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A new technique to
estimate the regularity
of refinable functions

Albert Cohen and Ingrid Daubechies

Abstract. We study the regularity of refinable functions by analyzing
the spectral properties of special operators associated to the refinement
equation; in particular, we use the Fredholm determinant theory to
derive numerical estimates for the spectral radius of these operators in
certain spaces. This new technique is particularly useful for estimating
the regularity in the cases where the refinement equation has an infinite
number of nonzero coefficients and in the multidimensional cases.

1. Introduction.

Refinable functions are functions that satisfy a refinement equa-
tion, 1.e.

(1.1) p(z) =2 cnp(2c —n).

The coefficients ¢, are often, but not always, chosen finite in number.
Such functions appear in different settings, most notably in subdivi-
sion schemes for computer aided design, where they are tools for the
fast generation of smooth curves and surfaces (see Cavaretta, Dahmen
and Micchelli (1991) and Dyn (1992) for reviews), and in the construc-
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528 A. CoHEN aND I. DAUBECHIES

tion of wavelet bases and multiresolution analysis (see Mallat (1989),
Daubechies (1988) and Meyer (1990)).

One of the earliest examples of refinable functions are the B-splines
with equally spaced simple knots (see de Boor (1978) for a general
review on splines), where

Cn = (N) 2-—N+1 ,
n

and the corresponding ¢ is a CN~2 function, piecewise-polynomial of
order N —1. Among refinable functions, the B-spline case is exceptional
in that ¢(z) is given by an explicit analytical expression; in many other
cases of interest, ¢ is defined by fixing an appropriate choice for the ¢, in
(1.1), and it is not immediately clear how smooth ¢ is. Over the years,
several techniques have been developed to determine the regularity of
refinable functions. In this paper, we present a new technique for this
purpose.

The regularity of a function ¢ can be measured in different ways;
we shall restrict ourselves to Holder and Sobolev exponents. If ¢ is in
C™ but not in C™*!, then its Holder exponent is given by p = n + v
with

(n) _ A(n)
(1.2) v = inf (lminf 28127E +1) =M@
z \ lt|-0 log |t]

where (™) is the n-th derivative of .
The Sobolev exponent s is defined by

18 s=swp{r: [1WP 1+ ol do < +oo},

where @(w) = [¢(z)e™?dz is the Fourier transform of ¢. One
can generalize this to LP-Sobolev exponents s, which, following Hervé
(1995), we define by

(1.4) sp = sup {7 : /|¢(w)|p (14 |w|P)"dw < +oo} ,

These different regularity indices are related to each other by s =
2, 4 > s1 and, by Hélder’s inequality, s, +r7 ! < s, +p~ 1, for 0 < p <
.
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Most of the techniques developed to estimate the regularity of a re-
finable function concentrate on the case where only finitely many h, are
non-zero, which was, until recently, the only case of interest for applica-
tions: in subdivision schemes it corresponds to finite masks; in wavelet
constructions, to compactly supported scaling functions and wavelets.
If there are only N + 1 nonzero c,, then Micchelli and Prautzsch (1989)
and Daubechies and Lagarias (1991, 1992) showed how to find, at least
in principle, the Hélder exponent of ¢ by computing bounds on the
norms of N x N matrices; in practice, this method becomes quickly im-
practical if IV is not small. Still for the case of finitely many nonzero c,,
a technique that can handle larger N was proposed by Rioul (1992) and
Dyn and Levin (1991); it is still the best available technique for finding
the Holder exponent when NV is finite. In general it is easier to compute
the Sobolev exponents; these can moreover be used to find a bound
on the Holder exponent, since g > s; > sy + 1/2. In the case where
m(w) = Y., hae”'™ is a nonnegative trigonometric polynomial, one
even has g = sy, which was exploited in one of the first computations
of the regularity of a refinable function in Dubuc (1986) for the special
case hg = 1, hy; = 9/16, hys = —1/16, all other h, = 0, related to
Lagrangian interpolation and later generalized in Dubuc and Deslauri-
ers (1989). When m(w) is not restricted to be nonnegative, most of the
first developments were concentrated on the computation of s; = s; see
Conze (1989), Eirola (1992) and the appendix in Daubechies (1988).
Extensions to the computation of s, (including p = 1, 2) have appeared
in Gripenberg (1992), Villemoes (1992) and Hervé (1992, 1995). With
the exception of Hervé (1992, 1995), all the papers above apply only to
N finite. Most of them are also hard to generalize to the multidimen-
sional case where (1.1) is replaced by

(1.5) ¢(z) =|D|>_ hnw(Dz —n),

where n € Z4, z € R% and D is a d x d matrix with integer entries and
all eigenvalues strictly superior to 1 in absolute value; |D| is the deter-
minant of D. Examples of the type (1.5) occur in e.g. wavelet bases
corresponding to quincunx subsampling in two dimensions proposed
for image processing in Vetterli (1984), Feauveau (1989) and Kovacevié
and Vetterli (1990), with explicit orthonormal wavelet bases in Feau-
veau (1990), Kovacevié and Vetterli (1992) and Cohen and Daubechies
(1993). As illustrated by the trickiness of the estimates in Cohen and
Daubechies (1993) and especially in Villemoes (1993), it is not easy to



530 A. CoHEN AND I. DAUBECHIES

find the regularity in the multidimensional case by generalizing the ap-
proach referred to above, even when only finitely many c,, are nonzero.

In this paper, we present a different technique for computing s, for
a refinable function. This technique is independent of whether the A,
are finite in number or not (like in Hervé (1992, 1995)) and it generalizes
easily to the multidimensional case. Like most of the other approaches,
our results hinge on the computation of the spectral radius of a par-
ticular operator (see sections 3 and 4 below). We introduce a different
space on which this operator acts however, and we use a computation
of the Fredholm determinant borrowed from Ruelle (1976) to compute
its spectral radius.

This paper is organized as follows. In Section 2, we recall basic
facts on trace-class operators and Fredholm determinants. In Section
3, we specialize these results to the particular case of transfer operators.
In Section 4 we show how the spectral radius of such a transfer opera-
tor can be used to compute s,. Although the connection between the
spectral radius of a transfer operator and the Sobolev regularity index
sp is not new (essentially all the computations of s, or s, to which we
referred above, rely on such a connection), we present an essentially
self-contained discussion in Section 4, for the sake of convenience, and
also because we require some results tailored to our different framework.
Next, we need to compute the spectral radius of the transfer operator,
for which different techniques can be used. We propose three different
procedures. The first two are similar (but not identical) to the formula
in Hervé (1992, 1995), and have the same type of convergence: one
can prove that the estimate p, at the n-th step approaches the true p
exponentially fast, |p — pn| < Ce™", but C and a are unknown. The
third procedure, on which we concentrate almost exclusively, requires
more computational work (i.e. a longer program), but at every step n
we have an explicit upper bound on |p—p,|. In this procedure the spec-
tral radius is found by determining the zero with the smallest absolute
value of the corresponding Fredholm determinant. This determinant is
an entire function which in practice needs to be truncated to its first
order terms to derive numerical estimates. Section 5 shows how this
is done, how the rest term can be controlled and how this translates
into error estimates on our computation of s,. In Section 6, we present
many examples, in one as well as two dimensions, with finitely many as
well as infinitely many nonzero h,. In particular we apply our method
to the easily implementable orthonormal wavelet filters recently intro-
duced in Herley and Vetterli (1992) (which have an infinite number of
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nonvanishing h,). Finally, in Section 7, we discuss whether and how
the technique proposed here can be extended to a direct computation
of the Holder exponent p.

There is clearly some similarity of our results with those of Hervé
(1992, 1995), the only other work in the literature so far that can deal
with infinitely many nonvanishing h,. Most of this work was carried
out in the summer of 1992. At the time we were not aware yet of the
results in Hervé (1992, 1995). Nevertheless, Hervé (1992, 1995) clearly
has priority, since he proved his results earlier. Moreover, we initially
developed our results only for s;; after reading a preprint of Hervé
(1995), we saw the interest of computing also s, for p # 2, and we
extended our results to this case. If p # 2 then our method only works
if we impose an extra technical condition which Hervé (1995) does not
require; in this sense our results are weaker than Hervé’s. On the other
hand, our method has the new feature that it leads to explicit control
over the error in the algorithm, as mentioned above, and as will be
discussed in detail in Section 5.

2. Fredholm determinants of trace-class operators.

The most general treatment of Fredholm determinants is within
the framework of Banach spaces, as in e.g. Grothendieck (1956). For
the present paper, it suffices to work in an appropriate Hilbert space
setting, where everything can be formulated-and proved more simply.
This section presents the results that will be needed in the sequel of the
paper.

In this section we denote our (generic) Hilbert space by H; we
assume that H is separable. Recall that any bounded operator A on
H can be written as A = U(A*4)'/? = U|A|, where U is a partial
isometry with ||[Uz|| = ||z|| if £ € Ran|A|, Uz =0if z L Ran|A|. If A
is a compact operator, then so is |A|; the spectrum of |A| then consists of
a decreasing sequence of nonnegative eigenvalues. The strictly positive
eigenvalues A,, of |A| are called the singular values of 4. If ¢, is a
corresponding orthonormal system of eigenvectors of |4|, and we define
another orthonormal system %, by ¥m = Upm, then we have the
following representation for A:

(2.1) Az =) Am(T,Pm)Pm -
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Another useful representation of compact operators is obtained as
follows. The spectrum of A itself also consists of a sequence of discrete
eigenvalues a,, which accumulate only at 0. For any a, # 0 we define
its (algebraic) multiplicity dn by dn = maxi>1 dim (Ker (4 — o, 1d)F),
which is necessarily finite because A is compact. On Ker (4 — ay, Id)*
we can then choose a suitable basis in which A is upper triangular (one
can, for instance, reduce it to its Jordan normal form on this subspace).
The union of all the different and independent bases constructed in this
way for the distinct eigenvalues spans a closed subspace H;, which is
invariant for A. By Gram-Schmidt orthogonalizing this basis we obtain
an orthonormal basis {ux} for H; in which Ay, is triangular:

(2.2) (Aug,ue) =0, ife>k,
(2.3) (Aug,ur) = ok,

where the a; now occur with their multiplicity. It is immediately clear
that the same basis also gives a triangular representation for all the
powers A™|y,, m > 1, with diagonal elements

(2.4) (A™up,ux) = ag .

Let us now assume that our compact operator is in fact trace class.
This means that A satisfies one of the following two equivalent state-

ments:
Z Am < 00
m

or

Z |(Aen,en)| < 00, for all orthonormal systems {e,.} .
n

If A is trace-class, then the sum of the series ), (Aen, €,) is independent
of the choice of the {en}, and is called the trace of A:

TrA = Z(Aen,en).

n

In particular, using the representation (2.1) above, one has

Trl4| = ) (14lpm, om) = D Am -

m
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In Lidskii (1959) it is proved that for any trace-class operator A in a
Hilbert space H one has

(2.6) TTA=) an,

where, as before, the a, are the non-zero eigenvalues of A, taken with
their algebraic multiplicity. This theorem, trivial in finite-dimensional
spaces, is far less so in infinite dimensions. It is immediately clear from
(2.2), (2.3) that the trace of Aly, is exactly Y., an; the problem in
proving (2.6) is to show that on the orthogonal complement H, of H,
the operator Projy, AProjy,, which is of course trace-class too, and
has spectrum consisting of only the point zero, has trace equal to zero.
See e.g. Simon (1979) or Gohberg and Krein (1969) for other proofs of
(2.8) than Lidskii’s original proof.

The trace class operators form an ideal in the algebra of bounded
operators: the product of a trace class operator and a bounded operator
is again trace class. Consequently all the powers A", n > 1, of a
trace class operator are trace class as well. Since Projy A" Projy, =
(Projq, AProjq,)" also has trace zero, we then see from (2.4) that

2.7) TrA" =) of .
k

(This can of course also be derived directly from Lidskii’s theorem (2.6)
and spectrum (A™) = {A" : X € spectrum (A)}.) Finally, note that

D okl =" [(Aur, us))]
k k
<D A ks o) [, )|

k,m

< Z)‘m (Z I(ukawm)lz)l/z(z |<¢m,uk)|2)
<Y Amllemlllvmll =D Am = Tr|Al.

(2.8) "

The Fredholm determinant of A is defined as

+oco
(2.9) Dy(z) =det(I —zA) = H(l —za,),

n=1
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where the a, occur with their multiplicity. Because ), |an| < +oo,
D 4(z) is an entire function with its zeros exactly at the a;;!, with the
same multiplicity. In particular, the spectral radius p4 of A is given by

(2.10) pa = (min{|z0| : Da(z0) =0})7"
For sufficiently small values of z (e.g. for |z| < p3'), one can rewrite

D 4(z) as follows:

log(1 — zan))

SR

m=1
oo

=exp( z %z"‘TrAm) ,

m=1

™8

Y E

Il
-

n

NgE

(2.11) = exp(

Il

n

a formula which already shows that Dj4 is completely determined by
the traces Tr A™. Expanding the infinite product in (2.9) leads to a
different formula for D 4(z),

+o0
(2.12) Da(z) =1+ ) 2,
k=1
with
(2-13) ’yk = Z 0”1 e alk .
L<la< <y

We then have

(2.13) k] < k,(ZlalD kl Tr IADk

It follows that we can therefore always write

(2.14) Da(z) = Dj(2) + RY(2),
where D% (2) is the Taylor series for D4 truncated after the term in
2N and
1
(2.15) RIS Y 7 (TrlAD .

k=N+1



A NEW TECHNIQUE 535

We shall use this estimate to find the smallest zero of D: since DY
is a polynomial, its smallest zero can be found by a host of different
numerical methods, and the control we have via (2.15) on the rest term
RY will tell us that the smallest zero of D, itself cannot be far from
that of DY if N is sufficiently large (see Section 5).

In order to identify the zeros of DY, we need again a different
representation; in particular, we are interested in a way of computing
the Taylor coefficients of D4 which does not require knowledge of the
eigenvalues a,. To do this, let us start by restricting ourselves to the
disk B (0,p;'). On this disk, we can write (using a trick going back to
Newton)

co o0

D (k+1)yr1 2" = Di(2) = D (—an) H (1 - am2)

k=0 n=1 =1
. m#n

=-Da(2) Y _9n
b et

—Da(z) Z Tr AF+ %

Il

T

— _f:zr Z Y TrAr-m+1 ,

r=0 m=

where the reordering of the sums is allowed because the series converges
absolutely for |z| < (pa)~!, and where we have introduced v = 1. It
follows that

_ k+1—m
(2.16) i1 = k+1 Z Ym Tr A i

(This derivation is in fact the standard way of relating the elemen-
tary symmetric functions 3. .. ...; @i, ---ai, with the power sums
>, af; see Macdonald (1979), p- 12 16.)

We now see the outline of a program that will be used below: given
the Tr A™ for a trace-class operator A, we now know how to find, via
the smallest zero of the Fredholm determinant, the spectral radius of
A and how to control the error. In the next section, we introduce
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specific operators A in specific Hilbert spaces, we verify that they are
trace-class, and we show how to compute Tr A™.

3. A special case: transfer operators.

The operators to which we shall apply the results in the previous
section act on 2w-periodic functions f(w) and are defined by

(81 (LuPW) =w(3) F(5) +u(G+m) £(5 +7),

where w is a 2w-periodic weight function, for which several concrete
choices will be proposed in Section 4. We shall say that £, is the
transfer operator associated with the function w; these operators are
also called Perron-Frobenius operators or transition operators in the
literature. We shall always assume that the Fourier coefficients of w
decay exponentially; that is,

(3.2) w(w) = Z wy, e~

and
(3.3) lwa| < CeIM,

for some C,y > 0. In terms of the Fourier coefficients f, of f(w) =
Y on fne™, (3.1) can also be rewritten as

1 2m .
64 (Caf=g [ (Cufw)e™ do= 25wt i

When no confusion is possible, we shall often drop the subscript w on
Ly.

Operators of the type (3.1) can be studied in many different func-
tion spaces. They have been linked with the study of refinable functions
before; see e.g. Conze (1989), Eirola (1992), Villemoes (1992), Hervé
(1995). They are special cases of the operators in Ruelle (1976, 1990).
In this section we discuss their properties on some Hilbert spaces of
analytic functions; in Section 7 we shall come back to their action on
other, larger function spaces.
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As candidates for the space ‘H we define

Eq, = {f 2m-periodic : f(w) = an e~in€ and

(3.5)
11 = D fal el < oo} .

(Note that these are different from the spaces E* in Hervé (1995).) The
E, are Hilbert spaces of analytic functions (f € E, can be extended to

complex w = w; + iwy and is then analytic for |wz| = [Imw| < a); their
inner product is given by
(36) (f,g)a = an 7, e2|n|a.

Note that for each «, the constant function 1 is in E,; moreover, for

f € Eq,

1 27
(3.7) (Flo=fo=gr [ fw)do.
The functions
(3.8) eno(w) = e~ Inla g=inw

constitute an orthonormal basis in E,.

In order to be able to apply Section 2 to £ and E,, we need to
verify: 1) that £ is a bounded operator on E,, 2) that £ is trace class
on E,. We start by computing ||£f]|«, using (3.4):

LAl = Y L h)nl? Ml

=4y IZUJZn-—kfk
n k

SAYFIE S fwan—pf? e=2IHIe (2inle
n,k

<4C? ”f”’i Z e~ 2(a=)k| ;—2(2y=a)|n]| ,
n,k

2 e2|n|or

where the last inequality used (3.3) and |2n — k| > 2|n| — |k|. It follows
that £ is a bounded operator on E, if v < a < 2y. We can us the
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same estimate to bound the matrix elements of £ with respect to the
orthonormal basis (3.8):
|(£ek,a, en,a)a‘ = Iz Won—k e|n|a e—|k|a|
(3.9)

<2C e~ (a=Dk] ;=(27y=a)|n|
This implies that £ is trace class on E, if ¥ < @ < 2y. By a simple
application of Cauchy-Schwarz, we have indeed, for any orthonormal
system u,, in E,,

Z [(Cttm,tm)al < Z [(um;ek,a)al [(Lek,asen,a)al [(€n,artim)al

m,k,n

(3.10) < Z l([:ek,a, en,a)ﬂtl <oo.
kn

Since L is trace class, it has a representation of type (2.1) with 3. A
< o0; in fact, by the same argument as in (3.10), we have

Tr I,CI = Z Am = Z<E(Pm,’l/1m>a < Z Kl:ek,ay Cn,a)a, .
m m k,n

This leads to a bound on the sum of the absolute values |ay,| of the
eigenvalues of L:

311) Y Jaa < Trlc| < 2c(ze-<ﬂ—‘f>l’°') (3 ey,

kEZ ne€zZ

We shall need this bound in order to control the rest term when we try
to locate the smallest zero of the Fredholm determinant after truncation
(see (2.15) and Section 5 ).

We are therefore in a position to apply the results of Section 2 to
L on E,; in the next section we shall see how this will then help to
determine s,. In order to be of practical use however, we need to be
able to compute the Taylor coefficients of the Fredholm determinant
D explicitly, and for this, we need the traces Tr L™ (see (2.15)). Let
us therefore now concentrate on their computation. As a warmup, let
us compute Tr £ itself. We have

TrL = Z(ﬁen,as Cn,a)a
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= Z(cen,a)n elle
(3.12) =) (L™ ),

= -21; Z [:r e (Le™" ) (w) dw .

To compute integrals of this type, we shall use the following standard
lemma, which crops up in any study using these operators (see e.g.
Cohen (1990), Eirola (1992), Villemoes (1992), Gripenberg (1992)). For
the sake of completeness, we include its short proof.

Lemma 3.1. Let w be a 27-periodic function, and let L be defined as
in (3.1). Then, for any k > 0 and any f,g 27-periodic functions, we
have -

[ jw) (@ )y do = / ) (TTwe-) o(2*0) o

=1

x k—1

(3.13) p / £2*0) ( [T w(@"w)) g(e) do.
- m=0

PROOF. By induction. For k¥ = 1 we have

o) o)t = [50) (0(2)o(2) 4w +7) a5 +m) do

w/2

=2 [ f(w)(w(w)g(w)+ww+7)g(w +7))dw

—3://22
=2 fw)w(w) g(w) dw

—r/2
" f(20) w(w) g(w) dw
2m w w
f(w)w(g) 9(5) dw .
—2m
If we now assume that (3.13) holds for k, then

" () (£ ) (w) do

-7
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= 2k _t,f(2kw) ( ﬁw(?"w)) (w(g) g(‘—;-)%-w(%-i-vr) g(g-{-w)) dw

= 2++1 "/2f(2’°+’w)( ﬁw(zmw)) (w(w) g(w)w(w+m) glwt)) do

I
—;
L

T k
tai "f(2’°+1w) ( Hw(2mw)) g(w) dw.

m=1

Applying this to (3.12), we find
1 " 2inw —inw
Tr£=gzn:2/_"e w(w)e dw=22n:wn=2w(0).

Similarly, we can compute, for any k > 1,

TrL* =) (L),
- 517?2 /—: e (Lke i) (w) duw

1 i i(2¥F—1)nw L m
=2k§;-2-;/;”e(2 2 (nl;low@ w))dw
=2F Z(Wk)(2"—1)n ,

(3.14)

where the 27-periodic function Wy is defined by
_ k-1
Wi(w) = [] w@mw),
m=0

and where its Fourier coefficients are denoted by (W), as usual. Sums
of the type (3.14) can be computed by means of the following lemma,
which is essentially a version of the Poisson summation formula.

Lemma 3.2. Let f be a 2n-periodic function, and f, its Fourier coef-
ficients. Assume that ) |fn| < co. Then, for any £ > 1,

£—-1
(315) > ) =LY fen

m=0 n€Z
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PROOF.
-1 o1 -1
- —2mimn /e
(3.16) Zf(_e_)—’ Zane /e,
m=0 m=0 neZ
If n € £Z, then
-1 ) -1
(3.17) Yo emImmnt= N 1=y,
m=0 m=0

Ifne€elZ+k,with0 <k < ¥, then

= 2mimn/t = ikm /¢ '(e_ZWik/l)t‘l
(3.18). D emzmimn/t o N mzmikm/t T =0
m=0 m=0

since (3.16) is absolutely summable, we may change the order of sum-
mations, and (3.15) then follows from (3.17) and (3.18).

This can then be used to give an explicit formula for Tr £*. The
following theorem summarizes the findings of this section so far.

Theorem 3.3. Let w(w) be a 2w-periodic function with Fourier co-
efficients satisfying (3.3). Define L to be the corresponding transfer
operator, as in (3.1), and let E, be the Hilbert spaces defined by (3.5).
If v < a < 2v, then L is a trace class operator on E,. The spectrum
of L does not depend on the choice of o in |v,2v|, and for any k > 1,
the traces Tr L are given by the ezplicit formula

(3.19) ot - 2 g(ﬁw@‘ )
) 2’°--1m=0 o 2k 17/

PROOF. Most of the assertions were proved in our discussion above.
Formula (3.19) is a direct consequence of applying Lemma 3.2 to (3.14).
Since the Taylor coefficients of the Fredholm determinant Dg(z) are
completely determined by the traces Tr £* (see Section 2), and the zeros
of D are the inverses of the eigenvalues of L, the fact that (3.19) does
not depend on o immediately implies that the spectrum of £ doesn’t
either.
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REMARK. Another way of obtaining (3.19) is the following. The oper-
ator £,, can also be viewed as an integral operator,

T

(Luf)(w) =2 / w(w') 8(rw’ — w) f(w') du'

where 7 on | — m, 7] is multiplication by 2, modulo 2x. The trace
of £, can then be obtained by integrating the kernel K, (w,w') =
w(w')§(tw' — w) along the diagonal w = W',

Tr L, = 2/” w(w)d(Tw — w)dw = 2w(0).

-7

The integral kernel of (L,,)* is given by

/---/xw(w,wl)nw(wl,wz)---xw(wk-l,w')dwl e ;

restricting this to w = w' and integrating over w leads to a delta-
function §(7*w — w). This results in a sum of different contributions in
the fixed points of 7% (i.e. the points 2rm/(2F — 1)), as in (3.19); the
denominator (2¥ — 1) multiplying these contributions results from the
Jacobian of ¥ — Id.

In the next section, we shall see how, for a judicious choice of w,
the operator £ and in particular its spectral radius on E, can be used
to compute the Sobolev exponent s, of a refinable function. We shall
be interested in multidimensional refinable functions as well. We will
then need a slight generalization of the constructions above. Instead of
(3.1), we have then, for w € [—m, 7|9,

|det D|-1

(3.20) LHw)= >, wD'w+&) (D w+E),

=0

where D is a d x d matrix with integer entries and all its eigenvalues
strictly larger than 1 in absolute value, and where f, w are functions in d
variables, 27-periodic in each (i.e. they are functions on the torus T9);
the ¢; are defined by ¢; = D~1(;, where the (; are distinct elements
in 27Z4/DZ?, so that D™'w + £; are exactly the |det D| distinct pre-
images of w under the map D. In the case where d = 1 and D is
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multiplication by 2, (3.20) obviously reduces to (3.1). (3.20) can also
be rewritten as

(3.21) (£f)n = |det D| > wpn_k fr ,
k

where fi again denotes the k-th Fourier coefficient of f; the summation
index k now ranges over Z?. As before we shall assume

(3.22) lwn| < Ce™Iml,

with |n| = (n? + - - - + n2)!/2; the space E, is then defined by

(3.23) E, = {f function on [0,27]%: ||f]|2 = Z | fn)? e2Iml < oo}
. n€zZd

Repeating the same arguments as before, one finds then the following
generalization of Lemma 3.2:

Theorem 3.4. Let D be a d xd matriz with integer entries and with all
113 ergenvalues strictly larger than 1 in absolute value. Define the spaces
E, and the operator L as in (3.21)-(3.23). Then L is trace class on Ey
if ¥ < a < rpy, where rp = min{|A| : X is eigenvalue of D} > 1, and
the spectrum of L on E, does not depend on a.

Define now, for any k > 1, the set Fy by

(3.24) Fi, ={ne]—mn,n[* DFnp—ne2rz};

this set has ezactly |det (D* — Id)| elements, which are the fized points
in T? of DF. Then the traces Tr L* are given by the following ezplicit
formula:

det D it
(325)  TeLt= tl(Dtk—l-Id)l > (I w@mn)).

n€EF, m=0

The proof is exactly along the same lines as in the one-dimensional
case, and we leave it to the reader to fill in the details. In order to obtain
the explicit formula (3.25) one needs the following higher dimensional
generalization of Lemma 3.2:
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Lemma 3.5. Let L be an integer d x d matriz, and define the set R by
R={(€]-mmn: L{€2rZ%.

Then for any function f on T¢ such that Y nezd [fnl is finite,

1
(3.26) Y frn= D] ;f(C).

neZzd

PROOF. As for Lemma 3.2, the proof hinges on the computation of
z(ER e” ¢ wheren € Z4 and n - = n;(; + -+ + ng(q. This can
be done by a standard argument on character sums. The set R is an
additive group isomorphic with Z¢/LZ¢; it follows that

(Z e—in.c)z _ Z e~ in(G1—¢2) — (#R) Z e—inC

CER ¢1,{2€R (ER

Consequently we have either 3 .. p e~ C=#R=|det L| OI_Z(GR ein¢
= 0. The former is possible only if each of the terms e™*™¢ equals 1,
which is equivalent to the requirement n = L*k for some k € Z?. Hence

z e ¢ =

{ |det L|, if n € L'Z?,
¢ER

0, if n € Z4\L'Z%.
(3.26) then follows easily.

The following examples show how the explicit formulas for Tr C*
can be used to determine the spectrum of £ completely and explicitly
in some simple cases.

EXAMPLE 3.6. w(w) = ((1 4 e~*)/2)N; this corresponds to the choice
w(w) = m(w) for the case where the refinable function is a B-spline
(see Section 1). Then w(2f2rm/(2F — 1)) = 1, for all £, if m = 0, and
for m # 0 we have

k=1 k-1 sin (2027 —— N
H w(2* 22k7rm1) = exp(imrNm) ( H ( 2"7; 1) ) =2~ Nk,
=0 - t—0 2sin (2‘7rzk — 1) '
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Consequently
1 2k _2
k_ ~Nk
Tr L 1_2k+1_2—k2
(3.27) N-2
— Z z—kl + 22—-k(N—1) .
=0

By (2.11) it then follows that

N-2 ) 1

— _ (ot \m —N+1

Dg(z)—(gexp( n;m@ z) ))exp( ZZ (2 )

-~ (-3 (1 5) (-5

implying that the nonzero eigenvalues of £ are 1,1/2,...,1/2V =2 (with
multiplicity 1) and 1/2V~! (with multiplicity 2); this can in fact also
be read off from (3.27).

EXAMPLE 3.7. w(w) = ((1 4+ e7*)/2)N w;(w); this corresponds to a
factorization which we almost always impose (see Section 4); we assume
w1(0) = 1. Then the same computations as in the previous example
give

1, ifm=0,
Hw t 27rm 27rm
2k—1 2= kNH 2! , ifm#0.
This leads to
p_1-27F —kN
TrLF = 5k +2 Tr/.Z

where £, is the operator (3.1) with w replaced by w;. By (2.11) we
have therefore

Dg(z):(l—z)(l-—%)---(l S 1)Dc (2N2).

The spectrum of £ consists now of two parts: the eigenvalues 1,1/2,...,
1/2N-1 together with 2~V spectrum £; .

The spectra for these simple £ had been analyzed by other means
before (see e.g. Daubechies and Lagarias (1992)), but their eigenvalues
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are recovered here in a particularly simple way. Let us consider a simple
two-dimensional example next.

EXAMPLE 3.8. Take d =2, D = (] ), and

a(Dw)
2a(w)

where a(w) ~ w? + w? as |w| = 0, w1(0) = 1, and where we assume
that a and w; both satisfy (3.22), with moreover min{|a(w)| : w €
[, 7|2} > 0. Then w also satisfies a bound of the type (3.22). We
have now, for n € Fy (defined by (3.24))

w(w) = ( )N wy(w),

k-1 ],;’ 1f77 = 05
w Dk — -1 )
,,go (D=3 gomw IT wi(D*n), itn#o0.
m=0

One easily checks that |det D| = 2, |det (D?* — Id)| = (2*¥ — 1)? and
|det (D2F+! — 1d)| = 22¥*+! — 1. Consequently

X _2m 92m —-2mN
Z2m 92m (1 _ g=2mN)
De(z) = exp (— Z 2m (2m —1)2 )
m=1
o 2m+1 92m+1 (1 _ e—(2m+1)N))
z -N
- exp (— E 1 g2t _ 1 )D51(2 z)
m=1

® _2m

oo N
= exp (— Z Z Z2—m (1+42°™N) 2_'"(“'"))

2 (2m+l)l)D (2— 2)

+
— ( H (1- 2—1z))( Ii]‘[ ﬁ 2_(‘+")22)1/2)D51(2_Nz)
=
~(Ta-2)(Ta-2*2®) pea),
£=0 k=0

where n(k) = [(k+1)/2) if k < 2N -1, n(k) = N if k > 2N — 1. This
shows that in addition to the eigenvalues 1,1/2,...,1/2¥~! which were
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also found in Cohen and Daubechies (1993), we have infinitely many

eigenvalues +27%/2 as well as of course the spectrum of £, multiplied
by 2-N.

4. Regularity estimates using the spectral radius of £.

In this section, we discuss the relations between the Sobolev or
Hoélder (global) regularity of a refinable function and the spectral radius,
in the previously described function spaces, of certain transfer operators
that are associated to this function. More precisely, the study of these
operators leads to an exact estimate of the LP-Sobolev exponents s,
defined in the introduction.

Let ¢(z) be an L! solution of a refinement equation

(4.1) p(z) =2 hap(2z —n).

n€ez

We assume that the coefficients h, are summable, and that ¢ is nor-
malized in the sense that [ ¢ = 1. By integrating on both sides of (4.1),
we obtain

(4.2) > ha=1.

Define the continuous function m(w) = 3, hn e~""*. In all that follows,
we shall assume that m(w) can be put in the factorized form

(43) m(w) = cos™ (/2) g(w),

where N is a strictly positive integer and ¢(w) is a 2w-periodic function
whose Fourier coefficients ¢, satisfy a geometric decay estimate,

(4.4) len| < CePm.

We shall often also impose that ¢(w) does not vanish on [0, 27].

Consequently, m(w) is a smooth 2r-periodic function and (4.2)
indicates that m(0) = 1. By applying the Fourier transform to (4.1),
one obtains

(4.5) ¢(w) = m(w/2) $(w/2)



548 A. COHEN AND I. DAUBECHIES

and by iteration ¢(w) can be written as the pointwise convergent infinite
product

+oo
P(w) = H m(2~Fw).
k=1

Before proceeding further, we would like to make some comments
about the assumptions made on the functions m(w) and ¢(w) and their
Fourier coefficients.

The infinite product formula (4.6) indicates that the function ¢ is
the limit of a stationary subdivision scheme, i.e. successive refinements
of a Dirac sequence by means of interpolation: the sequence obtained
at a given scale is filled with zeros at the mid-points and then convolved
with the sequence h, and multiplied by 2. It is clear that a necessary
condition for the existence of a non-trivial limit is m(0) = 1.

Formula (4.6) only indicates, however, that this scheme converges
“weakly”, 1.e. in the sense of tempered distributions. The limit ¢ itself
may be a tempered distribution without any regularity. Clearly, for
numerical applications, one is more interested in uniform (or strong)
convergence of the subdivision scheme to a continuous or more regular
limit function. It has been proved by Dyn and Levin (1990) that the
limit function can be continuous only if m(7)=0. This justifies the fac-
torization of m(w) expressed in (4.3). In addition, strong convergence
of the subdivision scheme follows if ¢ € C° N L? and if there exists a
compact set K congruent to [—m, 7] modulo 27 (i.e. |K|= 27, and for
any w € [—m, 7] there exists w' € K so that w — w' € 27Z), containing
a neighborhood of 0, such that inf;>1,wex [m(27w)| > 0. (See Cohen
and Ryan (1995).) When this holds, we shall say that m is of type C.

The next two lemmas give the decay of the Fourier coefficients of
|g(w)|P. Let us look first at the case p =24, L€ N, £ > 0.

Lemma 4.1. The Fourier coefficients {cn2¢}nez of |q(w)|?, with £ €
N, satisfy the estimate

(4.7) |en,2¢] < Core™PInl
PROOF. We can write g(w) = Q(e') where Q(z) = Y, czcnz" is

analytic on the ring Rg = {e™# < |2| < ¢/}. We can define the
function Q2(z) = Q(z) Q(z~1) that coincides with |g(w)|? on the unit
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circle z = €. It is also analytic on Rg, as are all its integer powers,
(Q2(z))¢. The exponential decay (4.7) then follows immediately.

For p # 2¢ we need an extra nonvanishing condition on g(w).

Lemma 4.2. Suppose that q(w) does not vanish on [0,27]. Then
there ezists v in )0, 8] such that for all p > 0, the Fourier coefficients
{cn,p}nez of |g(w)|P satisfy the estimate

(4.8) |Cn,p| < Cp e,

PROOF. Since g(w) does not vanish, there exists v in ]0, 4] such that
Q2(z) does not vanish on R, = {e77 < |z| < €7} (with the same
notations as in the proof of Lemma 4.1 above). On this narrower ring,
it is possible to define a set of analytic functions by

(4.9) Qp(z) = exp (21og 22(2)) = 3 cap 2™

n€zZ

These functions are equal to |g(w)|? on the unit circle; their analyticity
on R, implies the estimate on the coefficients cp p .

From the results of the previous section, we thus know that the
transfer operators associated to the functions |g(w)|P are trace class
on E,, for any a € }y,2vy[. By Lemma 4.1, the transfer operators
associated to the functions |m(w)|P will be trace class on E, for p € 2N,
but not for general p: because of the Holder singularity at w = 7 of
|m(w)|P for p ¢ 2N, the Fourier coefficients of these functions do not
decay exponentially. We have however the following result:

Lemma 4.3. Let £, (respectively £,,) be the transfer operators asso-
ciated with |g(w)[P (respectively |m(w)|P). For any a € ly,2v[, £}, acts
as a trace class operator on the space E! composed of the functions
g(w) = |sin(w/2)|N? f(w) with f € E,, the norm of g in E! being
identified to the norm of f in E,. Moreover, if f(w) is a continuous
eigenfunction of £, with eigenvalue A, then g(w) = |sin(w/2)|V? f(w)
is a continuous eigenfunction of £, with eigenvalue 272Np),
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PROOF. It suffices to note that

£59(2w) = [m(w)IP g(w) + [m(w + m)[P g(w + 7)

= | sin(w/2) cos(w/2)|"? (lg(w)I? f(w) + la(w + ) f(w +))
= 272NP |5in(w)|NP £, f(2w) .

The operators £, £, will be used to estimate the regularity of .
In our proofs we shall use that £, is a positive operator, in the sense
that (£,f)(w) > 0 for all w € [—m,n] if f(w) > 0 for all w € [—=,7].
Such operators have special spectral properties; see e.g. Schaefer (1966)
or Schaefer (1974). To see how the general theorems on positive opera-
tors apply here, we first need to establish some facts about E,. Define
E}r = {f € Eo: f(w) >0 for w € [-m,7]}. This is a cone in E,,
which contains in particular all the positive trigonometric polynomials.
It follows that the closed linear span of E} equals E,, or, in the ter-
minology of Schaefer (1966), E, is an ordered Banach space with total
positive cone. It then already follows from the Krein-Rutman theorem
(see e.g. Schaefer (1966), p. 265) that

Lemma 4.4. The spectral radius rp of £, in E, i3 an eigenvalue for
£, and there ezists a positive eigenfunction for this eigenvalue.

(The statement of the Krein-Rutman theorem in Schaefer (1965)
is for real ordered Banach spaces, but since E, can easily be seen to be
the complexification of {f € Eq : f(w) € R for all w € [—m, ]}, the
theorem still applies.)

More restrictions on the spectrum of £, can be derived if ¢ satisfies
extra conditions. We shall need the following lemma:

Lemma 4.5. Let w(w) be a 2m-periodic function satisfying (3.3).
Assume furthermore that w(w) > 0 for all w € [—m, 7], w(0) = 1,
w(r) # 0, and that w is of type C. Then, for all f € E, (with
7 < a<2y) with f >0 and for allw € [—7, 7], there ezists n > 1 such
that (L3, f)(w) > 0.

PROOF. 1) Since w is of type C, we can find a compact set K, congruent
with [—7, 7] mod 27, and a constant C > 0 so that, for all w € R, and
allj >1,

w(277w) > Cxp (w).
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2) Assume now w # 0. Then

2n-t n

Caf@ =Y (IJw@(+2mn)) f(2~"(w +2mm))
m=-27-141 j=1
2n—1

>Cc" Z X (W +2mm) f(27"(w + 2m™)).

m=—2n-141

There exists @ € K, m; € Z, so that w + 2m ;7 = &. Therefore, if n is
large enough, so that 2"~ > |m,|, we have

(Lof)w) 2 C™ f(27"0).

Since & # 0, and since f € E, is analytic, f cannot vanish on all the
27"®, implying that (L} f)(w) > 0 for some n > 1.
3) If w =0, then

2n-t n

€aho = > ([[we’2mn) f@"2mn)

m=—2n-141 j=1
2n—21 n .
> ¥ (H w(2 (26 + 1)7r)) F(2 (20 + 1)m)
t=—27-241 j=1

2"~2_1 np-1

=w(r) 3 ( [T w(@™(x + 26x))) f(27"+ (x + 2¢m)).

f=—2n-241 ;=1

Again, there exists @ € K and ¢; € Z so that 7 + 26y = &. If
27=2 > |¢,], then it follows that

(L5£)(0) 2 w(r)C™t f(27" D).
Since & # 0, the conclusion then follows as in point 2) above.

Lemma 4.6. Let m,q be as in (4.3), (4.4), with ¢(0) =1, q(7) # 0.
Assume moreover that one of the following two sets of conditions holds:

1) p > 0 and q(w) does not vanish on [—m,x], or
2) p€e 2N, p> 2, and m 1s of type C.
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Then rp, the spectral radius of £, on E,, v < a < 27, 18 an eigen-
value of algebraic multiplicity 1, and the corresponding eigenfunction i3
strictly positive. Moreover rp > 1.

PROOF. If ¢ does not vanish on [—, ], then |g|? is obviously of type
C. On the other hand, if m is of type C, then so is ¢, hence |g|P. In
both cases we can therefore apply Lemma 4.5, and we find, for A > rp,
and for any f > 0, any w € [—m, 7],

> AT (£ f)w) > 0.

In the terminology of Schaefer (1966), this means that £, is irreducible.
It then follows from Theorem 3.3 in the Appendix of Schaefer (1966)
that the algebraic multiplicity of rp is 1 and that the associated eigen-
function is strictly positive; let us call this eigenfunction F'. The in-
equality r, > 1 follows from

rp F(0) = (£, F)(0)
2n-t n
= F(0) + Z H lg(2772m)|P F(2~"2m™).

m=—2""1417J=1
m#0

The argument in point 3) of the proof of Lemma 4.5 shows that this
second term must be strictly positive for some n, implying r, > 1.

We prove one additional lemma, which we shall use in the next sec-
tion, although we do not need it for Theorem 4.8 below. The argument
in the proof is borrowed from Hervé (1995).

Lemma 4.7. Let m,q be as in Lemma 4.6. Then r, i3 the only eigen-
value of £, in the peripheral spectrum, i.e. all the other eigenvalues A

satisfy |A\| <rp.

PROOF. Let F be the strictly positive eigenfunction of £ ,,- in Lemma
4.6, and define the function

o) = —pmy F@la()P
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Then v is a continuous function, and it satisfies v(w) + v(w + 7) = 1.
It is then a consequence of results proved in Keane (1972) that, for

any continuous 2m-periodic function g, (L7g)(w) converges uniformly
to some constant Cy. Consequently, for any f € E,,

o (£p )W) = F(w) (L3 (f/F))(w) = F(w)Cy/r -

If now f was an eigenvector of £, with eigenvalue A, with A =r, X,
A #1, |A| = 1, then this would imply

A" f(w) = Cpp F(w).
This is impossible (just take any w such that F(w) # 0 # f(w)).

We are now ready to state the result that links the regularity of ¢
with the spectral properties of transfer operators.

Theorem 4.8. 1) Assume that m(w), g(w) satisfy the same conditions
as in Lemma 4.6. Let £, be the transfer operator associated to the

unction |q(w)|P and let r, be the spectral radius of this operator on E,,
P P
or any a € |v,2v[. Then the LP-Sobolev exponent s, of ¢ satisfies
P

1
(4.10) sp =N — = log,(rp).
p
Furthermore, one always has

(4.11) sp < N.

2) If g(w) has some zeros in [—m, | and i3 not of type C, then we
still have sp > N —log,(rp)/p, for p € 2N.

PROOF. We start by proving that s, > N —log,(r,)/p for general g(w).
Combining (4.3) and (4.6), we obtain

+oco +oco : N
P(w) = H cos™ (2757 1w) H q(27*w) = (?—Sinii/z—)-) A(w)
k=1 k=1

with A(w) = [T122 ¢(2~*w).
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To exploit Lemma 3.1, we remark that for all w € [-2"7,2"x], we
have

(4.12) |A@W)P < Cp [] law)l?
k=1

with Cp = max,¢e[—n x] |A(w)|P. By Lemma 3.1, we can write

2" 2%r n
[ arasc [ ke *orw

—_— 2"”k=1

=6, [ ey

=27 Cp ((£p)"1|1)a »

where we have used (3.7).
It follows that for all € > 0 and p > 0, there exists a constant Cp .
such that

2"
(4.13) / [A(w)|P dw < Cpe (rp +€)".
-2"7r
We now study the convergence of [ |¢(w)|P(1+|w|P)® dw by a dyadic
decomposition of the frequency domain:

™

L1 (- opy do= [ 160 0+ ol do

+oo
+y [ B (1 + |wl?)* d
]-; |w|€[29=1m,27 7]
+co ) ) 2"
SCi+Cyy 2r49 27 NP / |A(w)IP dw
j=1 2"
+w . . .
SC1+C3 )y 27927 NPi(ry, +ey,

J=1

where C1, C2 and C3 only depend on the choice of p and ¢. Since € can
be chosen arbitrarily small, it is clear that the integral will converge
whenever sp < Np — log,(rp). This shows that we have

(4.14) 55> N — % log,(rp) -
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To sharpen this into an equality when g(w) satisfies the extra con-
ditions, we shall use the transfer operator £, associated to the function
|m(w)|P. According to Lemma 4.3, the spectral radius of £}, on E,

is 27NPr,. Moreover, since F > 0 is an eigenfunction of £, for the
eigenvalue r,, it follows that 2=NPr, is an eigenvalue for £, with a
corresponding positive eigenfunction g(w) = |sin(w/2)|NPF(w).

Define now S = sup,, |F(w)|, G = [7_g(w)dw > 0. Let K be the
compact set congruent with [—, 7] for which inf;>1, wek [m(w)[P > 0.
It then follows (see e.g. Cohen and Ryan (1995)) that

p= inf ]|¢(w)|p >0.

wE€[—m,n

Define now
(415) L= [ el i) do.
wEe2"K

Using again Lemma 3.1, we obtain, for all n > 1,

i P
I, > p—l/ lw]Np| H m(2_kw)l dw
we2" K k=1

> p-l 2Np(n+l)/

- P
|sin(2™ " 1w)|NP l H m(2'kw)| dw
wEZ"K k=1

n

2% n P
=p! 2N”("+1)/ |sin(2""—lw)|N”l H m(2"kw)’ dw
k=1

-2n 7w

2" n P
> (Sp)—l 2NP("+1)/ g(z—nw) I H m(z—kw)l dw
k=1

—2"T

ud

= (597 2" [ (g1 ) dos

-7

=G(Sp)™! ol (rp)" =C(rp)".

Since, for some L < 0o, K C {w: |w| < 2F7}, it follows that

2" x
i, = / |7 ()P duo

—2"

(4.16) > / 0| V? [3(w) [P du
we2n-LK

=In_r 2 C'(rs)".
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If we now define
417)  Ja=Ih—lay= / w7 ()P d,
|w|€[2n~17,27 ]

then (4.16) shows that for all C,e > 0, there is an infinite number of
n > 1 such that J, > C(r,)" 27°" (here we use that, by Lemma 4.6, r,,
is strictly larger than 1), or equivalently

(4.18) / ([ VPloss () | () P do > C .
|w|€[2n—1m,27 )

This last inequality shows that s, is smaller than (and thus equal to)
N —logy(rp)/p. Finally, s, < N follows from r, > 1.

5. Numerical precision.

Combining the results of the previous sections, we immediately
obtain

Theorem 5.1. For a function ¢ as defined by (4.6), with m(w), g(w)
satisfying the conditions in Lemma 4.6, the L,-Sobolev ezponent of ¢
can be ezpressed as s, = N — log,(rp)/p, where (r,)™! = z, is the
zero of smallest absolute value of the Fredholm determinant dy(z) of
the operator £, associated to the weight function w(w) = |g(w)|P.

Formulas (2.12), (2.16) and (3.19) give us an explicit expression for
the Taylor series of the analytic function dp(2). In practice, to estimate
z, numerically, we are obliged to truncate this series and work with the
polynomials that are obtained from the first order terms. What is the
effect of this truncation on the numerical precision of the estimate for
rp? More precisely, can we measure how well z, is approximated by
the smallest zero of the truncated series at a given order?

We first discuss this problem in very general terms. Let f(z) be an
analytic function on C and suppose that we want to estimate the value
of zg, the zero of f with the smallest absolute value. For a given NV, let us
denote by Py the polynomial corresponding to the IV first order terms
in the Taylor development of f around 0 and let Ry(2) = f(z) — Pn(2)
be the residual term. Then, for any fixed A > 0, and any A € 0, 1{, one
can find C > 0 so that sup|,<4 |Rn(2)] < CAVN: the Ry converge to
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zero faster than any geometric sequence, uniformly on the disk |z| < A.
To exploit this estimate, we shall use a classic result of complex analysis
(see, for example, Rudin (1967)) that we recall here:

Rouché’s Theorem. Let g(z) and h(z) be analytic functions on an
open set V; let D be an open set such that D C V and 8D is a Jordan
curve. If |h(z)| < |g(2)| for all z € OD, then g and h+ g have the same
number of zeros inside D.

This theorem leads to a systematic method for tracking the zeros

of f:

e First, find g > 0, A > 0 and Ny € N such that |Pn,(2)| > €0 on
Sa = {|z| = A}, |Rn(2)| < €0/4in B4 = {|z| < A} for all n > N,
and Pp, has at least one zero in B4. This is always possible, if f
has at least one zero in B4 and does not vanish on S4. Moreover,
Rouché’s theorem implies that f and Py, have the same number
M of zeros in B4 .

e For a given zero 2gj, j € {1,...,M} of Py, in B4, consider then
the parametrized curve Ty () = zo,; + uo,;(8)€e*®, 8 € [0,2n],
defined by

(5.1) up,;(8) = min{u : Pn,(z0,; +u()e®) =0} .

This is clearly a Jordan curve contained in B4. By Rouché’s theo-
rem again, we know that the curve I'y ; embraces the same number
of zeros not only for f and Py, but also for all the P, for n > Ny
since, on Iy j, we have |Py(2)| > |Pny(2)| + |RNo(2)| + |Ra(2)] =
Eo/ 2.

e We now iterate this process by taking any sequence ¢; starting
with €9 and such that 0 < e < €x—1/2. After k steps, we choose
Ni > Ni_i such that |R,(z)| < ex/4 in B4 = {|z| < A} for all
n > Ni. The curves I'y ; will be defined around the zeros z ;,
J €{1,...,M} of Py, by Tk (8) = zx,; + ux,;(0) e, 0 ¢ [0, 27],
with

(5.2) uk,j(G) = min{u : PN,,(zk,j + u(G) ew) = Ek} .

It is clear that Ty ; lies completely within I'x_;,; and that for fixed
k, each T’y ; contains at least one zero z; of f, j € {1,...,M} (if
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it contains two zeros z; and z;, then the curves I'y ; and I'x ; are
necessarily identical).

The speed of convergence of this process will be measured by the
decay of the diameter of the curves I'y; as k goes to +00. We can
estimate this diameter by remarking that |f(z)| < 5ex/4 within T'x ;.
Consequently if d is the maximal order of all the zeros z; of f in Ba,
J € {1,..., M}, then there exists a constant C such that

max diam (T'x ;) < n;ax{r |z = zjl < r =|f(2)] < 5er/4}

5.3 !
( ) o < C(Ek)l/d.

In particular, we see that since €; has at least exponential decay, the
speed of convergence will always be, at least, exponential. Note that
for sufficiently large k, all the 'y ; curves (i = 1,..., M) are disjoint
from each other so that all the zeros are isolated and can be tracked
separately.

In the particular case that we are interested in, some additional
considerations can be made:

e We are looking for the zero with the smallest absolute value. By
Lemma 4.6, this zero is unique and situated in R;. Furthermore,
we know that it is contained in [0, 1[. Consequently, we may restrict
our tracking process to this interval after the first step, using the
fact that, for all k, the zero that we are looking for is necessarily
situated between the two extremal intersections of a certain I'y ;
with the real axis.

e We have now a specific estimate for the rest Ry ,(2) of dp(2):
according to (2.11), for all |z| < 1,

+oo

(5. Brp(@l < Y 2 (TE D
k=N+1 ’

This estimate indicates that the estimation process that uses Pi(2)
at step k should converge at least exponentially fast.

Before we proceed to the examples in the next section, we list a
few comments on our procedure.
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COMMENTS.

1). According to Lemma 4.7, we can split the eigenvalues a, of £,
into ag = rp, and all the other an, n > 1, which satisfy |a,| < rp,. We
can therefore write the following estimate for Tr £ ;:

co
(5.5) ITe £5 —rh| <75 > pf Ne,
=1

where all the p, are < 1, where Ny = #{a, : |an| = pe}, and
Yre1PeNy =327 |an| < co. This leads to two alternative formulas
for the computation of r,, starting from the traces Tr £ ;f :

— 1 ki1/k
(5.6) rp = kll}n:o|Tr £, Ik
and
Tr £F+1
(5.7) ry = tim L

k—o0 ITI' f;l
According to the estimate (5.5), we have indeed
(5.8) T £1% = rp + C1(F) P}

and

|Tr £541]

(5.9) AT

=Trp+ Cz(k)pf >
where, for k sufficiently large,
N
Gk <1+ TEr,

and
IC2(E) < (1 +€)(pr + 1) Nirp,

which proves (5.6) and (5.7) (since p; < 1). Both formulas converge ex-
ponentially fast, with the same rate, but a slightly better multiplicative
constant in (5.6) than in (5.7), according to (5.8), (5.9). Computing
rp via either (5.6) or (5.7) is simpler than the Fredholm determinant
method explained above, but although we have exponential convergence
in (5.6), (5.7), we have no control over, or no good estimate for the rate
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of convergence. Since £, is not selfadjoint, its eigenvalues can be com-
plex, and it is conceivable that the largest |ao| may be “masked” in
the first sums. This is illustrated by the following example (which is
admittedly ad hoc, and not computed as the spectrum of a true £,,).
Take

min/K - p=1,...,K-1,
ag =7, an=0, n>K.

apg =1, ap=(1-¢€)e

Then we have

Z {1+(I\—-1)(1—e)"+7, if k=0 (mod K),
ay
1—(1—e)f ++F, if k# 0 (mod K).

Consequently the first K —1sums y_ oo ok, 1 <k < K—1, may lead to
a very misleading picture. Figure la plots log (3 o, @) as a function
of k for 1 < k < 14 for the choices K = 15, v = .9, e = .001; the graph
is virtually indistinguishable from the straight line & logy. The picture
changes drastically when we reach k = 15, as shown in Figure 1b, which
plots the behavior of 3.o0 | a¥ for a much larger range of k. The point
of this toy example is that the first K —1 sums } o>/ af contain no clue
whatsoever indicating that the asymptotic regime is far from attained.

-1 o

I T
5 10-

Figure la. Plot of log(z > o aF) for the values
k=1,...,14 in the toy example.
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Figure 1b. Plot of )02 ok for k = 1,...,200 in the toy example,
showing the much slower exponential decay to the limit value 1.

The zero-tracking method above, in contrast, requires more work
than (5.6) or (5.7), but it gives explicit error estimates at every step.
An example of a true £,,-spectrum that gives rise to a similar masking
effect is given by w(w) = |g(w)|?, with

g(w) = 100(1 —.93¢) (1 — .9¢7%).

In this case w is a trigonometric polynomial, so that the spectral radius
ro of £3 = £, is simply the largest eigenvalue of a 21 x 21 matrix,
which can easily be computed explicitly; one finds r, = 32642.525. For
small values of k, the traces of £5 are much smaller than r¥; this is
due to the fact that ¢ is close to vanishing at the nontrivial fixed points
of % and 3, where 7 is the doubling operator, modulo 27, on [0, 27].
Figure 2 shows the values of |Tr £5|1/% for k = 1 to 25.
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40000 —

20000 —

10000 —

—

0 5 10 15 20 25

Figure 2. The values of |Tr £5*/* for k = 1,...,25. The first
few values, for small k, give a misleading idea of what the limit
value might be. The horizontal solid line indicates the true value
of 73, to which |Tr £%|1/F is seen to converge.

The misleadingly-small values (when compared with rp) for k = 2,3
can also be understood in terms of the eigenvalues of £3, illustrated in
Figure 3, which do indeed fan out over different angles in the complex
plane. The effect is not as pronounced here as in the ad hoc example
above; it occurs only for k = 2,3, and the first values of log |Tr £%| do
not line up along a line with misleading slope. In other, more compli-
cated operators £,, the masking effect could well be more pronounced,
and possibly be as strong as in the toy example. The Fredholm deter-
minant method would of course not succeed any better in extracting r2
from the values of Tr £5 for small k; the “error bar estimate”, computed
from the Fourier coefficients of w(w), would automatically tell us, how-
ever, that we have to look at larger k in order to conclude something
sensible.
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Figure 3. Position of the different eigenvalues of £
for g(w) = 100(1 — .9€3¥) (1 — .9€™¥).

2) If we replace w in (3.19) by |q|*, and substitute this into (5.7),
then the resulting formula is very similar to formulas found in Hervé
(1995) (see e.g. Theorem 6.2 in Hervé (1995) -beware of changes of
notation). The only difference is that we have a denominator 2F — 1 in
the arguments of |g(-)|¥, where Hervé has 2¥, because we sum over fixed
points of D¥, where Hervé’s approach sums over preimages of 0 under
D¥ (where D is multiplication by 2 on [—,7], mod 27). The conver-
gence of Hervé’s formula is similar to that of (5.6), (5.7) above, and
in principle, the same reservations as in point 1 above apply, although
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we have not seen any cases where problems occurred in practice. In
Hervé (1995) the operators £, are studied on the much larger spaces
C7(—m,7) of Hélder continuous functions with exponent . On these
spaces the £, are not compact; they are quasi-compact, meaning that
the radius of their essential spectrum is strictly smaller than the spec-
tral radius itself; this corresponds to a spectrum where only discrete
eigenvalues are possible in an outer annulus of the disk with spectral
radius. Even though the operators are thus more complicated, Hervé’s
method has the advantage that he can treat also the case where p ¢ 2N
and ¢ has zeros in [—n, 7]. It is interesting to note that the eigenvalues
ap in the annulus {A; 277r < |A| < r} (where v is the Holder regu-
larity of |g(w)|P) can still be tracked with the Fredholm determinant
method (see Theorem 7.1 below), so that even in this case we can use
our numerical approach and get absolute error estimates.

3) In practice, one can of course also use the reverse procedure:
instead of setting first € and then searching for the appropriate NV, as
sketched above, one can fix a (relatively large) value for N, find the
corresponding smallest zero zn, of Py, and then identify ey so that
|RNn(2)|] < en on the curve I'y o defined by (5.2).

6. Examples.

All our examples are motivated by wavelet constructions; we take
the refinable function ¢ to be either the orthonormal scaling function in
a multiresolution analysis, or the autocorrelation function of a scaling
function. We start by recalling some pertinent definitions.

The refinable function ¢(z) is said to be cardinal interpolant if it
satisfies the condition

(6.1) o) =bok, kEZ;

it is called orthonormal if
(6.2) /go(a: —k)p(z —€)dz = bk, k,leZ.

These properties correspond to special constraints on m(w): (6.1) im-
plies

(6.3) m(w) +m(w +7) =1,
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whereas (6.2) can hold only if
(6.4) Im(w)? + [m(w +m)* = 1.

The conditions (6.3) or (6.4) are necessary for (6.1) or (6.2) to hold,
but not sufficient. Under additional technical conditions that ensure
uniform convergence of the subdivision algorithm in the first case, or
L?-convergence in the second case, (6.3) implies (6.1) and (6.4) implies
(6.2). (For a detailed discussion, see Chapter 6 in Daubechies (1992).)
It is clear that cardinal interpolation and orthonormality are linked:
if ¢ is an orthonormal refinable function, then its autocorrelation func-
tion ®(z) = [ ¢(y) ¢(z — y) dy is interpolating; the corresponding func-
tions my and me are related by me = |m4|%. In fact, compactly sup-
ported wavelets are usually constructed by first identifying a suitable
positive mg and then constructing my so that |mgy|? = me. It is then
obvious that the L?-Sobolev exponents of ¢ and ® are related by

(6.5) sp(®) = 252,(9).

In particular, using the definitions (1.2) and (1.3), we find

(6.6) #(2) = 51(2) = 252(¢) = 25(¢),
where the first equality is a consequence of ®(w) > 0 forallw € R.

In the first subsection below we concentrate on families of ex-
amples where mg is a positive trigonometric polynomial of the form
Ps(cosw), so that @ is real, symmetric and compactly supported. By
Riesz’ spectral factorization lemma, we can then find a trigonometric
polynomial mg, with real coefficients, so that |my|?> = ms. The cor-
responding refinable functions ¢ are then compactly supported scaling
functions from which compactly supported wavelets can be constructed;
see Daubechies (1992). In the second subsection we consider examples
where Pg(cosw) is no longer a trigonometric polynomial, but the quo-
tient of two such polynomials. The third subsection of examples looks
at some two-dimensional examples m(w;,ws) which cannot be written
as products m;(w;)ma(w2) of one-dimensional functions, with matrix
dilations. Finally, in the fourth subsection we use the results of the
previous subsections to deal with a problem on spline wavelet bases.
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6.1. Interpolating and orthonormal scaling functions with
compact support.

The minimal degree solution to (6.3) and the factorization require-
ment (4.3) is given by

N-1 . 2j
) = (os)” 2 (V71T (sng)”

=0

(We are interested in factoring out only even powers of cos(w/2) be-
cause we want my(w) = Pn(cosw).) In this case g(w) is clearly strictly
positive for all w € [0,27], so that we can apply our theorems for all
values p > 1. The corresponding functions ®x5, ¢n have been studied
extensively (see e.g. Daubechies (1992) for many references). We have
computed the LP-Sobolev exponents of these functions for different val-
ues of N. Table 1 and Figure 4 show the s,(¢n) for p = 1,2,4,8,
N=1,...,19.

N\ p 1 2 4 8
—0.322289 0.338856  0.669428 0.834714
0.521293  0.999820 1.220150 1.310014
0.979675 1.414947 1.587361 1.631686
1.301644 1.775305 1.896446 1.912144
1.767934  2.096541  2.171522  2.174682
2.116733  2.388060 2.430780 2.431755
2.441544  2.658569 2.680780  2.680307
2.746639  2.914556  2.926425  2.925926
3.035292 3.161380 3.166924  3.165533
3.309107 3.402546 3.405193  3.405141
3.572141  3.639569 3.641221  3.638529
3.825525 3.873991 3.874236  3.871917
4.071021 4.105802 4.105736  4.105305
4.311641 4.336042 4.336476  4.335502
4.547368 4.564708  4.564925  4.562449
4.780028  4.792323  4.792608  4.792645
5.010231 5.018884 5.018754 5.016283
5.238588  5.244390  5.244127  5.243230
5464480 5.468841 5.468728  5.466868

L S S S Gy S T T T S S e
OO WNHOPOTDOR W -

Table 1. L?-Sobolev exponents of oy, p=1,2,4,8, N =1,...,19
(Polynomial).
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Figure 4. s(pn) for 0 < N < 100 (Polynomial).

An interesting observation is that s,(¢ n) becomes independent of p
as IV goes to +o0o. This reflects the fact that ¢ n has a lacunary struc-
ture in the Fourier domain and that this phenomenon grows with n.
More precisely, if the Fourier transform of a function ¢ decays uniformly
at infinity in the sense that C; (1 + |w|)™® < |p(w)] < C2 (1 + |w|)™,
then the exponents s,(p) = a — 1/p are related by s, — s, =1/¢—1/p.
This is true here only for N = 1 (which corresponds to the box func-
tion ¢1(z) = x[o’l](x)); ¢1(w) = (1 — e7*)/(iw) decays uniformly in
|w|™1, up to the oscillation of the numerator. For larger N, the lacu-
nary structure takes over. As shown in Volkmer (1992) and Cohen and
Conze (1992), the worst decay occurs at the points w; = 27 27/3, j > 0.
A possible explanation for our observation could be that the LP norm
of ¢ concentrates at these points, as N grows.

We thus conjecture that for all p,g > 0, imyicolsp(ion) —
sq(pn)| = 0. If this is true, then we have in particular imy 400 |S(pN)
— pen)| = 0 since s1(pn) < p(pn) < s(on) = s2(en).
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For large values of N, our method allows us to observe the asymp-
totic behavior of u(en).
It was proved by Volkmer (1992) that

fm M) o oslen) ) 1oge3 g ogns
No+4+oo N N—+oo

The graph of s3(¢pn) = s2(IN) presented in Table 1 shows in addition
that s2(V) — (1 — (log, 3)/2)N stays bounded by 3 for N < 100.

6.2. Interpolating and orthonormal scaling functions with in-
finite support.

We now turn to the solutions of (6.3) that have the factorized form
(4.3) but are not necessarily trigonometric polynomials.
We shall look for solutions of the type

(6.7) m(w) = cos?™ (w/2) R(cosw),

where R(z) = P(z)/Q(z) is a rational function that is strictly posi-
tive on [—1,1]. Under this hypothesis we know that we can apply our
method to estimate the LP-Sobolev exponent s, of the associated scal-
ing function since the Fourier coefficients of |R(z)|? have exponential
decay. Note that the scaling function ¢ is not compactly supported but
typically still has exponential decay at infinity (some restrictions on R,
always satisfied in practical examples, are needed to ensure this).

The choice of a rational function is still useful in the applications
where one has to perform discrete convolutions with the Fourier coeffi-
cients of m(w): although they are not finite in number, these convolu-
tions can be implemented in a fast recursive way, the complexity being
roughly 25 x (deg(P) + deg(Q) + N) where S is the size of the input
data.

The simplest rational solution of (6.3) of the form (6.7) is given by
the family

(6.8) mn(w) = cos?™ (w/2) Ry(cosw)

with Ry(cosw) = (cos?N(w/2) + sin?V(w/2))~1. These solutions are
well known in signal processing as the transfer functions of the so-called
“Butterworth filters” (see Oppenheim and Schafer (1975) for a detailed
review).
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As in the previous section, we give the estimate of s, for the or-
thonormal scaling functions ¢y, 1 < N < 20 and p = 1,2,4,8. It is
interesting to see that these exponents remain substantially different
as N grows: the lacunary behavior does not prevail as much as in the
compactly supported case.

For large values of N, we have examined the evolution of s(pn) =
s(N) (see Table 2). It reveals a linear asymptotic behavior, similar to
the compactly supported case.

N\ p 1 2 1 g
1 —0.322289  0.338856  0.669428  0.834714
2 0.677350 1.256211 1.495117 1.604344
3 1.561362  2.044109  2.269688  2.365870
4 2370365  2.843768  3.059757  3.148599
-5 3.183890 3.648646 3.857332 3.940563
6 3.999055 4.456118 4.658210 4.735925
7 4.815040 5.264533 5.460184 5.532265
8 5.630616 6.072947 6.262157 6.328326
9 6.446191 6.881125 7.063818 7.123827
10 7.260947 7.688598 7.864696 7.918627
11 8.075292 8.495600 8.664948 8.712863
12 8.888817 9.301894 9.464414 9.506534
13 9.701520 10.107480 10.263251 10.299921
14 10.513813 10.912358 11.061142 11.093166
15 11.325284 11.716526 11.858558  11.885986
16 12.135933 12.519984 12.655184 12.678805
17 12.946170 13.322968 13.451333 13.471625
18 13.755996 14.125241 14.247006 14.264159
19 14.564999 14.927039 15.042202 15.056836
Table 2. LP-Sobolev exponents of ¢y, p=1,2,4,8, N =1,...,19

(Butterworth).

Note that the limit ratio s(N)/N =~ .8 seems to indicate that the
worst decay of pn(w) occurs at the points wj = 27 27/3. Indeed, we
have

. . (T 2, 1i/2
©9)  len(l =|en(3)| ([ = Clesl™
with ry = logy(Rn(1/2))/2 — 1. From the definition of Ry, we obtain

(6.10) lim N = _Liog, 3~ 07925,

No4o0o N —5
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which seems to coincide with the experimental asymptotic ratio.

The Butterworth functions Ry(cosw) correspond to a choice with
P(z) =1, R(z) = 1/Q(z), which makes them in some sense opposites to
the polynomial solutions of the previous subsection, for which Q(z) =1,
R(z) = P(z). Recently, intermediate solutions that are equally bal-
anced between the numerator and the denominator were proposed by
Herley and Vetterli (1993). Such solutions can be built by the following
procedure:

e fix N >0 and 0 < k < N such that N + k is odd.
e find a polynomial Px(z) such that

() no+ ()" e

has degree N —k+1. This can be done by solving k linear equations.

e define
(6.11)
cos?M (w/2) Pi(cosw)

cos?N (w/2) Px(cosw) + sin?(w/2) Pp(— cosw)

my(w) =

Note that the global complexity of the convolution by the discrete
filter associated to mX,(w) is given by

(6.12) C~2S(k+(N—-k+1)+N)=25(2N +1)

and is thus independent of k.

Here we have considered a family of intermediate solutions by tak-
ing k close to N/2 so that the rational function RX(cosw) has approx-
imately the same number of poles as zeros. Unfortunately, and un-
like the polynomial case (which can be viewed as a special case where
k= N — 1), we do not have an explicit formula for Px(cosw).

For the values N = 4,8,12,16,..., we have used k(N) = N/2 +1
so that N + k(NV) is odd.

Figure 5 illustrates the evolution of s(ypn) for these particular in-
termediate solutions and compares it with the graphs obtained for poly-
nomials and Butterworth solutions.
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Figure 5. s(pn) for 0 < N < 100 (Butterworth).

A straightforward observation is that, although these intermedi-
ate solutions contain the same number of poles and zeros, the graph
of s(¢nN) is very close to the graph obtained for Butterworth scaling
functions, making these particular discrete rational filters interesting
for applications where regularity is desirable.

6.3. Nonseparable bidimensional scaling functions.

The simplest way to generate multivariate scaling functions is to
use the tensor product, i.e. to define

(6.113) B(z1,..-,Zn) = P1(21) *  Pu(Tn),

where ¢,,...,pn are univariate refinable functions. Note that if the
univariate functions are cardinal interpolant or orthonormal, then the
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same property holds for ®. The analysis of the regularity of ® then
follows directly from the univariate analysis on the ¢;’s.

20 —

Figure 6. s(¢n), N < 75 for polynomial,
Butterworth and intermediate solution.

One of the simplest -yet instructive- situations where non-separable
scaling functions are unavoidable corresponds to the choice

(6.14) D= (_11 i)

for the dilation matrix, already introduced in Section 3 (Example 3.8).
In that case the interpolatory condition has the following formulation:

(615) M(wl,w2)+M(w1+7r,w2 +7T)=1.

One can use the univariate functions my(w), defined in the first sub-
section, to derive a solution of (6.15) as follows:

N-1 .
(6.16) Mpy(wi,wz)= (c(wl,wg))N Z:d <N —jl i

) (sne)’
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where 1
w
c(wr,wr) = 5 (c052 (L—;i) + cos? (—2—2—))
and . '
s(w,wq) = 3 (sin2 (%1-) + sin? (‘32-2-)) .

We denote by ®x the nonseparable cardinal interpolant functions as-
sociated to Mn. Note however that the Riesz factorization lemma does
not generalize in nD, n > 1, so that it is not possible to derive com-
pactly supported orthonormal scaling functions from these ® . Using
the preliminary results of Example 3.8, we can compute the Holder ex-
ponents pu(®y) = s1(®n) as well as sp(Pn) for p = 2,4,8. We display
their values, for N = 1,...,19 in Table 3. As in the univariate case,
this table reveals the increasingly lacunary structure of the functions
® in the Fourier domain.

1 2 4 8
0.611268 1.5675915 1.939386 1.981617
2.285413 3.249338 3.684182 3.862247
3.881443 4.718977 5.146044 5.274342
5.395644 6.199651 6.487579 6.582461
6.841235 7.549708 7.780608 7.868502
8.233367 8.854675 9.054724 9.141341
9.584611 10.132740 10.318169  10.404515

10.904434 11.395230 11.573954 11.660232
12.200067 12.648141 12.823734 12.909992
13.477248 13.894538 14.068620 14.154872
14.740529 15.136095 15.309421 15.395672
15.993417 16.373816 16.546755  16.633005
17.238515 17.608370 17.781105 17.867355
18.477713  18.840232 19.012859  19.099109
19.712362  20.069763  20.242333  20.328582
20.943434 21.297249 21.469787 21.556036
22171630 22.522919  22.695440 22.781690
23.397462  23.746966 23.919477  24.005727
24.621314 24.969550 25.142055  25.228305

N

s

T o S o S S Gy o Gy Sy W S G WY
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Table 3. LP-Sobolev exponent of &,, p=1,2,4,8, N =1,...,19.
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6.4. A problem on spline wavelet bases.

Spline wavelets are generated by a function 1 that is piecewise
polynomial (of a fixed degree d) on each integral [k/2,(k+1)/2[, k € Z.
There exis’ - several types of spline wavelets:

a) Fully orthonormal wavelets: the family {1;i}; ez constitutes an
orthonormal basis of L2(R) (Battle (1987), Lemarié (1988)). In
that case, ¥ cannot be compactly supported except when d = 0,
t.e. in the case of piecewise constant functions corresponding to
the Haar system. (Note that in a generalized framework, where
several scaling functions and wavelets are considered, even for the
one dimensional case and dilation factor 2, compactly supported
orthonormal wavelets are possible; see Donovan, Geronimo and

Hardin (1994).)

b) Semi-orthonormal wavelets: the functions ;) are orthogonal be-
tween levels j # j' but not within one level j for k # k' (Chui-Wang
1990). In that case ¢ can be compactly supported but the dual

function ¢ that generates the dual wavelet basis ((¥jk, % k) =
dj,j» Ok,x) is a noncompactly supported spline function.

c) Biorthogonal wavelet basis: {1k} kez is a Riesz basis for L?(R)
and there exists a dual system {; s }; rez as well as a dual scaling
function ¢ and multiresolution analysis VJ (Cohen, Daubechies,
and Feauveau (1992)). The functions ¢, 3, %, ) may be simultane-
ously compactly supported, but ¢ and ) are not spline functions
in general.

Note that each construction is a particular case of the next one,
and that in all cases the wavelet ¥ has the expression

(6.17) ¥(z) =Y gnp(2n—n),

nezZ

where ¢ = Xjo.1) * Xpo] ¥ Xpon) (d + 1 times) is the box spline of

degree d, and g, is an oscillating #2 sequence, i.e. 3, gn = 0.

One can then address the following general problem: given an arbi-
trary oscillating sequence g,, when does the corresponding combination
(6.17) of box-splines generate a (Riesz) wavelet basis {¢;r};rez? In
particular, we have in mind very simple sequences such as go = 1,
g1=—lorgo=-1,¢g; =2, go =—1, etc.
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First, note that ¥ can be written in the Fourier domain as

(6.18) $(w) =mi(3)8(3),

where m;(w) = Y, gn €. Moreover, we have
+o0

(6.19) ¢w) = [[mo(27),
k=1

where mo(w) = ((1 +e™*)/ 2)d. In the case of biorthogonal wavelets
(i.e. type c) above), m;(w) is equal to e~ rrg(w + 7), where 7o gen-
erates the dual scaling function ¢ in the sense that

+co
(6.20) ¢(w) = [] mo(27*w).
k=1

The biorthogonality constraint is expressed by the equation
(6.21) mo(w) o(w) + mo(w + m) g(w + 1) = 1,

or, equivalently,

(6.22) e (mo(w)my(w + ) — mo(w + 1) my(w)) = 1.

It is clear that equation (6.22) is a strong restriction on m;. Given a
solution of (6.22), one can however construct other m; that still give
rise to Riesz bases 1, . It suffices to take m;(w) = m(2w)M;(w) where
M, (w) satisfies equation (6.22) and m(w) is a 27-periodic function such
that

(6.23) 0<ce<|mw)| £C < o0,

almost everywhere with respect to w € R. This corresponds to the
choice

- wy L, w
(6.24) p(w) =m(w) Mi(3) 6(3) -
We can then define ¥ by ¥(w) = M;(w/2) $(w/2), and use the biorthog-

onal theory to study if {¥;x}; ez is a Riesz basis of L?(R). If this
is the case, then the same clearly holds for {%;};rez- Note that
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m(w) and M;(w) are completely determined from m;(w) since we have
M;(w) = my(w)/m(2w) and thus, by (6.22),

(6.25) m(2w) = e (mo(w) myi(w + ) — mo(w + 7) My (w)) .

The system {1 x};jkez will thus constitute a Riesz basis if the two
following conditions are satisfied:

i) the function m(w) defined by (6.25) is bounded below and above
by strictly positive constants.

ii) {¥;k}jkez is a Riesz basis. A necessary and sufficient condition
for this to hold was given in Cohen and Daubechies (1992). In our
context this results in the following

Theorem 6.1. Let

- T _ IMO(W)|2
My(w) = —e™* My(w + ) and Mw) = cos?(@/3)
Assume that the Fourier coefficients of M satisfy the decay condition
(3.3). Define d as the transition operator associated to M(w) and de-
note by p its spectral radius on a space Eo for any a €]v,2y[. Then
{¥;k}jkez constitutes a Riesz basis of L(R) if and only if p < 4.

Note that, according to our results, this condition means that
the L2-Sobolev exponent of the scaling function & associated to My
is strictly positive.

Since we have

oo Imaw + )P
(6.26) o)t = TR
the function M(w) is not a trigonometric polynomial in general, even
when {g,} is a finite sequence. This made this application inaccessible
to earlier methods that could only deal with finite masks.

An immediate application concerns the case of linear splines, i.e.
¢(z) = sup{0,1 — |z|}. In that case, we can propose three simple
wavelets corresponding to different choices for the g, coefficients:

o a(z) = p(22) — p(22 ~ 1),
o i(z) = 2p(22) — p(22 — 1) — (22 + 1),
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o te(z) =2¢(2z — 1) — 9(2z) — (22 — 2).

One can easily check that for 13, the associated function m(w)
vanishes at some point. It is also easy to check that this implies that
Span {s(z — k)}rez cannot complement in a stable manner the space
Vb into V; .

In the cases of ¥, and ., the associated function m(w) does
not vanish, so that we can further investigate the associated functions
M(w).

For 1,, we find

16

H

and our method shows that p > 4. For . we find

(6.28) M(w) = cos? (‘—‘)2—) (3_{_%)2 ,

and in that case p < 4.

CONCLUSION: From the three functions above, only . generates a
Riesz wavelet basis.

7. Extension to the computation of the Holder exponent.

The spaces E, introduced in Section 3 have shown to be an excel-
lent tool for the computation of s; in general, and of s, for p # 2 if the
hn satisfy some additional conditions. Could a similar argument also
be used for computing the Holder exponent?

Let us restrict ourselves, for this discussion, to the one-dimensional
case of equation (4.1). To start with, assume that only finitely many c,
differ from zero, ¢, = 0 for n < 0 or n > K. In this case Daubechies and
Lagarias (1992) gave the following technique for computing the Holder
exponent u of ¢. First, we factor out all the zeros at w = 7 of m(w),

2 —tnw 1 + e—iw N gy —inw
DT (R b
n=0 n=0

then we construct two (K —N) x (K — N) matrices Ty and T} by taking

(7.1) (Tj)k,g = 2q2k—t4j5 » 0<kt{<K-N-1.
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If there exist v, C > 0 so that, for all £ € N\{0} and all dy,...,dx
chosen in {0,1},

(7'2) ”de T Tdk ” < Czyk )

then g > N — v. (Note that we have changed notations slightly with
respect to Daubechies and Lagarias (1992); we use the reduced repre-
sentation that was there introduced in Section 5.) How can we distill
from this a strategy that can be generalized to the case where infinitely
many ¢, are nonzero? First of all, note that Ty, T} can be related simply
to the operator L£,, corresponding to the choice w(w) = g(w). Compar-
ing (7.1) with (3.4) we find indeed, for any f(w) = E,If;oN fnein
in the space Px_n of one-sided trigonometric polynomials of degree

K — N, that

K-N _
(LHw) = Y (Toflne ™,

n=0

K-N

(LSHW) = Y (Tif)ne™™,
n=0

(7.3)

where we have introduced the shift operator S,
(7.4) S(Z ge e_ilw) = Z ge+1 e = ¢t ( Z ge e'”“’) ]
£ ¢ ¢

From (3.1) one easily checks that S£ = £S5?. The condition (7.2) can
therefore be rewritten as: for all k € N\{0} and alln, 0 <n < 2F -1,

(7.5) ICkS™ o Il < C2°%.

In this form it is easy to generalize (7.2): we could just drop the re-
striction to Px_n in (7.5). There is one problem: in (7.5) it doesn’t
matter which norm we take, because for all 0 < n < 2F — 1 the oper-
ators LFS™ map Pg_n to itself, so that we are dealing with a norm
on matrices, and all matrix norms are equivalent. Once we look at the
case of infinitely many nonvanishing ¢,, and we drop the no longer rel-
evant restriction to a finite-dimensional polynomial space, we need to
specify which operator norm to use in (7.5). There is in fact a lot of
freedom in the choice of this norm; in particular, if E is a Banach space
of 27-periodic functions such that

1 2w i
3 | e fwids] <Clfl,

(7.6) sup | fn| = sup
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then the operator norm

(7.7) lAlle= sup LATlE
reE, Ifls#o I fllE

will do. That is, if for all k € N\{0}, all 0 <n < 2% —1,
(7.8) 1Lk s lle < C2F,

then it will follow that ¢ has Holder exponent at least N — v. The
connection between (7.6), (7.8) and this Holder continuity is explained
in the Appendix. Note that (7.8) implicitly assumes that both S and
L map E to itself.

Candidates for spaces E that satisfy (7.6) abound. Examples are
all the E, of Section 3, as well as the L?(0,2r)-spaces, or the C¥-
spaces of 2m-periodic functions that have Holder exponent v, and the

C™-spaces of n times continuously differentiable periodic functions (in-
cluding C°). The ¢P-spaces,

& = {f 2n-periodic: |flley = (3 1fal) " < o0},

also satisfy (7.6). For which of these spaces can we hope to verify (7.8)
for some v?

The spaces E,, so convenient for the computation of the s,, are
completely useless here. Because [||S™|||z, = |||S™"|||g, = e*I"l, we
have

IC*S Iz = IICH ]| E, e

since |n| can be as large as 2% —1, the only £ for which (7.8) can hold in
E, is the zero operator. In some sense, the E,-spaces are “too small”
for our present purpose: their norm gets affected too much by S.

No such problem exists in the L?, £P and C%-spaces: they all share
the property that |||S|||e = 1. This reduces the estimate (7.8) to a
spectral radius problem again: it suffices to prove that pg(L) < 2
in order to conclude that ¢ has Holder exponent at least N — v. If
the space E is chosen “too large”, then we get a bad estimate for v,
however. Take for example

14+ e“i“’)2 1 +7ei“’

m(w):( 2 14+~

with v > 1;
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using the techniques of Daubechies and Lagarias (1992) one readily
shows that the corresponding ¢ has Holder exponent exactly equal to
2—log,(2y/(147)). On the other hand, it is easy to find eigenvectors for
the corresponding £ in the £P-spaces. We have g(w) = (1+ve™)/(1+7),
or

(19)  Lf=pf = fantvfamir = 5 a1+ -

Let now p € C be arbitrary (to be fixed below), and define f, by
fn=0, n<0,

f1=:1)
(7.10) 1+
fkﬂ'_ V( D) _”Yp) fns n 2:13
fon+v1=pv fn, n2>1;

then the f, obviously satisfy (7.9) with p = v. If, for some v € C, we
can find p € C so that the f, defined by (7.10) satisfy 3_,, |fal? < oo,
then v is an eigenvalue for £ in €7, and per (L) > |v|. Let us check when
this is true. First of all, note that

N+
on= D |fal?
n=2N
2N 1
= Z (|f2n 1p + lf2n+l|p)
n=2N-1

1+~ 4
P (|5~ = ve| +lol”) on-1,

so that

o]

oo
S 1l = S (| ol 1)
k=0 2

n=—oo

this is finite if and only if
14~y P
o (|52 —ve| +1ol?) <1.
Consequently

14+~ IP » -1/p
pe»(E)Zng(l 5=~ P +|pl) :
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In particular,

21472 27
7.1 [>T > =7
(7.11) pelb) 2 = pelD) 2

In fact, the lower bound for p,: is exact, i.e. pn(L) =2v/(1+7). It is
then clear from (7.11) that the spectral radius of £ in the larger space
¢? is strictly larger, leading to a nonoptimal estimate of the Holder
exponent p of ¢. The same happens in the other ¢P-spaces with p > 1.

This example teaches us that it is important to choose the space
E carefully. Note that the techniques in the literature for estimating p
can all be viewed in this way. The approaches of Rioul (1992) or Dyn
and Levin (1991), Dyn (1991) correspond to estimates of the type

L) llew < C2°F,
which is equivalent with
Lkl < C2vF,

i.e. this corresponds to the choice E = £!. In part of Hervé (1995), the
choice E = C" is treated, a slightly larger space than #!. One can show
that the choices E = ¢! or E = C° lead to optimal values for p (see
Hervé (1995), Rioul (1992)). The example above also shows, however,
that the operators £ on ¢! or C? are far from their compact restrictions
on the E,; in our example the entire disk B(0,pn) = {z: |z| < pp}
consists of eigenvalues of £. This means that many iterative techniques,
which usually rely on the fact that the largest eigenvalue is isolated,
cannot be applied then.

So far we have seen that the E, are “too small”, the /# with p > 1
“too large” for our purposes; £! and C? are fine, but the spectrum of
L on these spaces can consist of a disk of unisolated eigenvalues. It
turns out that one can use slightly smaller spaces on which the largest
eigenvalue of £ becomes again isolated, and can be computed via the
zeros of det(1 — zL). (These are, in fact, the spaces used for the com-
putation of s, in Hervé (1995), who exploits the fact that the largest
eigenvalue is isolated.) This is a consequence of a theorem in Ruelle
(1990), of which the following statement is a special case, restricted to
the situation under consideration here.

Theorem 7.1. Let q be a 2w-periodic function satisfying (4.4), end let
L be the associated transfer operator (obtained by replacing w by q in
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the definition (3.1)). Denote by K the operator obtained by replacing w
by |q| in (3.1). Let p be the spectral radius of K on C°(0,27). Then, for
any a > 0, the spectral radius po of K on C(0,27) equals p, po = p; the
spectral radius oo of L on C*(0,27) satisfies oo < p. Moreover, the part
of the spectrum of L on C*(0,27) that is contained in {): |A| > 27%p}
consists of only eigenvalues with finite multiplicities; these eigenvalues
are ezactly the inverses of the zeros of the Fredholm determinant D(z),

(7.12) D(z)=exP( i%z 1—12_’“22—:1,1_[1(1([ 27r_/f7 ))
m=1

k=0 {=0

in the region {z: |z| < 2%p~ '}, with the same multiplicities.

If g(w) > 0 for w € [0, 27], then this theorem already implies that
we can simply look for the smallest zero zo of (7.12), exactly like we
did before. For any € > 0 it then follows that

Lk llce < C (o + ),

with p = |20|7}, leading to the estimate u > N — log, p for the Holder
exponent of ¢. This is no surprise however: if g(w) > 0, then |g(w)| =
g(w), hence p =71, and sy = N —log, 1 = N — log, p. Since on the

other hand i
o) = (F= )" Hq(z w),

we have either
e“Ls(w)>0, if N =2L is even,

or ,
—iw
w1l—e

2

It is well known from Littlewood-Paley theory that if f (w) > 0 for all w,
then the Holder exponent of f is exactly equal to the Sobolev exponent
51(f). It then follows easily, whether N is even or odd, that the Holder
exponent u of ¢ is given by u = N — log, p.

If ¢ can also take negative values, then it follows from o, < p that
for all € > 0,

¢(w) >0, if N =2L—1is odd.

15 llle= < C(p+ €)F.
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Since |||S™|llca = |IS™"|llc= = |n|*®, we have therefore, for 0 < n <
2k — 1,
NEES™lle= = 1L llca In|* < C(2%(p + €))*.

Here a,e > 0 can be chosen arbitrarily small, so that we have y >
N —log, p. This bound need not be sharp however: o, may well be
smaller than p for arbitrarily small a. On the other hand, Theorem 7.1
also tells us that as we increase «, the bothersome essential part of
the spectrum of £ on C® shrinks, and at some point eigenvalues are
uncovered which correspond to zeros of (7.12), which we can compute
accurately. Let us imagine increasing o until Theorem 7.1 guarantees
us that the spectral radius o, is exactly given by |zo|™!, with zo the
smallest zero of (7.12). This happens when 27%p < |z0|™! < 27%p +§
for some small § > 0; we have then

NEES™ lle < [11£5]l|c= 2%
< C2* (|| + )
<C(|27 %7t + €)t
<Cp+e")t,

leading again to the same estimate u > N — log, p.

This discussion has given a unified picture of the techniques used
to find Sobolev and Holder regularity indices for refinable functions. It
also shows that if w is given, and we can prove, for some a > 0, that
0o < 27%p, then this would lead to a sharper estimate for the Holder
exponent than s;(|w|); since o4 corresponds to the spectral radius on
a smaller space than C? or ¢!, it might be easier to tackle o, than og.
How to do this is an open question however.
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Appendix. The link between estimates on £¥S™ and the
Holder exponent of .

Let E be a Banach space of 27-periodic functions such that, for all
fin E,

1 21r.
il inw <
2w/0 e fw)dw| < CfllE ,

(A.1) sup |fn| = sup

where C is independent of f. We assume that E contains the function
f(w) =1, and that E is also invariant for the shift operator S, defined
by
(S)w) = e f(w),
or by
(S f )n = f n+1 -
For an operator A from E to itself, we denote by ||A4||g its standard

operator norm, ||A||g = supep, r20 [[AfllE/|IfllE - Let ¢ be a refinable
function,

(A.2) ¢(z) =2 cap(2z —n)

and assume that

(A.3) Z o, e=in — (l_i'ze;iw)N Z Wy e~

n

where ) w, = 1, 3 (-1)"wn # 0. Assume that the associated
transfer operator £,, (defined by (3.1)) maps E to itself. We have one
last technical requirement. Let us consider N = 1, for simplicity. If
we compute £.1 formally, where £ is the transfer operator associated
with ¢(w) =3, ¢n e~ ™ then

(£ = (H5 w3+ () w4

- [ (55 ]

and (£.1)(0) = w(0) = 1. It follows that (£.1) — 1 has a zero in w = 0;
we shall require that

(A4) (£c1=1)(w) = (1-e™)g(w),
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where g € E, which can also be written as

£w(1—;§)1—1e(1—5)E.

For general N, this requirement takes the form that for 1 <k < N, we
should have

(A5) £4,(1+S5)*1 € Span {(1-S)*E, (1-5)™1, with0 < m < k—1}.
Then we have the following

Proposition. Let E, w satisfy all the conditions above. If there ezist
c>0and 0 <v < N so that, for all k > 0 and all n between 0 and 2%,

(A.6) 1£% ss < C 2%,
then ¢ has Holder exponent u > N — v.

PROOF. The proof is essentially a generalization of the arguments in
Daubechies and Lagarias (1992), adapted to the case with infinitely
many coefficients. This means that alternatives have to be found for
some matrix arguments in Daubechies and Lagarias (1992). We shall
restrict ourselves here to the case N = 1, and discuss the proof in detail
for this case; for general N, similar but slightly longer generalizations
of Section 3 in Daubechies and Lagarias (1992) do the trick.

1). We start by defining a space E by
E={f: fw)=(1-e")g(w)+C withc € Cand g € E};
the norm on E is simply
lle+ (1= e™™)gllz = lel+ llglle -
E is clearly a Banach space which contains all trigonometric polyno-

mials (since 1 € E and E is invariant under §). In E we consider the
subspace Ey defined by

E1={f€E~': an—_-f(()):O},
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E) can be identified with the original space E, since
Ey=(1-¢“)E.

2). Let £. be the transfer operator associated with the weight
function ¢(w) = 3, cne™'"“. Because of the factorization (A.3) we

have, for f € E;,
e—iw/? w . w
() = (FE—) w(5) (1 -/ g(3)

1 — e~iw/2 w —iw w
(5T g ) e 40

= 21— e7) (£ug)(w).

E; is thus invariant for £ ¢, and the action of £, onﬁ‘l is equivalent to
the action of £, on E. We have moreover for f € E; and k > 1,

(A7) €5 Flls = 27 1 £5 gllm < 27 |If)l5 .

3). On the other component of E, the action of £, is completely
determined by £.1. Because of (A.4), we have £.1 = 1+r, withr € E;.
It follows then from (A.7) that

converges, for k — oo, to 1 + R = a, with R € E;; a is an eigenvector
of £, with eigenvalue 1.

4). Next we rewrite the refinement equation (A.2). For z € [0,1],
we define the sequence-valued function v(z) by

()l = p(s+n), neZ.
Then (A.2) implies that

[ £cv(22), if0<z<1/2,
(A8) v(e) = { £(S0)2s 1), if1/2<z<1.

If, as in Daubechies and Lagarias (1992), we write dx(z) for the k-th
digit in the binary expansion of z, then this becomes

(A.9) v(z) = £(5%v)(oz),
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where oz = 2z if £ < 1/2, 0z = 2z — 1 if z > 1/2. Smoothness
for ¢ on R implies smoothness for v; conversely, smoothness for v on
[0,1] together with consistency conditions at the edges (of the style
[v(0)]n+1 = [v(1)]n) implies smoothness for ¢. Solving (A.2) and prov-
ing smoothness for ¢ therefore amounts to finding a fixed point v(z)
for the equation (A.9) and proving smoothness for v(z).

5). Define now vo(z) by

[vo(2)]n = an (1 —z) + @ny1 2,

where a, is the n-th component of the eigenvector a of £. obtained in
point 3). This clearly satisfies the consistency condition at z = 0 and
z = 1; moreover vo(0) is an eigenvector of £, with eigenvalue 1, as it
should be, according to (A.8). We also define, for j > 1, and z € [0, 1]
vi(z) = £.84®;_;(0x)

(A.10) = £, g _gda(2) . £csdj(:)v0(aj:z:) .

Every component of vj(z) is a piecewise linear spline with nodes at the
dyadic rationals 277k in [0,1]. Since S£. = £.5%, we can also rewrite
(A.10) as

(A.11) vi(z) = £1SPiyy(aiz),
where Dj(z) = i:l 297t dy(z).

6). Now note that, for all z € [0, 1],

Z[Uﬂ(x)]n = Zan =1,

n

sincea =1+ R with R € El. Since this will be preserved by both £,
and S, this implies, for all j > 0 and all z € [0, 1],

> lwi(@)a =1.

n

It follows that vji1(z) — vj(z) € Eyforallj >0andall z € [0,1].
Because of (A.6), (A.7) and (A.11) this implies

lvj+1(2) — vj(a)| g < €270 sup llo1(y) — vo (W)l -
v€Elo.
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We can use this first to show that the vi(z) are uniformly bounded in
E,

k-1
lox(@)ll 5 < llvo(@)llg + Y llvs+1(2) = vi(@)llz
=1

C
< lvo@)llg + T—5=a=y (@) —w(@)lz

lvo(x)|| 5 is obviously bounded uniformly in z, and one easily checks
that [|lvy(z)||z = || £S5 v (07)]|| 5 is as well. Next, we use the esti-
mate again to prove that the vi(z) constitute a Cauchy sequence in E,
uniformly in z,

[ok+m(z) — vr(z)]| < C" 270,

7). It follows that the v;(z) tend to a limit v(z) in E, uniformly
in z. If we “unfold” the v;(z) and v(z) to define functions ¢;, ¢ by

pi(z) = (vi(z = [z])) |,

(similarly for ), then ¢; is piecewise linear with nodes at the 277k,
k€ Z,and, forany r € R,z = n+y with y € [0, 1],

lpi(z) — e(@)] = [[vi(y) — v(¥)]nl
< Cllvi(y) = vl
<Cl2m(-n,

where the second inequality follows because of property (A.1), which E
inherits from E. It then follows from standard results on approximation
by splines that ¢ is Hélder continuous with exponent 1 — v.

For larger values of IV, the proof runs along the same lines; the
space E is defined by adding the N elements 1, (1 —e™™),...,(1 —
e"")N-1 to (1 — e-*)N E, which then lead to eigenvectors for £, with
eigenvalues 1,1/2,...,27 N1, The corresponding eigenvectors are used
to define a spline starting point vg(z) which is piecewise polynomial of
degree N, and one ends up with an estimate of type ||vj(z) —v(z)||z <
C 2~(N—%)j leading to the desired result.
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