-s}}^{C2^j} \frac{dr}{r} \le C\alpha \, 2^{-s}(s+1) \, .$$

That is, if $x \in q$, then

$$\sum_{(q')^* \cap q = \emptyset} |A_{q'} * L_j(x)| \le C\alpha \ 2^{-s}(s+1))$$

Thus, from (13),

II
$$\leq \sum_{q} \int |A_{q}(x)| \sum_{(q')^{*} \cap q = \emptyset} |A_{q'} * L_{j}(x)| dx$$

 $\leq C\alpha \, 2^{-s}(s+1) \sum_{q} \lambda_{q} = C\alpha \, 2^{-s}(s+1) \sum_{\kappa(Q)=j-s} \lambda_{Q}$

With (11) and (12) this gives (10) and completes the proof of our theorem.

Acknowledgements. The author thanks the referee for his comments on a previous version of this paper.

References.

- [C1] Christ, M., Hilbert transforms along curves, I: Nilpotent groups. Ann. of Math. 122 (1985), 575-596.
- [C2] Christ, M., Weak type (1, 1) bounds for rough operators. Ann. of Math.
 128 (1988), 19-42.
- [DR] Duoandikoetxea, J. and Rubio de Francia, J. L., Maximal and singular integral operators via Fourier transform estimates. *Invent. Math.* 84 (1986), 541-561.
- [I-M] Ivašev-Musatov, O.S., The coefficients of trigonometric null series. Izvestia 21 (1957), 559-578.
 - [K] Kahane, J. P., Some Random Series of Functions. Heath, 1968.

- [S] Seeger, Andreas, Singular integral operators with rough convolution kernels. J. Amer. Math. Soc. 9 (1996), 95-105.
- [SW] Stein, E. M. and Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, 1971.

Recibido: 22 de febrero de 1.995 Revisado: 31 de julio de 1.995

> Daniel M. Oberlin Department of Mathematics Florida State University Tallahassee, FL 32306-3027, U.S.A. oberlin@math.fsu.edu