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�� Introduction�

���� Statement of the theorems�

In what follows G will denote a real connected Lie group and � �
�Pn

j��X
�
j � X� will denote some subelliptic left invariant Laplacian

�cf� ���	
 This� for us here� will mean that X�� X�� � � � � Xn are left
invariant �elds on G �i�e� Xfg � �Xf	g� fg�x	 � f�gx		 and that
X�� � � � � Xn are generators of the Lie algebra of G �i�e� together with
all their successive brackets they span the Lie algebra of G �cf� ��		

I shall denote by dg � d�g the left Haar measure of G and by drg �
d��g��	 � m�g	 d�g the right Haar measure and by m�g	 � mG�g	 the
modular function


We can then construct Tt � e�t� �t � �	 the Heat di�usion semi�
group and �t�g	 the corresponding Heat di�usion kernel that is de�ned
by

Ttf�x	 �

Z
G

f�y	�t�y
��x	 dy � t � �� x � G� f � C�

� �G	 �

When X� � � we say that � � �� is driftless
 A driftless Laplacian ��

is formally self adjoint with respect to drg
 It follows that the modi�ed
Laplacian �� � m�����m

���� is formally self adjoint with respect to
dg
 It is then more convenient to consider the modi�ed semigroup
�Tt � m���e�t��m���� and it is very easy to see �cf� ���	 that the

���



��� N� Th� Varopoulos

L��G� drg	 � L��G� drg	 norm of the operator Tt � e�t�� �which is
the same as the L��G� dg	 � L��G� dg	 norm of �Tt	 satis�es

kTtk��� � e��t �

where � is the spectral gap of �� de�ned by�

� � inf

�Z
G

jrf j� drg �

Z
G

f� drg � �

�
�

where jrf j� �
Pn

j�� jXjf j�

In Chapter � of this paper we shall give an algebraic classi�cation

of g� the Lie algebra of G� into two classes� the B�algebras and the
NB�algebras
 We say of course that G is a B� �respectively NB�	 group
if g is a B� �respectively NB�	 algebra
 We shall refer the reader to
Chapter � for the precise de�nition that is algebraically very natural
but fairly long to explain
 In general terms one considers the minimal
parabolic subgroups P �cf� ��� for the de�nition of these subgroups
when G is semisimple
 Here we extend the notion to general Lie groups
by considering �maximal amenable subgroups� or rather a special class
of such subgroups	
 One then considers the corresponding dynamical
system Ad�P 	 and the classi�cation amounts to the �hyperbolicity� or
not of that system
 If we denote� here and throughout� by e � G the
neutral element of G we have

Theorem A� Let G be a Lie group as above and let �� be a driftless

Laplacian� let further �t � C��G	� � � � be the corresponding heat

di�usion kernel and spectral gap respectively� Then

A�	 If we assume that G is a B�group then there exists C� c��
c� � � such that

��
�	
C�� exp ��� t� c� t

���	 � �t�e	

� C exp ��� t� c� t
���	 � t � � �

A�	 If we assume that G is an NB�group then there exists C � ��
� � � such that

��
	 C��t��e��t � �t�e	 � C t��e��t � t � � �
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By the standard local Harnack estimate �cf� ���� ���	 we can of
course replace �t�e	 by �t�g	 �g � G	 but then the constant C � C�g	 �
� depends on g


Observe that the upper estimate ��
	 with � � � is very easy �cf�
���	
 The proof that the same index � � � can be used for both the
upper and the lower estimate in A�	 is very technical
 This will be
done elsewhere
 Here we shall show that some � � � exists for which
the lower estimate in ��
	 holds


Another way to write the Heat di�usion semigroup is Ttf � f � �t
where d�t�g	 � �t�g	 drg is a probability measure on G that in addition
has a number of properties that quali�es it to be a �Gaussian� �Gs in
short�	 measure on G in a sense that we shall make precise in Chapter
�
 For any bounded measure � on G� I shall denote by k�k��� the
L��G� drg	 � L��G� drg	 norm of the operator f � f � �
 We have
then

Theorem B� Let G be a B�group as above and let � � P�G	 be a

Gs�probability measure on G� Then there exists c � � such that for all

	 � C�
� �G	 we have

��
�	 h	� ��ni � O
�
k�nk��� e

�cn���
�
�

The above clearly �cf� ���	 contains the upper estimates of ��
�	

It is easy to see that in the estimate ��
�	 we can replace k�nk���

by 
��	n where 
��	 � �� the spectral radious of � �i�e� the spectral
radious of the operator f � f ��	
 The above theorem also holds if we
replace the Gs�measure � � P�G	 by some measure that is compactly
supported and has continuous �or even just L�	 density
 The proof is
but an easy modi�cation of the one given in this paper and is if anything
easier
 The details will however not be given here
 Observe �nally that
for symmetric measures we can easily adapt our methods to give lower
estimates in Theorem B that are in the same spirit as Theorem A


���� Guide to the paper�

Chapter � is pure algebra and it presents some independent inter�
est
 Chapter  analyzes the geometry of Lie groups and it shows how
the spectral gap can be �isolated� from the rest of the decay of the
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Heat kernel
 Both the above sections are basic and are likely to play
an important role in further developments
 Chapter � is technical and
is only one among many possible approachs to carry out the details of
the proof of the upper estimates
 The proof of the upper estimate is
completed in chapter � where a fair amount of global structure theory
of Lie group is needed
 Observe however that for these upper estimates
one needs chapter  only up to Section 
� and one needs very little al�
gebra �essentially only the de�nitions of B�groups	
 A good way for the
reader to start with this paper seems to me therefore to go streight for
that upper estimate in chapter � and refer back to chapter �� chapter
 as needed
 For the upper estimate one also needs Section B in the
appendix


Almost all of the algebra and the more intricate parts of chapter
 are only needed for the lower estimates
 In the proof of the lower
estimate of ��
	 one more �rather unexpected	 di�culty arises
 The
proof as I give it here is considerably easier if � is elliptic
 The com�
plications that arise when � is only subelliptic are quite formidable

This distinction disappears in the alternative� much more sophisticate
�at the potential theoretic level	� approach that will be used to show
that the same � can be used for the upper and lower estimate at ��
	

This approach will be presented elsewhere
 My advise to the reader is
therefore to ignore that di�culty and pretend� at least in a �rst reading�
that � is elliptic


The role of the appendix is crucial since it contains all the proba�
bility and potential theory that is needed in the rest of the paper
 The
appendix can �and should	 be studied independently� and it has its own
independent �guide to the reader� where I explain in particular what is
needed for what
 Whether it was a good idea to separate the material
in this way is of course debatable
 One thing is certain� this paper is
very long and putting the appendix apart made my life a little easier


Chapter OV� An overview�

The aim of this chapter �which properly speaking is not part of the
paper since it was written after the rest of the writting was completed	
is to give to the reader an overview of the subject that is developed in
this paper as well as in some of my previous work in the area


The material is presented here in general terms and with an em�
phasis on ideas and on the �intuitive picture�
 The price that one pays
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for this is in the precision or even in the accuracy in the presentation
 I
warn the reader that many assertions made in this chapter are� as such�
incorrect
 The �deviation� from what is actually correct however can
be controled and one can say that the aim of this work is to make these
ideas into real mathematics


The only thing that a non expert needs for the reading of this
chapter is the de�nition of a semidirect product A i B of two groups
�cf� ���	 and to have some idea of what a random walk and brownian
motion is �cf� ����	
 In reading the �rst two sections of this chapter
the reader could also pro�t from ����� ���� �in ���� some explanation is
o�ered for the missing page in ����	


OV��� The ax � b group�

Let G be the �only non abelian	 two dimensional Lie group of a�ne
transformations on R� 
 � x �� ax � b �x � R	 with � � a � e� � R��
and �� b � R
 This group is the semidirect product R i R�� since


�
� � x ��� a�a� x � b� a� � b� �

where the action of R�� on R is b �� ba

Let us now consider two probability distributions �� � P�R�� 	�

� � P�R	 and let � � �� �� be the �product� measure that we obtain
on G by putting � on R and �� on R�� 


The beginning of the present work was when several years ago I
observed that one could represent the random walk on G generated
by � �alternatively the convolution powers ��n	 in a very simple and
managable way
 This idea I shall explain in this section


Let �gn � �xn� s
�
n	 � G � n � �� be the paths of that random walks

which formally is de�ned by P �gn�� � dx � gn � y� � d��y��x	
 By
projecting G � R�� we see that s�n � x�� 	 	 	x�n performs a �multiplica�
tive	 random walk on R�� �
� R	 with transition probability ��
 The
motion of xn � R does not� on the other hand� obey a simple stochastic
law and there lies the di�culty of the problem


The key observation is that once we ��x� �i�e� condition in formal
probabilistic terms	 the path  � �s��� s

�
�� � � � 	 of the random walk on R��

then the motion x�� x�� 	 	 	 � R also becomes Markovian
 The Markov
process that we thus obtain is time inhomogeneous and we have

P �xn�� � dx �� xn � y � � � d�n �x� y	 �
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where �n is the measure on R that is obtained from � after the dilatation
x �� s�nx �x � R	


This idea� simple though it is� goes a long way
 Let us for simplicity
make the assumption that � � N ��� �	 is a normal �i�e� Gaussian	
variable �mean zero and covariance �	
 Then �n � N ��� s�n	
 From this
we can easily estimate the return probability of our random walk

p�n	 � P
�
gn � ��b�� b��i �a��� � a�� � G

�
for some �xed � � b� � R� a� � R�� 
 The �rst step is to estimate the
return probability of the conditioned random walk �i�e� �xed 	 and
this is clearly

�OV
�	 �s�� � s�� � 	 	 	� s�n	���� 

�Z n

�

eb�s	 ds

	����
�

where �b�s	 � R � s � �	 denotes standard Brownian motion
 The
reason why we take eb�s	 is that � �� e� is the standard homomorphism
between the additive R and R�� 
 We then clearly have to take the
expectation of the expression �OV
�	 demanding in addition that b�n	
returns to � i�e� we have the estimate

�OV
	 p�t	 
 E


�Z t

�

eb�s	 ds

	����
� b�t	 � ���� ��

�
�

Brownian functionals as this� have become a big industry these days
and are being considered by several authors under the glamorous and
sexy label of �Financial Mathematics�
 This is as good a name as any
for the �avour of the month� I am sure� but all we need is

p�t	 
 t���� � t�� �

Instead of considering a random walk on G we can take an analytic
point of view
 We should consider then X� X� two invariant unit �elds
along the one parameters subgroups R and R�� of G and � � �X��X�

�
the corresponding invariant Laplacian
 If �t�g	 denotes the kernel on
G of the heat semigroup e�t� generated by � we have

�t�g	 
 p�t	 
 t���� � t�� �

The task that lies ahead is twofold�
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�	 to show that the above geometric construction generalizes to an
arbitrary Lie group�

	 to estimate the corresponding Brownian functionals thus ob�
tained


Both the above tasks are quite formidable at the technical level

In the rest of this chapter� I shall try as much as possible to clarify the
general picture


OV��� The barrier problem for random walks�

In this section I shall swich back to standard random walk

Sn � X� � 	 	 	� Xn � R �

where Xj are i�i�d� Bernoulli �i�e� P�Xj � �� � ��	 variables
 The
issue in �OV
	 is of course to estimate

p��n	 � E

�� nX
j��

eSj
	�A

� Sn � �


�

So that
p��n	 � E

�
e�AMn � Sn � �

� 
 n���� �

where Mn � sup��j�n Sj �recall that Sj 
� �Sj	
 The above asymp�
totic is obtained because the expectation can be explicitely computed

Indeed there exist standard formulas for the probabilities �cf� ����	

P
�
Mn � � � Sn � �

�
� P

�
Sj � � � j � n lies below the barrier � � Sn � �

�
�

We can now use the �maximal oscilation�

osc �t	 � sup
��t��t��t

jb�t�	� b�t�	j � jt� � t�j � � �

which is a very �small� variable �and in particular k exp�osc �t		kL� �
O�t		� and H�older inequality and we obtain at once that the actual
brownian functional �OV
	 �and not just the random walk functional	
satis�es

p�n	 � O
�
n�����	

�
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for all � � �

We see� in particular� that it is easy to estimate our �OV
	 func�

tional �up to an ��
 This phenomenon recurs all the time during the
whole theory� i�e� the functionals that occur are straight forward to es�
timate �up to an ��
 On the other hand to obtain the exact asymptotics
becomes rather involved


OV��� A generalization�

The next obvious generalization of the ax � b group is the group
Rn i R where the action of R on Rn is given by x � e�x �� � R�
x � Rn	
 The analysis that we made for ax� b extends �verbatum� to
this group
 What we have to estimate is the functional

E

��Z t

�

eb�s	 ds

	�n��
� b�t	 � ���� ��


�

which� as we already saw is also 
 t���� �or at least O�t����		
 We can
push this generalization a step further and consider the group

�OV
�	 G � Rn i Ra � V i A �

where for simplicity �and since the essential aspects of the problem do
not change by this assumption	 we shall assume that the action of A on
V is semisimple with real roots� i�e� that it is given by � � A� GL�V 	
where there exists L�� � � � � Ln � A� �the dual space	 linear functions�
that are normally referred to as �roots�� such that

���	 �

�
� eL��
	 �


 
 


� eLn�
	

�
A � � � A � Ra �

By the same analysis it is then very easy to see that the return proba�
bility of the corresponding random walk can be estimated by

�OV
�	

p�t	 � E

��Z t

�

eL�
b�s	� ds

	����

	 	 	
�Z t

�

eLn
b�s	� ds

	����
� jb�s	j � �


�
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where now �b�s	 � ba�s	 � A � Ra � s � �	 is the a�dimensional stan�
dard brownian motion
 I do not know whether the functional �OV
�	
will help any one make a lot of money with Asian options at the Chicago
Exchange
 What I do know is that estimates of functionals like this are
not easy to get
 What we obtain is that �as t��	

p�t	 
 t�� or p�t	 
 e�ct
���

and that it all depends on the geometry of the roots L�� � � � � Ln � A�

There are two types of geometries that we need to consider in this
context
 The �rst is the linear geometry i�e� the invariants under
GL�A	
 This allows us to make the following basic classi�cation
 We
distinguish �rst the case when the origin �� � A�	 lies in the convex
combination of the roots L�� � � � � Ln
 We say then that the roots satisfy
the C�condition
 And then the NC�case �non�C	 which is the opposite
situation when all the roots lie strictly on one side of a hyperplane in

A�
 In the C�case we have p�t	 
 e�ct
���



To give a glims of what is happening� let us consider the func�

tional �OV
�	 under the C�condition for Brownian motion and for the
Bernoulli random walk of Section OV
 �i�e� n � � a � �� and the
roots are� L� � ��� L� � ��	
 We have then

E

��Z t

�

eb�s	 ds

	�����Z t

�

e�b�s	 ds
	����


 E

�� nX
j��

eSj
	����� nX

j��

e�Sj
	����

� E

� nX
j��

ejSj j
	����

� E

�
exp

�
��


sup

��j�n
jSjj

	

� E
�
e�mn

�
�

and it is well known and easy to see that with m�t	 � �sup��s�t jb�s	j	�
we have

E
�
e�m�t	

� 
 e�c t
���

�

In the NC�situation the Euclidean geometry �i�e� the O�a�R	 � O�A	
invariants	 of A� becomes relevant and we have p�t	 
 t��
 The expo�
nent � depends on the �geometry� of the cone

� �
�
x � Ra � Lj�x	 � �� j � �� � � � � k

� � A 
� Ra �
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where L�� � � � � Lk are the non zero roots
 Observe incidentally that the
NC�condition is equivalent to the fact that � �� �
 When all the roots
are � one should set � � A
 This geometry� of course� is considered
with respect to the Euclidean structure on A
 At this point we should
go back to the de�nitions of �OV
�	 and observe that a Euclidean struc�
ture has to be given on A � Ra � if brownian motion is to be de�ned

The question arises what that Euclidean structure is and how is it de�
termined from the group G in �OV
�	
 The answer to this question is
simple� we project the measure � � P�G	 that controls our random
walk on A � Ra and take its covariance matrix
 This determines the
Euclidean structure


This Euclidean structure is� with hindsight� very natural
 It came
to me however as a big surprise
 First of all this Euclidean structure
depends on the random walk on G and not just on G
 Therefore t��

depends on the measure � and� in general� the � varies continously

with � and can be any large enough real value �e�g� � � ��
p
� � �

p
	


This contradicts the intuition that we all had in the subject �cf� ����
����	 that lead us to believe that � had to be a ���integer
 It is worth
noting that in Ph
 Bougerol s work ����� a natural scalar product does
exist in A� where G � NAK is the Iwasawa decomposition of some
semisimple group G
 It is given by the Killing form and it gives rise
to corresponding � s that are ���integer
 Contrary to what was said�
that scalar product and the corresponding � is then independent of
the particular measure
 This contradiction with what was said above
is� however� only apparent
 Indeed� for a semisimple group G we have
� � P�G	 and not � � P�NA	
 The role of the Killing scalar product is
important in our theory also
 The cone � in �OV
!	 should be thought
as a generalization of the Weyl chamber of the semisimple theory and
the � � ��Z is related with the symmetries of the Weyl group
 This
aspect of the theory will not be examined in this paper
 The other case
when � � ��Z is� of course� when G is a unimodular NC�group
 For
these groups we have �L�� L�� � � � � Lk	 � � since unimodularity amounts

to
Pk

j�� Lj � �
 It follows that � � A and therefore � is independent
of �
 This unimodular theory was developed with di�erent methods in
���


For the same reasons as in Section OV
� the functional �OV
�	
is intimately connected with the following �conical barrier� problem

Let x � � �cf� �OV
!		 be �xed� the problem is then to obtain the
asymptotics as t�� of

p��t	 � Px
�
ba�s	 � �� � � s � t

�
�
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The answer is that there exists some � � ���	 � � such that p��t	 

t��� �t � �	
 The proof of this already takes some doing �cf� ����	


Remark� We can bring out the qualitative di�erence between the C�
and NC�geometry at the probabilistic level in the following manner

Consider the region

�� � �x � Ra � Li�x	 � �� � i � �� � � � � �

which is a �polyhedron�
 This polyhedron is bounded �respectively
unbounded	 under the C� �respectively NC�	 condition and what is
relevant in both cases is

p��t	 � P��b�s	 � �� � � � s � t� �

The point is that while p��t	 behaves polynomially when �� is un�
bounded� in the case when �� is bounded we have

p��t	 
 P �jb�s	j � � � � � s � t� �

which� by the scaling properties of brownian motion b�s	 � Ra � is easily
seen to have an exponential behaviour �as t��	
 This is the underly�
ing reason for the di�erence in behaviour of the Heat kernel under the
two geometries


OV��� The amenability of the group�

The analysis that we gave in the previous section extends to all
amenable groups
 Indeed the model for such a group is a soluble group
P � N i A � N i Ra where now N is a general nilpotent group and
not just a vector space V � Rn 
 The root analysis of the action of A on
N can be carried out as before and the corresponding brownian func�
tionals can be estimated
 The details give rise to considerable technical
di�culties �cf� ����� ����	 but not fundamentally new ideas are involved


New ideas are needed to deal with non amenable �e�g� semisimple	
groups
 It is these ideas that are developed in this paper
 The �rst
hint of how to go about this is supplied by what was already done

The point is that it is not quite exact that we can model a general
amenable group by P � NiA as above
 The correct model is more like
G � PiK where P is the soluble radical and K is a compact semisimple
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Levi factor
 These groups can thus be thought as a P �principal bundle
with a compact base space G�P � K
 This model generalizes to any
connected Lie group G� we can �nd P � G a soluble subgroup such
that the homogeneous space G�P is compact
 If G is semisimple and
G � NAK is the Isawawa decomposition we take P � NA
 In general
we take for P any �Borel� subgroup �here I deviate slightly from the
standard terminology	
 It thus turns out that the correct setting for
our theory is to view G as the total space of a P �principal bundle with
P soluble and G�P compact
 There exists then N � P a nilpotent
normal subgroup such that P�N 
� Ra � A� and if we quotient G by
the action of N we obtain X an Ra �principal bundle
 Such a bundle is�
topologicaly� trivial� i�e� X 
� Ra �K �cf� ���	
 Observe also that X is
a genuine �ber bundle and that it does not admit� in general� a natural
group structure


In this �ber bundle representation of G the Laplacian � on G is
identi�ed with a P �invariant di�erential operator on the total space
of the bundle
 It is in this identi�cation that the factor e��t� where
� is the spectral gap of �� appears explicitely in the heat di�usion
semigroup e�t�
 It is futile to try to give an intuitive and yet convincing
description of how this comes about
 But �grosso modo� what happens
is that on the �ber bundle G � P � K �the product is a Borelian
trivialization of the bundle	 we have to consider both the measures
dlr�dk and drr�dk for left and right Haar measure dl� dr
 This brings
out the modular function m�x	 � drx�dlx and then� somehow� the
action of � on m brings out the spectral gap
 A similar phenomenom
occurs in the construction of the principal series in the representation
theory of the semisimple group G � NAK
 The fact that P is amenable
also plays a role here
 In the present formalism one should think of
G � NX where X � Ra �K is the generalization of A � Ra 
 As for
the brownian motion on A it is replaced by the Ra �invariant di�usion
on X that is generated on X by D� the image of � by G� G�N � X


The root analysis of the �action of X on N� can be carried out and
the region � � �Li � �� i � �� � � � � � X can be de�ned as in �OV
!	

One can introduce the analogous brownian functionals and use these
functionals to estimate the heat di�usion kernel as before


The �nal step that remains is to analyze the second order di�eren�
tial operator D on X and the corresponding �brownian motion� that
it generates
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OV��� The Laplacian of an Ra 	principal bundle�

Let X � Ra � K or X � Za �K some �trivial	 principal bundle
with compact base K� and let T be some Markovian operator on X
that is invariant by the action of Ra or Za
 For instance� we could be
looking at the markovian semigroup Tt � e�tD on X � Ra �K as in
Section OV
�
 Observe that D can be expressed in local coordinates as
follows

�OV
�	

D �
X

aij�k	
��

�xi�xj
�
X

bi�k	
�

�xi

�
X

ci��k	
��

�xi�k�
� D

�
k�

�

�k

	
�

where D�k� ���k	 only involves the local coordinates �k�� � � � � kj� � � � 	 of
k � K and �x�� � � � � xa	 are the �global	 coordinates of Ra 


I shall denote by

�OV
�	 z�n	 � �zR�n	� zK�n		 � Ra �K � X � n � �� � � � � �

the paths of the Markov process generated by T 

The simplest non trivial example of the above set up is clearly

X � Z � f�� �g �i�e� when K � f�� �g	 is the two point space	
 T
is the determined by L � �L�i� j	� i� j � �� �	 some  �  markovian
matrix and by four probability measures �i�j � P�Z	 �i� j � �� 	
 The
Markov chain �OV
�	 can then be determined as follows
 First the
motion of the K�coordinate zK�n	 is a time homogeneous Markov chain
with transition matrix L
 As for the �ber coordinate zR�n	 it moves
accordingly to the law

P
�
zR�n � �	 � � � �� z�n	 � ��� i	� zK�n � �	 � j

�
� �i�j�� � � �	 �

for �� � � � Z� i� j � �� �
 In other words� if we condition the base point
at time n to be i and at time n�� to be j� then the nth step on Z is the
same as for a random walk with measure �i�j
 Just as in Section OV
��
therefore� if we condition on the path zK��	� zK��	� 	 	 	 � K� the motion
zR�n	 becomes a time inhomogeneous random walk on Z
 It is clear�
of course� that the above description of the process generalizes when
K � f�� �� � � � � n� �g has n�points or when K is an arbitrary compact
space
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A typical problem that we shall consider for the above process
is the following barrier problem� Find the asymptotic behaviour �as
n��	 of

Pz��	�����	
�
zR�j	 � �� � � � j � n

�
�

or more generally when X � Ra � K and when � � X is a connical
domain as in �OV
!	 and x � �� �nd the correct asymptotics of

�OV
�	 p��n	 � Px
�
zR�j	 � � � � � j � n

�
�

The above connical �and �twisted� in the bundle	 barrier problem is
di�cult
 Not surprisingly the �rst step consists in �nding T the �limit
operator� on Ra 
 That operator determines a Markov chain on Ra

�z�n	 � Ra � n � �� � � � � 	 that suitably approximates the motion of
zR�n	 of our process for large times


The construction of T is not trivial
 For instance� when T is given
by Tt � e�tD with D as in �OV
�	 then the approximating semigroup

is T t � e�tD with

D �
X

aij
��

�xi�xj
�
X

bi
�

�xi
�

but it is not� in general� true that the coe�cients aij �
R
K
aij�k	 d��k	

are the average of the corresponding coe�cients of D with respect to�
say� the equilibrium measure � � P�K	 of the zK�n	
 Finding the above
limit operator is a problem from Homogenization Theory �cf� ��"�	

Once we have determined the limit operator we proceed to show that�
when we are in the NC�case �and � �� �	� the correct assymptotics in
�OV
�	 are

p��t	 
 t�� �

where � � �� is the index that corresponds to the cone � and the
Euclidean structure determined by D as in Section OV
�
 If we are in

the C�case �i�e� if � � �	 we obtain� as expected� that p��t	 
 e�ct
���



The details of the above procedure will not be given in this paper


Only a crude �rst approximation is given in the Appendix
 The full
solution will be given in a second instalment of this work


Solving the above problems is interesting and rewarding because�
among other things� they throw new light to classical homogenization
theory
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�� Algebraic considerations�

���� Complex soluble algebras and their roots�

In this section we shall denote by q a �nite dimensional complex
soluble Lie algebra �cf� �!�� ���� ���	 and by n � q its nilradical
 We
shall denote by np � �� � � �n� n�n� � � �n� the pth commutator� p � �� � � � � �
and by kp � np�np�� the corresponding factors
 I shall further denote
by W � k�� V � q�n and by k � k� � k� � 	 	 	 � k is the corresponding
graded Lie algebra where� for the canonical multiplication� we have of
course �kj � ki� � ki�j 


The adjoint action of q

adx � q� q � ad �x	y � �x� y� � x� y � q �

induces canonically the following actions

��
�
�	 adx � np � np � p � � � x � q �

��
�
	 adx � kp � kp � p � � � adx � k� k � x � q �

It is also clear that the action ��
�
	 vanishes if x � n
 It follows
therefore that we also have the following natural actions

��
�
�	 ad v � kp � kp � ad v � k� k � v � V � q�n �

and in particular

��
�
�	 ad v � W �W � v � V �

V is an abelian Lie algebra� therefore the action ��
�
�	 admits the
standard root space decomposition

W � W� � 	 	 	 �Ws ���
�
!	

Wj � fx �W � �ad v � �j�v		Nx � � � v � V g � j � �� � � � � � s �

where �j � V �
C

� HomC �V � C � are the distinct roots of the action ��i ��
�j � i �� j� cf� �!�	 and the integer N in ��
�
!	 is large enough� say
N � dim W � ��
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The actual roots ��� � � � �s can of course also be de�ned by the
property that for every j � �� � � � � s there exists � ��  � W such that

��j�v	� ad v	 � � � v � V �

Analogous root space decompositions exist for the action ��
�
�	 so that
we have for instance

kj � W
�j	
� � 	 	 	 �W �j	

sj
� j � �� � � � � �

where the root space W
�j	
r has the root �

�j	
r and

W �j	
r �

X
�Wi� �Wi� � � � � �Wij � �

where the summation extends over all indices for which �
�j	
r � �i� �

	 	 	 � �ij and where in this paper I shall adopt once and for all the
following notation

�X�Y� � � � � Z� � �� � � ��X�Y � � � � �� Z�

for a higher commutator

Because of the above situation� as is customary� we shall sometimes

say that

��
�
�	 ��� ��� � � � � �s

are the simple roots of the adjoint action and

��
�
�	 ��j	r � �i� � 	 	 	� �ij � j � �� � � � � r � �� � � � � sj �

are the multiple roots
 It is important in what follows to examine
more closely the above roots and to give what amounts to alternative
de�nitions of the above notions


Since q is soluble� the action ��
�
�	 �for p � �	 can be simultane�
ously triangulated �cf� �!�� ���	
 In other words we can choose a basis
of n with respect to which the action ��
�
�	 takes the form

��
�
�	 adx �

�
B�
���x	 �


 
 


� �t�x	

�
CA �
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In ��
�
�	 �j � HomC �q� C � � q�
C

are complex linear functionals on q

that vanish identically on n and can thus be identi�ed with elements of
V �
C



By the standard Jordan�H�older theorem on composition series ���

we see then that up to a di�erent order the ��� � � � � �t � V �
C

are exactly

the roots �
�j	
r in ��
�
�	


The third de�nition of the roots is less elementary
 Let h � q

be some Cartan subalgebra of q �cf� �!�� ���	 or more generally just
some nilpotent subalgebra of q that has the additional property �Cartan
subalgebras have that property �cf� ���		�

��
�
"	 n � h � q �

We can then consider the root space decomposition

n � n� � n� � 	 	 	 � n�

of the ad�action of h on n where as before

��
�
��	 nj � fy � n � �adx� �j�x		Ny � �� for all x � hg

�cf� �!�	 with �j � h�
C

� HomC �h� C � as before
 The important thing
here is that

�ni� nj� � nk �

where �i � �j � �k �cf� �!�	 and that� since the �j  s vanish identically
on h � n� we can identify these � s to elements of �h�h � n	�

C
� V �

C

because of ��
�
"	

Therefore ��� � � � � �� can be identi�ed with elements of V �

C
� and by

the same composition series arguments �applied to the action of h on
n	 we can identify the ��� � � � � �� �up to a new order	 with the roots
��
�
�	


���� Real soluble algebras and their roots�

In this section I shall denote by q a �nite dimensional real soluble
Lie algebra and by n � q its nilradical
 I shall �x h some Cartan
subalgebra �or more generally some nilpotent subalgebra that satis�es
��
�
"		 and I shall denote by qc � q� C � nc � n � C and hc � h� C

the corresponding complexi�ed algebras
 It is then well known that nc
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is the nilradical of qc �it is also true� but irrelevant for us here� that hc
is a Cartan subalgebra of qc if h is a Cartan subalgebra of q	
 Let us
also follow the same notations as in Section �
� and denote by

V � q�n � W � n��n� n� �

which are real vector spaces
 We then have canonical identi�cations

Vc � V � C � qc�nc � W � C � nc��nc� nc� �

Relative to the complex algebra qc the roots ��
�
�	 can then be iden�
ti�ed with �I denote by t and not by s the number of these roots here	

��

�	 ��� � � � � �t � HomR�V � C �

that are de�ned by the property that there exists � ��  �W � C such
that

��j�x	� adx	 � � � for all x � V �

At this stage it is important to introduce a notation that we shall
adopt throughout
 The real algebra q induces a �real structure� �i�e� a
�complex conjugation�� cf� �"�� ����	 in the complex algebra qc � q� C 

I shall consider the complex subalgebras �or even complex subspaces	 of
qc that respect to the above real structure �i�e� are stable by the above
complex conjugation	
 I shall reserve the su�x c to indicate by ac � qc
these subalgebras
 This means that ac � a � C for some subalgebra
a � q
 Such subspaces will be called real


The considerations of Section �
� apply to qc and the subalgebra
hc
 The important thing is to �build� in the de�nition of the roots the
above real structure
 The key de�nition needed to do that is that of
the real simple roots or simply the real roots when confusion does not
arise


These are L�� � � � � Ls � V ��� the real dual of V 	 which are the
distinct non zero real parts of the roots ��� � � � � �t of ��

�	 i�e�

L�v	 � Re��v	 � v � V �

We can of course consider the graded algebra

kc �
M
p

�nc	
p��nc	

p��
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and the corresponding action of Vc on kc
 The �multiple� real roots can
thus be de�ned in the obvious way and these are �nite linear combina�
tions with positive integer coe�cients of the Lj  s

��

	 L�j	
r � Li� � Li� � 	 	 	� Li� �� �

�with the i s not necessarily all distinct	

Let us denote by

L �

� sX
j��

�jLj � �j � ��
sX

j��

�j � �

�
� V �

the convex hull in V � of the real roots with the understanding that
L � � if

��

�	 fL�� L�� � � � � Lsg � � �

De
nition� We shall say that the algebra q is a C�algebra if � � L�
otherwise �if � �� L	 we shall say that q is an NC�algebra�

Algebras for which ��

�	 holds are called R�algebras �cf� ����	

R�algebras are in particular NC�algebras
 It should �nally be observed
that in the above de�nition nothing changes �i�e� we obtain the same
classi�cation of C�� NC�algebras	 if we replace L by L the corresponding
convex hull in V � of the �multiple� real roots ��

	 which are just the

non zero real parts Re�
�j	
r of the �multiple	 roots �

�j	
r in ��
�
�	


Let us recall that quite generally we say that the Lie algebra g is
unimodular if

trace �adx	 � � � x � g �

It follows at once that if q as above is unimodular and satis�es the
NC�condition then ��

�	 holds and q is an R�algebra


���� The structure of soluble NC	algebras�

In this section n� h � q will be as in Section �

 All the notations
of Section �
 will be preserved and we shall consider the root space
decomposition

��
�
�	 nc � n
�c	
� � 	 	 	 � n

�c	
�
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of nc under the ad�action of hc
 In this decomposition ��
�
�	 if � � �

is a root as in ��
�
��	 we denote by n
�c	
� the root space corresponding

to that root
 When � � � is a root then the space n
�c	
� is a real space

and we have
n
�c	
� � ��n�	c �

where �n� � n
 Observe also that hc � nc � n
�c	
� and therefore that

��
�
	 n � h � �n�

when � � � is not a root we shall abusively set �n� � �


The other root spaces n
�c	
j are of course not necessarily real
 We

shall therefore partition all the roots ��� � � � � �� into disjoint subsets by
the equivalence relation

��
�
�	 �i 
 �j if and only if Re�i � Re�j

and block together the corresponding subspaces
 We obtain thus a
direct decomposition

��
�
�	 n � n� � n� � 	 	 	 � nk �

where �ni	c � n
�c	
i�
� 	 	 	 � n

�c	
i�

with �i� � � � � � �i� the roots in the equiv�
alence class Re�i� � Re�i� � 	 	 	 � Re�i� � Li 


In the notations of ��
�
�	 we shall �abusively	 assume that n� may
be � f�g and will always correspond to the equivalence class Re � � �

We have of course

��
�
!	 �n� � n� � �ni� h� � ni � i � �� �� � � � � k �

Finally for any two i� j � �� �� � � � � k we have

��
�
�	 �ni� nj � � np �

where in the equivalence class of the roots of np the real part is the
sum of the two corresponding real parts �cf� �!�	
 The following impor�
tant proposition immediately follows from ��
�
	� ��
�
!	� ��
�
�	 and
��
�
"	


Proposition� If we assume that q is an NC�algebra then nR � n� �
	 	 	 � nk is an ideal in q and qR � n� � h is a subalgebra such that
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nR � qR � f�g and q � nR � qR� In other words we have a semidirect

product decomposition

��
�
�	 q � nR i qR �

Furthermore� we have

��
�
�	 �nj � qR� � nj � j � �� � � � � k �

It is clear that qR is a soluble R�algebra �i�e� it satis�es ��

�		

Observe that quite generally if two ideals j�� j� � q have the property

��
�
"	 q�ji is an R�algebra

then the ideal j� � j� has the same property
 Indeed q�j� � j� can be
identi�ed to a subalgebra of q�j��q�j� which is an R�algebra
 It follows
in particular that the ideal nR � q can be given an intrinsic character�
ization and is the smallest ideal j that has the property ��
�
"	
 It is in
particular independent of the choice of h


We shall �nally need to examine more closely the action ��
�
�	

The algebra qR is soluble
 For every �xed j we can therefore chose a
basis over C on �nj	c � nj �R C in such a way that with respect to that
basis we have

adx �

�
B�
���x	 �


 
 


� �tj �x	

�
CA � x � qR �

where the �k s vanish identically on n � h since adx is a nilpotent
tranformation for x � n � h
 The �k s can thus be identi�ed with
elements of �h�h � n	�

C
� HomR�h�h � n� C � � �q�n	�

C
and can thus be

identi�ed with the elements of the equivalence class of the roots � of
��
�
�	 that have a �xed non zero real part


���� A general Lie algebra and the Levi decomposition�

In this section I shall consider a general �nite dimensional real Lie
algebra g and I shall denote by n � q � g its radical and its nilradical
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�cf� �!�� ���	
 We can then �nd s � g a semisimple subalgebra �with the
convention that s could be � f�g	 such that

��
�
�	 g � qi s �

This is of course the standard Levi decomposition and s is called a Levi
subalgebra of g �cf� �!�� ���� ���	
 The following lemma was �rst proved
and successfully exploited by G
 Alexopoulos ���
 The proof I give
below is di�erent

Lemma �Alexopoulos ���	
 We can �nd h� � q a nilpotent subalgebra

such that

��
�
	 q � n � h� � �s� h�� � f�g �

Proof� By H
 Weyl s theorem �cf� �!�� ���	 on the semisimplicity of a
representation of any semisimple algebra� we can �nd l � q a subspace
such that q � n� l and such that �s� l� � l
 But since �g� q� � n �cf� ���	
we have �s� l� � �
 This means that

l � q� � fx � q � �s� x� � �g �

where q� is a subalgebra of q
 If follows in particular that t� � q��q� �
n � q�q � n
 If we set h� � q� to be some Cartan subalgebra of q� we
see therefore that all the conditions of the lemma are veri�ed because
the canonical image of h� in t� is t� �cf� ���	


The subalgebra h� is not in general a Cartan subalgebra of q but
what the lemma says is that it satis�es the condition ��
�
"	
 It follows
therefore that we can make all the constructions of Section �
� starting
from the algebra h�
 Using this we shall extend our previous de�nition
to general algebras


De
nition� Let q � g be as above� We shall say that g is a C�
�respectively NC�	 algebra if q is�

It follows that if with the above de�nition g is an NC�algebra then
we can de�ne the ideal nR � q and decompose q � nR i qR where qR
is de�ned as in proposition of Section �
� and depends on the choice
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of h� �as we already pointed out nR does not depend on that choice	

The fact that �h�� s� � f�g implies that in the decomposition ��
�
�	 all

the subspaces n
�c	
j are stable by the ad�action of s
 Therefore it follows

�with the notations of Section �
�	 that �n� and all the subspaces nj in
��
�
�	 are stable by the ad�action of s

��
�
�	 ��n�� s� � �n� � �nj � s� � nj � j � �� �� � � � � s �

We obtain thus the semidirect product decomposition

g � nR i �qR i s	 �

Observe �nally that when s is of compact type and therefore qR i s

is an R�algebra then nR can be characterized as before as the smallest
ideal j � g for which g�j is an R�algebra
 A �nal observation is in order

We have

��
�
�	 qR i s � �n� � h�	i s

and n� � qRis is an ideal by ��
�
�	 and we can consider the projection

��
�
!	 � � qR i s� �qR i s	�n� � �h��h� � n�	� s � ��qR i s	

i�e� s and h��h� � n� commute in ��qR i s	
 This is because �g� q� � n

�cf� ���	 and ��
�
	� ��
�
�	


���� A lemma from linear algebra�

In this section I shall consider

Mj � Dj � Tj �Mn�n�C 	 � j � �� � � � � s �

A �nite number of complex invertible matrices where Dj � Diag �d
�j	
� �

� � � � d
�j	
n 	 is assumed diagonal with diagonal entrees d

�j	
i �� � and Tj �

�t
�j	
���	n����� is assumed upper triangular i�e� we assume that t

�j	
��� � �

�j � �� � � � � s� � � �	
 I shall set

max
��j�s

fkMjk� kM��
j kg � eu � u � � �
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where k 	 k indicates the operator norm of the matrix �with respect to
the canonical hermitian scalar product

P
ziui on C n	
 I shall also set

�j � max
��i�n

jd�j	i j � ���� 	 	 	 �s � e� � � � R �

�For our applications �cf� ��
�
!	� ��
�
�		 we are in fact going to have

�j � jd�j	i j� i � �� � � � � 	
What will be proved in this section is that there exists C some

numerical constant such that

��
!
�	 kM� 	 	 	Msk � Cnsnexp �Cnu � �	 �

First of all we shall reduce the proof of ��
!
�	 to the special case �j � ��
j � �� � � � � s where ��
!
�	 reduces to

��
!
	 kM� 	 	 	Msk � CnsneCnu �

Indeed we clearly have ��nj � jd�j	� 	 	 	d�j	n j�� � det �M��
j 	 � enu


Therefore ���j � eu and since trivially �j � eu the new matrix �Mj �

���j Mj satisfy k �Mjk� k �M��
j k � e�u
 The ��j that correspond to these

new matrices clearly satisfy ��j � � and we are in the special case
 The
estimate ��
!
	 for these new matrices immediately implies the general
result ��
!
�	
 It remains to give a proof of ��
!
	
 Let us develop the
product

��
!
�	
sY

j��

�Dj � Tj	 �
X

	k���
k����s

A
�	�	
� 	 	 	A�	s	

s �

where A
���	
j � Dj � A

���	
j � Tj � j � �� � � � � � s


It is clear furthermore that every term of the form A
�	�	
� 	 	 	A�	s	

s

is � if among the �j  s we can �nd at least n � � ���	 s
 It follows that
in the summation of the right hand side of ��
!
�	 there are at most sn

non zero terms and since we clearly have kA�		
j k �  eCu our estimate

��
!
	 follows

In words what the estimate ��
!
�	 says is the following� the norm

of kM� 	 	 	Msk which has the obvious exponential bound esu can in fact
be estimated by �� 	 	 	 �s �this in general does grow exponentially in s
but it does so in a special way�	 multiplied by a polynomial in s
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���� The geometric interpretation of the lemma for soluble Lie
groups�

In this section we shall consider Q a real soluble connected Lie
group �that is not assumed to be simply connected	 and let

��
�
�	 � � Q� GLn�R	

a n�dimensional real representation of Q
 I shall denote by q the Lie
algebra of Q and by

��
�
	 d� � q� g�n�R	 � EndR�Rn 	

the corresponding representation
 The above representations can then
be complexi�ed and a basis over C can be chosen on C n in such a way
that d��x	 �x � q	 is upper triangular

��
�
�	 d��x	 �

�
B�
���x	 �


 
 


� �n�x	

�
CA � m �Mn�n�C 	 � x � q �

The �i s are of course elements of HomR�q� C 	
 If g � Exp �x	 � Q
where

Exp � q� Q

is the standard exponential mapping from the Lie algebra q in the group
Q �this exponential mapping is not in general �onto�	 we have

��g	 � expm � M

�

�
B�

#��g	 �

 
 


� #n�g	

�
CA � GLn�C 	 � g � Exp�q	 �

where #j�g	 � e
j�x	 and

j#j�g	j � eLj�g	 � eRe 
j�x	� g � Exp �x	� x � q �

It follows �since Exp�q	 generates Q	 that ��g	 can be simultaneously
triangulated for all g � Q and that g � #j�g	 is a global homomorphism



	�� N� Th� Varopoulos

Q� C � � C nf�g �with the multiplicative structure	
 This also de�nes
a group homomorphism

��
�
�	 Q� R � g �� Lj�g	 �

What the estimate ��
!
�	 says in this context is that if g�� � � � � gs � Q
are such that jgjj � u� j � �� � � � � s �cf� ��� and Section �
� for the
de�nition of jgj � jg��j	 and if L� � L� � 	 	 	 � L and

L�g� 	 	 	 gs	 � � � � � R �

then

��
�
!	 k��g� 	 	 	 gs	k � Cnsnexp �Cnu � �	 �

Let us illustrate the above considerations further in terms of NC�alge�
bras
 Let us assume that q is a real NC�algebra and let

q � nR i qR

be the decomposition ��
�
�	 that corresponds to some choice of h � q
 I
shall denote by Q the simply connected real Lie group that corresponds
to the algebra q
 The analytic subgroup NR � Q that corresponds to
the ideal nR is clearly closed and simply connected �cf� ���	
 We can also
construct �ad hoc� QR the simply connected Lie group whose algebra is
qR
 The group QR acts canonically �as a group of automorphisms	 on
NR
 Indeed for � � QR a small enough neighbourhood of the identity
we de�ne that action by the obvious inner automorphism
 The simple
connectedness of QR does the rest
 We can de�ne thus the semidirect
product NR i QR and the simple connectedness of G implies that we
can identify

Q � NR iQR

and that QR can be identi�ed to the analytic subgroup of Q that cor�
responds to the subalgebra qR
 QR is thus a closed subgroup


We can apply our previous considerations to the representations
��
�
�	� ��
�
	

��
�
�	

�
� � Ad � QR � GL�nR	 �

d� � ad � qR � g��nR	 �

�recall that Ad g � dIgje� Igx � g��xg� g� x � G� cf� ���	
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Let us now consider N� � QR the closed subgroup that corresponds
to the ideal n� � qR � n� � h
 For the above example ��
�
�	 the
elements d��x	 �x � n�	 are nilpotent transformations and therefore
all the �j s of ��
�
�	 vanish identically on n�
 It follows that the Lj  s
de�ne in ��
�
�	 factor through � � QR � QR�N� and can be considered
as group homomorphisms

Lj � Q�N 
� QR�N� � R �

where now N � Q is the nilradical of Q
 The results in Section �
! give
then here the following estimate�

Let g�� � � � � gs � QR � Q and let assume that jgjj � u �j � �� � � � � s	
�observe that j jQ and j jQR

are equivalent cf� Chapter �	 and that
Lk���g� 	 	 	 gs	� � �� k � �� � � � � n
 Then

��
�
�	 kAd�g� 	 	 	 gs	jnRk � Cnsnexp�Cnu � �	 �

The condition L� � L� � 	 	 	 � that was needed for the validity of ��
�
!	�
is here guaranteed by ��
�
�	
 Indeed it is on each nj � �j � �� � � � � k	
separately� that we apply our Lemma


Let now q�� � � � � qs � QR be as before and let us assume that�
jqj j � u� j � �� � � � � s� Lk���q� 	 	 	 qi		 � �� i � �� � � � � s��� k � �� � � � � n

Let further

B�r	 � fn � N � jnjN � rg
denote the r�ball in N 
 We then clearly have

��
�
�	
B � B�r	q�B�r	q� 	 	 	B�r	qs

� �B�r	B�r	q�B�r	q�q� 	 	 	B�r	q�			qs��	 q� 	 	 	 qs �

where as usual for any group G we set gh � hgh�� �g� h � G	
 It
follows therefore from ��
�
�	 and ��
�
�	 �cf� ����	 that

��
�
"	 B � B�R	q� 	 	 	 qs �

where R � r Cnsn��exp�Cnu � �	
 The estimate ��
�
"	 implies in
particular that

jnjN � C exp�CjnjG	� n � N � Q �

A fact that as we shall point out in Section �
� holds in general
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In the spirit of Section �
� the above considerations extend to a
general Lie group G that it is not necessarily soluble
 No use of this
will be made in this paper but since this construction is important in an
other related problem �cf� ����	 I shall brie�y outline this generalization

If we denote by g the Lie algebra of the simply connected group G and if
g is assumed to be an NC�algebra then we can decompose as in Section
�
� g � nR i �qR i s	 and this gives the obvious semidirect product
decomposition of the simply connected group G associated to g

G � NR i �QR i S	 �

where S is semisimple and simply connected
 The lemma of Section �
!
gives then the following�

Let g�� � � � � gs � QR i S and let us assume that S is compact
�in other words we are assuming that G is amenable which was the
hypothesis in ����	 let further

jgjj � u � j � �� � � � � s �

Lk � ��g� 	 	 	gi	 � � � k � �� � � � � i � �� � � � � � s� � �

where now � is the composition �cf� ���	

QR i S � �QR i S	�N�

� �QR�N�	� S � QR�N�


� Q�N 
� Rd �

The conclusion of the above hypothesis is then that the estimate ��
�
�	
holds
 The details will be left to the reader


Remark� Implicit in the considerations of this section is the de�nition
of the �roots� for a general �not necessarily simply connected	 soluble
Lie group G
 Indeed we have as above

Ad � Q� GL�nc	 �

where n � q is the nilradical of the Lie algebra q of Q
 From the above
we see that we can simultaneously triangulate Ad so that

Ad�q	 �

�
B�

#��q	 �

 
 


� #n�q	

�
CA � q � Q �

where #j � Q � C � � C nf�g is a group homomorphism �C � has of
course the multiplicative group structure	
 The above de�nes uniquely
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�j � Q � R and �j � Q � T � R �mod �	� �j � �� � � � � n	 two group
homomorphisms such that #j�q	 � exp��j�q	 � i �j�q		 where clearly

�j�Exp �x		 � Lj�x	 � x � q �

Using easy standard considerations �involving determinants	 we can
express the modular function

��
�
��	 m�q	 �
drq

d�q
� exp

� nX
j��

�j�q	

	
�

One sees in particular that G is unimodular if and only if tr�adq�x		 � �
�x � q	


Finally just as before if Q�N 
� V � T where N is the nilradical of
Q with V 
� Rm and T 
� Tk then the �roots� �j are de�ned on V �i�e�
�jjN � �	


���� Non amenable Lie algebras�

In this section I shall consider g a �nite dimensional real Lie algebra
and I shall denote by n � q � g its radical and nilradical
 The algebra
g�q is then semisimple or zero
 Let us recall the following standard

De
nition� We say that g is amenable if g�q is of compact type or

zero� Otherwise we say that g is non amenable�

Quite generally the Lie algebra g can be written

g � qi s �

where s is some Levi subalgebra �cf� ���	 and where of course s 
� g�q

When s �� � we shall apply the Iwasawa decomposition on s �cf� �"��
����� ����	

s � nS � a � k �

where nS is nilpotent and a is abelian and normalizes nS so that nS � a

is a soluble algebra
 As for k it is never � and it is the Lie algebra of
some compact group
 If g is amenable we have nS � a � �
 Since s

normalizes q it is clear that

r � q � nS � a � g
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is a soluble subalgebra of g which I shall call an Iwasawa radical of g

The de�nition of r is not �unique�
 In general several Iwasawa radicals
exist in g
 When g is amenable q is the only Iwasawa radical
 Finally
when s � � and g � q is soluble we shall agree to say that the Iwasawa
radical of g is r � q � g


We can give now the following basic

De
nition� We shall say that g as above is a B�algebra �respectively
NB�algebra	 if some Iwasawa radical of g is a C�algebra �respectively
NC�algebra	�

It is not obvious that a non amenable algebra cannot be both a B
and an NB�algebra at the same time
 But of course as we shall see this
cannot be the case and the above de�nition gives a genuine classi�cation
on Lie algebras


What is well known �but anything but trivial	 is that if g is semi�
simple of non compact type then it is an NB�algebra
 This follows from
the classi�cation theorems that give the complete description of the
reduced roots �i�e� the roots of the action of a on nS	


Let now q � q� � q� be the direct product two soluble algebras�
and let n � n� � n� be the nilradical
 It is clear that the set of real
roots L of q can be identi�ed with the set �L��f�g	� �f�g�L�	 � V �

where Li � V �
i � �qi�ni	

�� i � �� � are the real roots of qi �i � �� 	
and V � V� � V� � q�n
 From this it follows that q is an NC�algebra if
and only if both q� and q� are


Let now gi� i � �� � be two general Lie algebras and let g � g��g�

It is then clear that r � g is an Iwasawa radical of g if and only if
r � r� � r� where ri is an Iwasawa radical of gi �i � �� 	
 From this
it follows that �even without knowing that the above de�nition gives a
classi�cation	 that g is an NB�algebra if and only if g� and g� are both
NB�algebras


By the above de�nition� if g is amenable then g is a B�algebra
�respectively NB�algebra	 if and only if its radical q � g is a C�algebra
�respectively NC�algebra	
 We also have

Proposition� Let g be an arbitrary real Lie algebra� let q � g be its

radical� Let us assume that q is a C�algebra� Then g is a B�algebra�

Let us also state formally the classifying property of our de�nition




Analysis on Lie groups 	��

Classi
cation� Let g be an arbitrary real Lie algebra� then g cannot

be simultaneously a B� and an NB�algebra�

The above classi�cation is indirectly an automatic consequence of
the main theorem of this paper
 A direct algebraic proof can also be
given
 That algebraic proof does not seem to be very relevant for the
rest of this paper and will therefore be deferred until the end of this
chapter
 The rest of this section will be devoted to the proof of the
proposition


Before I give the proof of the proposition� I shall have to examine
more closely the Iwasawa radicals of the Lie algebra g
 Let

r � q � nS � a � g

be such an Iwasawa radical where I shall assume throughout in this
section that g�q �� � and let us denote by n � n � nS 
 We have then

Lemma� n is the nilradical of r�

Proof� I shall denote by nr � r the nilradical of r and I shall prove
�rst that

��
�
�	 n � nr �

To prove ��
�
�	 observe �rst that n is the nilradical of g and therefore
clearly n � nr
 We have on the other hand

��
�
	 nS � �nS � a� nS � a� �

This holds by the structure theory of semisimple algebras and the con�
struction of the Iwasawa decompositions �cf� �"�� ���� Proposition !
���	

The conclusion is that

��
�
�	 nS � �nS � a� nS � a� � �r� r� � nr �

where the last inclusion holds because r is soluble �cf� ���	
 ��
�
�	
follows


Now nr � q is a nil�ideal of q therefore nr � q � n �� the nilradical
of q	
 It follows therefore from ��
�
�	 that

��
�
�	 nr � q � n �
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Let us now consider the projection

� � r� r�q � nS � a �

From general considerations it follows that ��nr	 is a nilpotent ideal of
r�q and that therefore it lies inside the nilradical of r�q � nS � a
 That
nilradical is exactly nS by ��
�
	 and the fact that� for all � �� x �
�nS � a	nnS� �x� �x� �� � � �x� nS � � � � � �� �
 The conclusion is that

��nr	 � nS

and if we combine this with ��
�
�	 we deduce that

nr � n � nS � n

our lemma follows


From the above lemma we see that we have the identi�cation

��
�
!	 r�nr � �q�n	 � a � V

Let us now complexify nc � n� C � nc � n� C and consider

W � nc��nc� nc� �W � nc��nc� nc� �

The natural �induced by ad�	 action of V on W that was considered in
Section �
 stabilizes W 
 Let us consider the root space decomposition

W � W� � 	 	 	 �Wm

with respect to the above action of q�n �� V 	 on W 
 ��� � � � � �m �
HomR�q�n� C 	 are the corresponding roots
 The important thing to
observe is that �since q�n and a commute in V �	 each root space Wj is
stable by the action of a �� V 	 and admits thus its proper root space
decomposition

��
�
�	 Wj � W
�j	
� � 	 	 	 �W �j	

mj

under that action
 The corresponding roots are ��� � � � � �mj
� HomR

�a� C �� �strictly speaking we need also a �j� index and we should denote

these roots by �
�j	
i � �i � i � �� � � � � �mj	� and we have

��
�
�	

mjX
i��

�i � �� j � �� � � � �m �



Analysis on Lie groups 	��

To see ��
�
�	 observe that the ad�action of q�n on W and the ad�action
of s on W commute �since �s� q� � �g� q� � n� cf� ���	
 It follows that
the natural ad�action of a on Wj extends to a representation of the
semisimple Lie algebra s on Wj 
 The trace of such a representation is
zero and ��
�
�	 follows


The very de�nition of ��
�
!	 implies that

�adx� �j�x		N � � � �ad y � �s�y		N � � �

where x � q�n� y � a�  � W
�j	
s �for N large enough	
 Since the action

of q�n and of a commute it follows that

W �
mX
j��

mjX
s��

W �j	
s

is a root space decomposition of W under the action of V � �q�n	 � a�
and that the corresponding roots are

�j�s � V � x � y ��� �j�x	 � �s�y	 � x � q�n� y � a �

��
�
�	 implies therefore that

��
�
�	

mjX
s��

�j�s�x � y	 � mj�j�x	 � j � �� � � � �m� x � q�n� y � a �

Let us now� as in our proposition� make the assumption that q is a
C�algebra and that there exists a non trivial representation of zero

��
�
"	 � �
mX
j��

�j Re �j�x	 � x � q�n �

But ��
�
�	 and ��
�
"	 give then a non trivial representation of zero

��
�
��	 � �
mX
j��

�j
mj

mjX
s��

Re�j�s�v	 � v � V �

The �nal step that is needed to complete proof of our proposition is
that the �j�s s can be identi�ed to a subset of the roots of r �in the
sense of Section �
�	 i�e� referring to the action of r�nr on W 
 This
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is of course easy by the obvious composition series argument and our
proposition follows


Observe that the converse of the above proposition does not hold

Indeed if s is semisimple if q is an R�algebra and if the semidirect
product g � qi s is not direct then g is in general a B�algebra
 Indeed
the trace of the action of s on q is zero


��� Unimodular Lie algebras�

Let us recall that a �nite dimensional Lie algebra g is called uni�
modular if

tr�adgx	 � �� x � g �

It follows at once that a unimodular Lie algebra that is in addition
amenable is an NB�algebra if and only if it is an R�algebra
 In this
section we shall prove the following

Proposition� Let g be a unimodular Lie algebra� Then either g is a

B�algebra or g is the direct product g � g�� s where g� is an R�algebra

and s is either � or semisimple�

The proof will be done in several steps
 We shall assume that g

is not soluble and �x once and for all g � q i s and s � nS � a � k a
Levi decomposition of g and an Iwasawa decomposition of s
 We shall
assume as we may that s is not compact
 We have then

Lemma� Let g� q� nS� a be as above and let us assume that �q� nS�a� �
f�g� Then g can be written as a direct product g � g� � s� where g� is

an R�algebra and s� is either semisimple or f�g�

Proof� Indeed

I � fx � s � �q� x� � �g � s

is an ideal in s and since nS � a � I it follows that s � I � �s where �s is
either f�g or a compact semisimple algebra
 It su�ces therefore to set
g� � qi �s and s� � I and our lemma follows


Lemma� Let g� q� nS� a be as above and let us assume that �n� nS �
a� � f�g where n � q is as before the nilradical of g� We have then

�q� nS � a� � f�g�
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Proof� The semisimple algebra s acts by ad on q and stabilizes the
subspace n
 By H
 Weyl s theorem therefore �cf� �!�� ���	 we can �nd
a direct complement q � n � l such that �s� l� � l
 Since on the other
hand we also have �s� q� � n it follows that �s� l� � f�g and therefore for
all x � s� �x� q� � �x� n� and our lemma follows


Let us now consider the ad�action of r on n � n � nS � nr the
nilradical of r �cf� Section �
�	
 It clearly stabilizes n and� r being
soluble� a basis can be chosen on nc for which the adjoint action takes
the form

adnc�x	 �

�
B�
���x	 �


 
 


� �p�x	

�
CA � x � r �

since adn�x	 is nilpotent for every x � n it follows that we can identify
each �j � HomR�V � C � where as in ��
�
!	 V � r�n � �q�n	 � a
 We
have then

Lemma�

i	 All the �j above are real valued on a� i�e�

�j�x	 � R � j � �� � � � � p� x � a �

ii	 The trace is zero on a� i�e�

tr �adnx	 �

pX
j��

�j�x	 � � � x � a �

iii	 If we assume that �n� nS � a� �� f�g� then there exists a j �� �
j � p	� say j � �� for which ���x	 �� � for some x � a�

We shall defer the proof of the lemma until later and complete the
proof of the proposition� assuming as we may because of our �rst two
lemmas� that �n� nS � a� �� f�g


The unimodularity of g implies the unimodularity of the algebra q

which says that

tr
�
adn�x	

�
�

pX
j��

�j�x	 � � � x � q�n �
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Part ii	 of our previous lemma implies therefore that

��
�
�	 tr
�
adn�x	

�
�

pX
j��

�j�x	 � � � x � V � q�n � a �

Since on the other hand by i	 and iii	 of our previous lemma and our
hypothesis we have Re�� � L� �� �� ��
�
�	 says that r is a C�algebra

By de�nition therefore g is a B�algebra and the proof of our proposition
is complete
 �As in the end of Section �
� we have to use a standard
composition series argument to verify that the non zero among the
Re�j  s can be identi�ed to real roots of r	


It remains to give the proof of the last lemma


Proof of ii	
 This uses the same argument as in Section �
�
 Indeed
the action of a on n extends to an action of s on n i�e� to a representation
of a semisimple algebra and therefore has trace equal to zero


To see parts i	 and iii	 of the lemma we start from the following
construction�

Let g be some real semisimple algebra and let u � g be some real
subalgebra that is a semisimple algebra of compact type
 Let further

� � g ��� gln�C 	

a real algebra homomorphism
 Then there exists h	� 	i some Hermitian
product on C n that is invariant under u� i�e�

��
�
	 h��x	z�� z�i� hz�� ��x	z�i � � � x � u� z�� z� � C n �

The proof of this is of course very easy
 Indeed let G be the simply
connected semisimple group that corresponds to g and let U � G be
the �compact	 subgroup that corresponds to u
 � induces then

� � U �� GLn�C 	

and� since for any non singular matrix M � Mn�n�C 	 hz� uiM �
hMz�Mui is a new Hermitian product on C n � the Hermitian product

hhz� uii �

Z
U

h��x	z� ��x	ui dx
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is invariant under the action of U 
 Taking the di�erential we obtain
��
�
	


The above observation has to be combined with the fact that for
the Iwasawa decomposition s � nS � a � k if we complexify sc we can
write sc � k� � p� in such a way that u � k� � i p� is a compact real
semisimple subalgebra of the �underlying	 real algebra sc� and we can
do so in such a way that a � p�
 This fact is of course anything but
obvious but in some sense it is the very basis of the construction of the
Iwasawa decomposition �cf� �"�� ����	


This being said� we see� that if we let g in ��
�
	 to be the un�
derlying real algebra of sc� there exists h	� 	i some Hermitian product
on C n for which all the matrices ��x	 �x � i p�	 are skew�Hermitian

All the matrices ��x	 �x � a � p�	 are therefore Hermitian
 It follows
that all the matrices ��x	 �x � a	 have real eigenvalues and if all the
eigenvalues of ��x	 are zero then ��x	 � �


If we apply this last observation to the representation of s� C on
n� C induced by the adjoint action of s on n the assertions i	 and iii	
of the lemma follows


I shall �nish this section with an example that shows that unimod�
ularity is essential for the above proposition to hold
 I shall consider
the �dimensional group of �a�ne motions� which is the Lie group

��
�
�	 G � R� i �R � SL��R		 � �R� i R	 i SL��R	 �

where R acts on R� by dilatation �i�e� x �� e�x� x � R� � � � R	
and SL��R	 acts on R� by the natural action �of course R and SL��R	
commute in ��
�
�		
 The third term in ��
�
�	 is of course a Levi
decomposition of G and G is not unimodular since the radical Q �
R� iR is not unimodular
 It is clear of course that g the Lie algebra of
G is not of the form g� � s as in our proposition
 The above algebra g

however is an NB�algebra and therefore� by the classi�cation in Section
�
�� it is not a B�algebra


Indeed with the �standard� Iwasawa decomposition of SL��R	 and
the corresponding Iwasawa radical r obtained by the Levi decomposition
��
�
�	 we have� with our previous notations�

r�n � V � R � a 
� R� �

Here a 
� R is the a component of the Iwasawa decomposition of SL��R	
and R 
� R 
� q�n
 The action of R on R� is of course given by
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dilatation
 This means that the two roots ��� �� of q �in the sense of
sections �
� and �
	 are real and ���x	 � ���x	 �� � if � �� x � R
 The
algebra r is therefore an NC�algebra and our assertion follows


���� The uniqueness of the Iwasawa radical and an intrinsic
de
nition�

In this section I shall prove the following

Proposition� Let g be a real Lie algebra and let r�� r� two Iwasawa

radicals of g� Then there exists � � Int �g	 such that ��r�	 � r��

This proposition is not essential for the rest of this paper but it
does help to give an intrinsic status to the notions introduced in the pre�
vious sections
 The proof is an inmediate consequence of the following
sequence of well known� but highly non trivial� facts�

�	 Let g � q i s� � q i s� be two Levi decompositions of g then
there exists � � g� g an inner automorphism of g such that ��s�	 � s�
�cf� ��� Theorem �
��
�	


Let now si � ki�pi� i � ��  be Cartan decomposition of the above
two semisimple algebras
 By composing� if necessary� the automorphism
� � Int�g	 by an appropiate element of Int�si	 we can then assume in
addition the following fact �cf� �"� Theorem �
� of the �rst edition	�

	 The inner automorphism � is such that

��k�	 � k� � ��p�	 � p� �

Let now ai � pi� i � ��  be a maximal abelian subalgebra and let

si � ki � ai � ni� i � ��  �

the Iwasawa decompositions that correspond to these choices of ai and
to some choice of $i

� � a�i �� HomR�ai�R		 the positive restricted roots
on ai �i�e� the �nitely many choices of the corresponding Weyl cham�
bers	
 By the standard facts concerning the Iwasawa decomposition we
see therefore that we can further compose the � � Int�g	 by an ap�
propiate element in Int�ki	 and guarantee the following additional fact
�cf� ���� Section !
�� and Corollary !
���	�
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�	 The inner automorphism � � Int�g	 is such that

��k�	 � k� � ��a�	 � a� � ��n�	 � n� �

The �nal conclusion clearly is that ��r�	 � r� and this proves our
proposition


I shall �nish up this section by giving� without proofs� what amo�
unts to an alternative� more intrinsic� but less manageable� de�nition
of the Iwasawa radical
 Let g be an arbitrary real Lie algebra and
let l � g be a amenable subalgebra� such that for some Lie group G
that corresponds to g� l corresponds to a closed subgroup L such that
G � L 	K where K is a compact subgroup
 We can then show that l is
a C� �respectively NC�	 algebra if and only if g is a B� �respectively NB�
	 algebra
 This� among other things is a consequence of the analytic
theory developed in this paper
 The Iwasawa radical clearly has the
above property
 Other examples of such subalgebras are l � ��� �a
minimal boundary subalgebra of g�q	 with � � g � g�q the canonical
map and the standard terminology of semi�simple groups �cf� ���	

Such subalgebras will be called minimal boundary subalgebras of g


We have in particular �the proof will be left as an exercise for the
reader	 the following

Proposition� All the minimal boundary subalgebras of g are conjugate

�under� int�g		 in g� The algebra g is a B�algebra if the minimal bound�

ary subalgebras are C�algebras �i�e� if their radicals are C�algebras� cf�
����	


Presented like this the B�NB classi�cation becomes �subordinate�
to the C�NC classi�cation of the amenable algebras
 �Philosophically�
what the theorems of this paper say is that for non amenable groups
the principal term e��t of the heat kernel �t comes from the �spectral
gap� and that the error term e�t�t�g	 is controlled by the geometry of
the minimal boundary subgroups
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�� Basic geometric structure�

���� The Haar measure�

Let G be a locally compact group and let Z � K � G� R � G be
closed subgroups such that G � RK and K�Z is compact and Z � G
central
 Quite generally we shall denote throughout by dh � d�h and by
drh the left and the right Haar measures of the locally compact group
H
 Among the above groups K is unimodular and dk � drk � d�k


The example to keep in mind is the Iwasawa decomposition of a
connected real semisimple group S � NAK where R � NA and Z is
the discrete center of S
 More generally when G is a simply connected
real Lie group then we can write G � QiS where Q is the radical and
S � NAK is a semisimple simply connected Levi subgroup
 We can
set G � RK with R � Q i NA
 Indeed if Z�K	 � K is the discrete
center of S then it is well known and easy to prove �cf� ��!� for a proof	
that there exists Z � Z�K	 of �nite index �i�e� �Z�K	 � Z� � ��	
such that Z is central in G �when q is the Lie algebra of Q this here
amounts to saying that Ad�Z	jq � identity	
 We have

Lemma� Let G� R� K� Z be as above and assume that R �K � feg�
Then Z

G

f�g	 d�g �

Z
R�K

f�rk	 d�r dk

for an appropiate normalization of the Haar measures�

Remark� In the above lemma we can relax the conditions that K�Z is
compact and Z is central and impose instead the unique condition that
the modular function m�g	 on G satis�es m�k	 � � for all k � K
 One
can also refer to ��!� �
!
�� or to �"�� �!� Chapter �� Section � number
"� for analogous and more general results


Proof� There exists a unique %�r� k	 � � �r � R� k � K	 such thatZ
G

f�g	 d�g �

Z
R�K

%�r� k	f�rk	 d�r dk �

% is just the Jacobian of the mapping R�K � G ��r� k	 � rk	

The uniqueness of the above % and the left invariance of d�g implies

that
%�r�r� k	 � %�r� k	 � %��k	 � r� r� � R� k � K
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with a new function %� � � on K
 If we use the right action g �� gk
�k � K	 on d�g we see that it sends d�g to m�k	d�g where m�		 is the
modular function on G
 By our hypothesis m�k	 � � and therefore
%��kk�	 � %��k	 �k� k� � K	 and %� is a constant


We shall introduce now a basic notation that will be used through�
out this paper


i	 R will denote some locally compact group assigned with its dr �
d�r and drr measure
 In practice R will always be a Lie group and more
often than not a soluble Lie group


ii	 K will be some C� manifold asigned with some C� non van�
ishing measure dk
 More generally K could be an abstract measure
space


iii	 For any measure �dr on R we shall consider the measure �dx �
�dr� dk on X � R�K �the product space rather than group product	

We shall denote� in particular

dx � d�x � d�r � dk � drx � drr � dk �

iv	 More often than not I shall assume that there exists Z some
discrete group acting �discretely	 on K stabilizing dk and such that
K�Z is a C� manifold


v	 For our applications K as in iv	 will be a locally compact �more
often than not a Lie	 group and dk will be the Haar measure� Z � K
will then be some discrete central subgroup


vi	 We shall say that we are in the �group case� X � G if G is a
locally compact group �more often than not a connected Lie group	 and
if R� K are closed subgroups such that R �K � feg and such that the
conditions of the above lemma are veri�ed
 We set then X � R � K
which we identify as a measure space� or even as a C��manifold� with
G


The above construction admits a number of useful generalizations
which although not essential for us are worth noting
 For instance� in
practice we can often write a connected Lie group in the form G � RK
where R is closed �but not necessarily connected	 and K is an analytic
subgroup �but not neccesarily closed	 and such that Z � R � K is a
�closed	 discrete central subgroup of G
 The general Levi decomposition
of G is of the above form
 We can then identify Z to a closed central
subgroup of the Lie group K �for its intrinsic analytic structure	 and
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consider the projection � � K � K�Z if $ � K is some Borel section of
� �i�e� � is ����	 from $ onto K�Z	� we shall denote by �
	 � ��� 
 �
$ � G� 
 � K�Z
 We can then identify G with R � K�Z by the
mapping

�
�
�	 �r� 
	 �� r�
	 � g �

For the above section it is clear that

�
�
�	 � r�
�	�
�	 � �
��� 	 � �r�
�	
�� �

where r� �r � Z
 From these relations it immediately follows that the
proof of the above lemma generalizes and that the above identi�cation
identi�es d�r � dK�Z
 with d�g provided of course that mG�k	 � �
�k � K	


���� The left invariant operators�

X will be here as in Section 
� and we shall examine positive
R�left invariant operators on X

�

�	

�
T � C�

� �X	 �� C��X	 � Tf � � � for all f � � �

T �fr	 � �Tf	r � fr�r�� k	 � f�rr�� k	 � r� r� � R� k � K �

Let �h�k � M�R	 �h� k � K	 be a family of positive measure �more
often than not I shall assume that they are bounded measures	 and let
L�h� dk	 be some positive �kernel� on K �e�g� L�h� dk	 � L�h� k	 dk
where L�h� k	 � � but of course more general kernels could be consid�
ered	
 An invariant operator as in �

�	 can then be de�ned by the
formula

Tf�r� h	 �

Z
K

L�h� dk	�f�	� k	 � �h�k	�r	

�

Z
K

L�h� dk	

Z
R

f�rr��� � k	 d�h�k�r�	 � f � � �

provided that L and the � s satisfy the appropiate smoothness condi�
tions
 If in particular f � 	� �� 	 � C��R	� � � C��K	 we have

Tf�r� h	 �

Z
L�h� dk	�	 � �h�k�r		��k	 �
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Motivated by this we shall introduce the notation

�

	 Lf�h	 �

Z
K

L�h� dk	f�k	 � f � C��K	 �

�

�	 T � L� f��g � L�h� dk	� f��h�kg �
The representation �

�	 of T is clearly not unique �e�g� replace
L � ��h	L� �h�k � ����h	�h�k	
 We shall say that the representa�
tion �

�	 is normal if �h�k � P�R	 is a probability measure for each
h� k � K
 It is clear that under obvious �and reasonable	 conditions
a positive R�left invariant operator admits a unique normal represen�
tation as in �

�	
 To see the uniqueness observe that for a normal
representation we have

�

�	 Lf � g� f � C�
� �k	 if and only if T �f � �	 � g � �

with ��r	 � � �r � R	
 For normal representations it follows in par�
ticular from �

�	 that T is markovian �respectively sub�markovian	
i�e� that T� � � �respectively T� � �	 if and only if L is markovian
�respectively sub�markovian	


Let �nally �Tj j � �� � � � � 	 be a sequence of positive R�left invari�
ant operators on X as above
 We can then de�ne the R�left invariant
�time inhomogeneous in general	 Markov chain �xn � X n � �� � � � � 	
by the condition that Tj j � � �� � � � are the transition operators

Tjf�x	 �

Z
P�xj � dy �� xj�� � x� f�y	 �

���� The group case and the convolution operators�

We shall consider here G a locally compact group and d��g	 �
	�g	 dg � ��g	m�g	 dg �g � G	 some positive measure where m is the
modular function
 Let T be the corresponding convolution operator

�
�
�	 Tf�g	 � f ���g	 �

Z
G

f�gg��� 	 d��g�	 �

Z
G

f�gg��� 		�g�	 dg� �

In this section we shall also assume that we are in the group case
X � G � RK as in vi	 of Section 
�� and we shall analyze the R�
left invariant operator T on X
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We shall adopt the notation

g � rk � gi � riki � i � �� � r� ri � R � k� ki � K �

and by the Lemma in Section 
� we have

Tf�rk	 �

ZZ
R�K

f�rkk��� r��� 		�r�k�	 dr�dk� �

Let us �x k � K and consider the ����	 correspondence �r�� k�	 �
�r�� k�	 given by

�
�
	 g � r�k� � k��� r�k � dg � dr�dk� � J�r�� k�� k	 dr�dk� �

where J� 	 � 	 � k	 is of course the Jacobian
 We have thus

�
�
�	 Tf�rk	 �

ZZ
R�K

f�rr��� k�		�k��� r�k	 J�r�� k�� k	 dr� dk� �

We have

Lemma� The Jacobian J�r� k�� k	 � J�r	 is independent of k� k� � K
and

�
�
�	 J�r	 �
mR�r	

mG�r	
� r � R �

where mR� 	 	 is the modular function of R amd mG� 	 	 is the modular

function of G�

Proof� By the unimodularity of K we have �with obvious notations	

dk � dk�� � d�k�k
��	 � d�k��k�	 � k�� k� � K �

This and the de�nition �
�
	 imply that J�r� k�k
�� kk�	 � J�r� k�� k	

for all k� k�� k�� k� � K �it is only a matter of testing
R
f�g	 dg �R

f�k��� r�k	J�r�� k�k	 dr�dk� on fh� 	 	 � f�h 		 and on fh� 	 	 � f�	h		

The �rst part of the lemma follows and �
�
	 takes the form

�
�
!	 dg � dr� dk� � J�r�	 dr� dk� � g � r�k� � k��� r�k �

Observe now that since drg � dg��� drr � dr��� dk � dk�� the lemma
of Section 
� implies that with the parametrization g � kr �k � K�
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r � R	 we have drg � drrdk which together with �
�
!	 allows us to
conclude that

drg � dk� d
rr� � dk�mR�r�	 dr�

� mG�g	 dg � mG�g	 J�r�	 dr� dk� � g � k��� r�k

�
�
�	 follows


If we use the above lemma in �
�
�	 we �nally obtain

�
�
�	

�����������
����������

Tf�rk	 �

ZZ
f�rr��� k�	M�r�� k�� k	 dr�dk� �

M�r� k�� k	 � 	�k��� rk	
mR�r	

mG�r	

� ��k��� rk	mR�r	 � r � R� k� k� � K �

Tf�rk	 �

ZZ
f�rr��� k�	��k��� r�k	 drr� dk� �

The K�bi�invariant case deserves special attention
 We say that the
operator �
�
�	 is K�bi�invariant if �Tf	k � Tfk �k � K� fk�g	 �
f�gk		
 Clearly this is the case if and only if the inner automorphism Ik �
G� G� Ik � g � k��gk stabilizes the measure �
 By our hypothesis dg
is also stable by the action of Ik
 Therefore it follows that ��kxk��	 �
��x	 and we can write �
�
�	 in the form

�
�
�	

Tf�rk	 �

ZZ
f�rr��� k��� k	��r�k�	 d

rr� dk�

�

ZZ
f�rr��� k�	��kk��� r�	 d

rr� dk� �

i�e� as a convolution on the product group R�K

The point of a K�bi�invariant operator in the above context is

that it can be identi�ed with an operator on the homogeneous space
G�K � fgK � g � Gg
 We can then identify G�K with R and since
left translation by elements of R clearly commutes with the projection
G � G�K 
� R the operator thus obtained on R is a convolution
operator

�
�
�	 f ��� f � �� � f � C��R	 �
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where �� � M�R	
 From �
�
�	 we see that we have in fact d���r	 �
�	�r	 drr with

�
�
"	 �	�r	 �

Z
K

	�rk	 dk � r � R �

The above two formulas �
�
�	 and �
�
"	 are not used in this paper but
have the merit of putting the above notions in the correct �perspective�
and are relevant in the �semisimple theory� which will be developed
elsewhere


���� The composition� the adjoint� k 	 kp�p norms� amenability
and the �local� estimate�

Let us consider

Ti � Li�h� dk	� f���i	h�kg � i � �� � � � � �

a sequence of R�left invariant operators on X as in Section 

 It is
clear then that

�
�
�	
T� � 	 	 	 � Tn �

Z
k�
K

	 	 	
Z
kn��
K

L��h� dk�	 	 	 	Ln�kn��� dk	

� f�����	h�k�
� 	 	 	 � ��n	kn���k

	g

with obvious notations
 To simply notations let L�h� dk	 � L�h� k	 dk
and let

�
�
	 T � L�h� k	 dk � f��h�kg

as in �

�� Section 
	
 Let then T � be the formal adjoint operator
with respect to drx � drr � dk then clearly

T � � L��h� k	 dk � f���h�kg �

where L��h� k	 � L�k� h	 and ��h�k � &�k�h where for any measure � on

R we adopt throughout the notation d&��g	 � d��g��	 �i�e� &� is the
image of � under the mapping g �� g�� on R	
 This follows trivially
from the fact that the formal adjoint with respect to drr of the operator
f �� f � �� f � C��R	� � � M�R	 is f �� f � &�
 If the representation
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�
�
	 is normal it follows that the operator T is self adjoint with
respect to drx � drr � dk if and only if

�
�
�	 L�h� k	 � L�k� h	 � &�h�k � �k�h �

Let now �dx � �dr � dk be some measure on X de�ned as in Section

� it is then clear from �
�
�	 that the Lp�X� �dx	 � Lq�X� �dx	 norm
can be controlled by the ��k��k� � 	 	 	�kn���kn � Lp�R� �dr	 � Lq�R� �dr	
convolution norm� i�e�

kT��	 	 	�Tnkp�q � kL��	 	 	�Lnkp�q sup
k�			kn

k��k��k��	 	 	��kn���knkp�q �

where L�� � � � � Ln� L� � 	 	 	 � Ln are the corresponding operators on K
as in Section 

 If the representations �
�
	 are all normal and if
�dr � drr� �dx � drx this means that

kT� � 	 	 	 � Tnkp�p � kL� � 	 	 	 � Lnkp�p �

kTnkp�p � kLnkp�p � � � p � �� �

we also have the following basic

Lemma� If R is amenable� the above inequality is actually an equality

i�e�

kT� � 	 	 	 � Tnkp�p � kL� � 	 	 	 � Lnkp�p � � � p � �� �

Proof� Since �everything is positive� it su�ces to show that there
exist � � fm� gm � C�

� �R	 �m � �	 such that

�
�
�	 kfmkp � � � kgmkq � � � m � � �
�

p
�

�

q
� � �

�
�
!	 hfm � �k��k� � 	 	 	 � �kn���kn � gmiL��Rdrr	 ��
m��

�

and that the limit in �
�
!	 uniform when kj � C �� K �j � �� � � � � n	
and C is a compact subset
 In fact� to avoid unnecessary complications
in this proof we shall make an additional hypothesis that will always
be veri�ed for us� We shall assume that for all � � � exists C � R such
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that �h�k�R
C	 � � �h� k � K	
 Otherwise the next few lignes have to
be �handled with care��

If we denote by � � �
��	
k��k�

� 	 	 	 � ��n	kn���kn
we see that

hf � �� giL��Rdrr	 �

Z
g�x	 drx

Z
f�xy��	 d��y	

�

Z �Z
f�xy��	 g�x	 drx

	
d��y	

�

Z �Z
�f�yx��	 g�x	 drx

	
d��y	 � h �f

�
r g� �i �

where �f�x	 � f�x��	 and where the de�ntion of the right convolution
�
r of two functions is �given� by the last equality
 �
�
�	� �
�
!	 will
therefore follow if we can choose fm� gm � C�

� that satisfy �
�
�	 and
such that

�
�
�	 �fm
�
r gm ��

m��
� uniformly on compacta �

The well informed reader recognizes here one of the many consequences
and de�nitions of the amenability �cf� ���� where it is proved in its dual
form kfkp� kgkq � � where the k k are taken with respect to the left
measure dr� and fm � �gm � �
 Observe also that one way to avoid the
uniformity hypothesis on the measures �h�k is to impose some kind of
monotonicity on the limit �
�
�		


A very important conclusion can be drawn from the above consid�
eration
 Let us start from the assumption that for some � � ��n	 �

n�� �

and for every �xed 	� � � C�
� �R	 we have

sup
k���kn

h	 � ���	k��k�
� 	 	 	 � ��n	kn���kn

� �iL��Rdrr	 � O���n		 �

It then follows that for �xed F � 	��	�� ' � ������ 	�� �� � C�
� �R	�

	�� �� � C�
� �K	 we have

hTnF�'i � O���n	 kLnk���	 �

where for simplicity we assume that T� � T� � 	 	 	 � T 
 It follows that
if R is amenable we have the local estimate

�
�
�	 hTnF�'i � O���n	 kTnk���	 �
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One �nal remark is in order
 Let ��r	 � � be an arbitrary continuous
positive function and T� � ����T����� the corresponding conjugated
operator
 It is clear that Tn� � ����Tn����� and that the  �  norm
of T� with respect to �dx � �dr � dk is the same as the  �  norm of
T with respect to ��� �dx � ���� �dr	� dk
 The local estimate is on the
other hand invariant by that conjugation since the � is absorbed in the
compactly supported F and '
 In other words for arbitrary � as above
we have

hTnF�'i � O���n	 kTnkL���drx	�L���drx		

and in particular� with � � mR � the modular function of R� we have

hTnF�'i � O���n	 kTnkL��dx	�L��dx		 �

The proof of the upper estimate of our main theorem hindges on this
observation


Let us now suppose that the density L�h� k	 of the operator L is
continuous and strictly positive and that the operator L � L��K	 �
L��K	 is compact
 In the above estimate we can then replace kTk���

by kTksp the spectral radius of T �since kAksp � lim kAnk��n we clearly
have kTksp � kLksp	


The reason why we can do this is because the operator L admits
then � � 	� � L��K	 a positive eigenfunction �cf� ����	 and in the
previous argument we can set 	� � �� � 	�


Indeed assume for simplicity that K is compact then any eigen�
function of L is continuous and if 	 � C�K	 is such an eigenfunction
with maximal �in modulus	 eigenvalue then

Lj	j � jL	j � Lj	j � �� � �	jL	j for all � � � �

i�e� the inequality Lj	j � ����	jL	j does not hold for any � � � �indeed
if we assume� as we may� that the eigenvalue in question has modulus
�� such an inequality would give kLnk � �� � �	n which contradicts the
fact that kLksp � �	


Therefore there exists k� � K such that Lj	j�k�	 � jL	�k�	j
 But
this �because L � �	 implies that 	 � ei�j	j �for some �xed � � R	

We have therefore Lj	j � kLkspj	j and from this it follows that 	� �
j	j � �
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���� Semigroup of operators�

In this section I shall examine

�
!
�	 Tt � Lt�h� dk	� f���t	h�kg � t � � �

a semigroup of positive R�left invariant operators on X� i�e� we assume
that Tt � Ts � Tt�s
 We shall assume that the representation �
!
�	 is
normal� by �

�	 it then follows that Lt � Ls � Lt�s �cf� Section 
	
is also a semigroup and that if Tt is symmetric with respect to drr�dk
then Tt � �� i�e� is a positive Hilbert space operator with respect to
that measure
 Clearly also Tt is �sub	markovian if and only if Lt is
�sub	markovian


Example� Tt � e�tA where A is a R�left invariant di�erential operator
on X
 To write down A we can �x once and for all left invariant �elds
on R� Y�� Y�� � � � and local coordinates �k�� k�� � � � 	 on K
 It follows
that Yj and ���ki commute and that we can write

�
!
	 A �
X

aijZiZj �
X

aiZi � a �

where each Zi is either one of the Yj  s or one of the ���kj s and fur�
thermore each coe�cient aij � ai� a is independent of r � R �but may
depend on k � K	
 The �projected� operator B on K is then obtained
by retaining only the terms of �
!
	 for which no Yj �eld appears and
we have Lt � e�tB 
 Observe that in the group case Tt is a �K�bi�
invariant� semigroup if A is a K�bi�invariant and that this implies that
B is K�right invariant on K
 If we are in a group case X � G we can�
for instance� take

�
!
�	 A �
X

bijXiXj � X� � b �

where the b s are constant with �bij	 � � and X�� X�� � � � are left in�
variant vector �elds on G
 Such an operator can clearly be rewritten

�
!
�	 � �
nX
i��

X�
i � X� � b

as in Section � �for a di�erent� of course� choice of invariant �elds
X�� X�� � � � 	
 When b � �� � is a markovian generator on G and is
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formally selfadjoint with respect to drg if X� � �
 But even if X� � ��
� is not in general formally selfadjoint with respect to drr � dk and
therefore the corresponding operators e�tB are markovian but not sym�
metric
 There is another important property that B inherits from A

First of all if A is elliptic �i�e� if the matrix �aij	 is positive de�nite	 the
operator B is also elliptic
 Let us assume more generally that the �elds
X�� � � � � Xn in �
!
�	 generate the Lie algebra of G
 The projected
operator B can then be written

�
!
!	 B �
nX
i��

�X�
j � �X� � �b �

where �Xj is the corresponding projected �eld on K
 Of course� even

if we are in the group case� �Xj need not be in general a K�invariant
�eld in any sense whatsoever� but it is certainly true that B is on K a
H�ormander operator in the sense that at every point k � K the �elds
�X�� � � � � �Xn span together with all their successive brackets the tangent

space

Let us now go back to the general semigroup and let us assume that

Tt is symmetric with respect to drx and that therefore Lt is symmetric
with respect to dk �both Tt and Lt are therefore positive operators in
the Hilbert space sense	
 I shall further make the following assumption�
A� �respectively A�	� there exists 	� � �� �� � � such that

Lt	� � e���t	� �respectively Lt	� � e���t	�	 �

We shall presently elaborate on that condition but �rst we shall draw
the consequences of A and A�
 Under the above conditions we shall
consider the semigroups

�
!
�	 (Tt � e��t	��� Tt	� � (Lt � e��t	��� Lt	� �

where in �
!
�	 	� is identi�ed with an R�left invariant function on
X which satis�es Tt	� � e���t	� �respectively Tt	� � e���t	�	 on
X
 The semigroups �
!
�	 are therefore markovian �respectively sub�

markovian	 (Lt is symmetric with respect to the measure (dk � 	��dk

and (Tt is symmetric with respect to the measure drr � (dk

Let us now go back to the assumption A �and A�	 and give natural

examples under which it is veri�ed
 Let us �rst suppose that we are
in the group case that K is compact and that Tt � e�t� with � as in
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�
!
�	
 To simplify matters let us also assume that Lt is symmetric with
respect to dk �dk here is some smooth non vanishing measure that need
not be the Haar measure of K	
 The H�ormander condition on �
!
�	
implies that the operators Lt are in the trace�class on L��K� dk	
 This
is because the kernel Lt�h� k	 is C� and thus Hilbert�Schmidt �and
Lt�� � Lt�� � Lt	
 We have therefore

Lt �
�X
j��

e��jt	j�h		j�k	 �

where �� � �� � 	 	 	 with
P�

j�� e
��jt �� �t � �	� and 	j � C�

R
�K	�

k	jk� � �� j � �� �� � � � � 

By the positivity of the operators involved we have Ltj	�j � jLt	�j

� e���tj	�j
 Also� since kLtk��� � e���t� we have kLtj	�jk�
� e���tk	�k� and therefore Ltj	�j � e���tj	�j
 It follows that we
can renumber the eigenfunctions 	�� 	�� � � � in such a way that � �
	� � C��K	


The next step is to show that 	� never vanishes 	� � � �k � K	
and that therefore the condition �A	 is veri�ed
 This of course is an
immediate consequence of the eigenvalue property

Lt	��h	 �

Z
Lt�h� k		��k	 dk � e���t	��h	

and of the more general fact that for any non identically zero � � 	 �
C��K	 we have

�
!
�	 Lt	�h	 � � � h � K �

To see this we observe that Lt � e�t�B��	e�t� for any � � � and B
as in �
!
!	
 B � �� on the other hand� for � � � large� generates a
�hypoelliptic� di�usion
 This means that the kernel et�Lt�h� k	 never
vanishes for t � � �cf� ���	� �
!
�	 follows


The above situation can be generalized as follows
 We shall drop
the assumption that K is compact but assume that there exists ) some
discrete group that acts discontinuously on K and in such a way that
K�) is compact
 We shall also assume that Tt the semigroup �
!
�	 is
stable by the natural )�action and induces thus a corresponding R�left
invariant semigroup on X�) � R�K�)
 If we assume that the corre�
sponding semigroup Lt on K�) has all the above properties �so that the
existence of 	� on K�) with the required properties is guaranteed	 then
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we can de�ne the analogous 	� on K by taking on K the corresponding
)�automorphic function
 We see in particular that the assumption A is
veri�ed in our group case vi	 of Section 
�


���� The symmetric Laplacian in the group case�

Let us suppose that we are in the group case G � X � R �K as
in Section 
� vi	 and that � � �PX�

j � Tt � e�t� is as in Section

�
�
 The modi�ed semigroup �Tt � m
���
G Ttm

����
G is then symmetric with

respect to d�g � d�r � dk and therefore

�
�
�	 &Tt � m
����
R

�Ttm
���
R � �mG�mR	���e�t��mG�mR	����

is symmetric on X with respect to drx � drr � dk as was needed for
the considerations of Section 
! to go through
 Observe that when
K � feg� mR � mG and &Tt � Tt


In this section I shall make a number of explicit computations
related to the above semigroup
 Let G be a simply connected Lie group
and let G � Q i S� S � NAK� R � QNA� Z � K have the same
meaning as in Section 
� so as to have the identi�cation G � R �K

It is clear that mG�k	 � � �k � K	 �and more generally mGjS � �	 so
it su�ces to analyse mR and mGjR
 Since Q is a normal subgroup of
G we have mGjQ � mRjQ � mQ so that mG�mRjQ � �
 Since S is
semisimple and mGjS � � it follows that

�mG�mR	����x	 � m
����
R �x	 � x � AN �

Now since all the automorphisms induced on Q by inner automorphisms
by elements of S are unimodular �S being semisimple	 we have �cf� �!�	

mR�x	 � mAN �x	 � x � AN �

So with the obvious abuse of notation we have

�mG�mR	��� � m
����
AN �

where G � �Q i AN	K
 For the semisimple group S the quantity
mAN is a very familiar creature mAN � e�� where � � �

P
�j	� is the

���sum of the roots �cf� �"�	
 In particular it only depends on the
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A�coordinate
 The �moral� is that the conjugating factor in �
�
�	 is
an �old friend�


To obtain the symmetric markovian semigroup (Tt on G then we
de�ne as in Section 
! the Z�automorphic function on K� 	� and ��
the corresponding eigenvalue which is then given by e���t � k &Ttk���

on L��X� drx	 �cf� Section 
�	
 But clearly also e���t � k �Ttk��� on
L��G� dg	 and �� � � is just the spectral gap �cf� Section �
�	 of �

The semigroup

�
�
	 (Tt � e�t	���
&Tt	� � e�t	��� �mG�mR	���e�t��mG�mR	����	�

is thus markovian and symmetric with respect to drr�	��dk � drr� (dk


Let now (�t�x�� x�	 be the kernel of the semigroup (Tt with respect

to dr � (dk we shall show then that we have

�
�
�	

(��t�e� e	 � e��t
Z
G

�t�g	�t�g
��	 dg

� e��t
Z
�t�k

��r��	�t�rk	 dr dk �

where �t�y
��x	 is the convolution kernel of Tt � e�t� with respect

to dg
 Indeed quite generally if kt��� �	 is the kernel with respect
to d of a general semigroup Kt on L���� d	 where ��� d	 is some

measure space then k
��	
t ��� �	 the kernel of the conjugated semigroup

�Kt�
�� with respect to d �where ��	 �� � is some non zero function	

is k
��	
t ��� �	 � kt��� �	����	����		
 This in particular implies

k
��	
t ��� �	 k

��	
t ��� �	 � kt��� �	 kt��� �	 � t � � �

Similarly the kernel of Kt with respect to a new measure ��	 d is

k
h�i
t ��� �	 �

�

���	
kt��� �	 �

If we apply these observations in our context where � � 	�� is bounded
from above and below we deduce that

�
�
�	 C���t�x	�t�x
��	 � e���t (�t�e� x	 (�t�x� e	 � C �t�x	�t�x

��	 �

�
�
�	 follows then from

(��t�e� e	 �

Z
X

(�t�e� x	 (�t�x� e	 dr (dk �
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Observe now that the symmetry of (Tt with respect to drr � (dk implies
that

(�t�x� x�	m
��
R �r�	 � (�t�x�� x	m��

R �r	 � x � �r� k	� x� � �r�� k�	 �

and therefore also

�
�
!	 P �t	 �

Z
(�t�e� x	 (�t�x� e	 d

rr (dk �

Z
(��t �e� x	 dr d(k �

From �
�
�	 it follows also that

�
�
�	 C��P �t	 � e��t
Z
�t�rk	�t�k

��r��	 drr (dk � C P �t	 �

We shall now show that for large t � � both (��t�e� e	 and P �t	 are
�comparable� with the quantity

�
�
�	 Q�t	 � e��t
Z
�t�r	�t�r

��	 dr � e��t
Z
�t�r	�t�r

��	 drr

in the sense that

Lemma� If K is compact� there exists C � � such that

C��Q�t� �	 � (��t�e� e	 � C Q�t� �	 � t � �� �

C��Q�t� �	 � P �t	 � C Q�t � �	 � t � �� �

It follows in particular that

�
�
�	

C��
Z

(��t���e� x	 dr (dk � (��t�e� e	

� C

Z
(��t���e� x	 dr d(k � t � � �

Proof� If K is compact by the standard local Harnack estimate �cf�
���� ���	 it follows that

C���t�����gk�	 � �t�g	 � C �t�����gk�	 � t � �� g � G� k�� k� � K�

where C � � is independent of t� g and k�� k�
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Combining these with the fact that

�t�g
��	 � �t�g	mG�g	 � g � G �

We deduce that

�
�
"	 C���t���k�gk�	 � �t�g	 � C �t���k�gk�	 �

for t � ��� g � G� ki � K� � � i � �
 If K is compact the integrals
in both �
�
�	 and �
�
�	 are comparable �in the above sense	 withR
�t�r	�t�r

��	 dr and our lemma follows
 If K is not compact we shall
choose K� some relatively compact fundamental domain of the covering
map K � K�Z so that

K �
�
z
Z

zK� � z�K� � z�K� � � � z�� z� � Z� z� �� z� �

What replaces �
�
"	 is then the estimate

C���t���zk�gk�	 � �t�zg	 � C �t���zk�gk�	 � t � � �

where z � Z is central in G
 The above argument therefore works
provided that in �
�
�	 we now set

Q�t	 � e��t
Z
R

X
z
Z

�t�zr	�t�z
��r��	 dr

� e��t
Z
R

X
z
Z

�t�zr	�t�z
��r��	 drr �

We conclude therefore that �
�
�	 is valid in full generality


In all the above considerations we used the measure (dk � 	��dk on

K and the corresponding measure (dk � drr � (dk on X with respect
to which the semigroup (Tt in �
�
	 is symmetric
 It turns out that if

we invoque a result of J
 Moser ���� we can in fact replace (dk by the
Haar measure dk
 J
 Moser s result says that when K is compact and
orientable there exists a di�eomorphism � � K � K that takes the
measure (dk to dk
 If we use this di�eomorphism and conjugate (Tt with
� � identity�� on X i�e� �f � �	 �� � (Ttf	 � � �for all f � C�

� �X		
we obtain a new semigroup that I shall still denote by (Tt which is
markovian and symmetric with respect to drr� dk
 The same thing of
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course holds in the general case �i�e� K is not compact	 provided that
we can lift the di�eomorphism from the compact manifold K�Z on K

This di�eomorphism lifts automatically when K is simply connected


We shall �nish this section with a probabilistic interpretation of
the lower estimates in the Theorem A
 Towards that we shall consider
� � fx�t	 � X� t � �g the path space of the di�usion on X generated
by the semigroup (Tt
 In other words

(Ttf�x	 �

Z
Px�x�t	 � dy� f�y	 � f � C�

� �X	 �

Pe�x�t	 � A� �

Z
x��r�k	
A

(�t�e� x	 dr � (dk �

If we bare in mind that c��dk � (dk � c dk and combine this with our
main estimate �
�
�	 we see that

�
�
��	 P�x�t	 � A� � C �(�t�e� e		
����dx�measure �A		��� �

The dx � dr� dk measure of A � G � R�K is of course the left Haar
measure on G
 If we use however the involution � � �r� k	 � �r��� k	 we

see from the symmetry of (Tt with respect to drr� (dk that if A is of the
form A � B �K �B � R	 then

P�x�t	 � A� � P�x�t	 � A��

and since � interchanges the two measures drr� (dk and dr� (dk we see
�nally that in �
�
��	� if we so wish� we can replace the dx�measure by

any of the measures drr�dk� drr� (dk� d�r� (dk
 The estimate �
�
��	
allows us to formulate the following criterion


Criterion� Let us assume that for all n � �� � � � � we can �nd a set

Xn � Bn �K � X �Bn � R	 such that

i	 measure �Xn	 � C nC � n � �� � � � �

ii	 P�x�n	 � Xn� � C��n�C � n � �� � � � �

where C � � and �measure� stands for any of the above measures�

Then there exists C � � such that �t� the convolution kernel of e�t��
satis�es

�t�e	 � C��t�Ce��t � t � � �
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The standard local Harnack principle �cf� ���	 has to be used of
course here to �ll in the gaps between the integer values t � �� � � � � 


We shall also need �for the lower estimate in Theorem A�	 a mod�
i�ed version of the above criterion� If Xn is as above but instead of i	
and ii	 we can only assert that

i 	 measure �Xn	 � C ecn
���

ii 	 P�x�n	 � Xn� � c��e�cn
���

� n � �� � � � �

Then we can conclude instead that

�t�e	 � C��e�ct
���

e��t �

���� The projection of the in
nitesimal generator�

In this section I shall preserve all our previous notations and as�
sume that N � R is some closed normal subgroup
 We can de�ne then
� � X � R�K � X�N � R�N�K the quotient spaces by the induced
left action by N and if T � L�f��h�kg is a positive left invariant on X
as in Section 
� the above projection induces TX�N � L� f�&���	h�kg
a positive left invariant operator on X�N �&���	 denotes here the image
of the measure � by �	


It is clear then that if T is self adjoint with respect to the measure
drr� dk then TX�N is self adjoint with respect to drR�Nr� dk �We can

use the criterion �
�
�	 to see this	

We shall now give an important example of the above situation


We shall assume that R is a simply connected soluble Lie group and
that N is the nilradical so that R�N 
� Rn 
 The right measure on R�N
is then the Lebesgue measure dx
 We shall further assume that we are
in the group case and that the left invariant operators considered are
the (Tt de�ned in Section 
� which will be self adjoint with respect to
drr � dk where dk is now assumed to be the Haar measure on K �cf�

end of Section 
�	
 We clearly have (Tt � e�t �A where (A is a sum of
squares �with drift	 operator that satis�es the H�ormander condition

We shall project as explained above and obtain (Tt � e�tD a symmetric
�with respect to dx � dk	 markovian semigroup on X�N � Rn � K
and we shall analyze more closely D the generator that is a subelliptic
di�erential operator
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Let x�� � � � � xn be the standard coordinates on Rn and let X�� � � � �
Xs be a basis of right invariant �elds on K
 It is then clear by the
Rn �left invariance that

�
�
�	 �D � DR � M � P � DK �

where

�
�
	 DR �
nX

i�j��

aij�k	
��

�xi�xj
�

where �aij�k		 is a symmetric non negative matrix� k � K


�
�
�	 M � 
nX
i��

sX
���

b��i�k	X�
�

�xi
� P �

nX
i��

�i�k	
�

�xi
�

and where DK can be identi�ed with the canonical �projected operator�
on K
 That operator is self adjoint subelliptic and can thus be written
in the form

�
�
�	 DK �
sX

�����

X� �����k	X� �

where ������k		 is a symmetric non negative matrix
 The constant term
is zero because D is a markovian generator
 What is also clear is that
DR in �
�
	 is uniformily elliptic on Rn i�e� that

�
�
!	 �aij�k		 � ��I

for some �� � � provided that the original operator � on G and there�
fore D on Rn �K is actually elliptic


The formal self adjointness of D with respect to dx � dk implies
that

�i�k	 �
sX

���

X�b��i�k	 � i � �� � � � � � n �

and therefore that

�
�
�	

Z
K

�i�k	 dk � � �
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This is equivalent to the �formal� statement hD�xi � �	� �i � �

Of course D is K�bi�invariant if and only if all its coe�cients are

constant
 This is the only reason why we choose the �elds X�� � � � � Xs

to be right invariant rather than left invariant
 If we use the canonical
projection Rn �K � Rn and project D we obtain then DR on Rn 
 It
follows in particular that then DR is elliptic as soon as D is subelliptic


Let us �nally examine the convolution kernel
 Let us go back to
the original semigroup e�t�f � f ��t with d�t�g	 � �t�g	 drg then the
corresponding left invariant operator on R�K is �cf� �
�
�		

�
�
�	
Ttf�rk	 �

ZZ
f�rr��� k�	�t�k

��
� r�k	 drr� dk� �

Tt � e�t� � L�h� dk	� f��h�kg �

But then clearly with �M � 	��k	�mR�r	�mG�r		��� � 	�M we obtain

�M��Tt �M � 	��� �h		��k	L�h� dk	� f�M���h�kg �

which means that

(Ttf�rk	 � e�t	��� �k	

ZZ
	��� �h	 f�rr��� h	�t�h

��r�k	

	m���
G �r�	m

���
R �r�	 dr� (dh �

Observe also that� with our previous notations� when N � R is the
nilradical of R and R�N � Rn if we project the operator �
�
�	 on
Rn �K we obtain

Ttf�x� k	 �

ZZ
f�x� x�� k�	

�Z
N

�t�k
��
� nx�k	 dn

	
dx� dk� �

��� Left invariant Markov chains and the semidirect product
decomposition�

We shall consider here fxn � X � n � �� � � � �g a left invariant
Markov chain as in Section 
 and assume that R � N i H is a
semidirect product with N � R a normal subgroup as in Section 
�

We can identify here X�N � R�N � K with Y � H � K and X �
N � Y 
 Let us denote by � � X � Y the canonical projection and by
Y � fyn � ��xn	 � Y � n � �� � � � �g the corresponding left invariant



Analysis on Lie groups 	��

chain on Y 
 With the above identi�cations we set xn � �zn� yn	 �zn �
N� yn � Y� n � �� � � � 	
 We shall examine closely the process

Z � fzn � N � n � �� � � � �g �

The process Z is not in general markovian but if we condition on the
paths �y�� y�� � � � 	 of Y Z becomes a Markov chain
 This is a very
important fact for us and we shall analyse it here in detail


To help the reader see what is happening� let us �rst look at the
special case when N � R� Y � K
 If we use a normal representation

�
�
�	 Tj � Lj�h� dk	� f���j	h�kg

of the transition operator� we see that conditionally on �k�� k�� � � � 	
�kj � K	 being �xed� the process fzn � R � n � �g is the Markov
chain on R with transition operators

f ��� f � ��j	kj���kj
� j � � �� � � �

It is this idea that we generalize when R � N iH
 The key fact here
is that any probability measure � on R can be disintegrated

� �

Z
H

�x d��x	 � � � P�H	� �x � P�xN	� x � H �

For simplicity again let us assume that K � feg is the one point set
�this is the basic case treated in ���� and it will help the reader at this
point to consult that references	
 The transition operator are then

Tj � ���j	

for probability measures on R

��j	 �

Z
H

��j	y d��j	�y	 �

The measures �
�j	
y can �for every �xed y � H	 be identi�ed to �

�j	
y �

P�N	 by zy � z �z � N	 and since now xn � znyn we easily see that
with a �xed �y�� y�� � � � 	 the process fz�� z�� � � �g is a Markov chain on
N with transition operators

f ��� f � �j �
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where �� � �y� and �j � ��
�j	
yj 	y�			yj�� �j � 	 with the notation �x

�� � P�R	 x � R	 for the image of � by the inner automorphism g ��
xgx��
 An alternative way of viewing the above situation is to observe
that if we consider arbitrary measures �j � M�N	 �j � �� � � � � n	 and
place then on the cosets Nyj by the identi�cation z � zyj then the
convolution �in R	 of these measures �that are placed on the cosets	
lies in the coset y�y� 	 	 	 yn and corresponds to the measure �� � �y�� �
�y�y�� � 	 	 	 � �y�			yn��n where now the convolution is taken in N 


The above two special cases �K � feg and N � R	 can now be put
in the general context� we identify X � R�K � N � Y � N �H �K
so that xn � �rn� kn	 � �zn� hn� kn	� yn � �hn� kn	 � Y and with �xed
�y�� y�� � � � 	 we disintegrate

�kj���kj �

Z
H

�
�j	
h d��j	�h	 �

�z�� z�� � � � 	 is then a Markov chain on N with transition operators

f ��� f � ��
�j	
hj

	h�			hj�� � j � � � � �

���� Bi	invariant operators revisited�

Nothing in this section is very new but I felt that it was appropiate
to close this chapter by making the connection with know and standard
ideas related to K�bi�invariant operators on semisimple groups


Let G be some Lie group that can be written G � R 	K� R�K �
feg for two closed subgroups with Z � K as in Section 
� so that
mGjK � �
 I shall consider on G a di�erential operator � without
constant term �i�e� �� � �	 that is G�left invariant K�right invariant
and is in particular formally self adjoint and positive with respect to
right measure drg
 What we want is �somehow� to identify � with an

operator on R
 To do this we �rst conjugate � to �� � m
���
G �m

����
G to

make it formally self adjoint with respect to dg � d�g
 This of course
creates a constant term ��� � C which in general is not zero
 Let us
consider D � ��� C which is now a G�left� K�right invariant operator
without constant term that is formally self invariant with respect to
dg
 From now onwards we shall consider operators D that have the
above properties
 When G � NAK is semisimple D� the classical K�
bi�invariant Laplacian� has the above properties




Analysis on Lie groups 	��

Quite generally an operator on G that has the above properties can
be identi�ed with a G�invariant operator on the homogeneous space
G�K � fgK� g � Gg �When G � NAK is semisimple G�K is the
symmetric space and the most important example of the above situation
is that of the Laplace�Beltrami operator on G�K	
 The homogeneous
space G�K can be identi�ed with R� we obtain thus an identi�cation
of D with an operator DG�K on G�K and DR on R
 DR is clearly R�
left invariant has no constant term and since the G�invariant measure
on G�K �which always exists since mGjK � � � mK	 can be identi�ed
with the left Haar measure of R� DR is formally self adjoint with respect
to dr � d�r �indeed DG�K is clearly formally self adjoint with respect
to the invariant measure on G�K	
 It follows therefore that

DR � m
���
R

�
�
X

X�
j � CR

�
m
����
R �

where X�� � � � � Xn are left invariant �elds on R
 The only issue here is
to determine the constant CR
 To do this let �D be the spectral gap of
operator DG�K on G�K
 The operator DR��D has then zero spectral

gap on L��R� dr	 and therefore �DR � �PX�
j �CR��D has zero spec�

tral gap on L��R� drr	
 If we assume� as is the case in all the interesting
examples� that R is soluble� and therefore amenable� the spectral gap
of �PX�

j � which is a markovian generator is �
 It follows that the

spectral gap of �DR is CR � �D and that CR � �D
 The conclusion is

that DG�K � �D can be identi�ed with m
���
R ��PX�

j 	m
����
R 


An alternative way to compute CR is to observe that mR is mul�
tiplicative and therefore that XjmR � �jmR ��j � R� j � �� � � � � 	
Xjm

�
R � ��jm

�
R� �

P
X�
j 	m�

R � ��
P

��jm
�
R and that therefore the

constant term of m
���
R ��PX�

j 	m
����
R is ��P��j	��
 This gives� in

view of the fact that DR has no constant term� that

CR �
�

�

X
��j �

�

�
�� �

In the case of the Laplace�Beltrami operator on a symmetric space the
above considerations amount to the standard way of computing the
spectral gap in terms of the roots
 Observe �nally that by an easy
calculation we have

DRm
�
R � ������� ��� ��	�	m� �

This shows that m
���
R � �� is an eigenfunction of DR with DR�� �

�D�� i�e� that �� is the �ground state� of the Laplace�Beltrami oper�
ator
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Let now G be an arbitrary real Lie group and let K � G be an
arbitrary compact subgroup or more generally a subgroup K that con�
tains Z � K a central subgroup such that K�Z is compact
 It is
then very easy to see that K�Z acts by inner automorphism �I �k � x�
kxk�� k � *k � K�Z	 on G
 It follows that if � is an arbitrary on G
then �� �

R
K�Z

dI �k��	 d *k is K�bi�invariant


A similar analysis can be done for K�bi�invariant convolution op�
erators f �� f � � on G �i�e� when � is stable by the action of Ik�
k � K	


Finally when G � R 	K as in Section 
� the above considerations
show that for K�bi�invariant Laplacians and K�bi�invariant convolution
operators both Theorem A and Theorem B reduce to the analogous
theorems on R
 When R is soluble and the spectral gap is zero these
results have been proved in ����


�� Gaussian measures on groups�

���� Elementary facts on the geometry of groups�

Let G be a connected real Lie group and let X�� � � � � Xk be left in�
variant �elds that satisfy the H�ormander condition
 These �elds de�ne
therefore a left invariant distance d�	� 		 on G� cf� ���
 We shall always
denote by jgjG � jgj � d�e� g	
 The thing to remember is that �at
in�nity� j jG only depends on G and is independent of the particular
choice of the �elds X�� � � � � Xk
 More precisely for every e � � Nhd of
the identity and for a new choice X�

� � � � � � X
�
s of �elds as above we have

C��jgjold � jgjnew � Cjgjold� g � Gn� �

It is clear of course that jhgj � jhj � d�h� hg	 � jhj � jgj and that
jg��j � d�e� g��	 � d�g� gg��	 � jgj
 It follows in particular that
j jhgj � jgj j � jhj� j jghj � jgj j � jhj �g� h � G	 and therefore also that
j jh�gh�j � jgj j � jh�j� jh�j �g� h�� h� � G	


We shall also denote by

B�r	 � BG�r	 � fg � G � jgj � rg

the corresponding r�ball

Let now H � G be some closed subgroup and let mH denote either

the left or the right Haar measure of H
 There exists c � � then such



Analysis on Lie groups 	��

that

��
�
�	 mHfh � H � jhjG � rg � ecr � r � � �

Observe that the above set Hr � fh � H � jhj � rg is not �equivalent�
with the BH�r	 the r�ball in H
 Observe also that since the involution
h � h�� �h � H	 interchanges the left and right Haar measure on H
the statement ��
�
�	 need only be proved for the right measure mH 

The proof of ��
�
�	 is easy
 Indeed the left distance on G induces
j 	 jG�H a distance of the homogeneous space fHg � g � Gg and if for
every *g � G�H with j *gjG�H � r we �x as we may some g � *g with
jgj � j *gj we clearly have

��
�
	
�
j �gj�r

Hrg � BG��r	 �

It is clear also that we can �disintegrate� mG � mH �mG�H for some
appropiate C��non vanishing measure on G�H so that ��
�
	 gives

mH�Hr	 	mG�H�BG�H�r		 � mG�BG��r		

with obvious notations
 mG�H is the Haar measure of G�H if H is
normal but in general it does not have to be G�invariant
 What however
always holds is that mG�H�BG�H�r		 � �� � � �r � �	 and ��
�
�	
follows from the well known and obvious fact �cf� ����	 that

��
�
�	 ��r	 � mG�BG�r		 � C ecr � r � � �

What is clear also is that for any closed analytic subgroup H � G we
have jhjG � CjhjH �h � H	 the best estimate the other way around is
�cf� ����� ����� ����	

��
�
�	 jhjH � C exp�c jhjG	 � h � H �

The proof of ��
�
�	 is non trivial
 If G is algebraic ��
�
�	 follows
from general considerations �cf� ����	
 If G is simply connected soluble
and H � N is in the nilradical ��
�
�	 was proved in ���� �cf� also
Section �
�	
 This is the only case that will be needed in this paper

In the special case when we can write G � H 	 K where K b G is
a compact subset we have jhjH � jhjG �h � H	
 �This is because
for any h� h� � H we can �nd h � h�� � � � � hn � h� � H such that
dG�hj � hj��	 � C� n � Cd�h� h�		
 When G � H 	 K where K is a
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closed group that contains Z � K a discrete central �in G	 subgroup
such that K�Z is compact �as in Section 
�	 and H�Z � f�g� we again
have jhjH � jhjG� provided that the image of H in G�Z is closed
 Indeed
if we denote by � � G� G�Z � H 	 �K�Z	 the canonical projection we
have from the above remark jhjH � jhjG�Z but quite generally we also
have j��g	jG�Z � jgjG �g � G	 and our result follows


Observe �nally that the above remark together with the structure
theorems of Lie groups allows us to reduce the proof of ��
�
�	 to the
case when G is soluble
 That reduction is however non trivial �cf�
Section �
� and ����	
 For a soluble group G which we can further
assume to be simply connected� the proof of ��
�
�	 is done by the
use of the �exponential coordinates of the second kind�
 One �rst
proves that when the group G of ��� Theorem �
��
��� is nilpotent�
then the coordinates �t�� � � � � tm	 of g � G are O�jgjN	� this is easily
done by induction
 We shall then choose the basis X�� � � � � Xm in ���
Theorem �
��
��� in such a way that X�� � � � � Xn �for some n � m	 is
a basis of the nilradical
 A simple use of the above special case and
the results of ���� show then that� in general� the coordinates satisfy
j�t�� � � � � tm	j � O�exp �cjgj		
 From this and the proof of Theorem
�
��
� in ��� our assertion ��
�
�	 follows
 The details will be left for
the reader


���� Functions and measures on a group�

Let G be some real connected Lie group and let 	�g	 � C��G	

We shall say that 	 is an Ex�function �Ex� for �Exponential�	 if there
exists C � � such that

C��exp��Cjgj	 � 	�g	 � C exp�Cjgj	 � g � G �

and if for any sequence of left invariant �elds X�� � � � � Xk� � � � there exist
Ck� �Ck � � �k � �	 such that

��

�	 jX�X� 	 	 	Xk 	�g	j � �Ck exp�Ck jgj	 � g � G �

Similarly we shall say that 	 is a Gs�function �Gs for �Gaussian�	 if
there exist C�� �C� � � such that

��

	 �C� exp��C� jgj�	 � 	�g	 � �C� exp��C� jgj�	 � g � G �
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and for any sequence X�� � � � � Xk� � � � there exist Ck� �Ck � � �k � �	
such that

��

�	 jX� 	 	 	Xk 	�g	j � �Ck exp��Ck jgj�	 � g � G �

We shall sometimes say that 	 is a strict Gs�function if for any � � �
in the above estimates we can choose

C� �
�

� �
� Ck �

�

� � �
�

and where �C���	� �Ck��	 depend on � � �
 In the rest of this section we
shall examine closely the above notations


First of all it is clear that if m��m� � Ex �i�e� are Ex�functions	
if 	�� 	� � Gs �i�e� are Gs�functions	 if ��� �� � R� n�� n� � �� � � � � �
m��

� m��
� � Ex� 	n�� 	n�� � Gs� m	 � Gs


Typically any positive character �e�g� the modular function mG	
is an Ex�function
 More generally when �mij	 � M � G� GLn�R	 is a
group homomorphism then each matrix coe�cient mij is O�exp�Cjgj		
and satis�es ��

�	 �This is because mij�gx	 �

P
mi��g	m�j �x	 and

the �elds Xk are left invariant	

It follows in particular that if

��

�	 d� � 	dg � � drg

is a positive measure on G then 	 � Gs if and only if � � Gs
 A
measure � as in ��

�	 with 	 � Gs will be called a Gs�measure


Let now Y be a right invariant �eld
 It is clear then that Y �g	 �
Tg�G	 �i�e� the value of the �eld at g � G	 coincides with X�g	 the
value at g of the left invariant �eld X for which X�e	 � Ad gY �e		

The upshot is that Y �g	 � M�g	�X�� � � � � Xn	T where M�g	 � GLn�R	
is as above and �X�� � � � � Xn	 is a basis of left�invariant �elds
 From
this and our previous remarks we see that in the above de�nition of Ex
or Gs�functions we can replace left invariant �elds by right invariant
�elds
 If we use the notations

&f�g	 � f�g��	 � fh�g	 � f�gh	 � fh�g	 � f�hg	 � g� h � G �

The above considerations show that &	 � Ex �respectively &	 � Gs	 if
and only if 	 � Ex �respectively 	 � Gs	
 Also if 	 � Ex �respectively
	 � Gs	 and k � G then 	k� 	k � Ex �respectively � Gs	 and that this
is so uniformly �i�e� with uniform constant	 as k � K b G runs through
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the compact subsets of G
 I shall leave the reader with the task to work
out which of the above observation extend to strict Gs�functions and
which do not


We shall �nally need to extend the above notations to the product
space X � R � K as in Section 
�
 We shall say that 	 � C��X	
is an Ex� �respectively Gs�	 function on X if and only if the functions
	k�r	 � 	�r� k	 are Ex� �respectively Gs�	 functions uniformly in k � K
�i�e� with uniform constants	


A typical example of a Gs�function on R � K is supplied by the
convolution operator in Section 
� where the convolution measure d� �
	�g	 dg is Gs
 The formula �
�
�	 for M�r� k�� k	 and our previous
remarks show that M�r� k�� k	 is Gs on R uniformly in k� k� provided
that K is compact or more generally� uniformly when k��� k � K� b K
where K� is some compact subset of K
 Indeed mR�r	 � Ex on R and
��g	 � 	�k��� gk	m��

G �g	 � Gs on G
 To show that �jR and therefore
M is Gs on R it su�ces therefore to use Section �
� and the fact that
when K is compact we have

��

!	 C��jrjG � jrjR � C jrjG � r � R� jrjG � C �

Due to the fact that Z is a central subgroup� the estimate ��

!	 also
holds when K is not compact �cf� end of Section �
�	 provided that
k��� k � K�


Another notion that will be used is that of a Gs R�left invariant
positive operator T on X � R�K as in Section 

 We shall write

T � L�h� dk	� f��h�kg
in normal form as in Section 
 and we shall say that T is Gs on X if the
measures �h�k � Gs on R uniformly in h� k � K
 It follows that when
K is compact then the operator T that corresponds to a convolution
operator on G by a Gs measure is Gs in the above sense


���� Subgroups and quotients�

Let H � G be as in Section �
� �or at least some closed analytic
subgroup for which ��
�
�	 is known to hold	� and let 	 � Gs on G
 I
shall consider the restricted function �	 � 	jH � C��H	 by Section �
�
it is clear that

��
�
�	
�	�h	 � �C� exp ��C� log��jhj� �		 �

jX� 	 	 	Xk �	�h	j � Ck exp ��Ck log��jhj� �		 � h � H �
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In general however �	 is not a Gs�function
 Let us now assume through�
out this section that H is normal and let � � G� G�H be the canonical
projection �For the applications that we have in mind H 
� Rn � the dis�
tinction that we make below of d�h and drh is therefore inessential	
 Let
m � G�H be an Ex�function on G�H� then m � � is an Ex�function on
G
 The analogous statement is in general false for Gs�functions
 Quite
generally for any � � 	 � C��G	 we shall de�ne �possibly � ��	

��
�
	

	��g	 � 	�� *g	 �

Z
H

	�gh	 d�h �

	r� *g	 �

Z
	�hg	 drh � g � *g � gH � G�H �

We have � &		� � �	r	
�
 In what follows it su�ces therefore to examine

one of the two transforms 	 � 	� or 	 � 	r
 We shall need the
following

Lemma� Let H � G be as above� Then for every c � � � � there exists

C � C�c� �	 such that

��
�
�	

Z
exp ��c jghj�G	 d�h � C exp ���c� �	 j *gj�G�H	 �

for all g � G� g � *g � G�H�

Proof� By Section �
� it is clear that we can estimate the above
integral by Z �

j �gj
exp ��c j�j� � C � � C j *gj	 d� �

Indeed by ��
�
�	 it is only matter of splitting the integral along the
intersection of gH with the shells fx � G � jxjG � d�g � G
 The
lemma follows


In the above lemma we can replace jghjG and d�h by jhgjG and drh
and the same conclusion holds �indeed we pass from one to the other by
the involution x� x�� in G	
 With the above notations let us assume
that 	 � Gs and that X�� X�� � � � � Xk are left invariant �elds and let us
denote

	
�k	
� �g	 � �jX� 	 	 	Xk 	�g	j	� � 	�k	r �g	 � �jX� 	 	 	Xk 	�g	j	r �
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It is clear from the lemma that

��
�
�	 	
�k	
� � *g	 � 	�k	r � *g	 � �Ck exp ��Ck j *gj�	 � *g � G�H �

However it is also true that

��
�
!	 	�� *g	 � 	r� *g	 � �C� exp ��C� j *gj�	 � *g � G�H �

Indeed for �xed *g � G let g � *g be chosen so that jgjG � j *gjG�H � �
and since with h � H� jhjH � � we have �cf� Section �
�	

j jghjG � jgjG j � j jhgjG � jgjG j � � �

��
�
!	 follows by restricting the integration in ��
�
	 to the ball jhj � �

Let now X and Y be a left invariant and a right invariant �eld

respectively on G and let *X� *Y the corresponding projected �elds on
G�H
 It is evident �from the de�nition Xf�g	 � lim�f�getX	�f�g			�t�
Y f�g	 � 	 	 	 	 that

*X	r� *g	 �

Z
H

�X		�hg	 drh �

*Y 	�� *g	 �

Z
�Y 		�gh	 d�h �

The analogous expressions for the �multiple derivatives� *X�
*X� 	 	 	 *Xk	r

also hold
 If we use this remark together with ��
�
�	� ��
�
�	� ��
�
!	 we
coclude that 	r� 	� are both Gs�functions and that furthermore they
are strict Gs�functions� for the quotient metric� if 	 is


It is clear that the above considerations generalize to Gs�functions
on X � R � K where for each 	 � C��X	 and H � R a closed
normal subgroup the corresponding functions 	r� 	� � C��R�H �K	
are de�ned in the obvious way for every slice 	�	� k	 separetly


We shall now consider more closely the restriction of Gs�function
on a subgroup or more generally on a coset gH
 Motivated by ��
�
�	
we shall say quite generally that for any Lie group H� f � C��H	 is
an Sp�function �superpolynomial	 with constants c�C�� C�� 	 	 	 � � if

��
�
�	 jX� 	 	 	Xkf�h	j � Ck exp ��c log��jhj��		 � h � H� k � � �

It is thus clear that the restriction to H � G of a Gs�function on H is
Sp on H
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More generally let f � Gs on G and let us de�ne

fg�h	 �
�Z

H

f�gh	 d�h
���

f�gh	 � g � G� h � H �

�One should observe that for all our applications H will be in fact uni�
modular and drh � d�h
 More generally by choosing a global analytic
section of G� G�H� which always exists in the simply connected case�
we can �nd an Ex�function on G that allows us to pass from the drh
measure to the d�h measure
 We shall have no use of this fact how�
ever and therefore we shall not elaborate further	
 Just as before if
X�� � � � � Xk are left invariant �elds on H� which can be identi�ed to left
invariant �elds on G� we clearly have

�X� 	 	 	Xkf	g�h	 � X� 	 	 	Xk�fg	�h	 � g � G� h � H �

and if f � Gs on G by ��
�
!	 we haveZ
f�gh	 d�h � C exp ��C j *gj�	 �

The upshot of the above consideration is that

��
�
�	
jX� 	 	 	Xk�fg	�h	j � exp �C�jgj�G � C�jghj�G	

� exp �c�jgj�G � c�jhj�G	 �

If we combine this with ��
�
�	 we conclude that for every g � G the
function fg � C��H	 is an Sp�function with a constant c � � in ��
�
�	
that only depends on f and where

Ck � Ck�g	 � �Ck exp �ckjgj�	 � k � �� �� � � �

The constants c� �Ck� ck � � clearly only depend on the constants of the
de�nition ��

	���

�	� and the estimates ��
�
�	 are uniform for a
family of functions f that are uniformly Gs on G


���� Mass escape at in
nity of the convolution product�

Let �j � P�G	 �j � �� � � � � 	 be a sequence of probability measures
on G that are Gs�measures uniformly in j � �� � � � � If we bare in mind
��
�
�	 we see that this implies that

�jfg � G � jgj � Rg � C exp ��cR�	 � R � �� j � �� � � � � �
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where C� c � � are independent of R � � and j � �� � � � � If we take
the convolution products ��n	 � �� � 	 	 	 � �n we deduce

��n	fg � G � jgj � Rg �
nX
j��

�jfg � G � jgj � R�ng

� C n exp ��c �R�n	�	 � R � �� n � �� � � � �

We have in particular

�nfg � G � jgj � n��	g � C exp ��c n�		 � n � �� � � � � � � � � �

Similarly we can consider probability measures d�j�g	 � fj�g	 dg �
P�G	 where fj � Sp� j � �� � � � � and where for simplicity we shall
assume that G is unimodular
 More precisely we shall demand that
there exist c � �� C�� C�� 	 	 	 � � such that

fj�g	 � Cj exp ��c log��jgj� �		 � j � �� � � � � � g � G �

We shall assume further that G is a group of polynomial growth i�e�

that

��r	 � Haar measure of BG�r	 � C �r � �	A � r � � �

It then follows that

�jfg � G � jgj � Rg � C Cj exp ��c log��R � �		 �

for j � �� � � � � � R � �� and therefore� as before� the convolution prod�
uct ��n	 � �� � 	 	 	 � �n satis�es

��n	fg � G � jgj � Rg � C

� nX
j��

Cj

	
exp ��c log��R�n� �		 �

for R � �� n � �� � � � � � with R � n��	 we have in particular

��n	fg � G � jgj � n��	g � C sup
��j�n

Cj exp ��c log� n	 �

where C� c � � are independent of n
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���� The Heat kernel�

Let �� � �PX�
j be a driftless subelliptic Laplacian and let �t�g	

be the corresponding convolution kernel as in Section �
 For every �xed
t � � the function �t�g	 is then a Gs�function on G �cf� ���	
 In fact
���g	 is a strict Gs�function
 The strict upper estimate is contained
in ���
 The strict lower estimate is �implicitely	 contained in ��"� �es�
pecially Section 
�� ��"� II	
 Since we shall be able to complete the
proofs of our theorems without the strict estimates� we shall not give
the details here


Let now � � �Pn
j��X

�
j � X� be a general subelliptic Laplacian

�i�e� X� need not be zero	
 The convolution kernel �t is again� for
every �xed t � �� a Gs�function
 The proof of the upper estimate
has been written out in a much more general context in ���
 For an
alternative simple proof� �cf� Section A
�	
 The lower estimate when
X� �

P
�iXi �

P
�ij �Xi� Xj� is an easy consequence of the scaled

Harnack estimate �cf� also ���	
 For a general drift however this lower
Gaussian estimate is di�cult to prove �cf� Section A
�	


From the above and the considerations at the end of Section �
 we
see that T the left invariant operators on R�K that corresponds to the
semigroup Tt � e�t� on G as in sections 
!� 
�� 
� are Gs�operators
when K is compact
 This statement remains true in general� even when
K is not compact� but this statement is not trivial to prove
 Since we
shall be able to do without this general case we shall not give this proof
here


�� Upper estimates�

���� Gaussian measures on a special class of groups�

In this section we shall consider a real Lie group G and H � G
a closed normal subgroup that satisfy the following conditions� H 
�
Rn and G�H 
� V � S where V 
� Rm and S is compact
 We shall
summarize this information in the exact sequence

��
�
�	 � �� H 
� Rn �� G ��
p

G�H 
� V � S 
� Rm � S �� � �

The above situation is not as special as it looks
 Indeed let G be simply
connected group and let N � Q � G be its radical and nilradical
 Let
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further �N�N � the analytic subgroup that corresponds to �n� n� where
n � g is the nilradical of the Lie algebra of G
 Then the group G �
G��N�N � satis�es the above conditions ��
�
�	 with H � N��N�N ��
V � Q�N and S � G�Q
 S is a semisimple group
 When G is soluble
we have S � feg
 When G is amenable �e�g� when g is an R�algebra	
then S is compact
 Observe that if we assume in addition that g is an
algebraic algebra �i�e� that it is the Lie algebra of some algebraic Lie
group	 in the above situation we have G��N�N � � G � H i �V � S	
�cf� ���	 and if G � Q is soluble we have Q��N�N � � H i V 


The basic thing to observe is that under the condition ��
�
�	 the
group G�H �
� Rm � S	 can be made to act naturally on H so as to
have

��
�
	 � � G�H �� GL�H	 �

This is of course true in general �and trivially so	 when G 
� H iG�H
�e�g� G simply connected and H � Q� the radical of G	 but here
the action ��
�
	 is obtained from inner automorphisms because H is
abelian
 Indeed for x � G�H we choose some g � G such that p�g	 � x
and then the action h� g��hg is independent of the particular choice
of g


The Lie algebra of V and H will be identi�ed with V and H re�
spectively and we shall consider

��
�
�	 d� � V �� gl�H	 �

We shall also consider the roots of the action ��
�
�	 which are � �
HomR�V � C � and are de�ned by

�d��v	� ��v		w � � � v � V �

and some � �� w � H�RC 
 The corresponding root spaces U� � H�RC

are de�ned accordingly

I shall de�ned then L�� L�� � � � � Lp all the distinct real parts �L �

Re�	 of these roots �contrary to what was done in Chapter � the zero
real part is also admitted here	
 If then Hj � H is de�ned by the fact
that Hj � C �

P
U� for all the � s such that Re� � Lj we obtain

H � H�� 	 	 	�Hp a decomposition of H as a direct sum of subspaces

All the subspaces Hj are stable by the representation ��
�
	 and are
such that if G�H � *g � �v� s	 �v � V � s � S	 we have

��
�
�	 det��j� *g		 � edjLj�v	 �
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where dj � dimHj and �j � �jHj �This is because the determinant is
real and its modulus is clearly given by ��
�
�		
 Observe also that in the
relevant cases S is compact or semisimple and therefore det��s	 � ��
s � S
 All the above facts are consequences of elementary linear algebra
and will thus be left for the reader


It is of course clear that if G satis�es ��
�
�	 then we can represent

��
�
!	 � �

pX
j��

�jLj � �j � � �

non trivially �i�e� not all �jLj � � in the above sum	 if and only if g is
a C�algebra


Proposition� Let G be a real Lie group that satis�es the conditions

������	 and let us assume that the Lie algebra g satis�es the C�condition�
Let �j � P�G	� j � �� � � � � be a sequence of probability measures and

let us assume that �j � Gs on G uniformly in j �i�e� with constants

that are independent of j	� Let further ��n	 � �� � 	 	 	 � �n be the

corresponding convolution products�

Then there exists c � � such that for every f � C�
� we have

��
�
�	 h��n	� fi � O�e�cn
���

	 � n � � �

In fact we have d��n	�g	 � 	�n	�g	 dg where 	�n	 � C��G	 �and
even 	�n	 � Gs on G but this is irrelevant	 and �morally� what the
estimate ��
�
!	 actually says is

	�n	�g	 � O�e�cn
���

	 � g � G �

The proof of ��
�
�	 will be given in Section �
!


���� The Fourier transform�

G � H and all other notations will be as in Section �
�
 We shall
consider d��g	 � 	�g	 dg a Gs�probability measure on G and de�ne

� �g�h	 �

�Z
H

	�gh	 dh

	��
	�gh	 � h � H� g � *g � G�H �
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the above function will be identi�ed with a function � �g�x	 � C��Rn	
uniquely de�ned up to translation 	 �� 	 � � on Rn �� � Rn	
 The
modulus of the Fourier transform

f �g��	 � j(� �g��	j

is therefore uniquely de�ned
 For the sequence of measures given in
the proposition of Section �
� we shall consider d�j�g	 � 	j�g	 dg

�j � �� � � � � 	 and the corresponding fg��	 � fj� �g��	 � j(�g��	j �for
typographical reasons we shall drop the j � �� � � � and the �dot� above
the g	
 We shall need the following

Lemma� Let (H � (H� � 	 	 	 � (Hp be the dual decomposition of H �

H� � 	 	 	 �Hp

� Rn and let � � ���� � � � � �p	 � (H� �i � (Hi� i � �� � � � � p

be the corresponding coordinates� Then �uniformly in j � �� � � � � 	 we

can �nd functions f
��	
g � � � � � f

�p	
g � �g � G�H	 �i�e� these functions are

independent of j � �� � � � � 	 that satisfy

fg��	 � f ��	g ���	 	 	 	f �p	g ��p	 � g � G�H� � � ���� � � � � �p	 � (H �

��

�	 � � f �i	g � � �

Z
�Hi

f �i	g ��	 d� � Cecjgj
�

�

for all g � G�H� i � �� � � � � � p�

Proof� It is clear that � � fg��	 � � �for all j � �� � � � 	 and we shall
presently show that for all N � � there exists C� c � � such that �again
for j � �� � � � 	

��

	 fg��	 � C ecjgj
� j�j�N � � � (H� g � G�H �

Let N be so large that there exist � � f �i	��i	 � �� i � �� � � � � � p such
that

minf�� j�j�Ng � f ��	���	 	 	 	f �p	��p	 � � � ���� � � � � �p	 � (H �

Z
�Hi

f �i	��	 d� � �� � i � �� � � � � � p �
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We can for instance take f �i	��	 � minf�� j�j��dg where d �
P

di and
N � pd
 Then by rescaling we have

minf�� Cecjgj�j�j�Ng � f ��	�Ce�cjgj
�

��	 	 	 	
�with a di�erent C and c	 and our lemma follows with f

�i	
g ��	 �

f �i	�Ce�cjgj
�

�	

The estimate ��

	 is clearly implied by

��

�	

Z ���� �k

�xi� 	 	 	�xik
�g�x	 dx

���� � C ecjgj
�

�

g � G�H uniformly in j� with k � �� � � � �and C � Ck� c � ck	

To prove ��

�	 let X�� � � � � Xs be a basis of left invariant �elds on
G
 It is clear then� by induction on k� that ��k��xi� 	 	 	�xik		�gx	
�x � H 
� Rn � g � G	 is a linear combination of expressions of the
form �Xj� 	 	 	Xjr		�gx	 �x � H� g � G	 our estimate ��

�	 therefore
follows from results in Section �
�


The above proof shows in fact that if the original 	 is a strict Gs�
function on G then in ��

�	 �and therefore in ��

	 and in ��

�		
we can choose c � � � � arbitrary small provided that the C � Ck
of ��

�	 �and the other corresponding C s in ��

	 and ��

�		 are
made to depend on � � �
 When we are considering several 	j �j � �	
the above strict�Gs property can of course to be made uniform in j


���� The disintegration of the kernel�

In this section I shall follows closely ���� I� Section ��
 I shall
consider H � G as in Section �
� with H 
� Ra �notice that to avoid a
possible confusion with notations that I followed� I have changed here
the dimensions of H into a � dimH � a and not n as in the previous
sections	 and shall assume that V 
� Rm is a vector subgroup and S is
compact
 I shall disintegrate �j for j � �� � � � �

�j �

Z
G�H

�
�j	
�g d&�j� *g	 �

where �
�j	
�g are probability measures on the �bers gH � *g � G�H �all

the other notations are as before	
 From this it clearly follows that

��
�
�	 ��n	 �

Z
G�H

	 	 	
Z
G�H

�g� � 	 	 	 � �gn d&���g�	 	 	 	d&�n�gn	 �
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where the � indicates convolution in G
 I shall now identify� as I may�
�g with a measure on H �by H � gH up to translation on H	� and�
for any � � P�H	 and g � G�H� I shall denote by �g � P�H	 the
image of � by the action � � G�H � Aut�H	 on H �induced by inner
automorphisms as in Section �
�	
 It is clear then that the integrand of
��
�
�	 which� up to translation� can be identi�ed to a measure on the
coset *g� 	 	 	 *gn � G� can also be identi�ed up to translation with

��g�� � � � � gn	 � �s�g� � �s�g� � 	 	 	 � �sngn � P�H	 �

where sj � g� 	 	 	 gj � G�H and where the convolution product is now
taken in H
 �This identi�cation is now done for the �right product�
identi�cation H � Hsn	
 Now the measures ��g�� � � � � gn	 can be iden�
ti�ed to a L��H	 functions of H and� since convolution goes by Fourier
transforms to pointwise product� we have

��
�
	 k��g�� � � � � gn	k� �
Z
�H

fg����s�	
��	 	 	 	fgn���sn	��	 d� �

Note that� to simplify notations I have dropped throughout from the
� s and the f  s the j � �� � � � � coming from �j 
 To estimate the

integral in ��
�
	 I shall �rst use the decomposition (H � (H��	 	 	� (Hp

coming from Lj � Re� �j � �� � � � � p	 the real parts of the roots of the
representation � � G�H � GL�H	 as in Section �
�
 For the above
decomposition and with the obvious notation � � ���� � � � � �p	 � (H� I
shall apply the Lemma of Section �
 and estimate

jfg��	j � f ��	g ���	 	 	 	 f �p	g ��p	 � g � G�H �

This estimate will be inserted in the integrand of ��
�
	
 It follows that
the right hand side of ��
�
	 can be estimated by

inf

Z
�H

f ��	gj�
���sj�	

���	 f ��	gj�
���sj�	

���	 	 	 	 f �p	gjp
���sjp	��p	 d� �

where the in�mum is taken over all choices � � ji � n �i � �� � � � � p	

The integral under the above inf splits in (H� � 	 	 	 � (Hp and each
integral

R
�Hj

can be explicitely computed by a change of variable whose

determinant is known by ��
�
�	

Let us introduce the following notation sj � �bj� 
j	� gj � �Xj� �
j	

� V � S� �j � �� � � � � n	 and for each g � �u� 
	 � G�H let us observe
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that jgjG�H � jujV � the norm in V �provided that jgj � �	 let us
further denote by

��
�
�	 An�Li	 � inf
��j�n

exp �c jXjj� � diLi�bj		 �

With these notations if we combine all the above estimates we obtain

��
�
�	 k��g�� � � � � gn	k� � CAn�L�	 	 	 	An�Lp	 �

���� The probabilistic estimate�

All the notations introduced up to now will be preserved
 The Xj �
V 
� Rm �j � �� � � � � 	 in the de�nition of An�Li	 will be independent
�not necessarily equidistributed	 random variables such that the corre�
sponding density functions P�Xj � dx� � �j�x	 dx are Gs�functions on
Rn uniformly in j � �� � � � � 
 We have then bt � X� � 	 	 	 � Xt
 In
Section B of the appendix we shall prove the estimate

��
�
�	 E �An�L�	 	 	 	An�Lp		 � O�exp ��c n���		

for some c � � provided that the real roots L�� � � � � Lp satisfy the
C�condition �cf� ��
�
!		
 This estimate was proved in ���� when all
the Xj s are equidistributed centered Gaussian variables �so that bt �
b�t	 � X� � 	 	 	�Xt � Rm is brownian motion	 and when the constant
c � � appearing in the de�nition of An�Li	 �cf� ��
�
�		 is small enough

Here again� if we are prepared to use the fact that for a driftless Lapla�
cian the heat kernel on G is a strict Gs�function� we can suppose that
the c � � in ��
�
�	 is as small as we like
 In the appendix however we
shall prove ��
�
�	 without that restriction


���� The proof of the Proposition of Section ����

All our previous notations are preserved
 Let � � 	 � C�
� �G	 and

let

sup
g
G

Z
H

	�hg	 dh � C� �
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�I implicitely use here the right identi�cation H � Hg �	
 Then the
basic formula ��
�
�	 that expresses ��n	 as a barycenter of measures
sitting in the various cosets Hg gives

h��n	� 	i � C�

Z
k��g�� � � � � gn	k� d&���g�	 	 	 	d&�n�gn	 �

where by Section �
� &�j � P�G�H	 �j � �� � � � 	 are Gs�measures on
G�H �uniformly in j	
 Since G�H � V �S� we can project &�j on V by
the canonical G�H � V and obtain a sequence of probability measures
��x	 dx �j � �� � � � � 	 on Rm that are uniformly Gs on Rm 
 A sequence
Xj � Rm �j � �� � � � � 	 of independent random variables can then be
de�ned by P�Xj � dx� � �j�x	 dx
 The corresponding An�Li	 can thus
be constructed and because of ��
�
�	 we clearly have

��
!
�	

Z
k��g�� � � � � gn	k� d&���g�	 	 	 	d&�n�gn	

� C E �An�L�	 	 	 	An�Lp		 �

The estimate ��
�
�	 follows from ��
�
�	 and ��
!
�	


���� The Proposition for an arbitrary soluble group�

In this section I shall prove the following

Proposition� Let Q be a connected soluble group that satis�es the C�
condition� Let �j � Gs�Q	 � P�Q	 �j � �� � � � � 	 uniformly in j and let

�n � �� � 	 	 	 � �n� There exists then c � � such that

h��n	� fi � O�exp��c n���		 � f � C�
� �Q	 �

We shall need the following

Lemma� Let G be an arbitrary connected real Lie group and let K � G
be some closed subgroup�

i	 If the conclusion of the proposition is valid for G�K then it is

also valid for G�
ii	 Conversely if we assume that K is compact and assume that the

conclusion of the proposition is valid for G it is also valid for G�K�
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The proof of the lemma is evident and will be left to the reader


The �rst step in the proof of the proposition is to reduce the proof
to the case when the center of q is �
 To see this let z � q and let more
generally z � z� � z� � 	 	 	 � zj � 	 	 	 � q be de�ned inductively by
zj � ���j �the center of q�zj��	 where �j � q � q�zj�� is the canonical
projection
 Then clearly p � � zj �in fact zk�� � zk for some k	 is
a nilpotent ideal and p � n and� by its construction� q�p has trivial
center
 An easy composition series argument on q shows that q�p is a
C�algebra


Let Zj � Q be the analytic subgroup that corresponds to zj 
 One
easily sees by induction that these are closed subgroups
 Indeed quite
generally if Z is the analytic subgroup that corresponds to the cen�
ter of the algebra Z is closed for Z� its closure� is connected and the
subalgebra z that corresponds to Z is central
 To make the required
reduction therefore it su�ces to consider P the analytic subgroup that
corresponds to p and to consider Q�P 
 Our reduction then follows from
the lemma


Let now � � �Q� Q be the universal covering map and let �N � �Q
be the nilradical
 Our hypothesis that the center of q is trivial implies
then that

��
�
�	 Ker � � �N � feg �

Indeed + � �N �Ker � is a discrete central subgroup of �Q and therefore
+ � ZN � the center of �N which can be identi�ed with a vector space
ZN 
� Rc �c � �	
 The Ad action induces Ad � �Q � GL�ZN 	 and if
we denote by VZ � ZN the vector subspace generated by + we have
Ad�Q	jVZ � Id
 This means that VZ � q is central and therefore
VZ � f�g by our hypothesis
 ��
�
�	 follows


To �nish the proof it su�ces to make one further reduction
 Indeed
let �N � �Q� N � Q be the corresponding closed nilradicals� i�e� the
analytic subgroups that correspond to the nilradical n � q
 By ��
�
�	
the mapping �N � �N � N is then ����	� continuous and onto
 It
therefore is a homeomorphism
 N is therefore simply connected and
therefore N� � N � the analytic subgroups that correspond to �n� n�� is
closed
 By our lemma we can reduce the proof of our proposition to the
group Q�N� � G
 This new group satis�es ��
�
�	 with H � N�N�


�
�N� �N�


� Ra �by �
�
�	
 Indeed G�H 
� Q�N is a homomorphic image
of �Q� �N 
� Rd and has therefore the required form G�H 
� Rm � Tb �
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Rm �S as in ��
�
�	
 The condition ��
�
!	 is clearly veri�ed by the C�
condition on our original group and the proof of our proposition follows
from the lemma and the proposition in Section �
�


The above proof gives �for free�� so to speak� something slightly
stronger
 What it shows is that the conclusion of the proposition also
holds for any amenable group �i�e� when g�q � s is a compact semisim�
ple algebra	
 This proposition can therefore be viewed as a general�
ization of the results of ����
 Indeed let G be such a group and let Q�
S � G be the radical and some Levi subgroup respectively
 Then since
S is compact we can form the canonical semidirect product and the
canonical covering map � � Q i S � �G � G which is now an isogeny
�i�e� Ker� is a �nite subgroup	
 By our lemma again� it su�ces to
prove the proposition for the group �G
 For the group �G � Qi S if we
repeate our previous argument we reduce the proof to the case where
Rn 
� N � H � �G and �G�N � Q�N � S � Rm � S �cf� ����	
 This
completes the proof


���� General Lie groups�

The key to the proof of Theorem B for a general connected real
Lie group is to show that with the machinery that we have developed
we can give a proof of that theorem for groups of the form G � Qi S
where Q is soluble and connected and where S is semisimple
 Indeed
for such a G� as we already pointed out �cf� Section 
�	� there exists
Z � S a discrete subgroup that is central in G and of �nite index in
the center of S
 Let G� � G�Z � Qi S� � Q i �S�Z	
 Then G� is a
similar group but has the additional property that the center of S� is
�nite
 We can therefore write G� � QNAK � RK where NAK � S�
is the Iwasawa decomposition of S�� K is compact and R is soluble


The proof of Theorem B for the group G� is contained in Section

�
 Indeed if we identify f �� f � � with an R�left invariant operator
on X � R�K we see that we have our theorem as long as we can show
that �
�
�	 in Section 
� holds with ��n	 � exp��c n���	
 But modulo
Section �
! this is exactly what was proved in Section �
�


To complete the proof of Theorem B for the group G we shall use
the following general observation
 Let quite generally � � G � G� be
some covering map between two arbitrary Lie groups and let d��g	 �
��g	 dg be some Gs�probability measure on G
 Let the corresponding
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image measure be �� � &���	 � P�G�	
 �� as we saw in Section �� is a
Gs�measure on G� and can be written

��
�
�	

d���g�	 � ���g�	 dg�

���g�	 �
X

z
Ker�
��gz	 � g� � gKer� � G� �

The obvious observation is that if Theorem B holds for �� on G� then it
also holds for � on G
 This is because of the amenability of Ker � � G�
which implies that if we denote by k 	 k��� the f �� f � 	 convolution
norms on L��G� drg	 and L��G�� d

rg�	 we have

��
�
	 k�k��� � k��k��� �

��
�
	 is very well known
 Observe also that Section 
� in fact contains
a proof ��
�
	


Let now G be an arbitrary connected real Lie group not necessarilly
of the form QiS and let Q � G be its radical let further S � G be some
Levi subgroup that is an analytic but not necessarily closed subgroup
of G
 It is clear that Q � S is a closed subgroup of Q and a central
subgroup of S �Indeed Q�S is a normal and discrete subgroup of S for
the intrinsic Lie topology of S	
 As already pointed out twice before
there exists then Z� � Q�S a discrete central subgroup of G that is of
�nite index in Q � S
 We shall quotient by Z� and obtain G� � G�Z�

This group has a Levi decomposition G� � Q�S� as before with the
additional property that Q��S� is �nite
 By what was said just above�
if we can prove our theorem for G� then we also have it for G


Using the canonical action of S� on Q� we can then construct the
semidirect product �G � Q� i S� where the kernel of the canonical
projection �G� G� is �nite
 Since we already know that the Theorem
holds for �G and since the summation in ��
�
�	 is �nite� it follows that
the Theorem holds also for G� �here we make essential use of the fact
that Theorem can be stated equivalently either as ��n	�e	 � O�	 	 	 	 or
��n	�g	 � O�	 	 	 	 for any g � G	
 The proof of Theorem B is complete


��� The Iwasawa radical revisited�

It is interesting to observe that the techniques of the previous sec�
tion prove the following
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Proposition� Let G be a connected real Lie group� Then R � G� the
analytic subgroup that corresponds to r � q � nS � a � g� an Iwasawa

radical of the Lie algebra �cf� Chapter �	� is closed�

Indeed let Q � G the �closed	 radical of G and let $ � G some
analytic �but not necessarily closed	 Levi subgroup
 Let $ � NAK
be some Iwasawa decomposition of $
 Then Z� � Q � $ � $ is a
discrete �for the intrinsic Lie�group topology of $	 central subgroup
of $ therefore Z� � Z�$	 � K where Z�$	 is the center of $
 It
follows in particular that Q � AN � feg
 Let us form Qi $ � �G the
semidirect product and let � � �G � G be the canonical covering map

Let � � �G� $ be the canonical projection so that

��Ker �	 � Z� �

The subgroup R � QAN � G is the image by � of the subgroup
�R � Qi AN � �G
 Clearly

��
�
�	 �R �Ker � � feg

and to show that R is closed it su�ces to show that if kn � Ker �
�n � �	 is a a sequence that satis�es d �G�kn� �R	 � � then kn � e
for all n � n� large enough
 The proof of this is easy
 Indeed we
have d����kn	� AN	 � � and therefore �since ��kn	 � Z�$	 which is
a discrete subgroup of $	 ��kn	 � e� n � n�
 Our assertion therefore
follows from ��
�
�	 and the fact that Ker� � Q


We shall say that the subgroup R � G is an Iwasawa radical of G

As we already pointed out for an arbitrary group G we can �nd Z � G
some central discrete subgroup such that G� � G�Z is such that Q�

its radical and $� some Levi subgroup have a �nite intersection �i�e�
jQ� � $�j � ��	
 By quotienning further by Z� � G� another central
discrete subgroup we can obtain G� � G��Z� � Q�$� where Q� is the
radical of G� and $� is semisimple with �nite center
 But then clearly
G� � RK where R is an Iwasawa radical and K is a compact subgroup
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�� The proof of the Theorem �NB� and the lower estimates�

���� The proof of Theorem A� for a special class of groups�

In this section G will be a real Lie group that can be written in
the form G � R 	K where the closed subgroup R is a simply connected
soluble NC�group and K is a compact subgroup such that R � K �
feg
 We shall identify G with X � R �K as in Section 
� and then
decompose

R � N iQ

as in sections �
���
� where N is a simply connected nilpotent subgroup
and Q is a simply connected R�group
 I shall furthermore systematically
use the following notation for the �coordinates� in X

�!
�	 x � �r� k	 � �n� q� k	 �

for x � X � G� r � R� n � N � q � Q� k � K
 I shall �x � � �PX�
j

some driftless Laplacian on G and � � � will denote the corresponding
spectral gap
 On the space X� I shall consider the semigroup (Tt de�ned
in Section 
� and denote by � � fx�t	 � X � t � �g the path space of
the corresponding di�usion
 For that path space we shall show that the
criterion at the end of Section 
� holds
 This will complete the proof
of theorem for the above group
 We shall adopt the following notation

�!
	 x�s	 � rsks � G �

�!
�	 rs � ���� 	 	 	�s � R � s � �� �j � R� j � �� � � � � � s �

where we use group multiplication in both �!
	 and �!
�	� but where�
unless K � feg� the ��� ��� 	 	 	 � R are not independent random vari�
ables
 As we pointed out in Section 
� however if we �x k� � �kj	

�
j�� �

K� �some path in K	 and condition with respect to that path the vari�
ables ��� ��� � � � become independent with uniformly Gaussian densities
on R �cf� sections �
 and �
!	
 It follows that under that condition
r�� r�� � � � becomes a time inhomogeneous random walk on R


The following events A�� � � � � B�� 	 	 	 � � will now be considered

�!
�	 As � �j�jjG � C log s � j � �� � � � � � s� � s � �� � � � � �
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where C � � will be chosen appropiately at the end
 By the above �uni�
form in j	 Gaussian estimate on the variables �j we have the following
estimate on the conditional expectations �uniformly in k�	

P�
As��k
�� � exp��c log� s	 � s � �� � � � � �

where 
 stands as usual� for complement
 Therefore we have

P�
As� � exp��c log� s	 �

Observe that with the notations of �!
�	 on the event As we have �cf�
�
�
�	

jqj jQ � c log s� jnj jN � C exp�c log s	 � CsC � �j � �nj� qj	 �

for j � �� � � � � � s
 Let now

�!
!	 Bs � �Lk�q� 	 	 	 qj	 � C � j � �� � � � � s � k � �� � � � � n� �

Here C � � and L�� � � � � Ln are the real roots attached to the semidirect
product N i Q as de�ned in Section �
�
 The basic fact that follows
from Section D in the appendix �cf� D
	 is that

P�Bs� � c s�C � s � �� � � � � �

for appropiate constants C� c � �
 When the operator � is elliptic the
analogous even stronger statement �with the continuous time parame�
ter	 is a consequence of A��	 which was proved with considerably less
cost in Section A of the appendix


Let us now de�ne the set

Xs � fx � �n� q� k	 � X � jnjN � CsC � jqjQ � CsCg �

It is then clear from the above and from Section �
� that

As �Bs � �s � �x�s	 � Xs�

and therefore that P�x�s	 � Xs� � c sC 

On the other hand we clearly have

drr � dk�measure�Xs� � CsC
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and therefore our criterion of Section 
� is veri�ed and we are done

The following remark is worth making
 We have used here the fact

that in our criterion we can use indiscriminately either the drr� dk or
the d�r � dk measure to measure the set Xs
 There is a very simply
way to avoid this
 Towards that let us de�ne

Cs � �jx�s	j � C log s� �

then clearly by the Gaussian estimate on the Heat kernel on G

P�
Cs� � C exp��c log� s	

and
jmG�x	��j � jmR�x	��j � CsC � jxj � C log s �

This means that if we replace Xs by Xs � �x � X� jxjG � C log s� and
�s by As � Bs � Cs we obtain a new Xs that satisfy the criterion as
before and that furthermore on these new sets Xs the two measures
drr � dk and d�r � dk are equivalent up to a constant that grows at
most polynomically in s
 Because of this it follows that it does not
matter which of the two measures we consider


���� General NB	groups�

From the above special case I shall deduce here the lower estimate
��
	 of Theorem A for a general group
 Let G be an arbitrary real NB�
Lie group and let �G� G be the simply connected cover of G
 It clearly
is enough to prove the NB�theorem for �G for then by the standard
local Harnack principle the theorem also holds for G
 We have that
�G � QiS where Q is the radical �simply connected	 and S is a simply
connected semisimple group
 By considering S � NA �K the Iwasawa
decomposition of S we can write then �G � R �K with R � QNA but
where �K is not necessarily compact
 By general considerations however
�cf� ��!�	 there exists Z � �K a discrete central �in �G	 subgroup such
that K � �K�Z is compact
 We have �G�Z � RK and therefore the
lower estimate in ��
	 holds for the group �G�Z
 We shall now show
how one deduces from this the same lower estimate for �G and therefore
also for G


We start with the following de�nition
 Let G be a compactly gen�
erated locally compact group and let H � G be a closed compactly
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generated subgroup �e�g� G a real Lie group and H � ) some discrete
subgroup	
 As we already pointed out in Section �
� for any h � H the
two distances jhjH and jhjG are not in general equivalent �we use here
the more general notion of j 	 jH valid for non connected groups� cf�
���	
 We shall say that H is a O�distortion subgroup if for all � � H
neighbourhood of e � H� there exists C � � such that

C��jhjG � jhjH � CjhjG � h � Hn� �

The important thing to observe is that the central subgroup Z � S �
�G � QiS considered above is a O�distortion subgroup of �G
 This fact
is easy to prove and the details were outlined in ��!�
 The fact that
in the lower estimate ��
	 we can pass from �G�Z to �G is therefore a
consequence of the following

Lemma� Let � � &G � G be a covering map and let ) � Ker� � &G
be a O�distortion �nitely generated subgroup� Let us further consider

�� � �PX�
j some driftless sublaplacian on G which can be identi�ed

with a sublaplacian on &G� Let �t�g	� &�t�g	 be the corresponding Heat

di�usion kernels and let � � �� be the corresponding spectral gap as in

Section � �cf� �����		� We have

�!
�	 �t�e	 �
X

�
Ker�
&�t��	 � t � � �

and there exists C � � such that

�!
�	 �t�e	 � C &�
���
t �e	 e��t��tC � t � � �

The reader could observe that ) is automatically �nitely generated but
this point is here irrelevant


Proof� ) � &G is a central subgroup it follows therefore that &�t��	 is a
positive de�nite function on ) and therefore &�t��	 � &�t�e	� � � )
 We
clearly also have mG��	 � �� � � )
 By ���� Chapter "� Section ��	 and
the O�distortion property we also have

&�t��	 � C e��t exp
�
�j�j

�

c t

�
� � � )� t � � �

for some C � �� and therefore also

&�t��	 � C &�
���
t �e	 e��t�� exp

�
�j�j

�

c t

�
� � � )� t � � �
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for a di�erent c� C � �
 If we apply the summation �!
�	� which is
trivial to prove �cf� ��
�
�		� our estimate �!
�	 follows


Remark� An adaptation of the above method� with the use of
the i 	� ii 	 version of the criterion in Section 
�� gives the proof of the
lower estimate in Theorem A�	
 What changes is the geometry and the
�section� that is used �cf� ���� II�	


If we use the global structure theorem for �not necessarily simply
connected	 NC�groups from ���� III� we can adapt the method of Section
!
� to general NB�groups
 The Section !
 becomes then redundant


Appendix�

Guide to the appendix�

For the upper estimate of Theorem A�	 and for Theorem B one
only needs Section B of this appendix
 My advise to the reader in a
�rst reading is to go straight for Section B and simply refer back for
the notations


Sections A
� and A
� su�ce for the lower estimate of Theorem A�	
in the case when � is an elliptic operator
 In my mind this should be
the next thing that the reader should study
 To do this one should also
study �or at least believe	 Section C
 Section C is elementary calculus
but a certain amount of ingenuity is already needed
 The estimate A�	
in Section A
� is needed for the lower estimate of Theorem A�	
 Had it
not been for the non elliptic Laplacians � we would stop there and then

The discrete formulation and the discretisation presented in Section D
and Section E are only needed to cope with this subelliptic �but not
elliptic	 situation� and Section F stands towards Section D what Section
C stoud for Section A
�
 More explicitely for the �non elliptic	 lower
estimate of Theorem A� one needs the �rst half of Section F� Section
E
 and Section D
� �i�e� D�	 for p � ��	
 The property D��	 can
be used as an alternative to A�	 for the proof of the lower estimate of
Theorems A�	


Both Section D and Section F are non trivial �in fact they are�
technically� quite di�cult	 and they present an independent interest

I intend to come back in the future to the problems involved in sec�
tions D and F and examine them systematically for their own sake

The reader who is not particularly interested in these problems should
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simply not waste time and energy in these sections
 Indeed an alter�
native approach �more sophisticated� but technically simpler	 to the
subelliptic Laplacians will be given in a second instalment of this work


A� The continuous time di�usion�

A��� Statement of the results�

We shall consider here the space X � Rn �K where K is a some
compact C��manifold assigned with some smooth non vanishing mea�
sure dk
 On X we shall further consider D some subelliptic formally
self adjoint �with respect to dx � dz�dk where dz is Lebesgue measure
on Rn	 second order operator with constant term D� � �
 D will be
assumed invariant under the left action of Rn �cf� Section 
�	
 To
simplify notations �and since this is the only case that we shall use	 we
shall further assume here that K is some compact group and dk is the
Haar measure
 The general case when K is an arbitrary C��manifold
can be treated with identical methods


Let us denote by e � ��� �� � � � � �	 � Rn and by C� � fz � Rn �
hz� ei � jzj cos�g �� � � � ��	 the corresponding conical region
 Let
us further denote by C��� � C� � �e �� � �	 the above conical region
translated backwards so as to contain the origin � � C��� 


We shall now consider the continuous time di�usion on X

� � fx�t	 � �z�t	� k�t		 � X � Rn �K � t � �g

controlled by the di�erential operator D
 I shall denote as usual by Px
�x � X	 the corresponding probability measure on � with Px�x��	 �
x� � �
 We shall show that for any � � � � �� and � � � there exists
c � � such that

�A
�	 P��x�s	 � C��� �K � � � s � t� � t�c � t � c �

i�e� the di�usion stays in the conical region �polynomially long�

We shall also show that there exist C � � such that

�A
	

P��jx�s	j �M � � � s � t� � C�� exp
�
�C t

M�

�
� t�M � � �

where for x � �z� k	 � Rn �K we denote jxj � jzj
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Let us observe straight away that M � t��� in �A
	 gives

P��jx�s	j � t��� � � � s � t� � C�� exp��C t���	 � t � � �

A��� The di�erential operator D�

In this section we shall consider the operators �D � DR � M �
P �DK on X � Rn �K as in sections 
� and A
� and preserve all the
notations introduced there


Let U�x	 � C���	 �� � Rn � open	 and let �j�k	 � C��K	�
�j � �� � � � � n	 be arbitrary
 I shall denote by F �x� k	 � U�x� �
���k	� � � � � xn � �n�k		
 We have then

DKF �
nX
j��

DK��j	
�U

�xj
�

nX
i�j��

� sX
�����

�����X��i	�X��j	
� ��U

�xi�xj
�

MF � 
nX

i�j��

� sX
���

b��iX��j

� ��U

�xi�xj
�

PF �
nX
j��

�j
�U

�xj
�

By �
�
�	 it then follows �this is standard Fredholm theory cf� ����
���� ��"� when D is elliptic and the result easily generalizes to subelliptic
operators	 that for j � �� � � � � � n we can choose �j � C��K	 so that

DK��j � cj	 � �j � � � �c�� � � � � cn	 � Rn �

With that choice of the � s we have therefore �DF � �LU	�x � �	
where

L �
nX

i�j��

Rij�k	
��

�xi�xj
�

Ri�j � ai�j �
sX

�����

����c��ic��j � 
sX

���

b��ic��j � i� j � �� � � � � n �
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where c��i � X��i �i � �� � � � � n� � � �� � � � � s	
 Let us use standard
matrix notations and set A � �aij	 � Mn�n� B � �b��i	 � Ms�n�
) � �����	 �Ms�s
 The characteristic form of �D then is

�A
�
�	 a �

�
A BT

B )

	
�Mn�s�n�s

and the caracteristic form of L is

�A
�
	 F �a�C	 � A� CT)C � BTC � CTB �

where C � �c��i	 � Ms�n
 �T stands for the matrix transposition
operator	


The matrix a in �A
�
�	 is non negative �cf� Section 
�	
 This
implies that F �a�C	 � � and therefore in particular if we assume that
a � �I for some � � � �this is the order relation of symmetric matri�
ces	 we also have F � �I
 The proof of these facts is elementary linear
algebra
 Indeed assume �rst that A� ) are the identity matrices then
a � � implies that ,Ta, � � �,T � ��T � �T 	� � � Rn � � � Rs	 i�e�

�T� � �TBT� � �TB� � �T� � �� setting � � �B� we obtain the
required result �T�� �TBTB� � �
 In general� by standard perturba�
tion� we can assume that A� ) are invertible
 We set then C � )����D
and obtain

F � A�BT)��B � �DT � BT)����	�D � )����B	 �

This means that it su�ces to show that A � BT)��B � �
 Towards
that by conjugating LTaL with

L �

�
A���� �

� )����

	

we can reduce the problem to the case where A and ) are the identity
matrices which is the special case that has just been treated


In terms of our di�erential operators the above says that L is a
second order operator on Rn with positive characteristic and that L
is uniformly elliptic on Rn if D is uniformly elliptic on X
 It is an
unfortunate fact that we cannot replace ellipticity by subellipticity in
the above statement �example� n � �� K � T� D � ����x� � ������
 cos � ����x��� then ������� � � sin � and therefore ����� �  cos �
� c��	 and L � sin� � ����x�	
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One important consequence of the above transformation where we
set U�x	 � xi �i � �� � � � � n	� the n coordinate functions� is that the
process

y�t	 � z�t	 � ��k�t		 � Rn

is a vector valued martingale
 Equivalently this says that for any linear
function U�x	 �

P
ujxj and any C � Rn the function F � U�x �

��k	 � C	 is D�harmonic on X

It is in general impossible to construct explicitely any other D�

harmonic function on X
 When D is elliptic however it is very easy to
give an explicit construction of an important family of D�subharmonic
functions F i�e� functions that satisfy

�A
�
�	 DF �x	 � � �

More precisely let � � � be small and let �C � C� �K be the conical
region in X as de�ned in Section A
�
 Then a subharmonic function
F as in �A
�
�	 can be constructed to have the following additional
properties�

F � Ck�X	 for some �suitably high	 k � � � F � � �

�A
�
�	 F � � on Xn �C � F �� � on �C �

�A
�
!	

F �x	 � O�jxjA	 for some A � � �

F ��e� eK	 ��� as ��� �

eK � identity in K �

The construction of F is easy
 Indeed we start with Fr�k � Ck����Rn	
as in Section C and for an appropiate choice of �� k we set U�x	 � F��k in
our previous construction
 It is clear then that if we choose appropiately
the constants C � �C�� � � � � Cn	 � Rn the function

�A
�
�	 F �x� k	 � U�x� � �� � C�� � � � � xn � �n � Cn	

has all the required properties
 The role of the constants C is simply to
translate the value of the argument �on �C� �K	 outside �C� where
U is � �
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A��� The proof of �A����

All our notations will be preserved
 We shall �rst prove the follow�
ing

Lemma� There exist C� c � � such that

Pe� max
��s�t

jz�s	j � C t� � e�ct � t � � �

In fact for our purposes we only need the following weaker state�
ment

�A

�	 Pe� max
��s�t

jz�s	j � c t� � O�t�A	 � t � � �

for any A � �
 The proof of the lemma is easy
 Let us de�ne T� � � �
T� � 	 	 	 a sequence of stopping times by

Tj�� � infft � Tj � jz�t	� z�Tj	j � �g �

For every j � �� yj�t	 � y�t � Tj	 � y�Tj	� �t � �	� with y�t	 as in
Section A
�� is then a martingale and it is easy to verify that Sj�t	� the
S�function of this martingale� satis�es �cf� ��� Section !�	

E �exp��S�
j �t � �j		��TTj 	 � C � �j � Tj�� � Tj � t � �� j � � �

for � � � small enough
 Since clearly by the stochastic integral rep�
resentation of that martingale we have c�t � S�

j �t	 � c�t �� � t � �j�
j � � and some c�� c� � �	 it follows that there exists c � � such that

P�Tj�� � Tj � �j � ���TTj � � O�e�c�	 � E ��j 	 � c � � �

One can then use Bernstein s inequality for the sum of independent
random variables �cf� ��	 which works in this more general context
and deduces that

Pe� max
��s�t

jz�s	j � c n� � P��� � 	 	 	� �n � t� � n 
 t �

has the correct bound
 This proves the lemma
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One can also prove �A

�	 directly using the Doob maximal the�
orem on the martingale y�s	 �s � �	 constructed in Section A
�
 This
however requires the estimate ky�s	kp � O�s���	 �for p �large enough	

This �nal estimate is a consequence of the Gaussian decay

P�jz�s	j �M � � O
�

exp
�
�c M

�

s

��

which although correct is not trivial to prove ��"�
 The subellipticity of
D is needed for that estimate to hold
 In our context the above Gaussian
estimate can also be picked up by the corresponding Gaussian estimate
on the original group G �cf� ���	


Finally� for yet another approach to prove �A

�	 one can use
S�t	 the S�function of the martingale y�t	
 Using the It(o �stochastic
integral	 approach of the construction of the di�usion x�t	 �t � �	 one
sees inmediately that kS�t	k� � O�t���	
 The only complication here is
of course the fact that X is not RM but a manifold and the construction
has to be done in �patches�� cf� ���
 The estimate �A

�	 follows again
by the standard martingale inequality kSkp � kmax kp �cf� ���	
 The
advantage of this approach is that again no subellipticity is used


Let now �C � and F �x	� x � X� be as in A
� and satisfy the conditions
�A
�
�	��A
�
!	
 We shall start di�usion at O � ��e� eK	 � C�K some
large � � � and denote

CR � �C � �a � jxj � R� � Rn � � � �R � infft � x�t	 � �CR�Kg �

The standard submartingale property of the process fF �x�t		 � t � �g
implies then that

�A

�	 F �O	 � EfF �x��	�g � C� � P�jx��	j � R�RC �

where the C� � � is independent of R and comes from the fact that
x�t	 could exist at some small x��	 on which F �x��		 � �
 If we choose
� � � large enough however we are going to have F �O	 � C� and
therefore

�A

!	 P�jx��	j � R� � cR�C � R � � �

Our lemma on the other hand implies

�A

�	 P�� � R � jx��	j � cR� � O�R�A	
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for all A � �
 If we put �A

�	 and �A

!	 together we conclude that

P�� � R� � cR�C � R � � �

This clearly implies �A
�	


A��� The proof of �A����

The estimate �A
	 can easily be transformed to a standard ��rst

eigenvalue� estimate
 Indeed let us consider the operator D on the
M�ball of X

XM � fx � �z� k	 � jzj �Mg
with Dirichlet boundary conditions �i�e� we �kill� the di�usion at the
boundary	 and let � � � be the �rst eigenvalue and � � � � C��XM 	�
k�k� � � the corresponding eigenfunction
 Then clearly

�A
�
�	 ke�tD�k� � h�� e�tD�i � e�t�
Z
XM

� dx �

Using standard methods we shall presently see that

�A
�
	

Z
� dx � c � � � � � CM���

It follows thus that for each t � � there exists some x� � XM such that

Q�x�� t	 � Px� �jx�s	j �M � � � s � t�

� C exp
�
�c t

M�

�
� t � � �

By the left action of Rn on X we can assume that x� � ��� k�	 � K

To show that we can assume that x� � � we can use the parabolic
Harnack estimates that are veri�ed by Q�x� t	 �these use the subellip�
ticity of D	
 Otherwise �without the use of the above Harnack	 we have
automatically from �A
�
�	

sup
x�
K

Px� �jx�s	j �M � � � s � t� � C exp
�
�c t

M�

�
� M� t � � �

The estimate � � CM�� in �A
�
	 is easy enough and is an immediate
consequence of the fact that the function

	�z� k	 � �M � jzj	� � �z� k	 � X �
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appropiately smoothed for jzj near � and M satis�es

k	k�� �Mn��� �D	�		 �Mn�

The �rst estimate in �A
�
	 is a tri�e more subtle �but also very stan�
dard	
 The subellipticity of D implies �cf� ���	 that

�A
�
�	 kfkp � C��Df� f	��� � kfk�� � f � C�
� �X	 �

for some p � 
 The estimate �A
�
�	 applied to � implies �since M � �	
that k�kp � Ck�k� which by standard convexity gives the required
estimate
 A less sophisticated method to see that

R
� � C is to combine

directly the fact k�k� � � with the Harnack estimate
 Subellipticity is
again essential for this approach �if

R
� 
 �� k�k� � � then there exists

x� � XM such that ��x�	 � � also by standard elliptic estimates we
may suppose that distfx�� �XMg � c� � �
 Harnack applies on � and
does the rest	


A��� Gaussian estimates for a Laplacian with a drift�

The Gaussian estimate for the heat kernel of a Laplacian with a
drift term � � �PX�

j �X� is not quite standard and we shall outline
the proof here
 The upper estimates are contained in ��� but here the
proof does not need the rather di�cult technology of ��� and this proof
is already implicit in ��"�I�
 Indeed if u�t� x	 is a solution of ���t� �
then v�t� x	 � u�t� xetX�	 is a solution of the �time dependent	 evolution
equation

�

�t
�
X

�Ad�etX�	Xj	
� � � �

Let fTs�t � � � s � tg be the corresponding time inhomogeneous semi�
group �"� and let 	 � C� be such that jrr	j � � where rr denotes
the gradient of some �xed left invariant Riemmanian structure on G

By the standard argument �cf� ��"�I�	 we then see that

ke�� Tt�s e���k��� � exp��c �t� s	��	 �

To give the proof of the upper Gaussian estimate of the corresponding
Heat kernel �and of all its derivatives	 we simply use the local Har�
nack principle just as in ��"�I���
 One should simply observe that the
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canonical distance on G induced by the �elds X�� � � � � Xn and the above
Riemmanian distance are �equivalent� at in�nity


It is of independent interest to observe that the following maximal
Gaussian estimate also holds �and we do not need subellipticity for this
estimate	

Pt��	 � P� max
��s�t

jz�s	j � �� � C exp��c ���t	 � � � t � �� ��t � � �

and that there here exists an alternative more direct proof of this fact

This proof relies on a standard Laplace transform argument �cf� ���	
and the estimate Pt��	 � c e�c�t �t � �	 which is equivalent to

�A
�
�	 P�T � inf�s � jz�s	j � �� � t� � c e�c�t� t � � �

This last estimate is non trivial
 The only way I know how to prove it
is by considering in local coordinates the semimartingale expression of
t����z�s � t � T 	� �s � �	 for �xed t � �
 It is easy to see then that
the S�function of that semimartingale satis�es kSk� � C
 This implies
�well known� we time change the martingale part of the semimartingale
and make it brownian motion	 that the maximal function

M� � t���� sup
��s�t

jz�s � T 	j

satis�es k exp���M�	�	k� � C and our estimate �A
�
�	 follows from
the fact that on the set �T � t� we have M� � t���


The proof of the lower Gaussian estimate �unless the drift is of
special form� cf� ��"�	 is as far as I can tell considerably more di�cult
to prove
 The pivot of the proof is the estimate

�A
�
	 Px�d�z�t	� y	 � ������ � C exp��c
t
	 �

for � � t � �� x� y � G� ����� � d�x� y	 � ����
 This estimate for
a Laplacian with a drift is essentially the Varadhan�Ventcel�Freidlin
large deviations estimates for the Heat kernel �cf� ����	
 The details
are rather formidable to write out
 This has been done in ��"� II� �esp

Section �
�	
 In that reference the drift had a special form but the proof
given there works for a general drift
 From �A
�
	 the lower Gaussian
estimate follows by standard methods �e�g� ��"�II�� Section 
�	
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B� The large deviation estimate�

In this section we shall preserve all the notations of Section �
�
and we shall prove the estimate ��
�
�	
 The proof is done in two steps

The �rst step consists in modifying

�B
�	 �A�Li	 � inf
��j�n

exp��diLi�bj		

where we set b� � � and in showing that

�B
	 E � �An�L�	 	 	 	 �An�Lp		 � O�exp��c n���		 �

The second step consists in deducing ��
�
�	 from �B
	

To simplify notations I shall also assume throughout that di � �

�i � �� � � � � p	
 At any rate in both ��
�
�	 and �B
�	 we can also absorb
the di with the Li and consider �Li � diLi instead

Proof of the step �� By the C�condition we can �x � � � � � i� �
	 	 	 � i� � p and �s � � �� � s � �	 such that

�sLis �� �� � � s � � �
�X

s��

�sLis � � �

It is then clear from the geometry of the situation that there exists
C � �

jLi��x	j � C
�X

s��

L�
is

�x	� x � V �

therefore since

�An�L�	 	 	 	 �An�Lp	 � exp�� sup
��j�s

�X
s��

L�
is

�bj		

we conclude that �B
	 will follow as soon as we can prove that for any
a � � we have

�B
�	 E
�

exp��a sup
��j�n

jLi��bj	j	
�

� O�e�c n
���

	 �

where c � �

Observe now that Uk � Li��Xk	 � R� �k � �� � � � � 	 is a sequence

of real random variables and that the density functions �k of these
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variables P �Uk � dx� � �k�x	 dx clearly are Gs�functions on R �by
Chapter �	 uniformly in j � �� � � � � 
 Our estimate �B
�	 is thus a
consequence of the following lemma

Lemma �� Let U�� U�� � � � be a arbitrary sequence of independent ran�

dom variables that satis�es the above condition� Let Sn � U� � 	 	 	�Un
and Vn � sup��j�n jSj j� Then for every a � � there exists c � � such

that

�B
�	 E �e�aVn 	 � O�e�cn
���

	 �

Lemma �� Let U�� U�� � � � be as in Lemma �� Then there exists � � �
and an integer n� such that

P �jU� � U� � 	 	 	� Un�m� j � m� � �� � � m � �� � � � � �

Lemma � follows from Lemma 
 Indeed from Lemma  it is clear
that

P �Vp n�m� � m� � ��� �	p � m� p � �� � � � � �

and therefore that

P �Vn � m� � C exp
�
�c n

m�

�
� n�m � �� � � � � �

and �B
�	 follows by integration


Proof of Lemma �� Let 	k��	 � (�k��	� � � R� denote the char�
acteristic function of the variable Uk� k � �� � � � � 
 The uniform lower
estimate of the Gs�condition �k�x	 � C exp��cx�	 implies that �k�x	 �
�G�x	 � �� � �	 ��k�x	� where G�x	 is a Gaussian distribution and ��k
some other probability distribution and there exist thus � � � � ��
c � � such that

�B
!	 j	k��	j � � exp��c ��	 � �� � � k � �� � � � � �

Now again the uniform Gs�condition on the �j  s implies that 	k �
C��R	 uniformly in k and therefore since

	k��	 � �� j	k��	j � � � � �� � �
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it follows that there exists c � � such that

�B
�	 j	k��	j � �� c j�j� � j�j � c� k � �� � � � � �

Putting �B
!	 and �B
�	 together we conclude that there exists c� � � �
such that

j	k��	j �
�

�� � if j�j � � �

e�cj
j
�

if j�j � � �
k � �� � � � �

Let now

� � �� (� � C��R	 � L��R	� (���	 �

Z
eix
��x	 dx �

Then for any m � �� � � � � � r � � we have

�B
�	

Z
�� � 	 	 	 � �m��x	�

� x

rm

�
dx

� r m

Z
�	� 	 	 		m�	��	 (��r m �	 d�

� r m

Z
e�cm

�
� (��rm�	 d� � ��� �	m
�

���	

�
Z
e�c


��r (���	 d� � ��� �	m
�

���	

� c
p
r (���	 � ��� �	m

�

���	 � �� � �

where the last estimate holds if r is small enough and m large enough

For an appropiate choice of � we have ��x	 � �� jxj � � and thus �B
�	
gives

P �jU� � 	 	 	� Um� j � r m� � �� �

and Lemma  follows


Proof of step �� Let us �x N � � �to be chosen later	 and denote
I� � f�N � �� �N � � � � � � �� � �	Ng � N� � � �� �� � � � � 
 Let Y� �
infj
I� jXjj and let j� � I� be the �rst integer j � I� for which jXjj �
Y�
 Let us further de�ne

Bn�Li	 � inf
��N�n�N

exp�c Y �
� � Li�bj�		 �

Cn�Li	 � inf
��N�n�N

exp��Li�bj�		 �
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�n � sup
��N�n��N

�X
k
I�

jXkj
	
� �n � sup

��N�n��N
�Y�	 �

It is then clear that

�B
�	 An�N �Li	 � Bn�Li	 � Cn�Li	 e
c
�n �

�B
"	 Cn�Li	 � �An�Li	 e
C�n �

provided that C � � is large enough

By the independence and the Gaussian decay of the variables in�

volved� we see on the other hand that

P

�X
k
I�

jXkj � �


� C exp��c ��	 � � � �� � � � � �

P ��n � �� � C n exp��c ��	 �
where C� c are independent of n� � � �� � � � � � �but may depend on N	
and that

P �Y� � �� � C� exp��c�N ��	 � � � �� � � � � �

P ��n � �� � C�n exp��c�N ��	 �

where C�� c� are independent of n� ��N � �� � � � � 
 It follows in partic�
ular that

�B
��	 kec�nkp � O�n��p	 � � � p � �� �

and that for every given k � � and � � p � �� there exists an N � �
large enough for which

�B
��	 kek
�nkp � O�n��p	 �

The proof of the step  is then a consequence of �B
	� �B
�	� �B
"	�
�B
��	� �B
��	 and a simple use of H�older s inequality
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C� The conical function and the Hessian�

Let e � ��� �� � � � � �	 � Rn and let r � jxj� let 	� � � be the
latitude with respect to the north pole e and �	�� � � � � 	n��	 be an
appropiate set of local coordinates on Sn�� �the n�  sphere	� so that
�r� �� 	�� � � � � 	n��	 are a set of �polar� coordinates on Rn 


We shall now �x some small � � �� and de�ne a function F � F��k
on Rn 
 First of all F � � if hx� ei � jxj cos �� i�e� F � � outside
the region C� �cf� Section A
�	 with � � ��
 Next we require that
F �x	 � r�u��	 for x �� � for some large � � �� � � � � and � � u��	 �
Ck
 The function u��	� � � � � � will have the following properties
u��	 � � for ��� � � � ��� u��	 � � for �� � � � � �for some small �	
and u��	 � �j�j � j��j	k for j j�j � j��j j small where k � � �� � � � is an
appropiate even integer
 In this section we shall analyze the Hessian
H��k � Hess�F 	 � �hi�j	


Quite generally let us denote by S the set of symmetric real n� n
matrices and by P � S the cone of non negative matrices
 Let � �
���� � � � � �n	 � Rn � we shall denote by �� � � ��i�j	 � P
 It is clear that
any s � S can be written

�C
�	 s �
kX

j��

��j �
�
j � ��j �

nX
i�k��

��i �
�
i � ��i �

where ��j � � are the characteristic roots and ��j �j � �� � � � � 	 are the
corresponding orthonormal set of eigenvectors
 We shall �nally de�ne
the scalar product in S

hS��	� S��	i �
X
i�j

S
��	
ij S

��	
ij � S�k	 � �S

�k	
ij 	 � S �

The following two notations will be needed

Pa � fp � �pij	 � P � a
X

j�jj� �
X

pij�i�j � a��
X

j�j j�
for all ���� � � � � �n	 � Rng � a � � �

Sa � fs � S � hp� si � � for all p � Pa���g � a � � �

The connection between the above two de�nitions is described in the
following elementary
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Lemma� Let s � S and a � �� Then s � Sa if and only if we can write

s in �C
�	 with

�C
	
X

��j � a
�X

��j
�
�

Proof� Indeed p � Pa��� if and only if in �C
�	 it can be written

�C
�	 p �
X

�j�j � �j

with a���� � �j � a��� and �j � Rn some orthonormal basis
 If we
bare in mind that h���� ���i � h�� �i� for the standard scalar product
on Rn we see that with s as in �C
�	 and p as in �C
�	 we have

�C
�	 hs� pi �
X
j��

��j ��h��j � ��i� �
X
j��

��j ��h��j � ��i��

We clearly also have

�C
!	
X
�

h�� ��i� � k�k�� � � � Rn �

From �C
�	 and �C
!	 it follows that hs� pi � � if �C
	 is veri�ed
 This
gives the �rst half of the lemma
 To see the opposite direction for s � S
as in �C
�	 it su�ces to test the condition hs� pi � � on the matrix

p �
X
j

a������j � ��j �
X
j

a�����j � ��j � Pa��� �

The signi�cance for us of the above notions lies in the following

Lemma� Let a � � be given� Then there exists k� � k��a	 such that for

all k � k� there exists u��	� satisfying the conditions of the de�nition

of F��k� and ��� ���a� u	 � � such that

H��k � Hess �r�u��		 � Sa � � � �� �

at every point of Rn �

The �rst step is to observe that we have

r �
� �

�x�
� � � � �

�

�xn

�
� A

� �

�r
�

�

r

�

�	�
� � � � �

�

r

�

�	n��

�
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valid for r � � and j����j � j��j� and �	�� � � � � 	n��	 in some appropi�
ate patch of local coordinates of Sn��
 The matrix A � �aij�			 has
C� coe�cients that only depend on �	�� � � � � 	n��	 and is independent
of r
 For every p � P and the corresponding di�erential operator P we
have therefore

PF � hp�H��ki

�
X

pij
��F

�xi�xj

� s
��F

�r�
� 

�

r

n��X
i��

si
��F

�r�	i
�

�

r�

n��X
i�j��

si�j
��F

�	i�	j
� �

�

r

�F

�r

�
�

r�

n��X
i��

�
�F

�	i
�

where the coe�cients are C� and where the matrix �sij � i� j � ��� ��
�� � � � � n� 	 � � is positive de�nite �with s����� � s� s���i � si	
 For
F � r�u it follows that

�C
�	
r���PF � ��� � �	su � �s�u

� � s���u
�� � ��u � ��u

�

� ���s � O����		u � ��s� � O����		u� � s���u
�� �

Therefore for our special choice of u��	 and � close to �� �j�j � j��j	 we
have

�C
�	

r���PF � ���� � ��	
k�s� O����		

� k��� � ��	
k���s� � O����		

� k�k � �	�� � ��	
k��s��� �

Given a � � it follows that the discriminant in �C
�	

D � k��s� � O����		� � k�k � �	s����s � O����		

is strictly negative for all

j� � ��j � �� � � � �� � k � k� � p � Pa��� �

where �� � ���a	� k � k��a	 only depend on a

Let us �x some k � k� and some u��	 that satis�es the conditions

of the de�nition of F �for that k	
 Once u has been �xed� it follows
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from �C
�	 that there exists �� � ���u	 � �� �that depends on u	 such
that PF � � for all j�� ��j � �� and � � ��
 This completes the proof
of the lemma


D� The random walk and the martingale�

D��� Statement of the results�

Let Sj � X� � 	 	 	 � Xj � Rn denote an n�dimensional random
walk where the variables Xj are independent and centered �E �Xj 	 � ��
j � �� � � � 	� but not necessarily identically distribuited� and where there
exists a � � such that each covariance matrix satis�es

�D
�
�	 fE �X�
j X

�
j 	gn����� � Pa � j � � �

�here we use the notations of Section C and Xj � �X�
j � � � � � X

n
j 	 are the

coordinates	
 We shall also assume that for some  � p � �� we have

�D
�
	 kXjkp � C � j � �� � � � � �

We shall generalize the above setup and consider a vector valued mar�
tingale

fj � d� � 	 	 	� dj � Rn � j � �� � � � � f� � � �

The conditions we shall impose on the martingale di�erences will be a
natural generalization of �D
�
�	 and �D
�
	

E �d�j d
�
j ��Tj��	 � Pa � E �jdj jp��Tj��	 � C � j � �� � � � �

where T� � T� � 	 	 	 are the 
��elds of the martingale
 Let �fj � j � �	
be a martingale as above we shall then show that if p �  there exists
C� c � � such that

�D
�	 P � sup
��j�n

jfjj �M � � c exp
�
�C n

M�

�
� n�M � C �

We shall also show that �if p � p� large enough	 for any � � � � � and
� � � large enough there exists � � � such that

�D
	 P �fj � C��� � � � j � m� � m�
 � m � � �
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where C��� is as in Section A
�

Both the above estimates are very easy to prove when n �

dimension � �
 For n � �� �D
	 is well known
 We can take p � ��� �
� arbitrary then� and we do not need the extra covariance condition

To see this we shall consider uj � F �fj	 where F �x	 � �� x � ��� and
F �x	 � x � �� x � �� which is a submartingale and then apply the
�optional stopping time theorem� on fj�T where T � inffj � fj � ��g


The proof of D
� for n � � is not very much harder
 We set
T � inffj � jfjj � Mg and compose f�j � fj�T with the function
FM �x	 � F �x�M	 where F � C�� � � F � �� F �x	 � � for jxj � ��
F �x	 � � for jxj � ��� F �x	 � � for jxj � � and F �x	 � C��� jxj	��
for �� jxj � ����
 Using the Taylor series of F � it is easy to verify that
�cf� Section D
 for details� in fact this veri�cation is entirely trivial if
jdkj � �	

E �FM �f�n	��Tn��� � e�cM
��

FM �f�n��	 � n � � �

If we iterate this for n� n� �� � � � we see that �D
�	 follows at once

Both �D
�	 and �D
	 are false in higher dimensions without the

covariance condition in �D
�
�	
 It is clear why �D
	 brakes down� it
su�ces in the random walk Sj � X� � 	 	 	� Xj to consider �singular�
variables Xj � hyperplane perpendicular to the axis of C�
 To see why
�D
�	 brake down when n �  we start with rj � �rj � �	 � R� � where
rj � � are Rademacher variables� and consider Tj � SO� so that the
last vector �� R�	 in the following summation

fj � r� � T��r�	 � T��r�	 � 	 	 	� Tj���rj	

is orthogonal in R� to the sum of the �rst j � � terms
 The rotations
Tj can clearly be made Tj���measurable
 We obtain thus a martingale
transform �cf� ���	 that satis�es jfjj �

p
j


Remark� It is clear that the �rst condition �D
�
�	 is equivalent to

a
X

j��j� � E
���� nX

���

��d
�
j

������Tj��� � a��
X

j��j� �

Therefore when the dj  s admit conditional densities

�D
�
�	 P �dj � dy��Tj��� � d�j���y	 � j � �� � � � � �

the condition �D
�
�	 is equivalent to

�D
�
�	
�Z

y�y� d�j���y	
�n
�����

� Pa � j � �� � � � �
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D��� A general notion of subharmonicity� the Taylor series
and the proof of �D����

We shall consider

���	x � P �Rn	� x � Rn � � � A � some index set �

a family of centered �i�e�
R
Rn

yi d�
��	
x �y	 � �� x � Rn � � � A� i �

�� � � � � n	 probability measures and F � � some upper semicontinuous
function on Rn 
 Let further R � Rn be some open domain
 We shall
then say that F is subharmonic in R with respect to the above family
if

�D
�
�	 F �x	 � F � ��x �x	 � x � R� � � A �

For simplicity in what follow we shall drop the index � � A and consider
only the case when A reduces to the one point set


The interest for us of the above de�nition lies in the following
considerations
 We shall consider the family of measures �D
�
�	
 These
measures in our applications will be given by d�x�y	 � p�y� x	 dy where
the p s are as in Section E
 We shall furthermore �x F and R as above
that satisfy �D
�
�	 and de�ne further

� � inffn � fn �� Rg
the �rst exit time of the process fn � y�n	 de�ned in Section E
 What
is important for us is then the following

Lemma� Let F�R� � be as above� Then the process un � F �fn�� 	 is a

submartingale�

In our applications the martingale fn will be one of the two mar�
tingales y�n	 or y�Tn	 of Section E and then we deduce that for any
starting probability of the di�usion �x�t	� t � �	 in Section A the process
un � F �fn�� 	 is a submartingale


The proof of this lemma is straight forward and was given in ����
II� Section ��� it will therefore be omitted


We shall now explain a general procedure that allows us to analyze
the convolution F � �� � �	 for any � � P �Rn	 with

R
x d��x	 � �


Towards that we shall use the Taylor development at x � Rn and write

F � ��� �	�x	 � 
X
i�j

Z
��� t	Fi�j�x � ty	 yiyj d��y	 dt �



Analysis on Lie groups 	��

where Fi�j � ��F��xi�xj � we assume here that F is su�ciently di�er�
entiable and that all the above integrals �y � Rn � � � t � �	 converge
absolutely


We shall modify the above expression as follows


X
i�j

Z
���t	Fi�j�x�ty	

yi
jyj

yj
jyj d��y	dt � 

X
i�j

Z
Fi�j�x�y	

yi
jyj

yj
jyj d��y	

where d��y	 � jyj�d��y	 and d� is the image of the measure �� �
t	dt�d� by the mapping �t� y	 � ty
 We shall assume throughout thatR jyj�d��y	 � �� so that � is a bounded measure
 Quite generally for
any measure � � P �Rn 	 and any matrix �hij	 � H we shall introduce
the notation

�-H�x	 �

Z
hij�x � y	

yi
jyj

yj
jyj d��y	 �

With the above notation we have therefore

F � ��� �	�x	 � �-Hess�F 	�x	 �

where Hess�F 	 � �Fij	 denotes the Hessian matrix of F 

For the new measure � we can no longer assert that it is centered

and its baricenter � �
R
x d� may not be �
 Indeed this is not in general

true even for the measure �
 Let us make the additional hypothesis that

E��	 �
�Z

xixj d��x	 � i� j � �� � � � � n
�
�Pa �

Z
jxj���d��x	 � C �

for some C� � � �� a � �
 It is then easy to see that there exist
� � �� � and R� � such that

�D
�
	 �fx � jx� x�j � R� �g � � for all x� � Rn � jx�j � R �

Furthermore R� � only depend on C� �� a
 This means that the measures
�x��R � �fjx�x�j�R�	g� � � �jx�j � R	 all satisfy k�x��Rk � �
 It

follows also that the measures �x��R that we can associate to �x��R by
the same procedure satisfy k�x��Rk � ��
 In other words� the property
�D
�
	 is �inherited� by � and can be used as a substitute of � � �

This point will be used at the end of Section F below


Let us now give the proof of �D
	 and to make the argument
that follows clearer let us assume �rst that � � P �Rn	 as above is
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compactly supported and that its moment matrix satis�es E��	 �
�
R
xixj d��x	 � i� j � �� � � � � n	 � Pa for some a � �
 The condition

that we have imposed on the moment matrix is then equivalent to the
fact that there exists � � � such that for any �n� �	�dimensional sub�
space H � Rn we have

�D
�
�	 �fx � dist�x�H	 � �g � � �

Since supp� is compact it is easy to see that the measure � that corre�
sponds to the above � has the same property �D
�
�	 and therefore it
follows that the corresponding moment matrix

�D
�
�	 E��	 �
�Z

xixj d��x	 � i� j � �� � � � � n
�
� Pb

for some b � �

We shall apply the above considerations to the function F �x	 �

F��k�x	 of Section C
 By the proposition of Section F and �D
�
�	 we
deduce that for any � as above and jxj appropiately large we have

F � �� � �	�x	 � � �

and our lemma applies
 An easy adaptation of the argument �A

�	�
�A

!	� �A

�	 completes then the proof of the assertion �D
	 for the
case p � �� in �D
�
	


There are several ways of getting rid of the compactness of the
support in �D
�
�	 since we shall not need optimal results� let us proceed
as follows� Suppose as above that E��	 � Pa and that supp� � fjxj �
Rg� R� �
 It is easy to see �e�g� by scaling	 that E��	 � Pb where b 

R� �if a is �xed	
 Let then � be an arbitrary measure that is assumed
to admit a high enough moment EN �

R jxjNd� � �� �N � �	 and
let us denote by �R � �fjxj�Rg�� the part of � at �� and by �R the

measure that corresponds to �R we have then E��R	 � O�R��	 for an
arbitrary large � �provided that N is high enough	
 We can therefore
correct the contribution of � coming from �R � �fjxj�Rg� by O�R��	

and obtain that E��	 � Pb with b�� 
 R�� � O�R��	
 For R large
enough we obtain thus again �D
�
�	 for some b that only depends on
a�N and EN 
 Working out the exact value of N is not so hard and that
exact value of N is not so large either


The proof of �D
	 for general values of p � �� in �D
�
	 can
then be completed as before except that we now have to use the second
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half of Section F
 For our applications however the case p � �� is not
essential
 Indeed if we use the martingale y�Tn	 constructed in Sec�
tion E
 then the supports of all the measures involved are �uniformly	
compact and p � ��


D��� The radial function and the proof of �D��� �The case
p � �� in �D�������

Let � � 	 � CN �Rn	 be radial decreasing �i�e� 	�x	 � 	�r	�
r � jxj and N is su�ciently large	 and such that 	 � � if jxj � ��
and 	 � � if jxj � �� 	 � � if jxj � �
 Let us further assume that
	�x	 � �� � r	� for ��� � r � � and � � �� �� � � � some appropiately
large even integer
 The above function is clearly not convex �if n � 
it is not even convex in some Nhd of the unit sphere r � �	
 Let
Hess�		 � ���	��xi�xj	 be the corresponding Hessian matrix
 This
matrix can easily be diagonalized and an easy calculation shows that
for jxj 
 � we have

Hess	 � ��� � �	��� r	����� �� c ���� r	����j � �j �

where ��x	 is the unit vector along the radius Ox and �j�x	 �j �
�� � � � � n � �	 are an orthonormal complement of ��x	 �tangent to the
sphere fy � jyj � jxjg


The crucial fact in the structure of the above Hessian is that for
each r� � � if we add some appropiately large multiple of 	 we obtain
a positive matrix

Hess	 � C 	 I � � � jxj � r� �

By scaling therefore 	M �		 � 	�	�M	 �M � �	 we obtain

Hess	M � CM��	MI � � � jxj � M r� �

If we use the second order Taylor development of 	M we obtain there�
fore that

	M � ��� �	�x	 � �CM��
Z
	M �x � y	 d��y	 � jxj � M r� �

where � and � are as in Section �D
�	 and are compactly supported
since p � ��� and � satis�es ��D
�
�	 of Section D
��
 Then � and �
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also satisfy �D
�
�	 and since 	M �r	 is decreasing it follows that there
exist M�� c� � � such that

�D

�	 	M�����	�x	 � �c�M��	M �x	 � M �M� � jxj � M r� �

The next observation is that for all a � � there exists � such that if
��r� � � then Hess	 � Sa� jxj � r� therefore also Hess	M � Sa �M �
�� jxj � r�M	
 In informal terms this says that� near the boundary� 	
�looks more and more like a convex function�
 In fact by an elementary
calculation� that is best carried out by drawing a few pictures� we see
that �D

�	 holds �with c� � �	 for jxj � r�M provided that � � r�
is small enough and M large enough
 The �nal conclusion is therefore
that �D

�	 holds for all x � Rn 


From the estimate �D

�	 we deduce that there exist M�� c � �
such that

�D

	 	M � ��x	 � e�cM
��

	M �x	 � x � Rn � M �M� �

To �nish the proof of �D
�	 let us set T � inffj � fj �Mg� f�j � fj�T
and let us apply �D

	 with � � �j�x as in �D
�
�	
 We obtain

E �	M �f�j 	��Fj��� � e�cM
��

	M �f�j��	

which by iteration gives

�D

�	 E �	M �f�n	� � e�cn�M
�

� n � �� M �M� �

From �D

�	 �D
�	 follows at once
 It has thus been shown that �D
�	
holds if p � �� in �D
�
	
 The above argument can be adapted to
deal with p � ��� the proof will be omitted since this is not essential
for us


E� Discretising the continuous time martingale�

E��� The deterministic discretisation t � �� � � � � �

We shall preserve all the notations of Section A and recall �Section
A
�	 that y�t	 � z�t	 � ��k�t		 � C � Rn is a continuous time martin�
gale
 It follows in particular that fj � y�j	 �j � �	 is a discrete time
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martingale �unlike Section D
� f� � C which is not necessarily �	 our
purpose is to examine

P �fj � fj�� � dy��f� � x�� � � � � fj�� � xj��� � pj�y�x	 dy �

for x � �x�� � � � � xj��	� y � Rn 
 To be formally correct the above
probability density is only de�ned x almost surely and is a measure
d�x�y	
 The above abusive notation will be justi�ed by what follows

What is clear by the martingale property is thatZ

y d�x�y	 � � � j � �� �� � � � � x � Rn �

We shall show then that there exist C�C� � � such that we have �uni�
formly in x	

�E
�
�	 C��
� exp��Cjyj�	 � pj�y� x	 � C� exp

�
�jyj

�

C

�
� y � Rn �

It is essentially this estimate that justi�es our previous abusive notation

It is clear that it su�ces to prove the same Gaussian estimates for
the ��ner� conditional probabilities with respect to the �elds Tj �
T fz�t	 � t � j��g
 By the Markov property we must therefore consider
the conditional properties

P �fj � fj�� � dy���z�j � �	� k�j � �		 � x� � �pj�y�x	 dy �

for y � Rn � x � �z� k	 � X � Rn �K
 These new Gaussian estimates
can be deduced from the Gaussian estimates for the di�usion kernel
qt�x�� x�	� �t � �� xi � �zi� ki	 � X� i � �� 	 of the di�usion � �cf�
Section A
�	

�E
�
	 C��
� exp��Cjz� � z�j�	 � q��x�� x�	 � C� exp

�
�jz� � z�j�

C

�
�

To deduce �E
�
�	 from �E
�
	 one simply �integrates� along the �bers

Fy � f�z� k	 � X � z � ��k	 � yg �

The upper Gaussian estimate �E
�
	 is perfectly standard and follows
from the more general �C��manifold	 upper Gaussian estimates for
subelliptic operators and the intrinsic distance that they induce �cf�
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���	
 The lower estimates makes essential use of the left invariance of D
and the corresponding scaled �for �small balls� but spacially uniform	
Harnack estimate
 The argument is an easy adaptation of ��"�
 Al�
ternatively� if the reader is not prepared to either believe or verify for
himself the above argument� he could refer to ��� where the above lower
estimate is explicitely proved for Lie groups G and left invariant opera�
tors
 The di�usion � that we will be considering is non other than the
di�usion that in Section  is induced on R � K by the corresponding
di�usion in our original group G
 The lower Gaussian estimate �E
�
	
can then easily be picked up by the corresponding estimate in that
group
 The veri�cation will be left to the reader


The reader should also observe that the above lower Gaussian esti�
mate is not essential for us here
 Indeed the reason that we need these
estimates is that we have to show that the above martingale fj � y�j	
satis�es the conditions of Section D
�
 For this it su�ces to have the up�
per Gaussian estimate �E
�
�	 which guarantees the moment condition
�D
�
	 and a much weaker lower estimate of the form

�pj�y� x	 � � � jyj � � �

for some � � �
 This is guaranteed by the uniform Harnack estimate
on X for the operator D


E��� The optional time discretisation�

There is an alternative way to discretise the time parameter of the
martingale y�t	� �t � �	
 Let T� � � and

T� � infft�jz�t	� z��	j � Cg � Tj � infft�jz�t	� z�Tj��	j � Cg �

for j � � �� � � � � and some large C � �
 We can set then fj � y�Tj	�
�j � �� � � � � 	 which is now a martingale as in Section D
� with the
additional property that the martingale di�erences dj � fj�fj�� � L�

are uniformly bounded
 For this new martingale we shall de�ne again

P �fj � fj�� � dy��x�Tj��	 � �z�Tj��	� k�Tj��		 � x� � d��x�y	 �

for j � �� � � � � � x � X � Rn �K� and

P �fj � fj�� � dy��f� � x�� � � � � fj�� � xj��� � d�x�y	 �
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for j � �� � � � � � x�� 	 	 	 � Rn � and we shall show that the measures
�x satisfy the covariance condition of Section D
� uniformly in j � �
and x � Rn 
 For this it clearly su�ces to prove the corresponding
covariance condition �D
�
�	 for the measures ��x
 To see this fact one
simply has to understand what a subelliptic di�usion means
 The best
way to analyze this situation is to work with the �trajectories� of the
di�usion � �cf� Section A
�	


Indeed if x� y � + � X where + is some open set of X then

P��x�Tj���t	�+� � � t � t�� dist�x�Tj���t�	� y	����x�Tj��	 � x�

� Px�x�t	 � +� � � t � t�� dist�x�t�	� y	 � �� � �

for any t� and � � �
 This is a basic consequence of the subellipticity of
the operator D and follows from the smoothness of the heat di�usion
kernel and elementary �if lenghty and tedious	 considerations that will
be left for reader


For �xed x and j therefore� by appropiately chosing t� and y we see
that measure �x�dy	 charges positively �and in and uniform fashion with
respect to x and j	 a whole family of small discs around x
 Furthermore
there are enough of these discs on every direction as we go away from
x to guarantee the covariance condition �D
�
�	 for ��x
 The details will
be left to the reader


F� The geometry of the Hessian�

F��� Dimension � n � �

To see clearly what is involved we shall �rst consider the case of
R� �i�e� n � dimension � 	
 We shall preserve all the notations of
the previous sections and translate the ��variable �now of course the
polar coordinates are �x� y	 � �r� �	 � R�	 by �� � � so that the x�axis
becomes one of the two edges of the wedge C�� and fx � �� y � �g �
fr � �� � � �g


For these coordinates we have

�

�x
� cos �

�

�r
� sin �

�

r

�

��
�
�

�y
� sin �

�

�r
� cos �

�

r

�

��
�

For � 
 � �� � �	 and F � F��k as in Section C we obtain by a straight
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forward calculation that

HessF � r����k��
�

���� �k� � ����

�k� � ���� k� � ��k � � � k	�� � ����

	

� r����k��H �
�F
�
�	

where each coe�cient of the matrix H has to be multiplied in addition
by a factor � � � O���	 � O���k	 � O�k��	� and in the considerations
where H is used we shall assume throughout that � � � � �� � ��
� � k� � � ��k


For a � that it is not close to � and F � r�u��	 we also have the
following expression of the Hessian

�F
�
	
HessF � � �� � �	 r���u��	

�
cos� � cos � sin �

cos � sin � sin� �

	
� � �� � �	 r���u��	 �H �

where every coe�cient of the matrix �H has to be multiplied by a factor
of the form �� � O����		 with a O�		 that depends of course on the
particular chice of u


Let now quite generally K � �ki�j�x		 � S� x � Rn � denote an
arbitrary matrix and let � � � denote some non negative measure on
Rn 
 We shall use then the same notation as in Section D
�

��-K	�x	 �
X
i�j

Z
kij�x� z	

zi
jzj

zj
jzj d��z	 �

where we shall assume that all the above integrals converge absolutely

I shall denote

Eij �

Z
xixj d��x	 �

We have then

Proposition� Let � be as above and let us assume that E � �Eij	 � Pb
for some b � � and that � is a probability measure supported in the unit

ball� supp� � fx � Rn � jxj � �g� Then there exists a choice of �� k
and some r� � � such that

�F
�
�	 ��-HessF��k	�x	 � � � x � Rn � jxj � r� �
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The proof is elementary but lenghty
 Before we give the proof we
shall explicitely state the three basic properties of HessF that make
the things work
 The proof of this properties will be left to the reader


a	 Using the notation of Section C
� we shall diagonalize the matrix
H at every z � R�

H � ��e� � e� � ��e� � e� �

where �e�� e�	 is an orthonormal basis of R� and where �� � �� pro�
vided that � � � � �� for �� small enough and k� ��k are large enough

Furthermore by direct computations or by the considerations of Section
C we see that for all a � � there exists t�� k� such that �� � aj��j for
��k � t�� k � k�


b	 Let us assume that � and k are �xed� then �i�z	 and ei�z	 are
continuous functions of �
 By the uniform continuity and the fact that
� � y�jzj we see therefore that for all � � � there exists r� � r���� �� k	
such that

j�i�z�	��i�z�	j � � � jei�z�	�ei�z�	j � � � jz��z�j � ��� jzij � r� �

c	 Let us again �x � and k
 Near � � � we have

�F
�
�	 �-HessF��k � �-r����k��Hj��� � Error �

Let A � � be �xed for z� � �x�� y�	 with jy�j � A and x� large
enough
 We have

��-r����k��Hj���	�z�	 � k�
Z
r����k��

y�

jzj� d��z	

� x����k� �c� � O���x�		 �

where c� � �
 To prove that c� �� � we use already the hypothesis
E � Pb
 By an easy calculation on the other hand one sees that the
�error� in �F
�
�	 is O�x����k� 	 because all but the k� terms ofH involve
higher powers of �


The conclusion is that for �xed �� k and A we can �nd B � � such
that our estimate �F
�
�	 holds in the region

RA�B � fz � �x� y	 � x � B� y � Ag �
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What is furthermore important about the region RA�B is that �again
with �� k �xed	 for any � � � we can �nd A and r� large enough so that
the co�factor of H in �F
�
�	 	 � 	�z	 � r����k�� satis�es

�� � � 	�z�	

	�z�	
� � � � � jz� � z�j � � � jz�j � r�� z� �� RA�r� �

In other words that cofactor varies as slowly as we like outside the
regions RA�B for large jzj


We shall now procede with the proof of the proposition
 Because
of c	 above� it remains to prove �F
�
�	 in the region outside RA� r�

With the notations already introduced we have then

�-HessF��k�z�	 �

Z
��z�� z	 d��z � z�	 �

where

��z�� z	 � 	�z	
�
���z	

D
e��z	�

z � z�
jz � z�j

E�
� ���z	

D
e��z	�

z � z�
jz � z�j

E��
and where z� lies in the region � � � � ��


For any � � � let us denote

B	�z�	 � fz � jz � z�j � �� jhe��z�	� z � z�ij � �jz � z�jg
so that B� is the unit ball centered at z�
 Let us now �x � � �� we can
then �nd t�� k� so that

���z	
D
e��z�	�

z � z�
jz � z�j

E�
� ����� j���z	j

D
e��z�	�

z � z�
jz � z�j

E�
�

for ��k � t�� k � k�� z � B	 
 Observe that here the argument z has
been frozen to z � z� in ei�		
 We shall �x k � k� and will not change
it anymore
 Using b	 for every � � ���k�	 we can �nd r� � r���	 such
that

���z	
D
e��z	�

z � z�
jz � z�j

E�
� ���� j���z�	j

D
e��z

�	�
z� � z�
jz� � z�j

E�
�

for � � ��� jz � z�j � ��� jzj � r���	� z � B	 
 Using c	 and the slow
variation of 	 outside RA� r� we see that there exists A � � such that
for all � � �� large enough there exists r���	 � � such that

�F
�
!	

	�z	���z	
D
e��z	�

z � z�
jz � z�j

E�
� ��� 	�z�	 j���z�	j

D
e��z

�	�
z� � z�
jz� � z�j

E�
�
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for jz � z�j � ��� z � �x� y	 � R� � jzj � r���	� jyj � A� z � B	 
 At this
point one should remember that we are working close to the edge of C�
i�e� in a range � � � � �� for some small ��
 The estimate �F
�
!	 will
now be used in conjunction with the fact that because of our hypothesis
E � Pb� for � � � small enough� we have ��B�nB		 � ����� �cf� Section
D
�	
 If we integrate �F
�
!	 against d��z � z�	 d��z� � z�	 we obtain
that for all � � �� there exists r� � r���	 such that

�F
�
�	 �-HessF��k � ����	�z�	���z�	
D
e��z�	�

z� � z�
jz� � z�j

E�
�

for � � ��� zi � �xi� yi	 � R� � i � �� �� jz� � z�j � �� z� � B��
jzij � r���	� yi � A� ��
 In particular �F
�
�	 holds for z� � z� which
together with c	 shows that for k � k� and every � � �� there exists
r� � r���	 such that

�F
�
�	 �-HessF��k��z	 � � � � � ��� � � � � ��� jzj � r���	 �

To �nish the proof of the proposition� since k � k� has been �xed� we
shall complete the de�nition of u��	 in F��k � r�u��	 and use the for�
mula �F
�
	 for the Hessian
 Using that formula and the same method
�this method now applies much easier
 Indeed we do not have the edge�
where the co�factor �k�� vanishes� to worry about�	 we �nally see again
that there exists �� � � such that for all � � �� there exists r� � r���	
such that

�-HessF��k��z	 � � � � � ��� �� � j�j � �� � ��� jzj � r���	 �

If we combine this �F
�
�	 we see that we have a proof of the proposition


The rest of this section will be devoted to the proof of the propo�
sition when the support of � is not compact under some additional
conditions
 This is interesting on its own right but is not essential for
the rest of the paper
 We start by extracting as much as possible from
our previous argument


Let �i�z	� i � ��  be the two eigenvalues of HessF��k with j��j � j��j
�when � � � � �� with our previous notations we have of course �i �
r����k���i� i � �� 	
 By analizing our previous argument we see that
if supp� � �jxj � �� for some �xed �� then we can �nd k�� ��� c� � �
such that for all � � �� there exists r� � r���	 such that

�F
�
�	
�-F��k��z	 � c�

Z
���z � x	 d��x	

� c�kHessF��k�k � ��z	 � jzj � r���	 �



��
 N� Th� Varopoulos

What is important is to analyze the dependence of c� on the parameters
of the construction
 Following the construction through and preserving
the same notations we see that if � and b are kept �xed then we can
set c� � C��b� �	��
 This � � � �which is assumed small	 is the � that
was used in the de�nition of B	�z�	


The important aspect of the estimate �F
�
�	 is that it is �scale
invariant�
 First of all it is clear that nothing changes if we replace F��k
by CF��k some constant multiple of F��k
 Because of the homogeneity
of F it follows that we can replace � by any �� where �� is the image of
the measure � by the dilatation � � x �� �x in R� 
 Clearly the dilatation
� replaces � by �� and b by maxf��� ���g b
 It follows in particular that
we cannot shrink a large � to � without at the same time having b go
to �


The dependence of c� on b� for �xed say � � �� must therefore be
examined
 That dependence is of course picked up by the condition
��B�nB		 � �����
 This gives � 
 b���� and by the above dilatation
argument we conclude that for �xed b � �� c� 
 ���
 More explicitely
if b is �xed� we can choose k�� ��� c such that for all � � �� and all � � �
there exists r� � r���� �	 such that

�F
�
"	

�-HessF��k��z	 � c

�

Z
���z � x	 d��x	

�
c

�

Z
kHessF��k��z � x	k d��x	 �

for � � P �jxj � ��� E��	 � Pb� jzj � r���� �	
 The only thing that
really counts in �F
�
"	 is that the dependence of the co�factor of the
integrals is polynomial in �
 A co�factor of the form c���� would have
been just as good for our purposes


With the help of �F
�
"	 we shall generalise our proposition to
measure that are not compactly supported
 To do this we have to go
back to Section D
� and to start from some � � P �Rn	 such thatZ

jxjNd��x	 � ��

and such that

� �

Z
x d��x	 � � �

�Z
xixj d��x	 � i� j � �� � � � � n

�
� Pc �

for some large N large enough and some c � �
 We shall next consider
the measure � that corresponds to � as in Section D
�
 It is for that
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measure � that we shall need to generalize our proposition and prove
that

�F
�
��	 ��-HessF��k�	�x	 � � � x � Rn � jxj � r� �

This new measure � also satis�esZ
jxjNd��x	 � �� �

E �
�Z

xixj d��x	 � i� j � �� � � � � n
�
� Pb �

for some N as large as we like and some b � � �but does not necessarily
satisfy � �

R
x d��x	 � �	


The next step is to examine kHessF��kk as obtained from the two
formulas �F
�
�	� �F
�
	
 An easy calculation gives

C��k
�r����k�����r����k	 � kHessF��kk � C��k

�r����k�����r����k	

valid in the ���C� cone �� � � � ��	 that is closest to the edge � � �

It follows that in that region if we use cartesian coordinates we have

�F
�
��	
kHessF��kk 
 k��x��kyk�� � x�k��y��k��	

� ���x��k��yk � x�ky��k��	 �

If we combine the two �� subregions of C� we see that if we denote by
� � ��z	 � dist�z� �C�	 we obtain the estimate

�F
�
�	
kHessF��kk 
 k��x��k�k�� � x�k�����k��	

� ���x��k���k � x�k���k��	 �

valid in the whole C�
 Let us consider the functions �A�B�z	 � xA�B

�z � C�	 and ��z	 � � �z �� C�	 where �A�B	 takes the four possible
values that appear in the right hand side of �F
�
�	
 To prove �F
�
��	
it will su�ce to show that any of the above four functions �A�B � ���k
has the following property� There exist C�� C� � � that do not depend
on � �but may depend on k	 such that for all � � � there exists u���	 � �
such that

�F
�
��	

Z
jzj��

���k�u�z	 d��z	 �
�C�

�

���� Z
jzj�C�

���k�u�z	 d��z	 �
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for � � �� juj � u���	� � � �� u � C� 
 Indeed once we have �F
�
��	 we
shall truncate � at �jzj � ��
 If we use �F
�
"	 and the same correcting
argument as at the end of Section D
� we see that �F
�
��	 follows


Let us �x R� � � �� let us assume that � satis�es �D
�
	 and let
us denote

m��k�u	 � sup
xjx�uj�R

finf
z

����k�z	 � jx� zj � R� ��g �

It is clear from �D
�
	 that for an appropiate C� � � we have then

m��k�u	 � C�

Z
jzj�C�

���k�u � z	 d��z	 �

�F
�
��	 will therefore follow as soon as we can show thatZ
jzj��

���k�u � z	 d��z	 �
�C�

�

����
m��k�u	

with �� u and � as in �F
�
��	
 The only thing� of course� that really has
to be veri�ed in the above estimate is that the constant C� is uniform
in �
 By the structure of the above functions � it is clear also that we
can �x A� R � � and distinguish the following two cases


Case �
 distance�u� �C�	 � A
 One then simply has to verify thatZ
jzj��

���k�u � z	 d��z	 �
�C�

�

����
���k�u	 �

Case 
 distance�u� �C�	 � A


Observe �nally that we are essentially dealing with two types of
functions

� � rn�a� r�a�n �

where the notations and a� n � � are as in �F
�
�	 and that the es�
timates obtained must be uniform in n
 Clearly also because of the
symmetry about the axis of C� of the above functions we may suppose
that u lies in the half of C� that is closest to � � �
 We can then
substitute in the integrand the following two functions �� �that up to a
multiplicative constant� dominate �	

���z	 � yaxn� �� � x�ayn� z � �x� y	 � C� � f� � � � ��g



Analysis on Lie groups ���

and �� is assumed to be � � outside C�

For these new functions� and an appropiate choice of R� � and A

as above� the veri�cation that we have to make in Case  reduces to

�F
�
��	

Z
jzj�

����k�u � z	 d��z	 �
�C�

�

����
����k��x�A		 �

for u � �x� y	� juj � �� � � y � A
 Finally if � � Argu � ��� i�e� if
u lies in the half of C� closest to the x�axis� it is easy to see that it
su�ces to make the above veri�cations with a modi�ed �� given by

���z	 �

�
yaxn� x�ayn� z � �x� y	� y � �� x � � �

� � otherwise �

Four inequalities have to be veri�ed �uniformly in n	 and I can see no
other way than to just compute
 Or rather let the reader compute
for himself
 At this point life can be made considerably simpler if we
impose the following stronger condition on �

d��z	 � CN �� � jxj	�N �� � jyj	�Ndz for all N � � �

This condition if applied to �F
�
��	 �splits� with respect to the two
variables x and y and the calculations simplify since they now reduce to
the calculation of � dimensional integrals
 Given that for all our appli�
cations the above stronger condition on � actually holds the veri�cation
under this stronger condition is �good enough�
 The details will be left
to the interested reader


F��� An alternative approach and higher dimensions�

For the dimension n �  the method that I developed in Section
F
� is unduly complicated
 Indeed in the case n �  it is much easier
�and also throws additional light to the problem	 to procede di�erently


I shall brie�y outline here this alternative method
 We shall only
examine what happens close to the boundary �C�� because for � away
from �� everything is much easier
 We shall therefore use the formula
�F
�
�	
 If we denote by HessF � �aij	i�j���� the coe�cients of that
Hessian it is very easy to verify that for any �� � � there exist k�� ��� ��
�all depending on ��	 such that

�� � ��	a��a�� � a��� � � � ��� k � k�� � � � � �� �
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The key to this alternative method is to show that under appropiate
conditions on the measure ��z	� we can �make up� for the factor �����	
and guarantee that the matrix B � �bij	i�j����

b�� �

Z
a���z	 cos� � d��z	 �

b�� �

Z
a���z	 cos � sin � d��z	 �

b�� �

Z
a���z	 sin� � d��z	 �

satis�es b��b�� � b���
 The matrix B is therefore positive de�nite and
our proposition follows


The details of the above method are easy to carry out
 At any
rate they are much easier than what was done in Section F
�
 The
reason why I presented the proof for n �  in Section F
� as I did was
because the method of Section F
� generalizes in a more or less obvious
way �although the computations are somewhat tedious to carry out	 to
higher dimensions
 I shall not write the proof down for n � � here

Indeed in a future publication the whole problem will be reexamined
from a more general point of view


F��� A 
nal remark�

The proofs given in this section of the appendix are very technical�
to say the least
 All this work seems to be incompressible if we wish to
consider convolution operators with an arbitrary Gs�measure � � P �G	
as in Theorem B
 If however we only wish to develop the necessary
tools for the lower estimate of A�	 then a completely di�erent approach
�that is more sophisticated and deep but technically much easier	 can
be used


This approach will be developed at great lenght elsewhere I shall
give however here the basic principles
 It relies on the following two
facts�

�	 There exists u � � some non zero function on X that is contin�
uous� vanishes outside C �K� and satis�es Du � � in C �K


The existence of such a positive �harmonic� function relies on non
trivial ideas from potential theory �A
 Ancona ��� and L
 Carleson ����
are the key references	 which we have to adapt in our context
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	 A function u that satis�es the above conditions is automatically
unbounded and of polynomial growth


The proof of 	 is �lighter� than that of �	 but does rely on a
scaled Harnack principle which� for large balls� can only be obtained by
the Moser iterative process �cf� ����	
 At any rate all the details will
eventually be presented in a separate paper
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