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0. Introduction.
0.1. Statement of the theorems.

In what follows G will denote a real connected Lie group and A =
— Z?zl X Jz + Xo will denote some subelliptic left invariant Laplacian
(¢f. [1]). This, for us here, will mean that Xy, X4,...,X,, are left
invariant fields on G (i.e. Xf; = (X f)g, fg(x) = f(gx)) and that
Xi,..., X, are generators of the Lie algebra of G (i.e. together with
all their successive brackets they span the Lie algebra of G (c¢f. [2])).
I shall denote by dg = d*g the left Haar measure of G and by d"g =
d*(g—1) = m(g) d*g the right Haar measure and by m(g) = mg(g) the
modular function.

We can then construct Ty = e~*2 (t > 0) the Heat diffusion semi-
group and ¢;(g) the corresponding Heat diffusion kernel that is defined
by

T,f(x) = /G f@) by ) dy, 150, 2€G, feCP(G).

When Xy = 0 we say that A = Ay is driftless. A driftless Laplacian Ay
is formally self adjoint with respect to d"g. It follows that the modified
Laplacian A = m/2Aym~1/2 is formally self adjoint with respect to
dg. 1t is then more convenient to consider the modified semigroup
T, = m'/2e~tRom=1/2 and it is very easy to see (¢f. [3]) that the

791



792 N. TH. VAROPOULOS

L?*(G;d"g) — L*(G;d"g) norm of the operator Ty = e~*A° (which is

the same as the L?(G;dg) — L*(G;dg) norm of Ty) satisfies

I T3]|22 = e,

where A is the spectral gap of Ay defined by:

)\:inf{/G|Vf|2d”g : /Gf2d"g:1},

where [V |2 = Y7, [ X, /]2

In Chapter 1 of this paper we shall give an algebraic classification
of g, the Lie algebra of G, into two classes: the B-algebras and the
NB-algebras. We say of course that G is a B- (respectively NB-) group
if g is a B- (respectively NB-) algebra. We shall refer the reader to
Chapter 1 for the precise definition that is algebraically very natural
but fairly long to explain. In general terms one considers the minimal
parabolic subgroups P (cf. [26] for the definition of these subgroups
when G is semisimple. Here we extend the notion to general Lie groups
by considering “maximal amenable subgroups” or rather a special class
of such subgroups). One then considers the corresponding dynamical
system Ad(P) and the classification amounts to the “hyperbolicity” or
not of that system. If we denote, here and throughout, by e € G the
neutral element of G we have

Theorem A. Let G be a Lie group as above and let Ay be a driftless
Laplacian, let further ¢, € C*°(G), A > 0 be the corresponding heat
diffusion kernel and spectral gap respectively. Then

Aq) If we assume that G is a B-group then there exists C, cq,
co > 0 such that

C7lexp (=Mt — 2 t1/3) < ¢y(e)

0.1
-1 gCexp(—/\t—cltl/3), t>1.

As) If we assume that G is an NB-group then there exists C' > 0,
v > 0 such that

(0.2) C™lH7e™ < gile) <Ct™"e ™™, t>1.



ANALYSIS ON LIE crouPs 793

By the standard local Harnack estimate (cf. [1], [4]) we can of
course replace ¢.(e) by ¢¢(g) (g9 € G) but then the constant C' = C(g) >
0 depends on g.

Observe that the upper estimate (0.2) with v = 0 is very easy (cf.
[3]). The proof that the same index v > 0 can be used for both the
upper and the lower estimate in As) is very technical. This will be
done elsewhere. Here we shall show that some v > 0 exists for which
the lower estimate in (0.2) holds.

Another way to write the Heat diffusion semigroup is 13 f = f * s
where du(g) = ¢1(g) d"g is a probability measure on G that in addition
has a number of properties that qualifies it to be a “Gaussian” (Gs in
short!) measure on G in a sense that we shall make precise in Chapter
3. For any bounded measure g on G, I shall denote by ||p||2—2 the
L*(G;d"g) — L*(G;d"g) norm of the operator f — f * u. We have
then

Theorem B. Let G be a B-group as above and let pn € P(G) be a

Gs-probability measure on G. Then there exists ¢ > 0 such that for all
v € C§°(G) we have

(0.3) oo™y = O (Il zrze= ") .

The above clearly (c¢f. [1]) contains the upper estimates of (0.1).
It is easy to see that in the estimate (0.3) we can replace ||p"||2—2
by o(u)™ where o(p) > 0, the spectral radious of p (i.e. the spectral
radious of the operator f — f ). The above theorem also holds if we
replace the Gs-measure p € P(G) by some measure that is compactly
supported and has continuous (or even just L?) density. The proof is
but an easy modification of the one given in this paper and is if anything
easier. The details will however not be given here. Observe finally that
for symmetric measures we can easily adapt our methods to give lower
estimates in Theorem B that are in the same spirit as Theorem A.

0.2. Guide to the paper.
Chapter 1 is pure algebra and it presents some independent inter-

est. Chapter 2 analyzes the geometry of Lie groups and it shows how
the spectral gap can be “isolated” from the rest of the decay of the
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Heat kernel. Both the above sections are basic and are likely to play
an important role in further developments. Chapter 3 is technical and
is only one among many possible approachs to carry out the details of
the proof of the upper estimates. The proof of the upper estimate is
completed in chapter 4 where a fair amount of global structure theory
of Lie group is needed. Observe however that for these upper estimates
one needs chapter 2 only up to Section 2.4 and one needs very little al-
gebra (essentially only the definitions of B-groups). A good way for the
reader to start with this paper seems to me therefore to go streight for
that upper estimate in chapter 4 and refer back to chapter 1, chapter
2 as needed. For the upper estimate one also needs Section B in the
appendix.

Almost all of the algebra and the more intricate parts of chapter
2 are only needed for the lower estimates. In the proof of the lower
estimate of (0.2) one more (rather unexpected) difficulty arises. The
proof as I give it here is considerably easier if A is elliptic. The com-
plications that arise when A is only subelliptic are quite formidable.
This distinction disappears in the alternative, much more sophisticate
(at the potential theoretic level), approach that will be used to show
that the same v can be used for the upper and lower estimate at (0.2).
This approach will be presented elsewhere. My advise to the reader is
therefore to ignore that difficulty and pretend, at least in a first reading,
that A is elliptic.

The role of the appendix is crucial since it contains all the proba-
bility and potential theory that is needed in the rest of the paper. The
appendix can (and should) be studied independently, and it has its own
independent “guide to the reader” where I explain in particular what is
needed for what. Whether it was a good idea to separate the material
in this way is of course debatable. One thing is certain, this paper is
very long and putting the appendix apart made my life a little easier.

Chapter OV. An overview.

The aim of this chapter (which properly speaking is not part of the
paper since it was written after the rest of the writting was completed)
is to give to the reader an overview of the subject that is developed in
this paper as well as in some of my previous work in the area.

The material is presented here in general terms and with an em-
phasis on ideas and on the “intuitive picture”. The price that one pays
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for this is in the precision or even in the accuracy in the presentation. I
warn the reader that many assertions made in this chapter are, as such,
incorrect. The “deviation” from what is actually correct however can
be controled and one can say that the aim of this work is to make these
ideas into real mathematics.

The only thing that a non expert needs for the reading of this
chapter is the definition of a semidirect product A £ B of two groups
(¢f. [6]) and to have some idea of what a random walk and brownian
motion is (¢f. [36]). In reading the first two sections of this chapter
the reader could also profit from [37], [38] (in [37] some explanation is
offered for the missing page in [38]).

OV.1l. The az + b group.

Let G be the (only non abelian) two dimensional Lie group of affine
transformations on R, o : # +— ax + b (v € R) with 0 < a = e* € RY,
and «, b € R. This group is the semidirect product R AR} since

01021$F—>a1a2$+b2a1+b1,

where the action of R} on R is b +— ba.

Let us now consider two probability distributions p* € P(R?%),
p € P(R) and let v = p X p* be the “product” measure that we obtain
on G by putting x on R and p* on R .

The beginning of the present work was when several years ago I
observed that one could represent the random walk on G generated
by v (alternatively the convolution powers v*™) in a very simple and
managable way. This idea I shall explain in this section.

Let [gn, = (zn,s)) € G : n > 1] be the paths of that random walks
which formally is defined by P[g,+1 € dz: g, =y] = dv(y~'z). By
projecting G — R% we see that s}, = 27 ---z}; performs a (multiplica-
tive) random walk on R’ (= R) with transition probability p*. The
motion of x,, € R does not, on the other hand, obey a simple stochastic
law and there lies the difficulty of the problem.

The key observation is that once we “fix” (i.e. condition in formal
probabilistic terms) the path w = (s}, 53, ...) of the random walk on R%
then the motion z1,x9, - € R also becomes Markovian. The Markov
process that we thus obtain is time inhomogeneous and we have

Plzpy1 €d [/ an =y; w] =dun (z —y) ,
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where 1, is the measure on R that is obtained from p after the dilatation
z— stx (z €R).

This idea, simple though it is, goes a long way. Let us for simplicity
make the assumption that g € N(0,1) is a normal (i.e. Gaussian)
variable (mean zero and covariance 1). Then p, € N (0,s). From this
we can easily estimate the return probability of our random walk

p(n) =P [gn € [bo, bo] K lagt, ao)] C G]

for some fixed 0 < by € R, ap € RY. The first step is to estimate the
return probability of the conditioned random walk (i.e. fixed w) and
this is clearly

n —1/2
(OV.1) (s+ 83+ +55) 2 (/ o ds) ,
0

where (b(s) € R; s > 0) denotes standard Brownian motion. The
reason why we take e®(®) is that o — e® is the standard homomorphism
between the additive R and R} . We then clearly have to take the
expectation of the expression (OV.1) demanding in addition that b(n)
returns to 0 7.e. we have the estimate

t
(/ eb(s) ds)
0

Brownian functionals as this, have become a big industry these days
and are being considered by several authors under the glamorous and
sexy label of “Financial Mathematics”. This is as good a name as any
for the flavour of the month, I am sure, but all we need is

—1/2
(OV.2) p(t) ~E

L b(t) € [—1,1]] .

p(t) ~ 732, o0,

Instead of considering a random walk on G we can take an analytic
point of view. We should consider then X, X, two invariant unit fields
along the one parameters subgroups R and R, of G and A = —X?— X2
the corresponding invariant Laplacian. If ¢¢(g) denotes the kernel on
G of the heat semigroup e~ generated by A we have

bi(g) ~p(t) ~t73/%2 t = .

The task that lies ahead is twofold:
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1) to show that the above geometric construction generalizes to an
arbitrary Lie group,

2) to estimate the corresponding Brownian functionals thus ob-
tained.

Both the above tasks are quite formidable at the technical level.
In the rest of this chapter, I shall try as much as possible to clarify the
general picture.

OV.2. The barrier problem for random walks.

In this section I shall swich back to standard random walk
Spn=X14+--+ X, €R,

where X; are i.i.d. Bernoulli (i.e. P[X; = £1] = 1/2) variables. The
issue in (OV.2) is of course to estimate

n —A

p*(n)ZEKZGSj) ; Sn:0:|a

j=1

So that
p*(n) <E(e 4Me | S, =0)~n%2,

where M,, = sup;;<, S; (recall that S; = —S;). The above asymp-

totic is obtained because the expectation can be explicitely computed.
Indeed there exist standard formulas for the probabilities (cf. [36])

P[M, <X; S, =0]
= P[Sj, 1 < j < n lies below the barrier A ; S,, = 0] .

We can now use the “maximal oscilation”

0SC (t) = sup |b(t1) — b(t2)| ) |t1 — t2| S 1,
0<t1,t2<t

which is a very “small” variable (and in particular || exp(osc (t))||L: =
O(t)), and Holder inequality and we obtain at once that the actual
brownian functional (OV.2) (and not just the random walk functional)
satisfies

p(n) = O(n~4/+%)
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for all € > 0.

We see, in particular, that it is easy to estimate our (OV.2) func-
tional “up to an £”. This phenomenon recurs all the time during the
whole theory, i.e. the functionals that occur are straight forward to es-
timate “up to an €”. On the other hand to obtain the exact asymptotics
becomes rather involved.

OV.3. A generalization.

The next obvious generalization of the ax + b group is the group
R™ KX R where the action of R on R™ is given by z — e“z (o € R,
x € R"). The analysis that we made for ax + b extends “verbatum” to
this group. What we have to estimate is the functional

EK/; b() ds> o () € [-1,1]]

which, as we already saw is also ~ t~3/2 (or at least O(t~3/2)). We can
push this generalization a step further and consider the group

(OV.3) G=R'AR*=V KA,

where for simplicity (and since the essential aspects of the problem do
not change by this assumption) we shall assume that the action of A on
V' is semisimple with real roots, i.e. that it is given by 6 : A — GL(V)
where there exists Li,...,L, € A* (the dual space) linear functions,
that are normally referred to as “roots”, such that

eLl(‘E) 0

0(¢) = , £eA=R".
0 eLn(‘E)

By the same analysis it is then very easy to see that the return proba-
bility of the corresponding random walk can be estimated by

t
p(t)ZIEK / eLl[b(s)]ds>
0
t —1/2
( / eLn[“s)lds) b(s)| < 1],
0

—1/2

(OV.4)
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where now (b(s) = bs(s) € A =R*; s > 0) is the a-dimensional stan-
dard brownian motion. I do not know whether the functional (OV.4)
will help any one make a lot of money with Asian options at the Chicago
Exchange. What I do know is that estimates of functionals like this are
not easy to get. What we obtain is that (as ¢ — 00)

PO~ or plt)~e
and that it all depends on the geometry of the roots Lq,..., L, € A*.
There are two types of geometries that we need to consider in this
context. The first is the linear geometry i.e. the invariants under
GL(A). This allows us to make the following basic classification. We
distinguish first the case when the origin (0 € A*) lies in the convex
combination of the roots L4, ..., L,. We say then that the roots satisfy
the C-condition. And then the NC-case (non-C) which is the opposite

situation when all the roots lie strictly on one side of a hyperplane in
—ctl/3

—ctl/3

A*. In the C-case we have p(t) ~ e

To give a glims of what is happening, let us consider the func-
tional (OV.4) under the C-condition for Brownian motion and for the
Bernoulli random walk of Section OV.2 (i.e. n = 2, a = 1; and the
roots are: Ly = +1, Ly = —1). We have then

t —1/2 t —1/2
]E[ (/ eb(®) ds) (/ e~ b() ds) ]
0 0

~E(e™),

and it is well known and easy to see that with m(t) = (supg<,<; [0(5)])/2
we have

E(e—m(t)) N e—ct1/3
In the NC-situation the Euclidean geometry (i.e. the O(a;R) = O(A)
invariants) of A* becomes relevant and we have p(t) ~ t~%. The expo-

nent a depends on the “geometry” of the cone

Q=[zeR*; Lj(zx) >0, j=1,....,k] CA=R®

Y
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where Ly, ..., L are the non zero roots. Observe incidentally that the
NC-condition is equivalent to the fact that 2 # @. When all the roots
are 0 one should set 2 = A. This geometry, of course, is considered
with respect to the Euclidean structure on A. At this point we should
go back to the definitions of (OV.4) and observe that a Euclidean struc-
ture has to be given on A = R?, if brownian motion is to be defined.
The question arises what that Euclidean structure is and how is it de-
termined from the group G in (OV.3). The answer to this question is
simple: we project the measure g € P(G) that controls our random
walk on A = R* and take its covariance matrix. This determines the
Euclidean structure.

This Euclidean structure is, with hindsight, very natural. It came
to me however as a big surprise. First of all this Euclidean structure
depends on the random walk on G and not just on G. Therefore t=¢
depends on the measure p and, in general, the « varies continously
with 4 and can be any large enough real value (e.g. a = 10V3 7+ V2).
This contradicts the intuition that we all had in the subject (¢f. [1],
[41]) that lead us to believe that o had to be a 1/2-integer. It is worth
noting that in Ph. Bougerol’s work [41], a natural scalar product does
exist in A, where G = NAK is the Iwasawa decomposition of some
semisimple group G. It is given by the Killing form and it gives rise
to corresponding «’s that are 1/2-integer. Contrary to what was said,
that scalar product and the corresponding « is then independent of
the particular measure. This contradiction with what was said above
is, however, only apparent. Indeed, for a semisimple group G we have
p € P(G) and not pp € P(NA). The role of the Killing scalar product is
important in our theory also. The cone Q in (OV.5) should be thought
as a generalization of the Weyl chamber of the semisimple theory and
the a € 1/27Z is related with the symmetries of the Weyl group. This
aspect of the theory will not be examined in this paper. The other case
when « € 1/27Z is, of course, when G is a unimodular NC-group. For

these groups we have (L1, Lo, ..., L) = @ since unimodularity amounts
to Z?zl L; = 0. It follows that 2 = A and therefore « is independent

of p. This unimodular theory was developed with different methods in
[1].

For the same reasons as in Section OV.2, the functional (OV.4)
is intimately connected with the following “conical barrier” problem.
Let € Q (¢f. (OV.5)) be fixed, the problem is then to obtain the
asymptotics as t — oo of

pa(t) =P, [ba(s) €, 0<s< t] )
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The answer is that there exists some A = A(Q2) > 0 such that po(t) ~
t=*, (t > 1). The proof of this already takes some doing (cf. [13]).

REMARK. We can bring out the qualitative difference between the C-
and NC-geometry at the probabilistic level in the following manner.
Consider the region

=[x eR*; Li(x) >—-1;i=1,...],

which is a “polyhedron”. This polyhedron is bounded (respectively
unbounded) under the C- (respectively NC-) condition and what is
relevant in both cases is

p*(t) =Polb(s) € Q*; 0 < s < t].

The point is that while p*(¢) behaves polynomially when Q* is un-
bounded, in the case when * is bounded we have

p () ~ Pllb(s)| <15 0 <5 <],

which, by the scaling properties of brownian motion b(s) € R®, is easily
seen to have an exponential behaviour (as ¢t — oo). This is the underly-
ing reason for the difference in behaviour of the Heat kernel under the
two geometries.

OV .4. The amenability of the group.

The analysis that we gave in the previous section extends to all
amenable groups. Indeed the model for such a group is a soluble group
P=NAKA=N AR* where now N is a general nilpotent group and
not just a vector space V = R"™. The root analysis of the action of A on
N can be carried out as before and the corresponding brownian func-
tionals can be estimated. The details give rise to considerable technical
difficulties (¢f. [13], [40]) but not fundamentally new ideas are involved.

New ideas are needed to deal with non amenable (e.g. semisimple)
groups. It is these ideas that are developed in this paper. The first
hint of how to go about this is supplied by what was already done.
The point is that it is not quite exact that we can model a general
amenable group by P = N KA as above. The correct model is more like
G = PAK where P is the soluble radical and K is a compact semisimple



802 N. TH. VAROPOULOS

Levi factor. These groups can thus be thought as a P-principal bundle
with a compact base space G/P = K. This model generalizes to any
connected Lie group G: we can find P C G a soluble subgroup such
that the homogeneous space G/P is compact. If G is semisimple and
G = NAK is the Isawawa decomposition we take P = NA. In general
we take for P any “Borel” subgroup (here I deviate slightly from the
standard terminology). It thus turns out that the correct setting for
our theory is to view G as the total space of a P-principal bundle with
P soluble and G/P compact. There exists then N C P a nilpotent
normal subgroup such that P/N = R* = A, and if we quotient G by
the action of N we obtain X an R*-principal bundle. Such a bundle is,
topologicaly, trivial, i.e. X 2 R* x K (cf. [42]). Observe also that X is
a genuine fiber bundle and that it does not admit, in general, a natural
group structure.

In this fiber bundle representation of G the Laplacian A on G is
identified with a P-invariant differential operator on the total space
of the bundle. It is in this identification that the factor e=*, where
A is the spectral gap of A, appears explicitely in the heat diffusion
semigroup e~ 2. It is futile to try to give an intuitive and yet convincing
description of how this comes about. But “grosso modo” what happens
is that on the fiber bundle G = P x K (the product is a Borelian
trivialization of the bundle) we have to consider both the measures
d'r®@dk and d"r @ dk for left and right Haar measure d', d". This brings
out the modular function m(z) = d"z/d'z and then, somehow, the
action of A on m brings out the spectral gap. A similar phenomenom
occurs in the construction of the principal series in the representation
theory of the semisimple group G = NAK. The fact that P is amenable
also plays a role here. In the present formalism one should think of
G = NX where X = R* x K is the generalization of A = R®. As for
the brownian motion on A it is replaced by the R®-invariant diffusion
on X that is generated on X by D, the image of A by G — G/N = X.

The root analysis of the “action of X on N” can be carried out and
the region Q2 = [L; > 0, i = 1,...] C X can be defined as in (OV.5).
One can introduce the analogous brownian functionals and use these
functionals to estimate the heat diffusion kernel as before.

The final step that remains is to analyze the second order differen-
tial operator D on X and the corresponding “brownian motion” that
it generates.
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OV.5. The Laplacian of an R*-principal bundle.

Let X = R* x K or X = Z* x K some (trivial) principal bundle
with compact base K, and let T' be some Markovian operator on X
that is invariant by the action of R* or Z®. For instance, we could be
looking at the markovian semigroup 7; = e *” on X = R* x K as in
Section OV.4. Observe that D can be expressed in local coordinates as
follows

where D(k, 0/0k) only involves the local coordinates (ki,...,k;,...) of
k € K and (z1,...,xz,) are the (global) coordinates of R®.
I shall denote by

(OV.7)  z(n) = (zr(n),zx(n)) eR* x K = X, n=12 ...,

the paths of the Markov process generated by 7.

The simplest non trivial example of the above set up is clearly
X =Z x{0,1} (i.e. when K = {0,1}) is the two point space). T
is the determined by L = (L(%,j); 4, j = 0,1) some 2 x 2 markovian
matrix and by four probability measures p; ; € P(Z) (i, j = 1,2). The
Markov chain (OV.7) can then be determined as follows. First the
motion of the K-coordinate zx (n) is a time homogeneous Markov chain
with transition matrix L. As for the fiber coordinate zg(n) it moves
accordingly to the law

Plzr(n+1) = (" // 2(n) = (¢, 9), 2k (n+1) = j] = pi (¢ = '),

for ¢, (' € Z, 1,5 = 0,1. In other words, if we condition the base point
at time n to be ¢ and at time n+1 to be j, then the n'” step on Z is the
same as for a random walk with measure y; ;. Just as in Section OV.1,
therefore, if we condition on the path zx(0), zx (1), - - € K, the motion
zr(n) becomes a time inhomogeneous random walk on Z. It is clear,
of course, that the above description of the process generalizes when
K =1{0,1,...,n — 1} has n-points or when K is an arbitrary compact
space.
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A typical problem that we shall consider for the above process
is the following barrier problem: Find the asymptotic behaviour (as
n — 00) of

P.(0)=(0,0) 2r(5) = —1, 1 < j <n],

or more generally when X = R* x K and when 2 C X is a connical
domain as in (OV.5) and z € €, find the correct asymptotics of

(OV.8) pa(n) =Py [2r(j) €Q; 1 <j<n].

The above connical (and “twisted” in the bundle) barrier problem is
difficult. Not surprisingly the first step consists in finding 7' the “limit
operator” on R®. That operator determines a Markov chain on R?
(Z(n) € R*, n = 1,2,...) that suitably approximates the motion of
zr(n) of our process for large times.

The construction of T is not trivial. For instance, when T is given
by T; = e *P with D as in (OV.7) then the approximating semigroup
is Ty = e~ P with

DS a2 52
_Zazjaxiaa:j+z '6—371"

but it is not, in general, true that the coefficients @;; = [, a; (k) du(k)
are the average of the corresponding coefficients of D with respect to,
say, the equilibrium measure p € P(K) of the zx (n). Finding the above
limit operator is a problem from Homogenization Theory (cf. [39]).
Once we have determined the limit operator we proceed to show that,
when we are in the NC-case (and 2 # @), the correct assymptotics in
(OV.8) are

pa(t) ~ 7%,

where @ = @gq is the index that corresponds to the cone € and the
Euclidean structure determined by D as in Section OV.3. If we are in
the C-case (i.e. if = @) we obtain, as expected, that po(t) ~ e=et'?

The details of the above procedure will not be given in this paper.
Only a crude first approximation is given in the Appendix. The full
solution will be given in a second instalment of this work.

Solving the above problems is interesting and rewarding because,
among other things, they throw new light to classical homogenization

theory.
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1. Algebraic considerations.
1.1. Complex soluble algebras and their roots.

In this section we shall denote by q a finite dimensional complex
soluble Lie algebra (cf. [5], [6], [7]) and by n C q its nilradical. We
shall denote by n? = [...[n,n]n]...n] the p*® commutator, p = 1,2,...,
and by €, = n?/n?*1 the corresponding factors. I shall further denote
by W=¢,V =q/nand by ¢t =& ® &, @ ---, £is the corresponding
graded Lie algebra where, for the canonical multiplication, we have of
course [£;, €] C &4 ;.

The adjoint action of g

adz:q—q, ad(@)y=I[zy], wyeq,

induces canonically the following actions

(1.1.1) adz :n? — 0P p>1,z€q,

(1.1.2) adz: ¢, =€, p>1; adez : t— ¢, zeq.

It is also clear that the action (1.1.2) vanishes if z € n. It follows
therefore that we also have the following natural actions

(1.1.3) adv: ¢, = ¢, , adv : £ — ¢, veV =q/n,
and in particular
(1.1.4) adv: W =W, veV.

V is an abelian Lie algebra, therefore the action (1.1.4) admits the
standard root space decomposition

(1.1.5) W=w&---eW,,
Wj={zeW; (adv—- X)) z=0; veV}, j=12...s,

where A\; € V¥ = Homg[V; C] are the distinct roots of the action (A; #
Aj, % # j, cf. [5]) and the integer NV in (1.1.5) is large enough, say
N =dim W + 10.
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The actual roots Ai,...As can of course also be defined by the
property that for every 7 = 1,...,s there exists 0 # w € W such that

(Aj(v) —adv)w =0, veV.

Analogous root space decompositions exist for the action (1.1.3) so that
we have for instance

=we cowd, = =12,
where the root space W,gj ) has the root /\$=j ) and

WD =N (Wi, Wiy, ..., Wi ],

where the summation extends over all indices for which AY) = Aiy +
-+ Ay; and where in this paper I shall adopt once and for all the
following notation

X,Y,....Z]=[..[[X,Y]...], Z]

for a higher commutator.
Because of the above situation, as is customary, we shall sometimes
say that

(1.1.6) AL, A2y ey Ag
are the simple roots of the adjoint action and
(1.1.7) AD =N+ Ny, G=1.., r=1,...,s;,

are the multiple roots. It is important in what follows to examine
more closely the above roots and to give what amounts to alternative
definitions of the above notions.

Since q is soluble, the action (1.1.1) (for p = 1) can be simultane-
ously triangulated (cf. [5], [6]). In other words we can choose a basis
of n with respect to which the action (1.1.1) takes the form

vi(x) *
(1.1.8) adz = _
0 v ()
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In (1.1.8) v; € Homc|q; C] = qf are complex linear functionals on g
that vanish identically on n and can thus be identified with elements of
VE.

By the standard Jordan-Holder theorem on composition series [8]
we see then that up to a different order the vq,..., v, € V¥ are exactly
the roots AY) in (1.1.7).

The third definition of the roots is less elementary. Let h C q
be some Cartan subalgebra of q (c¢f. [5], [7]) or more generally just
some nilpotent subalgebra of ¢ that has the additional property (Cartan
subalgebras have that property (cf. [7])),

(1.1.9) n+bh=gq.

We can then consider the root space decomposition
n=n PNy D--- D1y

of the ad-action of h on n where as before

(1.1.10) nj={yen: (adz — p;(z))Ny =0, for all = € h}

(cf. [5]) with p; € bt = Homc|[h,C] as before. The important thing
here is that
[ni,nj] Cng,

where p; + p1; = pg (cf. [5]) and that, since the p;’s vanish identically
on hNn, we can identify these p’s to elements of (h/h Nn)E = Vi
because of (1.1.9).

Therefore fiq, ..., e can be identified with elements of V¥, and by
the same composition series arguments (applied to the action of h on
n) we can identify the p1,..., e (up to a new order) with the roots
(1.1.7).

1.2. Real soluble algebras and their roots.

In this section I shall denote by q a finite dimensional real soluble
Lie algebra and by n C g its nilradical. I shall fix h some Cartan
subalgebra (or more generally some nilpotent subalgebra that satisfies
(1.1.9)) and I shall denote by g. = q® C, n, =n® C and h, = he C
the corresponding complexified algebras. It is then well known that n,
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is the nilradical of q. (it is also true, but irrelevant for us here, that b,
is a Cartan subalgebra of q. if h is a Cartan subalgebra of q). Let us
also follow the same notations as in Section 1.1 and denote by

V =q/n, W =n/[n,n],
which are real vector spaces. We then have canonical identifications
Vo.=V®C=q./n., W ®C=n./[ng,n.].

Relative to the complex algebra g. the roots (1.1.6) can then be iden-
tified with (I denote by ¢ and not by s the number of these roots here)

(121) Al, ..., A € HOHlR[V; (C]

that are defined by the property that there exists 0 # w € W ® C such
that
(Aj(z) —adz)w =0, forallz e V.

At this stage it is important to introduce a notation that we shall
adopt throughout. The real algebra q induces a “real structure” (i.e. a
“complex conjugation”, cf. [9], [10]) in the complex algebra q. = q® C.
I shall consider the complex subalgebras (or even complex subspaces) of
q. that respect to the above real structure (i.e. are stable by the above
complex conjugation). I shall reserve the suffix ¢ to indicate by a. C g,
these subalgebras. This means that a, = a ® C for some subalgebra
a C gq. Such subspaces will be called real.

The considerations of Section 1.1 apply to q. and the subalgebra
he. The important thing is to “build” in the definition of the roots the
above real structure. The key definition needed to do that is that of
the real simple roots or simply the real roots when confusion does not
arise.

These are Ly,...,Ls € V*(= the real dual of V) which are the
distinct non zero real parts of the roots Ay,..., A; of (1.2.1) i.e.

L(v) =ReA(v), veV.

We can of course consider the graded algebra

k.= @(“C)p/(nC)p+l

p
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and the corresponding action of V. on £.. The “multiple” real roots can
thus be defined in the obvious way and these are finite linear combina-
tions with positive integer coefficients of the L;’s

(1.2.2) LY =L, +Ly,+--+L; #0

(with the 4’s not necessarily all distinct).
Let us denote by

Ez{zs:aij Do >0, zs:ajzl} cVv*
j=1

j=1

the convex hull in V* of the real roots with the understanding that
L=oif

(1.2.3) (L1,La,..., L} = 2.

Definition. We shall say that the algebra q is a C-algebra if 0 € L,
otherwise (if 0 ¢ L) we shall say that q is an NC-algebra.

Algebras for which (1.2.3) holds are called R-algebras (cf. [11]).
R-algebras are in particular NC-algebras. It should finally be observed
that in the above definition nothing changes (i.e. we obtain the same
classification of C-, NC-algebras) if we replace £ by L the corresponding
convex hull in V* of the “multiple” real roots (1.2.2) which are just the
non zero real parts Re AY) of the (multiple) roots AP in (1.1.7).

Let us recall that quite generally we say that the Lie algebra g is
unimodular if

trace (adz) =0, rTEY.

It follows at once that if q as above is unimodular and satisfies the
NC-condition then (1.2.3) holds and q is an R-algebra.

1.3. The structure of soluble NC-algebras.
In this section n, h C q will be as in Section 1.2. All the notations
of Section 1.2 will be preserved and we shall consider the root space

decomposition

(1.3.1) ne=n{" @ - -@nl
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of n. under the ad-action of h.. In this decomposition (1.3.1) if p =0

is a root as in (1.1.10) we denote by n(()c) the root space corresponding

to that root. When p = 0 is a root then the space n(()c) is a real space
and we have

ng” = (fo)e
where ng C n. Observe also that h. Nn. C n(()c) and therefore that
(1.3.2) nNhcCny

when g = 0 is not a root we shall abusively set ng = 0.
The other root spaces ngc) are of course not necessarily real. We
shall therefore partition all the roots p1, ..., e into disjoint subsets by

the equivalence relation
(1.3.3) pi ~ pj if and only if Rep; = Repy;

and block together the corresponding subspaces. We obtain thus a
direct decomposition

(1.3.4) n=ng@n & @y,

where (n;). = ngf) @D nz(.z) with g, ..., i, the roots in the equiv-
alence class Rep;, = Rep;, =---=Rep;, = L; .

In the notations of (1.3.4) we shall (abusively) assume that ny may
be = {0} and will always correspond to the equivalence class Re p = 0.
We have of course

(1.3.5) ng C ng, [n;, b C n; i=0,1,...,k.

Finally for any two 7,57 = 0,1,...,k we have

(1.3.6) [n;,n;] Cnp,

where in the equivalence class of the roots of n, the real part is the
sum of the two corresponding real parts (cf. [5]). The following impor-

tant proposition immediately follows from (1.3.2), (1.3.5), (1.3.6) and
(1.1.9).

Proposition. If we assume that q is an NC-algebra then ng = n; @
-~ @ ng is an tdeal in q and qr = ng + § is a subalgebra such that
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ngNqr = {0} and q = ng + qr. In other words we have a semidirect
product decomposition

(1.3.7) q=ngr Aqgr -
Furthermore, we have

(1.3.8) nj,qr] Cny, j=1,...,k.

It is clear that qp is a soluble R-algebra (i.e. it satisfies (1.2.3)).
Observe that quite generally if two ideals j1, jo C q have the property

(1.3.9) q/j; is an R-algebra

then the ideal j; N jo has the same property. Indeed q/j; Nj2 can be
identified to a subalgebra of q/j; X q/j2 which is an R-algebra. It follows
in particular that the ideal ng C q can be given an intrinsic character-
ization and is the smallest ideal j that has the property (1.3.9). It is in
particular independent of the choice of b.

We shall finally need to examine more closely the action (1.3.7).
The algebra qg is soluble. For every fixed 57 we can therefore chose a
basis over C on (n;). = n; ®r C in such a way that with respect to that
basis we have

p1(z) *
adr = , T E€EqRr,

0 pt, ()

where the pg’s vanish identically on n N § since adx is a nilpotent
tranformation for x € nNh. The pg’s can thus be identified with
elements of (h/hNn)E = Homg[h/h N n; C] = (q/n)f and can thus be
identified with the elements of the equivalence class of the roots p of
(1.3.3) that have a fixed non zero real part.

1.4. A general Lie algebra and the Levi decomposition.

In this section I shall consider a general finite dimensional real Lie
algebra g and I shall denote by n C q C g its radical and its nilradical
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(cf. [5], [6]). We can then find s C g a semisimple subalgebra (with the
convention that s could be = {0}) such that

(1.4.1) g=qAKs.

This is of course the standard Levi decomposition and s is called a Levi
subalgebra of g (cf. [5], [6], [7]). The following lemma was first proved
and successfully exploited by G. Alexopoulos [12]. The proof I give
below is different

Lemma (Alexopoulos [12]). We can find by C q a nilpotent subalgebra
such that

(1.4.2) g=n+bho, [5,bo] = {0} .

Proor. By H. Weyl’s theorem (cf. [5], [6]) on the semisimplicity of a
representation of any semisimple algebra, we can find [ C q a subspace
such that ¢ = n @ [ and such that [s, [| C [. But since [g,q] C n (cf. [6])
we have [s, [| = 0. This means that

[CC[():{.TEC[Z [57‘77]:0}7

where qq is a subalgebra of q. If follows in particular that to = qo/qo N
n=gq/qNn. If we set hp C qo to be some Cartan subalgebra of qo we
see therefore that all the conditions of the lemma are verified because
the canonical image of ho in ty is to (¢f. [7]).

The subalgebra by is not in general a Cartan subalgebra of q but
what the lemma says is that it satisfies the condition (1.1.9). It follows
therefore that we can make all the constructions of Section 1.3 starting
from the algebra bhy. Using this we shall extend our previous definition
to general algebras.

Definition. Let q C g be as above. We shall say that g is a C-
(respectively NC-) algebra if q is.

It follows that if with the above definition g is an NC-algebra then
we can define the ideal np C q and decompose q = ng £ qg where qg
is defined as in proposition of Section 1.3 and depends on the choice
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of by (as we already pointed out nz does not depend on that choice).
The fact that [ho,s] = {0} implies that in the decomposition (1.3.1) all

the subspaces ng-c) are stable by the ad-action of s. Therefore it follows
(with the notations of Section 1.3) that ny and all the subspaces n; in
(1.3.4) are stable by the ad-action of s

(1.4.3) [Mo,s] C g, [nj,8] Cny, j=0,1,...,s.
We obtain thus the semidirect product decomposition
g=ngr A(qr £5).
Observe finally that when s is of compact type and therefore qp s
is an R-algebra then ng can be characterized as before as the smallest

ideal j C g for which g/j is an R-algebra. A final observation is in order.
We have

(1.4.4) qr X5 = (ng+ho) X5
and ng C qr <s is an ideal by (1.4.3) and we can consider the projection
(1.45) 7 :qrA<s—(qr £s)/ng = (ho/hoNng) @ s =7(qr £s)
i.e. 5 and hp/hp N ny commute in 7(qr £s). This is because [g,q] C n
(cf. [6]) and (1.4.2), (1.4.4).
1.5. A lemma from linear algebra.

In this section I shall consider

M; =D; +T; € Mpxn(C), j=1,...,s.

A finite number of complex invertible matrices where D; = Diag (dgj ),
cee d,(f )) is assumed diagonal with diagonal entrees dgj ) #0and T; =

(tg)ﬁ)g g=1 18 assumed upper triangular i.e. we assume that tfj)ﬁ =0
(j=1,...,s, a > ). I shall set

- L= v >
max (M 457} = e, w0,
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where || - || indicates the operator norm of the matrix (with respect to
the canonical hermitian scalar product ) z;u; on C*). I shall also set

= max 0], b=, pe.

(For our applications (cf. (1.6.5), (1.6.7)) we are in fact going to have
5 =d9),i=1,2,...)

What will be proved in this section is that there exists C' some
numerical constant such that

(1.5.1) | My - M| < C"s"exp (Cnu+ p).

First of all we shall reduce the proof of (1.5.1) to the special case §; = 1,
j=1,...,s where (1.5.1) reduces to

(1.5.2) My -+ M|| < C™s™eCm

Indeed we clearly have 0" < |d§j)---d§f)|_1 = det (Mj_l) < e,
Therefore (53-_1 < e" and since trivially 6; < e* the new matrix Mj =
65 1M satisfy 1M, ||Mj_1|| < €. The §; that correspond to these

new matrices clearly satisfy 5]- =1 and we are in the special case. The
estimate (1.5.2) for these new matrices immediately implies the general
result (1.5.1). It remains to give a proof of (1.5.2). Let us develop the
product

(1.5.3) [T +1)= > AFY.. a6,
Jj=1 kE_klzzl:l

Whel"e A§+1) - Dj7 Ag_l) - TJ7 J - 1727-.-73.

It is clear furthermore that every term of the form Agel) Al
is 0 if among the €;’s we can find at least n +1 (—1)’s. It follows that
in the summation of the right hand side of (1.5.3) there are at most s”

non zero terms and since we clearly have ||A§-€)|| < 2e%" our estimate
(1.5.2) follows.

In words what the estimate (1.5.1) says is the following: the norm
of || My - - - M| which has the obvious exponential bound e®* can in fact
be estimated by d7 - --ds (this in general does grow exponentially in s
but it does so in a special way!) multiplied by a polynomial in s.
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1.6. The geometric interpretation of the lemma for soluble Lie
groups.

In this section we shall consider () a real soluble connected Lie
group (that is not assumed to be simply connected) and let

(1.6.1) m:Q — GL,(R)

a n-dimensional real representation of (). I shall denote by q the Lie
algebra of () and by

(1.6.2) dr : q — gln(R) = Endg (R")

the corresponding representation. The above representations can then
be complexified and a basis over C can be chosen on C" in such a way
that dm(z) (z € q) is upper triangular

61(37) *
(1.6.3) dm(x) = =m € M,xn(C), z€q.

0 En(x)

The &;’s are of course elements of Homg(q;C). If ¢ = Exp(x) € @
where

Exp:q—Q

is the standard exponential mapping from the Lie algebra q in the group
@ (this exponential mapping is not in general “onto”) we have

w(g) =expm =M
E1(9) *

0 En(g)
where Z;(g) = €% () and
55(0)] = B = RS g Bxp(a), weq.

It follows (since Exp(q) generates Q) that m(g) can be simultaneously
triangulated for all g € @ and that g — Z;(g) is a global homomorphism
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Q — C* = C\{0} (with the multiplicative structure). This also defines
a group homomorphism

(1.6.4) Q—R, g Lg).

What the estimate (1.5.1) says in this context is that if g1,...,9s € Q
are such that |g;| < u, j = 1,...,s (¢f. [1] and Section 3.1 for the

definition of |g| = |g~!|) and if Ly = Ly = --- = L and
L(gi---9s) <p, peR,

then

(1.6.5) [7(g1---gs)[| < C"s"exp (Cnu + p).

Let us illustrate the above considerations further in terms of NC-alge-
bras. Let us assume that q is a real NC-algebra and let

qg=nr Aqr

be the decomposition (1.3.7) that corresponds to some choice of h C q. I
shall denote by () the simply connected real Lie group that corresponds
to the algebra q. The analytic subgroup Nr C () that corresponds to
the ideal np is clearly closed and simply connected (cf. [6]). We can also
construct “ad hoc” (g the simply connected Lie group whose algebra is
qr- The group Qg acts canonically (as a group of automorphisms) on
Npg. Indeed for €2 C Qg a small enough neighbourhood of the identity
we define that action by the obvious inner automorphism. The simple
connectedness of (Qr does the rest. We can define thus the semidirect
product Np £ Qg and the simple connectedness of G implies that we
can identify

Q@ =Nr AQr

and that Qg can be identified to the analytic subgroup of () that cor-
responds to the subalgebra qr. Qg is thus a closed subgroup.

We can apply our previous considerations to the representations
(1.6.1), (1.6.2)

(1.6.6) { 7=Ad:Qr — GL(ng),

dr =ad : qp — gl(ng),

(recall that Adg = dI|., [,z = g~ 'zg, g,z € G, cf. [6]).
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Let us now consider Ny C @) g the closed subgroup that corresponds
to the ideal ng C qr = ng + h. For the above example (1.6.6) the
elements dn(z) (z € ng) are nilpotent transformations and therefore
all the &;’s of (1.6.3) vanish identically on ny. It follows that the L;’s
define in (1.6.4) factor through x : Qr — Qr/Np and can be considered
as group homomorphisms

Lj : Q/N = QR/NO — R,

where now N C () is the nilradical of (). The results in Section 1.5 give
then here the following estimate:

Let g1,...,9s € Qr C Q and let assume that |g;| <wu (5 =1,...,s)
(observe that | |¢ and | |, are equivalent c¢f. Chapter 3) and that
Lk[ﬁ(gl v gs)] < k= L...,n. Then

(1.6.7) I|Ad(g1 - gs)|ngl| < C"s"exp(Cnu + p) .

The condition Ly = Ly = - -+, that was needed for the validity of (1.6.5),
is here guaranteed by (1.3.8). Indeed it is on each nj;, (5 = 1,...,k)
separately, that we apply our Lemma.
Let now qi1,...,9s € Qr be as before and let us assume that:
|QJ| Suvj: 17"'78; Lk(ﬁ;(QIQZ)) Sva: ]-7"'78_]-7 k= 17"'7”'
Let further
B(ry={neN: |n|y <r}

denote the r-ball in N. We then clearly have

B = B(r)1B(r)gz - - - B(r)gs

(1'6'8) — (B(T)B(’I‘)qlB(T)qqu . B(T)ql"'qs—l) q1---(qs ,

where as usual for any group G we set g" = hgh™! (g, h € G). It
follows therefore from (1.6.7) and (1.6.8) (c¢f. [13]) that

(1.6.9) BC B(R)q1-qs

where R = rC"s"tlexp(Cnu + p). The estimate (1.6.9) implies in
particular that

In|n < Cexp(Clnlg), neNCQ.

A fact that as we shall point out in Section 3.1 holds in general.
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In the spirit of Section 1.4 the above considerations extend to a
general Lie group G that it is not necessarily soluble. No use of this
will be made in this paper but since this construction is important in an
other related problem (c¢f. [13]) I shall briefly outline this generalization.
If we denote by g the Lie algebra of the simply connected group G and if
g is assumed to be an NC-algebra then we can decompose as in Section
1.4 g = ngp K (qr K<) and this gives the obvious semidirect product
decomposition of the simply connected group G associated to g

G:NRA(QRAS)v

where S is semisimple and simply connected. The lemma of Section 1.5
gives then the following:

Let g1,...,9s € Qr £S5 and let us assume that S is compact
(in other words we are assuming that G is amenable which was the
hypothesis in [13]) let further

|g‘]|§u7 j:]‘7"'787
Lyok(gr---g9;) <p, k=1,..., 1=1,2,...,s—1,
where now « is the composition (cf. [6])

Qr AS — (Qr AS)/No =2 (Qr/No) x S — Qr/No = Q/N = R¢.

The conclusion of the above hypothesis is then that the estimate (1.6.7)
holds. The details will be left to the reader.

REMARK. Implicit in the considerations of this section is the definition
of the “roots” for a general (not necessarily simply connected) soluble
Lie group G. Indeed we have as above

Ad: Q — GL(n,),

where n C q is the nilradical of the Lie algebra q of (). From the above
we see that we can simultaneously triangulate Ad so that

E1(q) *
Ad(q) = ., qEQ,
0 En (Q)

where Z; : Q@ — C, = C\{0} is a group homomorphism (C, has of
course the multiplicative group structure). The above defines uniquely
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pi Q@ - Rand 0; : Q - T = R(mod2r), (j =1,...,n) two group
homomorphisms such that Z;(¢) = exp(p;(q) +6;(q)) where clearly

pj(Exp(z)) = Lj(z), wz€q.

Using easy standard considerations (involving determinants) we can
express the modular function

(1610 o) = G = e (@)

One sees in particular that G is unimodular if and only if tr(adq(z)) = 0
(z € q).

Finally just as before if Q/N = V x T where N is the nilradical of
Q with V 2 R™ and T2 T* then the “roots” p; are defined on V (i.e.

piln =1).

1.7. Non amenable Lie algebras.

In this section I shall consider g a finite dimensional real Lie algebra
and I shall denote by n C q C g its radical and nilradical. The algebra
g/q is then semisimple or zero. Let us recall the following standard

Definition. We say that g is amenable if g/q is of compact type or
zero. Otherwise we say that g is non amenable.

Quite generally the Lie algebra g can be written
g=0qA«s,

where s is some Levi subalgebra (cf. [6]) and where of course s = g/q.
When s # 0 we shall apply the Iwasawa decomposition on s (c¢f. [9],
[10], [14])

s=ng+a+¢,

where ng is nilpotent and a is abelian and normalizes ng so that ng+a
is a soluble algebra. As for € it is never 0 and it is the Lie algebra of
some compact group. If g is amenable we have ng = a = 0. Since s
normalizes q it is clear that

t=q+tns+acCgyg
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is a soluble subalgebra of g which I shall call an Iwasawa radical of g.
The definition of v is not “unique”. In general several Iwasawa radicals
exist in g. When g is amenable q is the only Iwasawa radical. Finally
when s = 0 and g = q is soluble we shall agree to say that the Iwasawa
radical of gist=q = g.

We can give now the following basic

Definition. We shall say that g as above is a B-algebra (respectively
NB-algebra) if some Iwasawa radical of g is a C-algebra (respectively

NC-algebra).

It is not obvious that a non amenable algebra cannot be both a B
and an NB-algebra at the same time. But of course as we shall see this
cannot be the case and the above definition gives a genuine classification
on Lie algebras.

What is well known (but anything but trivial) is that if g is semi-
simple of non compact type then it is an NB-algebra. This follows from
the classification theorems that give the complete description of the
reduced roots (i.e. the roots of the action of a on ng).

Let now q = q; X g2 be the direct product two soluble algebras,
and let n = ny X ny be the nilradical. It is clear that the set of real
roots L of g can be identified with the set (L; x {0})U ({0} x Lg) C V*
where L; C V* = (q;/n;)*, i = 1,2, are the real roots of q; (i = 1,2)
and V = Vi x V5 = q/n. From this it follows that q is an NC-algebra if
and only if both q; and g9 are.

Let now g;, ¢« = 1,2, be two general Lie algebras and let g = g1 X ga.
It is then clear that v C g is an Iwasawa radical of g if and only if
t = vy X t2 where v; is an Iwasawa radical of g; ( = 1,2). From this
it follows that (even without knowing that the above definition gives a
classification) that g is an NB-algebra if and only if g; and g2 are both
NB-algebras.

By the above definition, if g is amenable then g is a B-algebra
(respectively NB-algebra) if and only if its radical q C g is a C-algebra
(respectively NC-algebra). We also have

Proposition. Let g be an arbitrary real Lie algebra, let q C g be its
radical. Let us assume that q is a C-algebra. Then g is a B-algebra.

Let us also state formally the classifying property of our definition.
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Classification. Let g be an arbitrary real Lie algebra, then g cannot
be simultaneously a B- and an NB-algebra.

The above classification is indirectly an automatic consequence of
the main theorem of this paper. A direct algebraic proof can also be
given. That algebraic proof does not seem to be very relevant for the
rest of this paper and will therefore be deferred until the end of this
chapter. The rest of this section will be devoted to the proof of the
proposition.

Before I give the proof of the proposition, I shall have to examine
more closely the Iwasawa radicals of the Lie algebra g. Let

tr=q+ns+acCg

be such an Iwasawa radical where I shall assume throughout in this
section that g/q # 0 and let us denote by n = n + ng. We have then

Lemma. n s the nilradical of t.

Proor. I shall denote by n, C v the nilradical of v and I shall prove
first that

(1.7.1) mCn, .

To prove (1.7.1) observe first that n is the nilradical of g and therefore
clearly n C n,.. We have on the other hand

(1.7.2) ng = [ng +a,ng +al.

This holds by the structure theory of semisimple algebras and the con-
struction of the Iwasawa decompositions (cf. [9], [14, Proposition 5.10]).
The conclusion is that

(1.7.3) ng =[ng+ang+al Clet]Cn,,

where the last inclusion holds because vt is soluble (c¢f. [6]). (1.7.1)
follows.

Now n,. N q is a nil-ideal of q therefore n, N q C n (= the nilradical
of q). It follows therefore from (1.7.1) that

(1.7.4) n-Nq=n.
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Let us now consider the projection
Tit—t/g=ng+a.

From general considerations it follows that m(n,) is a nilpotent ideal of
t/q and that therefore it lies inside the nilradical of v/q = ng +a. That
nilradical is exactly ng by (1.7.2) and the fact that, for all 0 # z €
(ns + a)\ng, [z,[z,[...[x,ns]...] # 0. The conclusion is that

m(n,) C ng
and if we combine this with (1.7.4) we deduce that
n Cnt+ng=n

our lemma follows.

From the above lemma we see that we have the identification
(1.7.5) t/n, =(q/n)+a=V
Let us now complexify n. = n® C, n. = n® C and consider
W =n./[ne,n.] CW =n./[f., 0] .

The natural (induced by ad-) action of V on W that was considered in
Section 1.2 stabilizes W. Let us consider the root space decomposition

W=W,@---oW,

with respect to the above action of q/n (C V) on W. Aq,..., A, €
Homg (q/n; C) are the corresponding roots. The important thing to
observe is that (since q/n and a commute in V!) each root space W is
stable by the action of a (C V') and admits thus its proper root space
decomposition

(1.7.6) wi=wP e . owl
under that action. The corresponding roots are pi,...,pm,; € Homg

[a; C], (strictly speaking we need also a “j” index and we should denote
these roots by pgj) =pi,i=1,2,...,m;), and we have

m;
(1.7.7)  pi=0,  j=1,...,m.
=1
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To see (1.7.7) observe that the ad-action of q/n on W and the ad-action
of s on W commute (since [s,q] C [g,q] C n, ¢f. [6]). It follows that
the natural ad-action of a on W; extends to a representation of the
semisimple Lie algebra s on W;. The trace of such a representation is
zero and (1.7.7) follows.

The very definition of (1.1.5) implies that

(adz — \j(z))Nw =0, (ady — ps(y))Nw =0,
where x € q/n, y € a, w € Wi (for N large enough). Since the action
of q/n and of a commute it follows that
m Ty ‘
WSSt

j=1s=1

is a root space decomposition of W under the action of V = (q/n) + a,
and that the corresponding roots are

Tis: Vox+y— N(x)+ ps(y), r€q/n, yeE€a.

(1.7.7) implies therefore that

™m;

(1.7.8) ij-ys(x+y) =mjA;(z), j=1,...,m, x €q/n, y € a.

s=1

Let us now, as in our proposition, make the assumption that q is a
C-algebra and that there exists a non trivial representation of zero

(1.7.9) O:ZajRe)\j(x), x € q/n.
j=1
But (1.7.8) and (1.7.9) give then a non trivial representation of zero
a -
(1.7.10) :Zm—JZRer,S(v), veV.

The final step that is needed to complete proof of our proposition is
that the m; s’s can be identified to a subset of the roots of v (in the
sense of Section 1.1) i.e. referring to the action of t/n, on W. This
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is of course easy by the obvious composition series argument and our
proposition follows.

Observe that the converse of the above proposition does not hold.
Indeed if s is semisimple if q is an R-algebra and if the semidirect
product g = q <5 is not direct then g is in general a B-algebra. Indeed
the trace of the action of s on q is zero.

1.8. Unimodular Lie algebras.

Let us recall that a finite dimensional Lie algebra g is called uni-
modular if

tr(adgz) =0, rTEY.

It follows at once that a unimodular Lie algebra that is in addition
amenable is an NB-algebra if and only if it is an R-algebra. In this
section we shall prove the following

Proposition. Let g be a unimodular Lie algebra. Then either g is a
B-algebra or g is the direct product g = g1 X s where g1 s an R-algebra
and s is either 0 or semisimple.

The proof will be done in several steps. We shall assume that g
is not soluble and fix once and for all g=qAKs and s =ng+a+¢ta
Levi decomposition of g and an Iwasawa decomposition of s. We shall
assume as we may that s is not compact. We have then

Lemma. Letg, q, ng, a be as above and let us assume that [q,ns+a] =
{0}. Then g can be written as a direct product g = g1 X $1 where gy is
an R-algebra and sy is either semisimple or {0}.

PRrRoor. Indeed
I={x€s: [q,2] =0} Cs

is an ideal in s and since ng + a C I it follows that s = I x § where § is
either {0} or a compact semisimple algebra. It suffices therefore to set
g1 = q £s and s; = I and our lemma follows.

Lemma. Let g, q, ng, a be as above and let us assume that [n,ng +
a] = {0} where n C q is as before the nilradical of g. We have then

[9,n5 + a] = {0}
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ProoOF. The semisimple algebra s acts by ad on q and stabilizes the
subspace n. By H. Weyl’s theorem therefore (¢f. [5], [6]) we can find
a direct complement ¢ = n @ [ such that [s,1] C [. Since on the other
hand we also have [s, q] C n it follows that [s, [| = {0} and therefore for
all x € s, [z,q] C [z,n] and our lemma follows.

Let us now consider the ad-action of t on m = n 4+ ng = n, the
nilradical of v (¢f. Section 1.7). It clearly stabilizes n and, v being
soluble, a basis can be chosen on n. for which the adjoint action takes
the form

/\1(37) *
adn, (x) = , T Er.

0 Ap()

since ad, (x) is nilpotent for every x € n it follows that we can identify
each \; € Homg[V;C|] where as in (1.7.5) V = tv/n = (q/n) + a. We
have then

Lemma.

i) All the A\; above are real valued on a, i.e.

Aj(z) € R, j=1,...,p, v €a.

ii) The trace is zero on a, i.e.

tr(adyz) =Y Aj(z) =0, z€a.

J=1

iii) If we assume that [n,ng + a] # {0}, then there exists a j (1 <
J <p), say j =1, for which A\1(z) # 0 for some x € a.

We shall defer the proof of the lemma until later and complete the
proof of the proposition, assuming as we may because of our first two
lemmas, that [n,ng + a] # {0}.

The unimodularity of g implies the unimodularity of the algebra q
which says that

tr(ada () =Y Aj(x) =0, =z €q/n.

j=1
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Part ii) of our previous lemma implies therefore that

(1.8.1) tr(ads(z)) = Aj(2) =0, xzeV=g/n+a.

J=1

Since on the other hand by i) and iii) of our previous lemma and our
hypothesis we have Re Ay = Ly # 0, (1.8.1) says that v is a C-algebra.
By definition therefore g is a B-algebra and the proof of our proposition
is complete. (As in the end of Section 1.7 we have to use a standard
composition series argument to verify that the non zero among the
Re A;’s can be identified to real roots of t).

It remains to give the proof of the last lemma.

PROOF OF ii). This uses the same argument as in Section 1.7. Indeed
the action of a on n extends to an action of s on n i.e. to a representation
of a semisimple algebra and therefore has trace equal to zero.

To see parts i) and iii) of the lemma we start from the following
construction:

Let g be some real semisimple algebra and let u C g be some real
subalgebra that is a semisimple algebra of compact type. Let further

0 =g+ gl,(C)

a real algebra homomorphism. Then there exists (-, ) some Hermitian
product on C" that is invariant under u, ¢.e.

(1.8.2) (0(x)z1, z2) + (21,0(x)2z2) = 0, xEU, z1,22 € C".
The proof of this is of course very easy. Indeed let G be the simply

connected semisimple group that corresponds to g and let U C G be
the (compact) subgroup that corresponds to u. 6 induces then

0:U — GL,(C)

and, since for any non singular matrix M € M, x,(C) (z,u)pr =
(Mz, Mu) is a new Hermitian product on C", the Hermitian product
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is invariant under the action of U. Taking the differential we obtain
(1.8.2).

The above observation has to be combined with the fact that for
the Iwasawa decomposition s = ng + a + € if we complexify s. we can
write s, = £y @ po in such a way that u = €, + i py is a compact real
semisimple subalgebra of the (underlying) real algebra s., and we can
do so in such a way that a C po. This fact is of course anything but
obvious but in some sense it is the very basis of the construction of the
Iwasawa decomposition (cf. [9], [14]).

This being said, we see, that if we let g in (1.8.2) to be the un-
derlying real algebra of s., there exists (-,-) some Hermitian product
on C™ for which all the matrices 0(x) (z € ipg) are skew-Hermitian.
All the matrices 0(x) (x € a C pg) are therefore Hermitian. It follows
that all the matrices 0(z) (x € a) have real eigenvalues and if all the
eigenvalues of §(z) are zero then 0(z) = 0.

If we apply this last observation to the representation of s ® C on
n ® C induced by the adjoint action of s on n the assertions i) and iii)
of the lemma follows.

I shall finish this section with an example that shows that unimod-
ularity is essential for the above proposition to hold. I shall consider
the 2-dimensional group of “affine motions” which is the Lie group

(1.8.3) G =R? L (R x SLy(R)) = (R* KR) £ SLy(R),

where R acts on R? by dilatation (i.e. z — ez, x € R?, p € R)
and SLo(R) acts on R? by the natural action (of course R and S Lo (R)
commute in (1.8.3)). The third term in (1.8.3) is of course a Levi
decomposition of G and G is not unimodular since the radical @) =
R? KR is not unimodular. It is clear of course that g the Lie algebra of
G is not of the form g; X s as in our proposition. The above algebra g
however is an NB-algebra and therefore, by the classification in Section
1.7, it is not a B-algebra.

Indeed with the “standard” Iwasawa decomposition of SLy(R) and
the corresponding Iwasawa radical v obtained by the Levi decomposition
(1.8.3) we have, with our previous notations,

t/f=V=R+a=R%.

Here a = R is the a component of the Iwasawa decomposition of SLa(R)
and R &2 R = g/n. The action of R on R? is of course given by
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dilatation. This means that the two roots A1, A2 of g (in the sense of
sections 1.1 and 1.2) are real and Aj(z) = Aa(z) #0if 0 # x € R. The
algebra v is therefore an NC-algebra and our assertion follows.

1.9. The uniqueness of the Iwasawa radical and an intrinsic
definition.

In this section I shall prove the following

Proposition. Let g be a real Lie algebra and let vi, vo two lwasawa
radicals of g. Then there exists o € Int (g) such that a(t1) = ta.

This proposition is not essential for the rest of this paper but it
does help to give an intrinsic status to the notions introduced in the pre-
vious sections. The proof is an inmediate consequence of the following
sequence of well known, but highly non trivial, facts:

1) Let g = q X517 = q K82 be two Levi decompositions of g then
there exists o : g — g an inner automorphism of g such that «(s1) = s
(cf. [6, Theorem 3.14.2]).

Let now s; = €, +p;, ¢« = 1,2 be Cartan decomposition of the above
two semisimple algebras. By composing, if necessary, the automorphism
a € Int(g) by an appropiate element of Int(s;) we can then assume in
addition the following fact (cf. [9, Theorem 7.2] of the first edition):

2) The inner automorphism « is such that
at) =t a(p1) = p2 -
Let now a; C p;, 2 = 1,2 be a maximal abelian subalgebra and let
s; =8 +a; +ny, 1=1,2,

the Iwasawa decompositions that correspond to these choices of a; and
to some choice of X% C a} (= Homg(a;; R)) the positive restricted roots
on a; (i.e. the finitely many choices of the corresponding Weyl cham-
bers). By the standard facts concerning the Iwasawa decomposition we
see therefore that we can further compose the a € Int(g) by an ap-
propiate element in Int(¢;) and guarantee the following additional fact
(cf. [14, Section 5.13 and Corollary 5.18]):
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3) The inner automorphism « € Int(g) is such that
a(El) = 32 R a(al) = ag, a(nl) = N9 .

The final conclusion clearly is that a(t;) = vy and this proves our
proposition.

I shall finish up this section by giving, without proofs, what amo-
unts to an alternative, more intrinsic, but less manageable, definition
of the Iwasawa radical. Let g be an arbitrary real Lie algebra and
let [ C g be a amenable subalgebra, such that for some Lie group G
that corresponds to g, [ corresponds to a closed subgroup L such that
G = L - K where K is a compact subgroup. We can then show that [ is
a C- (respectively NC-) algebra if and only if g is a B- (respectively NB-
) algebra. This, among other things is a consequence of the analytic
theory developed in this paper. The Iwasawa radical clearly has the
above property. Other examples of such subalgebras are [ = 71 (a
minimal boundary subalgebra of g/q) with 7 : g — g/q the canonical
map and the standard terminology of semi-simple groups (cf. [26]).
Such subalgebras will be called minimal boundary subalgebras of g.

We have in particular (the proof will be left as an exercise for the
reader) the following

Proposition. All the minimal boundary subalgebras of g are conjugate
(under: int(g)) in g. The algebra g is a B-algebra if the minimal bound-
ary subalgebras are C-algebras (i.e. if their radicals are C-algebras, cf.

[13])-

Presented like this the B-NB classification becomes “subordinate”
to the C-NC classification of the amenable algebras. “Philosophically”
what the theorems of this paper say is that for non amenable groups
the principal term e~*! of the heat kernel ¢, comes from the “spectral
gap” and that the error term e*¢;(g) is controlled by the geometry of
the minimal boundary subgroups.
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2. Basic geometric structure.
2.1. The Haar measure.

Let G be a locally compact group and let Z C K C G, R C G be
closed subgroups such that G = RK and K/Z is compact and Z C G
central. Quite generally we shall denote throughout by dh = d*h and by
d"h the left and the right Haar measures of the locally compact group
H. Among the above groups K is unimodular and dk = d"k = d‘k.

The example to keep in mind is the Iwasawa decomposition of a
connected real semisimple group S = NAK where R = NA and Z is
the discrete center of S. More generally when G is a simply connected
real Lie group then we can write G = Q £.S where (@ is the radical and
S = NAK is a semisimple simply connected Levi subgroup. We can
set G = RK with R = () A NA. Indeed if Z(K) C K is the discrete
center of S then it is well known and easy to prove (cf. [15] for a proof)
that there exists Z C Z(K) of finite index (i.e. [Z(K) : Z] < 400)
such that Z is central in G (when q is the Lie algebra of ) this here
amounts to saying that Ad(Z)|, = identity). We have

Lemma. Let G, R, K, Z be as above and assume that RN K = {e}.

Then
/f@m%z/‘ F(rk) der di
G RxK

for an appropiate normalization of the Haar measures.

REMARK. In the above lemma we can relax the conditions that K/Z is
compact and Z is central and impose instead the unique condition that
the modular function m(g) on G satisfies m(k) =1 for all K € K. One
can also refer to [35, 1.5.1] or to [9], [25, Chapter 7, Section 2, number
9] for analogous and more general results.

PROOF. There exists a unique ®(r, k) > 0 (r € R,k € K) such that

/fwm%z/‘ O(r, k) (rk) dr dk
G RxK

® is just the Jacobian of the mapping R x K — G ((r, k) — rk).
The uniqueness of the above ® and the left invariance of d¢g implies
that
O(rir, k) = O(r, k) = Do(k), r,ri € R ke K
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with a new function &3 > 0 on K. If we use the right action g — gk
(k € K) on d*g we see that it sends dg to m(k)d‘g where m(-) is the
modular function on G. By our hypothesis m(k) = 1 and therefore
Oy (kk1) = ®o(k) (k, k1 € K) and Py is a constant.

We shall introduce now a basic notation that will be used through-
out this paper.

i) R will denote some locally compact group assigned with its dr =
d’r and d"r measure. In practice R will always be a Lie group and more
often than not a soluble Lie group.

ii) K will be some C* manifold asigned with some C'* non van-
ishing measure dk. More generally K could be an abstract measure
space.

iii) For any measure dr on R we shall consider the measure dz =
dr@odkon X = Rx K (the product space rather than group product).
We shall denote, in particular

de =dtz =drodk, dz=dredk.

iv) More often than not I shall assume that there exists Z some
discrete group acting (discretely) on K stabilizing dk and such that
K/Z is a C*° manifold.

v) For our applications K as in iv) will be a locally compact (more
often than not a Lie) group and dk will be the Haar measure, Z C K
will then be some discrete central subgroup.

vi) We shall say that we are in the “group case” X = G if G is a
locally compact group (more often than not a connected Lie group) and
if R, K are closed subgroups such that RN K = {e} and such that the
conditions of the above lemma are verified. We set then X = R x K
which we identify as a measure space, or even as a C'°°-manifold, with

G.

The above construction admits a number of useful generalizations
which although not essential for us are worth noting. For instance, in
practice we can often write a connected Lie group in the form G = RK
where R is closed (but not necessarily connected) and K is an analytic
subgroup (but not neccesarily closed) and such that Z = RN K is a
(closed) discrete central subgroup of G. The general Levi decomposition
of G is of the above form. We can then identify Z to a closed central
subgroup of the Lie group K (for its intrinsic analytic structure) and
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consider the projection 7 : K — K/Z if ¥ C K is some Borel section of
7 (i.e. wis (1-1) from ¥ onto K/Z), we shall denote by (¢) =71 o €
Y. C G, o€ K/Z. We can then identify G with R x K/Z by the

mapping
(2.1.1) (r,o) —r(oc)=g.
For the above section it is clear that

(o102) = r(01)(02), (o7h) =7(o1) 7,

where r, 7 € Z. From these relations it immediately follows that the
proof of the above lemma generalizes and that the above identification
identifies d‘r ® dg/z0 with d°g provided of course that mg(k) = 1
(k€ K).

2.2. The left invariant operators.

X will be here as in Section 2.1 and we shall examine positive
R-left invariant operators on X

T:CP(X)—C>®(X); Tf>0, foral f>0,

(221) { T(f,,a) _ (Tf)’r’a f’r’(rlvk) e f(’r"r']_,k'), r,T1 € R7 k € K.

Let ppr € M(R) (h,k € K) be a family of positive measure (more
often than not I shall assume that they are bounded measures) and let
L(h,dk) be some positive “kernel” on K (e.g. L(h,dk) = L(h,k)dk
where L(h, k) > 0 but of course more general kernels could be consid-
ered). An invariant operator as in (2.2.1) can then be defined by the
formula

wmm=ALWMwumew>
:/KL(h,dk)/Rf(rrl_l,k)duh,k(m), f>0,

provided that L and the p’s satisfy the appropiate smoothness condi-
tions. If in particular f = ¢ ® ¢, p € Co(R), ¢ € Co(K) we have

Tﬂnm:/iMAmw*%mewy
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Motivated by this we shall introduce the notation

(222)  Lf(h) = /K L(h.dk)f(K), € ColkK),

(2.2.3) T =L® {su} = L(h,dk) ® {unz}.

The representation (2.2.3) of T is clearly not unique (e.g. replace
L — a(h)L; ppr — o= (h)unk). We shall say that the representa-
tion (2.2.3) is normal if 5 € P(R) is a probability measure for each
h,k € K. It is clear that under obvious (and reasonable) conditions
a positive R-left invariant operator admits a unique normal represen-
tation as in (2.2.3). To see the uniqueness observe that for a normal
representation we have

(2.2.4) Lf=g, feCi°(k) ifandonlyif T(f®l)=¢g®1

with 1(r) = 1 (r € R). For normal representations it follows in par-
ticular from (2.2.4) that T is markovian (respectively sub-markovian)
i.e. that T1 = 1 (respectively T'1 < 1) if and only if L is markovian
(respectively sub-markovian).

Let finally (7 j =1,2,...) be a sequence of positive R-left invari-
ant operators on X as above. We can then define the R-left invariant
(time inhomogeneous in general) Markov chain (z, € X n =1,2,...)
by the condition that T} j = 2,3,... are the transition operators

1;1(e) = [ Blay € dy /[ 5521 =) 1),

2.3. The group case and the convolution operators.

We shall consider here G a locally compact group and du(g) =
©v(g)dg = ¢¥(g)m(g) dg (g € G) some positive measure where m is the
modular function. Let 7" be the corresponding convolution operator

(23.1) Tf(g) = f*ulg) = /G F(og7Y) dps(gn) = /G FagrYe(gr) don -

In this section we shall also assume that we are in the group case
X = G = RK as in vi) of Section 2.1, and we shall analyze the R-
left invariant operator 7" on X.
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We shall adopt the notation
g:T'k, gi:’rikiv i:1727 T',’l"iER, kvkiEKv

and by the Lemma in Section 2.1 we have

Tf(rk) = //R Kf(rkkl_lrl_l) o(riky) dridky .

Let us fix & € K and consider the (1-1) correspondence (r1,k1) >
(re, ka) given by

(232) g = T‘lkl = k2_1’l"2k, dg = d’f‘ldkl = J(T‘g; kg, k) d’l"zdkg ,

where J(-; -, k) is of course the Jacobian. We have thus
(2.3.3) Tf(rk) = // Frryths) (ks trak) J(1ra; ka, k) dro dks .
RxK

We have

Lemma. The Jacobian J(r; k', k) = J(r) is independent of k, k' € K
and

(2.3.4) J(r) = ,  reR,

where mpg(+) is the modular function of R amd mg(-) is the modular
function of G.

PROOF. By the unimodularity of K we have (with obvious notations)
dk = dk™! = d(kok®') = d(k*'k1),  ko,k1 € K.

This and the definition (2.3.2) imply that J(r; kok', kk1) = J(r; k', k)
for all k, k', ko,k1 € K (it is only a matter of testing [ f(g9)dg =
J F(k3 k) (r2; kok) dradks on fi(+) = f(h-) and on f*(-) = f(- h)).
The first part of the lemma follows and (2.3.2) takes the form

(2.3.5) dg = drydky = J(ro)drodks , g =11k = ky 'rok.

Observe now that since d"g = dg—*, d"r = dr—', dk = dk~! the lemma
of Section 2.1 implies that with the parametrization g = kr (k € K,
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r € R) we have d"g = d"rdk which together with (2.3.5) allows us to
conclude that

dTg = dkz dr’l“z = dkz mR(Tz) d?“2
=mg(g9) dg = mg(g) J(r2) dra dks g= k;lrzk

(2.3.4) follows.

If we use the above lemma in (2.3.3) we finally obtain

T‘k / f ’I"’I"l 1) M(T‘l,kl,k) d’l"ldkl y
mg(r)
M(r;kq, k ki rk
(2.3.6) { (riba, ) = by k) o )
1 Tk)mR()v TER? kkaEKv
flrk) / f( 'r'rl kT Yrik)d ry dky .

The K-bi-invariant case deserves special attention. We say that the
operator (2.3.1) is K-bi-invariant if (Tf)¥ = Tf* (k € K, fF(g) =
f(gk)). Clearly this is the case if and only if the inner automorphism Iy, :
G — G, I}, : g — k~'gk stabilizes the measure pu. By our hypothesis dg
is also stable by the action of I. Therefore it follows that v (kxk=1) =
Y (z) and we can write (2.3.6) in the form

Tf(rk) = / FerrT kT ) 4 (riky) dry diy
(2.3.7)
:/ frri k) w(kkytry) d™ry dky

i.e. as a convolution on the product group R x K.

The point of a K-bi-invariant operator in the above context is
that it can be identified with an operator on the homogeneous space
G/K = {gK : g € G}. We can then identify G/K with R and since
left translation by elements of R clearly commutes with the projection
G — G/K =~ R the operator thus obtained on R is a convolution
operator

(2.3.8) fr="fxp,  feCo(R),
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where i € M(R). From (2.3.7) we see that we have in fact dj(r) =
@(r) d"r with

(2.3.9) o(r) = /K o(rk) dk, reR.

The above two formulas (2.3.8) and (2.3.9) are not used in this paper but
have the merit of putting the above notions in the correct “perspective”
and are relevant in the “semisimple theory” which will be developed
elsewhere.

2.4. The composition, the adjoint, || - ||,—,, norms, amenability
and the “local” estimate.

Let us consider
T, = Li(h,dk) @ {0},  i=1,2,...,

a sequence of R-left invariant operators on X as in Section 2.2. It is
clear then that

Tlo---OTn:/ / Ll(hvdkl)"'Ln(kn—lvdk)
(2.4.1) MEK Tk €K

1 n
® {+(uih, -+ il D)

with obvious notations. To simply notations let L(h,dk) = L(h,k) dk
and let

(2.4.2) T = L(h, k) dk @ {*pn 1}

as in (2.2.3, Section 2.2). Let then 7™ be the formal adjoint operator
with respect to d"x = d"r ® dk then clearly

T* = L*(h k) dk ® {#11} 1}

where L*(h, k) = L(k,h) and pj, ,, = fi,n, where for any measure v on
R we adopt throughout the notation d(g) = dv(g~?!) (i.e. ¥ is the
image of v under the mapping g — ¢g~! on R). This follows trivially

from the fact that the formal adjoint with respect to d"r of the operator
f—fxv, feCy(R),ve M(R)is f — fxv. If the representation
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(2.4.2) is normal it follows that the operator T' is self adjoint with
respect to d"z = d"r ® dk if and only if

(2.4.3) L(h, k) = L(k, h) y ﬂh,k = Uk,h -

Let now dz = dr ® dk be some measure on X defined as in Section
2.2, it is then clear from (2.4.1) that the LP(X;dx) — Li(X; dr) norm
can be controlled by the spg, g, * - i, 4k, : LP(R;dr) — LY(R;dr)
convolution norm, i.e.

[Tr0- - 0Tnllp—sq < |10 -0 Lnllp—sq sUP [[*10ky ko ¥ - H bty ton llp—a 5
Lokn

where Ly,...,L,; Lyo---0 L, are the corresponding operators on K
as in Section 2.2. If the representations (2.4.2) are all normal and if
dr =d"r, do = d"x this means that

|Tyo--0 Tn||p—>p <|[Lio---o Ln”p—w )
1T lp—p < IL" |lp—p 1 <p< +o0,

we also have the following basic

Lemma. If R is amenable, the above inequality is actually an equality
i.e.

||Tlo...oTn||p_>p:HL]_O"'OLan_)p’ 1§p§+o<)'

PROOF. Since “everything is positive” it suffices to show that there
exist 0 < fo, gm € C§°(R) (m > 1) such that

1 1
0ad) lfalp<l,  lgmlo<t, mz1, il

p q
(245) <f’rn * Mgy g ¥ 000 X :ukn_l,knvgm>L2(R;dT7") m:;o 1

and that the limit in (2.4.5) uniform when k; e C CC K (j =1,...,n)
and C' is a compact subset. In fact, to avoid unnecessary complications
in this proof we shall make an additional hypothesis that will always
be verified for us: We shall assume that for all € > 0 exists C' C R such
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that pp x(R~C) <€ (h,k € K). Otherwise the next few lignes have to
be “handled with care”! " .
1 n

If we denote by m = gy 7y k- 7 we see that

n—

(f *7,9)L2(Ryarr) = /g(fr) dT:E/f(fry‘l)dW(y)

:/(/f(xy_l)g(x) d’“a:) dr(y)
~ [( [ fe 9@ ars) antn) = (gm0,

where f(z) = f(z~!) and where the defintion of the right convolution

7 of two functions is “given” by the last equality. (2.4.4), (2.4.5) will
therefore follow if we can choose fp,, gm € C§° that satisfy (2.4.4) and
such that

(2.4.6) fou T G — uniformly on compacta.

m—00

The well informed reader recognizes here one of the many consequences
and definitions of the amenability (cf. [16] where it is proved in its dual
form ||f||p, llgllq < 1 where the || || are taken with respect to the left
measure dr, and f,, * g,, — 1. Observe also that one way to avoid the
uniformity hypothesis on the measures pp,  is to impose some kind of
monotonicity on the limit (2.4.6)).

A very important conclusion can be drawn from the above consid-
eration. Let us start from the assumption that for some 0 < 6(n) — 0

n— 00
and for every fixed ¢, € C§°(R) we have

sup (i * u,(cll),,62 ol ) pararn = 0(0(n)).

n—1,
ki kn

It then follows that for fixed F' = @1 ®@p2, ¥ = 1@, ¢1,11 € CP(R),
2,12 € C°(K) we have

(T"F, W) = O(0(n) [|L"||2-2) ,

where for simplicity we assume that 77 =T, = --- = T. It follows that
if R is amenable we have the local estimate

(2.4.7) (T"F, ) = 0(0(n) | T"||2—s2) -



ANALYSIS ON LIE crours 839

One final remark is in order. Let a(r) > 0 be an arbitrary continuous
positive function and T, = a'/2Ta~1/2 the corresponding conjugated
operator. It is clear that T = o!/2T"a~1/2 and that the 2 — 2 norm
of Ty, with respect to dz = dr ® dk is the same as the 2 — 2 norm of
T with respect to a~'dz = (a~!dr) ® dk. The local estimate is on the
other hand invariant by that conjugation since the « is absorbed in the
compactly supported F' and V. In other words for arbitrary « as above
we have

<TnF, \I/> == O(Q(’ﬂ) HTnHLz(adT:n)—)L?(adT:n))

and in particular, with a = mp = the modular function of R, we have

(T"F,¥) = O00(n) [|[T"(| L2 (dz)— 12 (ax)) -

The proof of the upper estimate of our main theorem hindges on this
observation.

Let us now suppose that the density L(h, k) of the operator L is
continuous and strictly positive and that the operator L : L*(K) —
L?(K) is compact. In the above estimate we can then replace ||T||2—2
by ||T||sp the spectral radius of T' (since ||Al|s, = lim ||A™||*/™ we clearly
have [T}y = [|Llsp)-

The reason why we can do this is because the operator L admits
then 0 < ¢y € L?(K) a positive eigenfunction (cf. [31]) and in the
previous argument we can set s = 3 = @y.

Indeed assume for simplicity that K is compact then any eigen-
function of L is continuous and if ¢ € C(K) is such an eigenfunction
with maximal (in modulus) eigenvalue then

Llg|l = [Lel;  Lip| # (1+¢)|Ly|  foralle >0,

i.e. the inequality L|¢| > (1+4¢)|L¢| does not hold for any ¢ > 0 (indeed
if we assume, as we may, that the eigenvalue in question has modulus
1, such an inequality would give ||L™|| > (1+ €)™ which contradicts the
fact that ||L||sp = 1).

Therefore there exists kg € K such that L|p|(ko) = |Le(ko)|. But
this (because L > 0) implies that ¢ = || (for some fixed § € R).
We have therefore L|¢| = ||L||sp|¢| and from this it follows that ¢y =
o] > 0.
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2.5. Semigroup of operators.
In this section I shall examine
(2.5.1) Ty = Le(h,dk) ® {xpi )}, ¢>0,

a semigroup of positive R-left invariant operators on X, i.e. we assume
that Ty o Ts = Ty4s. We shall assume that the representation (2.5.1) is
normal, by (2.2.4) it then follows that L; o Ly = Lyys (¢f. Section 2.2)
is also a semigroup and that if T} is symmetric with respect to d"r ® dk
then T} > 0, 7.e. is a positive Hilbert space operator with respect to
that measure. Clearly also T} is (sub)markovian if and only if L, is
(sub)markovian.

EXAMPLE. T, = e~ *4 where A is a R-left invariant differential operator
on X. To write down A we can fix once and for all left invariant fields
on R, Y1, Ya,... and local coordinates (ki,ko,...) on K. It follows
that Y; and 0/0k; commute and that we can write

(2.5.2) A= ZaijZiZj + ZaiZ,- + a,

where each Z; is either one of the Y;’s or one of the 0/0k;’s and fur-
thermore each coefficient a;;,a;, a is independent of » € R (but may
depend on k € K). The “projected” operator B on K is then obtained
by retaining only the terms of (2.5.2) for which no Y; field appears and
we have L; = e tB. Observe that in the group case 13 is a “K-bi-
invariant” semigroup if A is a K-bi-invariant and that this implies that
B is K-right invariant on K. If we are in a group case X = G we can,
for instance, take

(2.5.3) A= b XiX;+ Xo+b,
where the b’s are constant with (b;;) > 0 and X, Xo,... are left in-
variant vector fields on GG. Such an operator can clearly be rewritten
(2.5.4) A=Y X7+ Xo+b

i=1

as in Section 0 (for a different, of course, choice of invariant fields
Xo,X1,...). When b = 0, A is a markovian generator on G and is
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formally selfadjoint with respect to d"g if Xo = 0. But even if Xy = 0,
A is not in general formally selfadjoint with respect to d"r ® dk and
therefore the corresponding operators e~*2 are markovian but not sym-
metric. There is another important property that B inherits from A.
First of all if A is elliptic (i.e. if the matrix (a;;) is positive definite) the
operator B is also elliptic. Let us assume more generally that the fields
X1,..., X, in (2.5.4) generate the Lie algebra of G. The projected
operator B can then be written

(2.5.5) B=Y X?+Xo+b,

=1

where X j is the corresponding projected field on K. Of course, even
if we are in the group case, X ; need not be in general a K-invariant
field in any sense whatsoever, but it is certainly true that B is on K a
Hormander operator in the sense that at every point k£ € K the fields
X1,..., X, span together with all their successive brackets the tangent
space.

Let us now go back to the general semigroup and let us assume that
T; is symmetric with respect to d"x and that therefore L; is symmetric
with respect to dk (both T} and L; are therefore positive operators in
the Hilbert space sense). I shall further make the following assumption:
A: (respectively A’): there exists ¢p > 0, A\p > 0 such that

— Aot

Lipo = € ©o (respectively Lipg < e~ Mot

<P0)-

We shall presently elaborate on that condition but first we shall draw
the consequences of A and A’. Under the above conditions we shall
consider the semigroups

(2.5.6) T, = e>‘°t<path<po , L, = eAOtgoalLtgoo ,

where in (2.5.6) o is identified with an R-left invariant function on
X which satisfies Typo = ety (respectively Typo < e *otpg) on
X. The semigroups (2.5.6) are therefore markovian (respectively sub-
markovian) Ly is symmetric with respect to the measure dk = w2dk
and T} is symmetric with respect to the measure d"r ® dk.

Let us now go back to the assumption A (and A’) and give natural
examples under which it is verified. Let us first suppose that we are
in the group case that K is compact and that T, = e~ *® with A as in
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(2.5.4). To simplify matters let us also assume that L, is symmetric with
respect to dk (dk here is some smooth non vanishing measure that need
not be the Haar measure of K). The Hérmander condition on (2.5.4)
implies that the operators L; are in the trace-class on L?(K;dk). This
is because the kernel L;(h,k) is C*° and thus Hilbert-Schmidt (and
Lyjg 0 Lyjy = Ly). We have therefore

Li=Y e ';(h)p;(k),
j=0

where \g < A\; < -+ with Zjoioe—xjt < oo (t>0), and ¢, € O (K),
lpjll2=1,7=0,1,2,....
By the positivity of the operators involved we have L¢|po| > |Lipo|

= e Mtpgl.  Also, since ||Lillase = et we have ||L¢|ool||2
< e | ppll2 and therefore Li|po| = e 0t|pp|. It follows that we
can renumber the eigenfunctions g, ¢1,... in such a way that 0 <
wo € COO(K)

The next step is to show that ¢y never vanishes ¢o > 0 (k € K)
and that therefore the condition (A) is verified. This of course is an
immediate consequence of the eigenvalue property

Lego(h) = / Li(h, k) polk) dk = e~y (h)

and of the more general fact that for any non identically zero 0 < ¢ €
C*(K) we have

(2.5.7) Lip(h) >0, heK.

To see this we observe that L, = e *B~%e~t for any o > 0 and B
as in (2.5.5). B — a, on the other hand, for & > 0 large, generates a
“hypoelliptic” diffusion. This means that the kernel e!*L;(h, k) never
vanishes for ¢t > 0 (cf. [4]), (2.5.7) follows.

The above situation can be generalized as follows. We shall drop
the assumption that K is compact but assume that there exists I' some
discrete group that acts discontinuously on K and in such a way that
K/T' is compact. We shall also assume that T} the semigroup (2.5.1) is
stable by the natural I'-action and induces thus a corresponding R-left
invariant semigroup on X/I' = R x K/I'. If we assume that the corre-
sponding semigroup L; on K/T" has all the above properties (so that the
existence of ¢y on K/T" with the required properties is guaranteed) then
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we can define the analogous ¢g on K by taking on K the corresponding
['-automorphic function. We see in particular that the assumption A is
verified in our group case vi) of Section 2.1.

2.6. The symmetric Laplacian in the group case.

Let us suppose that we are in the group case G = X = R x K as
in Section 2.1 vi) and that A = =Y X2, T; = e tA is as in Section

0.1. The modified semigroup T, = 771};/2Ttm(_;1/2 is then symmetric with

respect to d*g = d*r ® dk and therefore

(26.1) T, =mp"? Tymy® = (ma/mg)"?e ™ (mg /mg)~*/?

is symmetric on X with respect to d"x = d"r ® dk as was needed for
the considerations of Section 2.5 to go through. Observe that when
K = {e}, mp = mg and T, =T,.

In this section I shall make a number of explicit computations
related to the above semigroup. Let G be a simply connected Lie group
and let G = Q £S5, S = NAK, R = QNA, Z C K have the same
meaning as in Section 2.1 so as to have the identification G = R x K.
It is clear that mg(k) =1 (k € K) (and more generally mg|s = 1) so
it suffices to analyse mp and mg|g. Since @ is a normal subgroup of
G we have mg|g = mg|g = mg so that mg/mp|g = 1. Since S is
semisimple and mg|s = 1 it follows that

(ma/mg)"?(x) = mz"*(x), € AN.

Now since all the automorphisms induced on ) by inner automorphisms
by elements of S are unimodular (S being semisimple) we have (cf. [25])

mpr(z) = man(x), x € AN .
So with the obvious abuse of notation we have
(ma/mp)"/? = m gy,
where G = (QQ K AN)K. For the semisimple group S the quantity

man is a very familiar creature may = e* where p = (3" p;)/2 is the
1/2-sum of the roots (c¢f. [9]). In particular it only depends on the
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A-coordinate. The “moral” is that the conjugating factor in (2.6.1) is
an “old friend”.

To obtain the symmetric markovian semigroup T, on G then we
define as in Section 2.5 the Z-automorphic function on K, ¢y and A
the corresponding eigenvalue which is then given by e=*0t = ||Ti||2_2
on L?(X;d"z) (c¢f. Section 2.4). But clearly also et = ||T}||a—2 on
L?(G;dg) and Ao = X is just the spectral gap (c¢f. Section 0.1) of A.
The semigroup

)I/Ze—tA( —-1/2

(2.6.2) T, = e”wJITt(po = e)‘tgoal(mg/mR mea/mg) o

is thus markovian and syminetric with respect to d’"r@gpodk = d"r@dk.
Let now ¢ (21, 22) be the kernel of the semigroup T, with respect
to dr ® dk we shall show then that we have

¢2t e,e) 2”/ d1(9) Pe(g™)

(2.6.3)
g2 / b4 (k Y ¢y (rk) dr dk,

where ¢;(y~1z) is the convolution kernel of T; = e™** with respect

to dg. Indeed quite generally if ki(wq,ws) is the kernel with respect
to dw of a general semigroup K; on L?(Q;dw) where (£2;dw) is some

measure space then k,ga)(wl, ws) the kernel of the conjugated semigroup
aK;a~! with respect to dw (where a(w) # 0 is some non zero function)

is kga)(wl, we) = kt(w1,ws)((wy)/a(ws)). This in particular implies
kga) (wl, (.UQ) kga) ((.UQ, wl) = kt(wl, (.UQ) kt((.Ug, wl) , t>0.

Similarly the kernel of K; with respect to a new measure f(w) dw is

1
ké'g> (wl, wz) = ) kt(wl,wz) .

B (wz

If we apply these observations in our context where 3 = 3 is bounded
from above and below we deduce that

(2.6.4) CYgu(x) dpr(z7Y) < e Py (e, ) de(z, €) < C y(x) ez ).
(2.6.3) follows then from

($2t(67 e) = /X qASt(e, x) ét(x, e)dr dk .
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Observe now that the symmetry of T, with respect to d"r ® dk implies
that

~

S, w) myt(r1) = di(wr, @) mp'(r), @ =(r,k), 21 = (r1, k1),
and therefore also
(2.65)  P(t) = / bie. 1) o, ) d'r ds = / 52 (e, x) dr dis.
From (2.6.4) it follows also that

(2.66)  C'P(t) < M / bu(rk) o (k=7=1) d'r dk < C P(t).

We shall now show that for large ¢ > 1 both ¢y (e,e) and P(t) are
“comparable” with the quantity

(2.6.7) Q1) = 62At/¢t(7") ¢p(r=") dr = €2At/¢t(7“) ¢e(r=t)d"r
in the sense that
Lemma. If K is compact, there exists C' > 0 such that
CTHQ(t 1) < darle,e) SCQE+1), 210,
C7lQit—1) <Pt <CQ(t+1), t>10.

It follows in particular that

C_l‘/qgf_z(e,x) dr dk < qASZt(e, e)
(2.6.8)
< 0/¢f+2(e,x) dr dk t>20.

Proor. If K is compact by the standard local Harnack estimate (cf.
[1], [4]) it follows that

C _1/2(gk2) < de(g) < C pyray2(gks), t>1, g€ G, ki, ks € K,

where C' > 0 is independent of ¢, g and k1, ks.
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Combining these with the fact that

Pe(97h) = ¢i(9) ma(g), geq.

We deduce that

(2.6.9) C pr—1(kagks) < ¢1(g) < C dry1(krgks) ,

fort > 10, g€ G, k; € K,1 <1 < 4. If K is compact the integrals
in both (2.6.3) and (2.6.6) are comparable (in the above sense) with
[ ¢¢(r)de(r~—t) dr and our lemma follows. If K is not compact we shall

choose K some relatively compact fundamental domain of the covering
map K — K/Z so that

K:UZK(), 21KoNz2Ky=9, 21,29 € 4, 217&22.
z2€Z

What replaces (2.6.9) is then the estimate

C™ Y pi_1(zkagkyr) < ¢i(29) < C dyr1(2k1gkz), t > 20,

where z € Z is central in G. The above argument therefore works
provided that in (2.6.7) we now set

Q(t) = e Z bs(2r) s (27 e ) dr
R

2EZ

= 2 /R Z by (2r) pp(z7 1™t d"r

z2€Z

We conclude therefore that (2.6.8) is valid in full generality.

In all the above considerations we used the measure dk = 2dk on
K and the corresponding measure dk = d'r ® dk on X with respect
to which the semigroup 7} in (2.6.2) is symmetric. It turns out that if
we invoque a result of J. Moser [17] we can in fact replace dk by the
Haar measure dk. J. Moser’s result says that when K is compact and
orientable there exists a diffeomorphism o : K — K that takes the
measure dk to dk. If we use this diffeomorphism and conjugate T, with
o = identity®a on X i.e. (foa) — (Tf) oa (for all f € C(X))
we obtain a new semigroup that I shall still denote by T, which is
markovian and symmetric with respect to d"r ® dk. The same thing of
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course holds in the general case (i.e. K is not compact) provided that
we can lift the diffeomorphism from the compact manifold K/Z on K.
This diffeomorphism lifts automatically when K is simply connected.

We shall finish this section with a probabilistic interpretation of
the lower estimates in the Theorem A. Towards that we shall consider
Q ={z(t) € X;t > 0} the path space of the diffusion on X generated
by the semigroup T;. In other words

T,f(x) = / Plx(t) € dyl f(y),  feCF(X),

Pﬁ@eﬂz/ bole,x) dr @ k.
z=(r,k)EA

If we bare in mind that ¢~ 'dk < dk < ¢dk and combine this with our
main estimate (2.6.8) we see that

(2.6.10) Plz(t) € A] < C (de(e, €)) /2 (dz-measure (A))Y/2.

The dx = dr ® dk measure of A C G = R x K is of course the left Haar
measure on G. If we use however the involution * : (r, k) — (r=1, k) we
see from the symmetry of T, with respect to d"'r ® dk that if A is of the
form A =B x K (B C R) then

Plz(t) € A] = Plz(t) € A*]

and since * interchanges the two measures d"r ® dk and dr ® dk we see
finally that in (2.6.10), if we so wish, we can replace the dz-measure by

any of the measures d'r @ dk, d"r ® dk, d*r ® dk. The estimate (2.6.10)
allows us to formulate the following criterion.

Criterion. Let us assume that for allm = 1,2,... we can find a set
X, =B, xK CX (B, CR) such that

i) measure (X,,) < CnC, n=1,2,...

ii) Plz(n) € X,,] > C™1n=C, n=12...

where C' > 0 and “measure” stands for any of the above measures.
Then there exists C > 0 such that ¢, the convolution kernel of e=t2,
satisfies

di(e) > C~ 1= Ce At t>1.
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The standard local Harnack principle (¢f. [1]) has to be used of
course here to fill in the gaps between the integer values t =1,2,....

We shall also need (for the lower estimate in Theorem A1) a mod-
ified version of the above criterion: If X,, is as above but instead of i)
and ii) we can only assert that

i’) measure (X,,) < C e’

ii") Plz(n) € X,] > c_le—cnl/?’7 n=12,...

Then we can conclude instead that

¢t(e) 2 0_16_Ct1/3 e—)\t )

2.7. The projection of the infinitesimal generator.

In this section I shall preserve all our previous notations and as-
sume that N C R is some closed normal subgroup. We can define then
m: X =RxK — X/N =R/N x K the quotient spaces by the induced
left action by N and if T' = L ® {*up, } is a positive left invariant on X
as in Section 2.1 the above projection induces T'x/ny = L @ {*7(1t)n,x }
a positive left invariant operator on X/N (7(p) denotes here the image
of the measure p by 7).

It is clear then that if T is self adjoint with respect to the measure
d"r @ dk then T'x,n is self adjoint with respect to d”R/Nr ® dk (We can
use the criterion (2.4.3) to see this).

We shall now give an important example of the above situation.
We shall assume that R is a simply connected soluble Lie group and
that IV is the nilradical so that R/N = R™. The right measure on R/N
is then the Lebesgue measure dz. We shall further assume that we are
in the group case and that the left invariant operators considered are
the 7} defined in Section 2.6 which will be self adjoint with respect to
d"r @ dk where dk is now assumed to be the Haar measure on K (cf.

end of Section 2.6). We clearly have 7, = e~*4 where A is a sum of
squares (with drift) operator that satisfies the Hormander condition.
We shall project as explained above and obtain T, =e P a symmetric
(with respect to dx ® dk) markovian semigroup on X/N = R" x K
and we shall analyze more closely D the generator that is a subelliptic
differential operator.
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Let z1,...,x, be the standard coordinates on R” and let X;,...,
X be a basis of right invariant fields on K. It is then clear by the
R"™-left invariance that

(2.7.1) —D=Dr+ M+ P+ Dg ,
where

2.7.2 Dp = ii(k) =———,
( ) R ijz.::]_a .7( )833@833‘7

where (a;;(k)) is a symmetric non negative matrix, k € K.

n s ) n o
(273)  M=23"3 bai(W)Xaz -, P= ;&(lﬁ) 5o,

1=1 a=1

and where Dk can be identified with the canonical “projected operator”
on K. That operator is self adjoint subelliptic and can thus be written
in the form

(2.7.4) Dk = Y Xavapsk)Xg,
a,f=1

where (74,5(k)) is a symmetric non negative matrix. The constant term
is zero because D is a markovian generator. What is also clear is that
Dp in (2.7.2) is uniformily elliptic on R™ i.e. that

(2.7.5) (a,](k)) 2 €0I
for some ¢y > 0 provided that the original operator A on G and there-
fore D on R™ x K is actually elliptic.

The formal self adjointness of D with respect to dx ® dk implies
that

Si(k) =Y Xabai(k), i=1,2,...,n,
a=1

and therefore that

(2.7.6) / 5 (k) dk = 0.
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This is equivalent to the “formal” statement (D(z; ® 1),1) = 0.

Of course D is K-bi-invariant if and only if all its coeflicients are
constant. This is the only reason why we choose the fields Xq,..., X}
to be right invariant rather than left invariant. If we use the canonical
projection R* x K — R" and project D we obtain then Dg on R". It
follows in particular that then Dpg is elliptic as soon as D is subelliptic.

Let us finally examine the convolution kernel. Let us go back to
the original semigroup e *2 f = f  u; with dps(g) = ¢:(g) d"g then the
corresponding left invariant operator on R x K is (cf. (2.3.6))

T,f(rk) = //f(rrl_lkl) by (kT rik) d"ry dky
Tt = 6_tA = L(h, dk) &® {*/Lh,k} .

(2.7.7)

But then clearly with M = @o(k)(mg(r)/ma(r))/? = poM we obtain
MY, M = o5t (h) @o(k) L(h; dk) @ {+M ™ pup 1}

which means that

Tuf(rk) = i (1) [ [ 700 FrTh) o1l k)
mG/z(rl) m}{z(rl) dry dh.

Observe also that, with our previous notations, when N C R is the
nilradical of R and R/N = R" if we project the operator (2.7.7) on
R" x K we obtain

T, f(z, k)://f(x—xl,k1)</Nq5t(k1_1nx1k) dn> dxy dk; .

2.8. Left invariant Markov chains and the semidirect product
decomposition.

We shall consider here {z, € X : n = 1,2,...} a left invariant
Markov chain as in Section 2.2 and assume that R = N < H is a
semidirect product with N C R a normal subgroup as in Section 2.7.
We can identify here X/N = R/N x K with Y = H x K and X =
N x Y. Let us denote by m : X — Y the canonical projection and by
Y={yp =m(zn) €Y : n=1,2,...} the corresponding left invariant
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chain on Y. With the above identifications we set x, = (2, yn) (2n €
N, y, € Y,n=1,...). We shall examine closely the process

Z={z, € N: n=1,2,...}.

The process Z is not in general markovian but if we condition on the
paths (y1,y2,...) of Y Z becomes a Markov chain. This is a very
important fact for us and we shall analyse it here in detail.

To help the reader see what is happening, let us first look at the
special case when N = R, Y = K. If we use a normal representation

(2.8.1) Ty = Lj(h; dk) @ {+p)
of the transition operator, we see that conditionally on (k1,k2,...)

(k; € K) being fixed, the process {z, € R : n > 1} is the Markov
chain on R with transition operators

frefend oo =23

It is this idea that we generalize when R = N £ H. The key fact here
is that any probability measure g on R can be disintegrated

,u:/ Ag dv(z) velP(H), A\, e P(zN), x € H.
H

For simplicity again let us assume that K = {e} is the one point set
(this is the basic case treated in [13] and it will help the reader at this
point to consult that references). The transition operator are then

T; = *N(j)

for probability measures on R
1) = / AW D) (y)
H

The measures A§j ) can (for every fixed y € H) be identified to )\Z(,j ) e
P(N) by zy <» z (z € N) and since now z,, = z,y, we easily see that
with a fixed (y1,¥s,...) the process {z1, 22,...} is a Markov chain on
N with transition operators

f'—>f*7rj7
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where 7 = Ay, and 7; = (/\Z(,,Jj))yl"'yi—1 (7 > 2) with the notation A\*
(A € P(R) = € R) for the image of A by the inner automorphism g —
zgx~l. An alternative way of viewing the above situation is to observe
that if we consider arbitrary measures A\; € M(N) (j = 1,...,n) and
place then on the cosets Ny; by the identification z <+ zy; then the
convolution (in R) of these measures (that are placed on the cosets)
lies in the coset y1ys - - -y, and corresponds to the measure A; x A\J* x
A2 ek A Un=1 where now the convolution is taken in N.

The above two special cases (K = {e} and N = R) can now be put
in the general context: we identify X = RXx K =N XY =NxH x K
so that x, = (rn, kn) = (Zn, bny kn), Yn = (hn, kn) € Y and with fixed
(y1, Y2, ...) we disintegrate

Fokej 1,k :/ ’\gzj)dy(j)(h)v
H
(21, 22,...) is then a Markov chain on N with transition operators

fro et oy

2.9. Bi-invariant operators revisited.

Nothing in this section is very new but I felt that it was appropiate
to close this chapter by making the connection with know and standard
ideas related to K-bi-invariant operators on semisimple groups.

Let G be some Lie group that can be written G = R- K, RN K =
{e} for two closed subgroups with Z C K as in Section 2.1 so that
ma|k = 1. 1 shall consider on G a differential operator A without
constant term (i.e. Al = 0) that is G-left invariant K-right invariant
and is in particular formally self adjoint and positive with respect to
right measure d"g. What we want is “somehow” to identify A with an
operator on R. To do this we first conjugate A to A = m};/zAm(_;l/2 to
make it formally self adjoint with respect to dg = dg. This of course
creates a constant term Al = C' which in general is not zero. Let us
consider D = A — C' which is now a G-left, K-right invariant operator
without constant term that is formally self invariant with respect to
dg. From now onwards we shall consider operators D that have the
above properties. When G = NAK is semisimple D, the classical K-
bi-invariant Laplacian, has the above properties.
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Quite generally an operator on GG that has the above properties can
be identified with a G-invariant operator on the homogeneous space
G/K = {yK;g9 € G} (When G = NAK is semisimple G/K is the
symmetric space and the most important example of the above situation
is that of the Laplace-Beltrami operator on G/K). The homogeneous
space G/K can be identified with R, we obtain thus an identification
of D with an operator Dg/x on G/K and Dg on R. Dg is clearly R-
left invariant has no constant term and since the G-invariant measure
on G/K (which always exists since mg|x =1 = mg) can be identified
with the left Haar measure of R, Dp is formally self adjoint with respect
to dr = d*r (indeed Dg /K 18 clearly formally self adjoint with respect
to the invariant measure on G/K). It follows therefore that

Dp = m}{z (—ZXJ2 + CR)m}_gl/zv

where X1,..., X, are left invariant fields on R. The only issue here is
to determine the constant C'r. To do this let Ap be the spectral gap of
operator Do g on G/K. The operator D — Ap has then zero spectral
gap on L2(R; dr) and therefore Dp = — 3 X7 +Cgr— Ap has zero spec-
tral gap on L%(R;d"r). If we assume, as is the case in all the interesting
examples, that R is soluble, and therefore amenable, the spectral gap
of =Y X JZ, which is a markovian generator is 0. It follows that the

spectral gap of DR is Cr — Ap and that Cr = Ap. The conclusion is
that Dgyx — Ap can be identified with my>(— Y X2)mp">.

An alternative way to compute C'g is to observe that mpg is mul-
tiplicative and therefore that X;mpr = A\ymp (A\; € R, j = 1,2,...)
Xym% = alym$, (3 XZ)m% = oY AIm% and that therefore the
constant term of m}{z(— zj)sz)ml_{l/2 is (=Y A%)/4. This gives, in
view of the fact that Dg has no constant term, that

1 21 o
In the case of the Laplace-Beltrami operator on a symmetric space the
above considerations amount to the standard way of computing the

spectral gap in terms of the roots. Observe finally that by an easy
calculation we have

Drm$ = p*(1/4 — (o — 1/2)*) m™.

This shows that m}{z = ¢ is an eigenfunction of Dr with Dropg =
ADp¢o i.e. that ¢¢ is the “ground state” of the Laplace-Beltrami oper-
ator.
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Let now G be an arbitrary real Lie group and let K C G be an
arbitrary compact subgroup or more generally a subgroup K that con-
tains Z C K a central subgroup such that K/Z is compact. It is
then very easy to see that K/Z acts by inner automorphism ([}, : z —
kak™ k e ke K/Z) on G. It follows that if A is an arbitrary on G
then A = fK/Z dI;(A) dk is K-bi-invariant.

A similar analysis can be done for K-bi-invariant convolution op-
erators f — f x pu on G (i.e. when p is stable by the action of I,
ke K).

Finally when G = R - K as in Section 2.1 the above considerations
show that for K-bi-invariant Laplacians and K-bi-invariant convolution
operators both Theorem A and Theorem B reduce to the analogous
theorems on R. When R is soluble and the spectral gap is zero these
results have been proved in [13].

3. Gaussian measures on groups.
3.1. Elementary facts on the geometry of groups.

Let G be a connected real Lie group and let Xq,..., Xy be left in-
variant fields that satisfy the Hormander condition. These fields define
therefore a left invariant distance d(-,-) on G, c¢f. [1]. We shall always
denote by |gl¢ = |g| = d(e,g). The thing to remember is that “at
infinity” | |¢ only depends on G and is independent of the particular
choice of the fields X,..., Xx. More precisely for every e € €2 Nhd of
the identity and for a new choice X7, ..., X} of fields as above we have

C7 gl < [g|™™ < Clg|*, g€ G\Q.

It is clear of course that |hg| < |h| + d(h,hg) = |h| + |g| and that
g7t = d(e,g7') = d(g,997') = |g|- It follows in particular that
||hg] — |g|| < |h], [1gh] — |g]| < |k| (g, € G) and therefore also that
| [Pagha| —lg|| < b1 + |ha| (9,1, he € G).

We shall also denote by

B(r)=Bg(r)={9g€G: |g| <r}

the corresponding r-ball.
Let now H C G be some closed subgroup and let myg denote either
the left or the right Haar measure of H. There exists ¢ > 0 then such
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that
(3.1.1) mg{h € H: |hlg <r} <e", r>0.

Observe that the above set H, = {h € H : |h| < r} is not “equivalent”
with the By (r) the r-ball in H. Observe also that since the involution
h — h=! (h € H) interchanges the left and right Haar measure on H
the statement (3.1.1) need only be proved for the right measure mg.
The proof of (3.1.1) is easy. Indeed the left distance on G induces
| - |@/m a distance of the homogeneous space {Hg : g € G} and if for
every g € G/H with |g|lg/g < r we fix as we may some g € ¢ with
lg| < 2|g| we clearly have

(3.1.2) J Hrg c Ba(3r).
jgI<r

It is clear also that we can “disintegrate” mg = mg ® mg,g for some
appropiate C*°-non vanishing measure on G/H so that (3.1.2) gives

my (H,) - ma a(Ba/u(r)) < ma(Ba(3r))

with obvious notations. mg g is the Haar measure of G/H if H is
normal but in general it does not have to be G-invariant. What however
always holds is that meg,/g(Bg/u(r)) > €0 > 0 (r > 1) and (3.1.1)
follows from the well known and obvious fact (¢f. [11]) that

(3.1.3) v(r) =mag(Bg(r)) < Ce™, r>0.

What is clear also is that for any closed analytic subgroup H C G we
have |h|g < C|hlg (h € H) the best estimate the other way around is

(cf. [18], [13], [43])
(3.1.4) |hlg < Cexp(clhla), heH.

The proof of (3.1.4) is non trivial. If G is algebraic (3.1.4) follows
from general considerations (cf. [18]). If G is simply connected soluble
and H = N is in the nilradical (3.1.4) was proved in [13] (c¢f. also
Section 1.6). This is the only case that will be needed in this paper.
In the special case when we can write G = H - K where K € G is
a compact subset we have |h|g = |h|g (h € H). (This is because
for any h,h’ € H we can find h = hy,...,h, = h' € H such that
da(hj, hjy1) < C, n < Cd(h,h')). When G = H - K where K is a
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closed group that contains Z C K a discrete central (in G) subgroup
such that K/Z is compact (as in Section 2.1) and HNZ = {0}, we again
have |h|g =~ |h|g, provided that the image of H in G/Z is closed. Indeed
if we denote by 7 : G — G/Z = H - (K/Z) the canonical projection we
have from the above remark |h|g ~ |h|g,z but quite generally we also
have [7(g9)|q/z < |9le (9 € G) and our result follows.

Observe finally that the above remark together with the structure
theorems of Lie groups allows us to reduce the proof of (3.1.4) to the
case when G is soluble. That reduction is however non trivial (cf.
Section 4.8 and [43]). For a soluble group G which we can further
assume to be simply connected, the proof of (3.1.4) is done by the
use of the “exponential coordinates of the second kind”. One first
proves that when the group G of [6, Theorem 3.18.11] is nilpotent,
then the coordinates (t1,...,t,) of g € G are O(]g|Y), this is easily
done by induction. We shall then choose the basis Xi,..., X, in [6,
Theorem 3.18.11] in such a way that X,,..., X,, (for some n < m) is
a basis of the nilradical. A simple use of the above special case and
the results of [13] show then that, in general, the coordinates satisfy
|(t1,..-,tm)| = O(exp(c|g|)). From this and the proof of Theorem
3.18.12 in [6] our assertion (3.1.4) follows. The details will be left for
the reader.

3.2. Functions and measures on a group.

Let G be some real connected Lie group and let ¢(g) € C™(G).
We shall say that ¢ is an Ex-function (Ex- for “Exponential”) if there
exists C' > 0 such that

C'exp(—Clg|) < ¢(g) < Cexp(Clg]), gE€G,

and if for any sequence of left invariant fields X1, ..., Xg, ... there exist
Ck,Cx > 0 (k > 1) such that

(3.2.1) X1 X2 Xpo(9)| < Crexp(Crlgl),  g€G.

Similarly we shall say that ¢ is a Gs-function (Gs for “Gaussian”) if
there exist C,Cy > 0 such that

(3.2.2) C_exp(—C_|g*) < p(g) < Cyexp(-Cylg]*), g€G,
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and for any sequence X1,..., Xp,... there exist Cj,Cj > 0 (k>1)
such that

(3.2.3) X1+ Xio(g)| < Crexp(=Cr lg*),  g€@.

We shall sometimes say that ¢ is a strict Gs-function if for any € > 0
in the above estimates we can choose

1 1
C. =
k 4+¢

Y

and where C4 (¢), Cy(¢) depend on ¢ > 0. In the rest of this section we
shall examine closely the above notations.

First of all it is clear that if m1,my € Ex (i.e. are Ex-functions)
if o1, 02 € Gs (i.e. are Gs-functions) if oy, € R; ny,ne = 1,2,...,
mitms? € Ex, o1t ¢5* € Gs, mp € Gs.

Typically any positive character (e.g. the modular function me)
is an Ex-function. More generally when (m;;) = M : G — GL,(R) is a
group homomorphism then each matrix coefficient m;; is O(exp(Cl|g|))
and satisfies (3.2.1) (This is because m;;(gz) = > mia(g)mq, (v) and
the fields X}, are left invariant).

It follows in particular that if

(3.2.4) dp=@odg=19dg

is a positive measure on G then ¢ € Gs if and ounly if ¢ € Gs. A
measure 4 as in (3.2.4) with ¢ € Gs will be called a Gs-measure.

Let now Y be a right invariant field. It is clear then that Y (g) €
Ty(G) (i.e. the value of the field at g € G) coincides with X (g) the
value at g of the left invariant field X for which X(e) = AdgY(e)).
The upshot is that Y (¢) = M (g)(X1,...,X,)T where M(g) € GL, (R)
is as above and (X1,...,X,) is a basis of left-invariant fields. From
this and our previous remarks we see that in the above definition of Ex
or Gs-functions we can replace left invariant fields by right invariant
fields. If we use the notations

Fo)y=r@™™, fg)=rflgh), fulg)=f(hg), g.heq.

The above considerations show that ¢ € Ex (respectively ¢ € Gs) if
and only if ¢ € Ex (respectively ¢ € Gs). Also if ¢ € Ex (respectively
¢ € Gs) and k € G then ¥, o), € Ex (respectively € Gs) and that this
is so uniformly (i.e. with uniform constant) as k € K € G runs through
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the compact subsets of G. I shall leave the reader with the task to work
out which of the above observation extend to strict Gs-functions and
which do not.

We shall finally need to extend the above notations to the product
space X = R x K as in Section 2.1. We shall say that ¢ € C*°(X)
is an Ex- (respectively Gs-) function on X if and only if the functions
oi(r) = @(r, k) are Ex- (respectively Gs-) functions uniformly in k € K
(i.e. with uniform constants).

A typical example of a Gs-function on R x K is supplied by the
convolution operator in Section 2.3 where the convolution measure dy =
©(g)dg is Gs. The formula (2.3.6) for M(r; k1, k) and our previous
remarks show that M (r; k1, k) is Gs on R uniformly in k, ky provided
that K is compact or more generally, uniformly when ki ke Kye K
where K is some compact subset of K. Indeed mpg(r) € Ex on R and
¥(g) = p(ky'gk)mg'(g) € Gs on G. To show that 9|r and therefore
M is Gs on R it suffices therefore to use Section 3.1 and the fact that
when K is compact we have

(3.2.5) g <l < Clrle.  reR. Irle>C.

Due to the fact that Z is a central subgroup, the estimate (3.2.5) also
holds when K is not compact (c¢f. end of Section 3.1) provided that
kT 'k € K.

Another notion that will be used is that of a Gs R-left invariant
positive operator T on X = R x K as in Section 2.2. We shall write

T = L(h, dk) ® {*fin 1}

in normal form as in Section 2.2 and we shall say that 7" is Gs on X if the
measures fip ; € Gs on R uniformly in h, k € K. It follows that when
K is compact then the operator 7' that corresponds to a convolution
operator on G by a Gs measure is Gs in the above sense.

3.3. Subgroups and quotients.

Let H C G be as in Section 3.1 (or at least some closed analytic
subgroup for which (3.1.4) is known to hold), and let ¢ € Gs on G. 1
shall consider the restricted function ¢ = ¢|g € C°°(H) by Section 3.1
it is clear that

(3.3.1) (h) < Cy exp (~Cylog*(|h] +1)),
|

X1 X p(h)| < Crexp (—Cy log?(Jh| + 1)),  he€H.
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In general however ¢ is not a Gs-function. Let us now assume through-
out this section that H is normal and let 7 : G — G/H be the canonical
projection (For the applications that we have in mind H = R"™, the dis-
tinction that we make below of d®h and d"h is therefore inessential). Let
m € G/H be an Ex-function on G/H, then m o x is an Ex-function on
G. The analogous statement is in general false for Gs-functions. Quite
generally for any 0 < ¢ € C°°(G) we shall define (possibly = +00)

oe(9) = () = / o(gh) d*h,
(3.3.2) H

soT(g):/so(hg)drh, gci=gHecG/H.

We have (¢); = (¢)V. In what follows it suffices therefore to examine
one of the two transforms ¢ — ¢y or ¢ — ¢,. We shall need the
following

Lemma. Let H C G be as above. Then for every c > ¢ > 0 there exists
C = C(c,¢e) such that

(3.3.3) /exp (—clghlz) dh < Cexp (—(c =€) |dl&/u) »

forallge G, g€ ge G/H.

PrROOF. By Section 3.1 it is clear that we can estimate the above
integral by

oo
| e (el + o+ Ol ac.

g

Indeed by (3.1.1) it is only matter of splitting the integral along the
intersection of gH with the shells {x € G : |z|g € d¢} C G. The
lemma, follows.

In the above lemma we can replace |gh|g and d*h by |hg|g and d"h
and the same conclusion holds (indeed we pass from one to the other by
the involution z — x~! in G). With the above notations let us assume
that ¢ € Gs and that X1, Xo, ..., X} are left invariant fields and let us
denote

o g) = (X1 Xeo@De,  eW(9) = (X1 Xeo(9))r -
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It is clear from the lemma that

334) oM@, W) < Crexp(—Crlgl?), §eG/H.

However 1t is also true that

(3.3.5) 0e(9), wr(g) > Cexp(—C_13|*), geG/H.

Indeed for fixed g € G let g € g be chosen so that |g|¢ < |§|lg/u + ¢
and since with h € H, |h|g < 1 we have (cf. Section 3.1)

|lghla —lgla |, ||hgle — lgla] < 1.

(3.3.5) follows by restricting the integration in (3.3.2) to the ball |h| < 1.

Let now X and Y be a left invariant and a right invariant field
respectively on G and let X , Y the corresponding projected fields on
G/H. Tt is evident (from the definition X f(g) = lim(f(get*)—£(9)))/t;
Yf(g) =---) that

X (3) = /H (Xe)(hg) d"h.,
You(i) = / (Ye)(gh) d'h.

The analogous expressions for the “multiple derivatives” X1Xo-- X kPr
also hold. If we use this remark together with (3.3.3), (3.3.4), (3.3.5) we
coclude that ¢,, ¢y are both Gs-functions and that furthermore they
are strict Gs-functions, for the quotient metric, if ¢ is.

It is clear that the above considerations generalize to Gs-functions
on X = R x K where for each ¢ € C*°(X) and H C R a closed
normal subgroup the corresponding functions ¢y, ¢, € C*(R/H x K)
are defined in the obvious way for every slice ¢(-, k) separetly.

We shall now consider more closely the restriction of Gs-function
on a subgroup or more generally on a coset gH. Motivated by (3.3.1)
we shall say quite generally that for any Lie group H, f € C*°(H) is
an Sp-function (superpolynomial) with constants ¢; Cy, Cq,--- > 0 if

(3.3.6) |X1---Xif(h)| < Crexp (—clog?(|h|+1)), he€H k>0.

It is thus clear that the restriction to H C G of a Gs-function on H is
Sp on H.
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More generally let f € Gs on G and let us define

f0) = ([ seman) s, gec ne,

(One should observe that for all our applications H will be in fact uni-
modular and d"h = d*h. More generally by choosing a global analytic
section of G — G/H, which always exists in the simply connected case,
we can find an Ex-function on G that allows us to pass from the d"h
measure to the d‘h measure. We shall have no use of this fact how-
ever and therefore we shall not elaborate further). Just as before if
X1,..., Xy are left invariant fields on H, which can be identified to left
invariant fields on GG, we clearly have

(Xlef)g(h’):Xle(fg)(h)7 gEGa heHa
and if f € Gs on G by (3.3.5) we have

/f(gh) d*h > Cexp (—C |§]?).
The upshot of the above consideration is that

X1+ Xi(f) ()] < exp (Chlg|% — CalghlZ)

(3.3.7)
< exp (c3|9]& — calhlE) -

If we combine this with (3.1.4) we conclude that for every g € G the
function f, € C°°(H) is an Sp-function with a constant ¢ > 0 in (3.3.6)
that only depends on f and where

C’k:C’k(g)gékexp(ck|g|2), kE=0,1,...

The constants c, C’k, cr > 0 clearly only depend on the constants of the
definition (3.2.2)-(3.2.3), and the estimates (3.3.7) are uniform for a
family of functions f that are uniformly Gs on G.

3.4. Mass escape at infinity of the convolution product.

Let p; € P(G) (j =1,2,...) be a sequence of probability measures
on G that are Gs-measures uniformly in 5 = 1,2,... If we bare in mind
(3.1.3) we see that this implies that

pilg € G: |g| > R} < Cexp(—cR?), R>0,7=12,...,
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where C, ¢ > 0 are independent of R > 0 and 7 = 1,2,... If we take
the convolution products (™) = pq * - - % p,, we deduce

pM{geG: lgl >R <Y u{geG: lgl > R/n}
j=1

< Cnexp(—c(R/n)?), R>0,n=1,2,...
We have in particular
p*{g € G: |g|>n'te} < Cexp(—cn®), n=12...,>0.

Similarly we can consider probability measures du;(g) = f;(g9)dg €
P(G) where f; € Sp, 7 = 1,2,... and where for simplicity we shall
assume that G is unimodular. More precisely we shall demand that
there exist ¢ > 0, C1,Cs,--- > 0 such that

fi(g) < Cjexp (—clog(lgl+1)),  j=1,2,..., g€ G.

We shall assume further that G is a group of polynomial growth ¢.e.
that

v(r) = Haar measure of Bg(r) < C (r +1)4, r>0.
It then follows that
pi{g € G: lgl > R} < CCjexp(—clog®(R+1)),

for y =1,2,..., R > 0, and therefore, as before, the convolution prod-
uct p(™ = pq % - - % p,, satisfies
;L("){g €eG: |g| >R} < C(Z Cj>exp(—clog2(R/n+ 1)),
j=1

for R>0,n=1,2,..., with R = n'T® we have in particular

W {geG: |g|>n*} <C sup Cjexp(—clog’n),
1<j<n

where C, ¢ > 0 are independent of n.
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3.5. The Heat kernel.

Let Ag = — Y X7 be a driftless subelliptic Laplacian and let ¢;(g)
be the corresponding convolution kernel as in Section 0. For every fixed
t > 0 the function ¢¢(g) is then a Gs-function on G (c¢f. [1]). In fact
$1(g) is a strict Gs-function. The strict upper estimate is contained
in [1]. The strict lower estimate is (implicitely) contained in [19] (es-
pecially Section 2.4, [19] II). Since we shall be able to complete the
proofs of our theorems without the strict estimates, we shall not give
the details here.

Let now A = — Z?:l X JQ + X be a general subelliptic Laplacian
(i.e. Xp need not be zero). The convolution kernel ¢; is again, for
every fixed ¢ > 0, a Gs-function. The proof of the upper estimate
has been written out in a much more general context in [20]. For an
alternative simple proof, (¢f. Section A.4). The lower estimate when
Xo = D NXi + >0 Nij[Xi, Xj] is an easy consequence of the scaled
Harnack estimate (cf. also [21]). For a general drift however this lower
Gaussian estimate is difficult to prove (¢f. Section A.4).

From the above and the considerations at the end of Section 3.2 we
see that T" the left invariant operators on R x K that corresponds to the
semigroup T; = e~ *® on G as in sections 2.5, 2.6, 2.7 are Gs-operators
when K is compact. This statement remains true in general, even when
K is not compact, but this statement is not trivial to prove. Since we
shall be able to do without this general case we shall not give this proof
here.

4. Upper estimates.

4.1. Gaussian measures on a special class of groups.

In this section we shall consider a real Lie group G and H C G

a closed normal subgroup that satisfy the following conditions: H &
R* and G/H = V x S where V = R™ and S is compact. We shall
summarize this information in the exact sequence

(411) 0—HZR"—G—G/HZVxSZR" xS —0.
p

The above situation is not as special as it looks. Indeed let G be simply
connected group and let N C ) C G be its radical and nilradical. Let
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further [N, N| the analytic subgroup that corresponds to [n,n] where
n C g is the nilradical of the Lie algebra of G. Then the group G =
G/[N, N] satisfies the above conditions (4.1.1) with H = N/[N, N],
V =Q/N and S = G/Q. S is a semisimple group. When G is soluble
we have S = {e}. When G is amenable (e.g. when g is an R-algebra)
then S is compact. Observe that if we assume in addition that g is an
algebraic algebra (i.e. that it is the Lie algebra of some algebraic Lie
group) in the above situation we have G/[N,N] = G = H £ (V x S)
(cf. [7]) and if G = Q is soluble we have Q/[N,N]=H V.

The basic thing to observe is that under the condition (4.1.1) the
group G/H (2 R™ x S) can be made to act naturally on H so as to
have

(4.1.2) m:G/H — GL(H).

This is of course true in general (and trivially so) when G 2 H X G/H
(e.g. G simply connected and H = @, the radical of G) but here
the action (4.1.2) is obtained from inner automorphisms because H is
abelian. Indeed for z € G/H we choose some g € G such that p(g) = =
and then the action h — g~ 'hg is independent of the particular choice
of g.

The Lie algebra of V and H will be identified with V' and H re-
spectively and we shall consider

(4.1.3) dr:V — gl(H).

We shall also consider the roots of the action (4.1.3) which are A €
Homg[V'; C] and are defined by

(dr(v) — A(v))w =0, vevV,

and some 0 # w € H®rC. The corresponding root spaces Uy C HRrC
are defined accordingly.

I shall defined then Li, Lo, ..., L, all the distinct real parts (L =
Re \) of these roots (contrary to what was done in Chapter 1 the zero
real part is also admitted here). If then H; C H is defined by the fact
that H; ® C = ) U, for all the A’s such that ReA = L; we obtain
H=H,®---®H, a decomposition of H as a direct sum of subspaces.
All the subspaces H; are stable by the representation (4.1.2) and are
such that if G/H > ¢ = (v,s) (ve€ V, s €S) we have

(4.1.4) det(m;(g)) = ediL;(v) 7
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where d; = dimH; and 7n; = w|H; (This is because the determinant is
real and its modulus is clearly given by (4.1.4)). Observe also that in the
relevant cases S is compact or semisimple and therefore det 7(s) = 1,
s € S. All the above facts are consequences of elementary linear algebra
and will thus be left for the reader.

It is of course clear that if G satisfies (4.1.1) then we can represent

P
(4.1.5) OZZO[]'L]' y ay > 0,
j=1

non trivially (i.e. not all a;L; = 0 in the above sum) if and only if g is
a C-algebra.

Proposition. Let G be a real Lie group that satisfies the conditions
(4.1.1) and let us assume that the Lie algebra g satisfies the C-condition.
Let pj € P(G), j =1,2,... be a sequence of probability measures and
let us assume that p; € Gs on G uniformly in j (i.e. with constants
that are independent of 7). Let further p™ = py % -+ x p, be the
corresponding convolution products.

Then there exists ¢ > 0 such that for every f € C§° we have

1/3

(4.1.6) (W™, fy=0("),  n>1.

In fact we have du(™(g) = (™ (g) dg where (™ € C>(G) (and
even o™ € Gs on G but this is irrelevant) and “morally” what the
estimate (4.1.5) actually says is

1/3

w(")(g) =0(e™ "), geq.

The proof of (4.1.6) will be given in Section 4.5.

4.2. The Fourier transform.

G D H and all other notations will be as in Section 4.1. We shall
consider du(g) = ¢(g) dg a Gs-probability measure on G and define

0;(h) =( [ eton dh)_lsocqh), heH, gegeG/H,
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the above function will be identified with a function 04(z) € C*°(R")
uniquely defined up to translation - — -+ « on R” (o € R"). The
modulus of the Fourier transform

is therefore uniquely defined. For the sequence of measures given in
the proposition of Section 4.1 we shall consider dpu;(g) = ¢;(g)dg

(j = 1,2,...) and the corresponding f,(£) = fj4(&) = |04(€)] (for
typographical reasons we shall drop the 5 = 1,... and the “dot” above

the g). We shall need the following
Lemma. Let H=H, & - & I;Tp be the dual decomposition of H =
Hi® - -®H,ZR" and let § = (&1,...,&) € H, §§ € Hy,i=1,...,p

be the corresponding coordinates. Then (uniformly in j =1,2,...) we

can find functions fél),..., ép), (9 € G/H) (i.e. these functions are
independent of j =1,2,...) that satisfy

fo&) < fM(&) - fP&), geG/H, €= (&,...,&) € H,

(4.2.1) 0<f <1, / F(€) de < Cedldl
H;

forallge G/H,i=1,2,...,p.

PROOF. It is clear that 0 < f,(¢) <1 (for all j =1,...) and we shall
presently show that for all N > 1 there exists C, ¢ > 0 such that (again
forj=1,...)

(422) [ <CeMTITN, el geG/H.

Let N be so large that there exist 0 < f®(&) <1,i=1,2,...,p such
that

min{17 |£|_N} S f(l)(gl) T f(p)(ép) ) f - (617 R 7£p) € ﬁ?

H;
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We can for instance take (&) = min{1,|¢|72?} where d = 3" d; and
N = 2pd. Then by rescaling we have

min{l, C€C|g|2|£|_N} < f(l)(Ce—C|g|2£1) ca

(with a different C' and ¢) and our lemma follows with f{”(¢) =
FO(Ce=clal¢).
The estimate (4.2.2) is clearly implied by

4.2. < Ceclal
(4.2.3) /‘a%_ S o(w)da| < C”,

g € G/H uniformly in j, with ¥ = 1,... (and C = C%, ¢ = cg).
To prove (4.2.3) let Xq,...,Xs be a basis of left invariant fields on
G. Tt is clear then, by induction on k, that (0¥/0x;, ---0x;,) p(g7)
(x € H= R", g € G) is a linear combination of expressions of the
form (Xj, --- Xj ¢)(92) (x € H, g € G) our estimate (4.2.3) therefore
follows from results in Section 3.3.

The above proof shows in fact that if the original ¢ is a strict Gs-
function on G then in (4.2.3) (and therefore in (4.2.2) and in (4.2.1))
we can choose ¢ = ¢ > 0 arbitrary small provided that the C' = C}
of (4.2.3) (and the other corresponding C’s in (4.2.2) and (4.2.1)) are
made to depend on € > 0. When we are considering several ¢; (5 > 1)
the above strict-Gs property can of course to be made uniform in j.

4.3. The disintegration of the kernel.

In this section I shall follows closely [13, I, Section 3]. I shall
consider H C G as in Section 4.1 with H =2 R* (notice that to avoid a
possible confusion with notations that I followed, I have changed here
the dimensions of H into a: dimH = a and not n as in the previous
sections) and shall assume that V =2 R™ is a vector subgroup and S is
compact. I shall disintegrate p; for j =1,2,...

m= [ o).
G/H
()

where ;7" are probability measures on the fibers gH = g € G/H (all
the other notations are as before). From this it clearly follows that

(4.3.1) #(n) :/ / Vg, * " *xVg, dﬂl(gl)"'dﬂn(gn)v
G/H G/H
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where the % indicates convolution in G. I shall now identify, as I may,
vy with a measure on H (by H < gH up to translation on H), and,
for any v € P(H) and g € G/H, 1 shall denote by v9 € P(H) the
image of v by the action 7 : G/H — Aut(H) on H (induced by inner
automorphisms as in Section 4.1). It is clear then that the integrand of
(4.3.1) which, up to translation, can be identified to a measure on the
coset g1 -+ gn C G, can also be identified up to translation with

l/(gl,...,gn):I/Sll*l/;j*---*l/;;‘ ceP(H),

where s; = g1 ---g; € G/H and where the convolution product is now
taken in H. (This identification is now done for the “right product”
identification H <> Hsy;,). Now the measures v(g1, ..., ¢gn) can be iden-
tified to a L°°(H) functions of H and, since convolution goes by Fourier
transforms to pointwise product, we have

(4.3.2) ||V(91,---,gn)|loo§/ﬁfgl(ﬂ(sl)*é)---fgn(ﬂ(sn)*é)dé-

Note that, to simplify notations I have dropped throughout from the
v’s and the f’s the j = 1,2,... coming from p;. To estimate the
integral in (4.3.2) I shall first use the decomposition H = H, @ --- @ H,
coming from L; = Re A (j = 1,...,p) the real parts of the roots of the
representation © : G/H — GL(H) as in Section 4.1. For the above
decomposition and with the obvious notation { = (&1,...,&,) € ﬂ, 1
shall apply the Lemma of Section 4.2 and estimate

£, (O < FI (&) - fP(,), geG/H.

This estimate will be inserted in the integrand of (4.3.2). It follows that
the right hand side of (4.3.2) can be estimated by

inf /H £ (r(s5,)7€0) £ (m(s3,)"€0) -+ £ (m(s5,)* &) dE

where the infimum is taken over all choices 1 < j; <n (i = 1,...,p).

The integral under the above inf splits in H; @ --- & Hp, and each
integral [ i, can be explicitely computed by a change of variable whose
determinant is known by (4.1.4).

Let us introduce the following notation s; = (b;, 0;), g; = (X}, ;)
eV xS, (j=1,...,n) and for each g = (u,0) € G/H let us observe
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that |g|lg/g ~ |ulv = the norm in V' (provided that |g| > 1) let us
further denote by

(433) An(Lz) = inf exp (C |Xj|2 — d,Lz(bJ)) .
1<j<n

With these notations if we combine all the above estimmates we obtain

(4.3.4) (915 s 9n)llo0 < CAR(Ly) -+ An(Ly) .

4.4. The probabilistic estimate.

All the notations introduced up to now will be preserved. The X; €
V=R" (j =1,2,...) in the definition of A, (L;) will be independent
(not necessarily equidistributed) random variables such that the corre-
sponding density functions P[X; € dx| = 9;(x) dx are Gs-functions on
R™ uniformly in 7 = 1,2,.... We have then by = X; + -+ X;. In
Section B of the appendix we shall prove the estimate

(4.4.1) E(A, (L) -+ An(Ly)) = Ofexp (—cnl/?))

for some ¢ > 0 provided that the real roots Li,...,L, satisfy the
C-condition (c¢f. (4.1.5)). This estimate was proved in [13] when all
the X;’s are equidistributed centered Gaussian variables (so that by =
b(t) = X1 +---+ Xt € R™ is brownian motion) and when the constant
¢ > 0 appearing in the definition of A,,(L;) (¢f. (4.3.3)) is small enough.
Here again, if we are prepared to use the fact that for a driftless Lapla-
cian the heat kernel on G is a strict Gs-function, we can suppose that
the ¢ > 0 in (4.3.3) is as small as we like. In the appendix however we
shall prove (4.4.1) without that restriction.

4.5. The proof of the Proposition of Section 4.1.

All our previous notations are preserved. Let 0 < ¢ € C§°(G) and
let

sup/ o(hg)dh = Cj .
geGJH
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(I implicitely use here the right identification H <> Hg !). Then the
basic formula (4.3.1) that expresses (™ as a barycenter of measures
sitting in the various cosets Hg gives

(W™, 0) < Co / 11+ ) lloo s (91) -~ i (g)

where by Section 3.3 fi; € P(G/H) (j = 1,...) are Gs-measures on
G/H (uniformly in j). Since G/H =V x S, we can project fi; on V by
the canonical G/H — V and obtain a sequence of probability measures
Y(z)de (j=1,2,...) on R™ that are uniformly Gs on R™. A sequence
X; e R" (j =1,2,...) of independent random variables can then be
defined by P[X; € dx| = 1j(z) dz. The corresponding A,,(L;) can thus
be constructed and because of (4.3.4) we clearly have

/ 11 -+ ga)lloo diin (91) - i (g1)
< CE(An(Ly) - An(Ly)) .

(4.5.1)
The estimate (4.1.6) follows from (4.4.1) and (4.5.1).

4.6. The Proposition for an arbitrary soluble group.
In this section I shall prove the following

Proposition. Let Q be a connected soluble group that satisfies the C-
condition. Let p; € Gs(Q)NP(Q) (7 =1,2,...) uniformly in j and let
ph = 1 k- % . There exists then ¢ > 0 such that

(u™, f) = O(exp(—cn'’?)),  feCF(Q).

We shall need the following

Lemma. Let G be an arbitrary connected real Lie group and let K C G
be some closed subgroup.

i) If the conclusion of the proposition is valid for G/K then it is
also valid for G.

ii) Conversely if we assume that K is compact and assume that the
conclusion of the proposition is valid for G it is also valid for G/K .
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The proof of the lemma is evident and will be left to the reader.

The first step in the proof of the proposition is to reduce the proof
to the case when the center of q is 0. To see this let 3 C q and let more
generally 3 = 30 C 31 C -+ C 3; C --- C q be defined inductively by
3 = 7rj_1 (the center of q/3;-1) where 7; : ¢ — q/3;—1 is the canonical
projection. Then clearly p = Uj; (in fact 341 = 3, for some k) is
a nilpotent ideal and p C n and, by its construction, q/p has trivial
center. An easy composition series argument on g shows that q/p is a
C-algebra.

Let Z; C @ be the analytic subgroup that corresponds to 3;. One
easily sees by induction that these are closed subgroups. Indeed quite
generally if Z is the analytic subgroup that corresponds to the cen-
ter of the algebra Z is closed for Z, its closure, is connected and the
subalgebra 3 that corresponds to Z is central. To make the required
reduction therefore it suffices to consider P the analytic subgroup that
corresponds to p and to consider Q/P. Our reduction then follows from
the lemma.

Let now 6 : Q — Q be the universal covering map and let NcQ
be the nilradical. Our hypothesis that the center of q is trivial implies
then that

(4.6.1) Kerf NN = {e}.

Indeed ©® = N NKer0 is a discrete central subgroup of Q and therefore
© C Zy, the center of N which can be identified with a vector space
Zn =2 R (¢ > 1). The Ad action induces Ad : Q — GL(Zy) and if
we denote by Vz C Zpy the vector subspace generated by © we have
Ad(Q)|y, = Id. This means that Vz C q is central and therefore
Vz = {0} by our hypothesis. (4.6.1) follows.

To finish the proof it suffices to make one further reduction. Indeed
let N C QQ; N C @ be the corresponding closed nilradicals, i.e. the
analytic subgroups that correspond to the nilradical n C q. By (4.6.1)
the mapping Oy : N — N is then (1-1), continuous and onto. It
therefore is a homeomorphism. N is therefore simply connected and
therefore Ny C N, the analytic subgroups that correspond to [n,n], is
closed. By our lemma we can reduce the proof of our proposition to the
group ()/N2 = G. This new group satisfies (4.1.1) with H = N/Ny
N/N; = R? (by 4.6.1). Indeed G/H 2 Q/N is a homomorphic image
of Q/N = R?% and has therefore the required form G/H = R™ x T =
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R™ x S as in (4.1.1). The condition (4.1.5) is clearly verified by the C-
condition on our original group and the proof of our proposition follows
from the lemma and the proposition in Section 4.1.

The above proof gives “for free”, so to speak, something slightly
stronger. What it shows is that the conclusion of the proposition also
holds for any amenable group (i.e. when g/q = s is a compact semisim-
ple algebra). This proposition can therefore be viewed as a general-
ization of the results of [13]. Indeed let G be such a group and let @,
S C G be the radical and some Levi subgroup respectively. Then since
S is compact we can form the canonical semidirect product and the
canonical covering map 7 : Q £ S = G — G which is now an isogeny
(i.e. Kerw is a finite subgroup). By our lemma again, it suffices to
prove the proposition for the group G. For the group G = Q £ S if we
repeate our previous argument we reduce the proof to the case where
R*>~N=HCcCGand G/N =Q/N xS =R" xS (¢f [13]). This
completes the proof.

4.7. General Lie groups.

The key to the proof of Theorem B for a general connected real
Lie group is to show that with the machinery that we have developed
we can give a proof of that theorem for groups of the form G =Q £ S
where () is soluble and connected and where S is semisimple. Indeed
for such a G, as we already pointed out (c¢f. Section 2.1), there exists
Z C S a discrete subgroup that is central in G and of finite index in
the center of S. Let G1 = G/Z =Q A S1 = Q K(S/Z). Then G, is a
similar group but has the additional property that the center of Sy is
finite. We can therefore write G; = QINAK = RK where NAK = S,
is the Iwasawa decomposition of S;, K is compact and R is soluble.

The proof of Theorem B for the group G is contained in Section
2.4. Indeed if we identify f +— f * p with an R-left invariant operator
on X = R x K we see that we have our theorem as long as we can show
that (2.4.7) in Section 2.4 holds with (n) = exp(—cn'/?). But modulo
Section 3.5 this is exactly what was proved in Section 4.6.

To complete the proof of Theorem B for the group G we shall use
the following general observation. Let quite generally 7 : G — G4 be
some covering map between two arbitrary Lie groups and let du(g) =
®(g) dg be some Gs-probability measure on G. Let the corresponding



ANALYSIS ON LIE crouprs 873

image measure be p; = 7(p) € P(G1). p1 as we saw in Section 3, is a
Gs-measure on (G; and can be written

dpi(g91) = ¢1(91) dgr
(4.7.1) b1(g1) = Z #(gz) , g1=gKermre Gy .

zEKerm

The obvious observation is that if Theorem B holds for 1 on G then it
also holds for ; on G. This is because of the amenability of Ker 7w C G,
which implies that if we denote by || - |22 the f — f % - convolution
norms on L%(G;d"g) and L?(G1;d"g1) we have

(4.7.2) [ellz—2 = [[pall2—2 -

(4.7.2) is very well known. Observe also that Section 2.4 in fact contains
a proof (4.7.2).

Let now G be an arbitrary connected real Lie group not necessarilly
of the form @ S and let () C G be its radical let further S C G be some
Levi subgroup that is an analytic but not necessarily closed subgroup
of G. It is clear that Q NS is a closed subgroup of ) and a central
subgroup of S (Indeed QN S is a normal and discrete subgroup of S for
the intrinsic Lie topology of S). As already pointed out twice before
there exists then Z; C Q@ NS a discrete central subgroup of G that is of
finite index in @ N'.S. We shall quotient by Z; and obtain G; = G/Z;.
This group has a Levi decomposition G; = (0151 as before with the
additional property that 21 NSy is finite. By what was said just above,
if we can prove our theorem for G; then we also have it for G.

Using the canonical action of S on ); we can then construct the
semidirect product G = Q1 £ S; where the kernel of the canonical
projection G — G4 is finite. Since we already know that the Theorem
holds for G' and since the summation in (4.7.1) is finite, it follows that
the Theorem holds also for G; (here we make essential use of the fact
that Theorem can be stated equivalently either as (™ (e) = O(---) or
p™(g) = O(---) for any g € G). The proof of Theorem B is complete.

4.8. The Iwasawa radical revisited.

It is interesting to observe that the techniques of the previous sec-
tion prove the following
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Proposition. Let G be a connected real Lie group. Then R C G, the
analytic subgroup that corresponds to v = q+ng + a C g, an lwasawa
radical of the Lie algebra (cf. Chapter 1), is closed.

Indeed let @@ C G the (closed) radical of G and let ¥ C G some
analytic (but not necessarily closed) Levi subgroup. Let ¥ = NAK
be some Iwasawa decomposition of . Then Zp = Q@ NX C X is a
discrete (for the intrinsic Lie-group topology of ¥) central subgroup
of ¥ therefore Zy C Z(¥) C K where Z(X) is the center of ¥. It
follows in particular that Q N AN = {e}. Let us form Q KX = G the
semidirect product and let # : G — G be the canonical covering map.
Let 7 : G — ¥ be the canonical projection so that

w(Kerf) = Z; .

The subgroup R = QAN C G is the image by 6 of the subgroup
R=Q KAAN C G. Clearly

(4.8.1) RNKerf = {e}

and to show that R is closed it suffices to show that if k,, € Ker6
(n > 1) is a a sequence that satisfies dg(kn, R) — 0 then k, = e
for all n > mp large enough. The proof of this is easy. Indeed we
have dx(m(k,), AN) — 0 and therefore (since 7(k,) € Z(X) which is
a discrete subgroup of X) w(k,) = e, n > ng. Our assertion therefore
follows from (4.8.1) and the fact that Kerm = Q.

We shall say that the subgroup R C G is an Iwasawa radical of G.
As we already pointed out for an arbitrary group G we can find Z C G
some central discrete subgroup such that G; = G/Z is such that @,
its radical and ¥; some Levi subgroup have a finite intersection (i.e.
|Q1 N 31| < +00). By quotienning further by Z; C G another central
discrete subgroup we can obtain Gy = G1/Z; = Q232 where ()2 is the
radical of G5 and 35 is semisimple with finite center. But then clearly
G2 = RK where R is an Iwasawa radical and K is a compact subgroup.
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5. The proof of the Theorem (NB) and the lower estimates.
5.1. The proof of Theorem A, for a special class of groups.

In this section G will be a real Lie group that can be written in
the form G = R - K where the closed subgroup R is a simply connected
soluble NC-group and K is a compact subgroup such that RN K =
{e}. We shall identify G with X = R x K as in Section 2.1 and then
decompose

R=NAQ

as in sections 1.3-1.6 where N is a simply connected nilpotent subgroup
and () is a simply connected R-group. Ishall furthermore systematically
use the following notation for the “coordinates” in X

(5.1) z=(r,k) = (n,q,k),

fore € X =G, 7€ RneN,qeQ, ke K. Ishall fix A= -3 X?
some driftless Laplacian on G' and A > 0 will denote the corresponding
spectral gap. On the space X, I shall consider the semigroup T, defined
in Section 2.6 and denote by Q = {x(¢t) € X : ¢t > 0} the path space of
the corresponding diffusion. For that path space we shall show that the
criterion at the end of Section 2.6 holds. This will complete the proof
of theorem for the above group. We shall adopt the following notation

(5.2) x(s) =rsks € G,

(5.3) rs = 7172 Vs € R, s>1,veER, j=1,2,...,s,

where we use group multiplication in both (5.2) and (5.3), but where,
unless K = {e}, the 71,72, -+ € R are not independent random vari-
ables. As we pointed out in Section 2.8 however if we fix k> = (k;)52, €
K*®° (some path in K') and condition with respect to that path the vari-
ables v1, 2, - . . become independent with uniformly Gaussian densities
on R (c¢f. sections 3.2 and 3.5). It follows that under that condition
r1,79,... becomes a time inhomogeneous random walk on R.
The following events A;,..., By, -+ C  will now be considered

(5.4) As =[|vjle < Clogs; j=1,2,...,s], s=1,2,...,
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where C' > 0 will be chosen appropiately at the end. By the above (uni-
form in j) Gaussian estimate on the variables ; we have the following
estimate on the conditional expectations (uniformly in &)

P[~A,//k>] < exp(—clog® 5), s=1,2,...,
where ~ stands as usual, for complement. Therefore we have
P[~A,] < exp(—clog?s).

Observe that with the notations of (5.1) on the event A; we have (cf.
3.1.4)

lgjlo < clogs, |nj|n < Cexp(clogs) = CSC, v = (nj,4q5)
for y=1,2,...,s. Let now
(5.5) Bs=[Li(qi---¢;) <C; j=1,....,s; k=1,...,n].

Here C' > 0 and Ly, ..., L, are the real roots attached to the semidirect
product N K (@ as defined in Section 1.6. The basic fact that follows
from Section D in the appendix (¢f. D.2) is that

P[B,] > ¢s~©, s=1,2,...,

for appropiate constants C,c > 0. When the operator A is elliptic the
analogous even stronger statement (with the continuous time parame-
ter) is a consequence of A(1) which was proved with considerably less
cost in Section A of the appendix.

Let us now define the set

Xo={r=(n,q,k)€X : |n|]y <CsY, |glg <Cs°}.
It is then clear from the above and from Section 1.6 that
As N By = Q C [2(s) € X

and therefore that Plz(s) € X,] > ¢s©.
On the other hand we clearly have

d"r @ dk-measure[X,] < C's©
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and therefore our criterion of Section 2.6 is verified and we are done.

The following remark is worth making. We have used here the fact
that in our criterion we can use indiscriminately either the d"r ® dk or
the d’r ® dk measure to measure the set X,. There is a very simply
way to avoid this. Towards that let us define

Cs = [|z(s)] < Clog ],
then clearly by the Gaussian estimate on the Heat kernel on G
P[~C;] < Cexp(—clog® s)

and
Ima(x)*, |mp(z)* < Cs9, |z| < Clogs.

This means that if we replace X by Xs N[z € X;|z|¢ < Clogs] and
Qs by As N B; N Cs we obtain a new X, that satisfy the criterion as
before and that furthermore on these new sets X, the two measures
d'r @ dk and d“r ® dk are equivalent up to a constant that grows at
most polynomically in s. Because of this it follows that it does not
matter which of the two measures we consider.

5.2. General NB-groups.

From the above special case I shall deduce here the lower estimate
(0.2) of Theorem A for a general group. Let G be an arbitrary real NB-
Lie group and let G — G be the simply connected cover of G. It clearly
is enough to prove the NB-theorem for G for then by the standard
local Harnack principle the theorem also holds for G. We have that
G = Q A S where @ is the radical (simply connected) and S is a simply
connected semisimple group. By considering S = N AK the Iwasawa
decomposition of S we can write then G = RK with R = QN A but
where K is not necessarily compact. By general considerations however
(¢f. [15]) there exists Z C K a discrete central (in G) subgroup such
that K = K/Z is compact. We have G/Z = RK and therefore the
lower estimate in (0.2) holds for the group G//Z. We shall now show
how one deduces from this the same lower estimate for G and therefore
also for G.

We start with the following definition. Let G be a compactly gen-
erated locally compact group and let H C G be a closed compactly
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generated subgroup (e.g. G a real Lie group and H = T" some discrete
subgroup). As we already pointed out in Section 3.1 for any h € H the
two distances |h|g and |h|g are not in general equivalent (we use here
the more general notion of | - |g valid for non connected groups, cf.
[1]). We shall say that H is a O-distortion subgroup if for all @ C H
neighbourhood of e € H, there exists C' > 0 such that

C7h|g < |h|lg < Clhla, he H\Q.

The important thing to observe is that the central subgroup Z C S C
G = Q K S considered above is a O-distortion subgroup of G. This fact
is easy to prove and the details were outlined in [15]. The fact that
in the lower estimate (0.2) we can pass from G/Z to G is therefore a
consequence of the following

Lemma. Let 7 : G — G be a covering map and let T' = Kerm C G
be a O-distortion finitely generated subgroup. Let us further consider
Ag=— X:XJ2 some driftless sublaplacian on G which can be identified
with a sublaplacian on G. Let ¢i(g), ¢¢(g) be the corresponding Heat
diffusion kernels and let A = X be the corresponding spectral gap as in

Section 0 (c¢f. (4.7.2)). We have

(5.6) pile)= > dly), t>0,

vyeKer 7

and there exists C > 0 such that
(5.7) pi(e) < Cdrl2(e) e M2, t>1.

The reader could observe that I' is automatically finitely generated but
this point is here irrelevant.

PROOF. I' C G is a central subgroup it follows therefore that ¢;(7) is a
positive definite function on I' and therefore ¢;(v) < ¢:(e), v € I'. We
clearly also have mg(y) =1, v € I'. By ([1, Chapter 9, Section 1]) and
the O-distortion property we also have

2
qﬁt(’y)gCe_)‘texp(—%), ~yel, t>1,
c

for some C' > 0, and therefore also

2
B) < GO e ep(-10) e iz,
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for a different ¢, C' > 0. If we apply the summation (5.6), which is
trivial to prove (cf. (4.7.1)), our estimate (5.7) follows.

REMARK. An adaptation of the above method, with the use of
the 1’), ii”) version of the criterion in Section 2.6, gives the proof of the
lower estimate in Theorem A;). What changes is the geometry and the
“section” that is used (cf. [13, II]).

If we use the global structure theorem for (not necessarily simply
connected) NC-groups from [13, III] we can adapt the method of Section
5.1 to general NB-groups. The Section 5.2 becomes then redundant.

Appendix.
Guide to the appendix.

For the upper estimate of Theorem A;) and for Theorem B one
only needs Section B of this appendix. My advise to the reader in a
first reading is to go straight for Section B and simply refer back for
the notations.

Sections A.0 and A.1 suffice for the lower estimate of Theorem As)
in the case when A is an elliptic operator. In my mind this should be
the next thing that the reader should study. To do this one should also
study (or at least believe) Section C. Section C is elementary calculus
but a certain amount of ingenuity is already needed. The estimate A(2)
in Section A.3 is needed for the lower estimate of Theorem A;). Had it
not been for the non elliptic Laplacians A we would stop there and then.
The discrete formulation and the discretisation presented in Section D
and Section E are only needed to cope with this subelliptic (but not
elliptic) situation, and Section F stands towards Section D what Section
C stoud for Section A.1. More explicitely for the (non elliptic) lower
estimate of Theorem Ao one needs the first half of Section F, Section
E.2 and Section D.1 (i.e. D(2) for p = +00). The property D(1) can
be used as an alternative to A(2) for the proof of the lower estimate of
Theorems Ay).

Both Section D and Section F are non trivial (in fact they are,
technically, quite difficult) and they present an independent interest.
I intend to come back in the future to the problems involved in sec-
tions D and F and examine them systematically for their own sake.
The reader who is not particularly interested in these problems should
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simply not waste time and energy in these sections. Indeed an alter-
native approach (more sophisticated, but technically simpler) to the
subelliptic Laplacians will be given in a second instalment of this work.

A. The continuous time diffusion.
A.0. Statement of the results.

We shall consider here the space X = R” x K where K is a some
compact C'°°-manifold assigned with some smooth non vanishing mea-
sure dk. On X we shall further consider D some subelliptic formally
self adjoint (with respect to do = dz®dk where dz is Lebesgue measure
on R™) second order operator with constant term D1 = 0. D will be
assumed invariant under the left action of R™ (c¢f. Section 2.7). To
simplify notations (and since this is the only case that we shall use) we
shall further assume here that K is some compact group and dk is the
Haar measure. The general case when K is an arbitrary C'°°-manifold
can be treated with identical methods.

Let us denote by e = (1,0,...,0) € R* and by C, = {z € R”
(z,e) > |z|cosa} (0 < o < 7/2) the corresponding conical region. Let
us further denote by Cy o, = Cy — Ae (A > 0) the above conical region
translated backwards so as to contain the origin 0 € C} .

We shall now consider the continuous time diffusion on X

QO ={a(t) = (2(t), k(t) € X =R" x K; t > 0}

controlled by the differential operator D. I shall denote as usual by P,
(x € X) the corresponding probability measure on €2 with P,[z(0) =
x] = 1. We shall show that for any 0 < aw < w/2 and A > 0 there exists
¢ > 0 such that

(A.1) Polz(s) € Cra x K; 0<s<t]>t7°, t>c,

i.e. the diffusion stays in the conical region “polynomially long”.
We shall also show that there exist C' > 0 such that
(A.2)

_ t
Polja(s)| < M; 0< s <t >C 1exp(—CW), tM>1,

where for z = (z,k) € R* x K we denote |z| = |2|.
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Let us observe straight away that M = ¢t'/3 in (A.2) gives

Po[|z(s)| <t/3; 0 < s < t] > C Lexp(—Ct/?), t>1.

A.1. The differential operator D.

In this section we shall consider the operators —D = Dr + M +
P+ Dk on X =R" x K as in sections 2.7 and A.0 and preserve all the
notations introduced there.

Let U(xz) € C*(Q2) (2 C R*, open) and let ¢;(k) € C*(K),
(j = 1,...,n) be arbitrary. I shall denote by F(z,k) = U(z, +
P1(k), ..., xn + Ypn(k)). We have then

n 2
DgF = ZDK Vi) ou + > ( Z Yo, 8( a'@bz)(Xﬁ"vbJ))aaiUv

T;0T 5
ij=1 a,f=1 Eat

TS S{) SRR

2,7=1 a=1

PF = Z 53 a%

j=1

By (2.7.6) it then follows (this is standard Fredholm theory cf. [23],
[24], [39] when D is elliptic and the result easily generalizes to subelliptic
operators) that for j = 1,2,...,n we can choose 9); € C*°(K) so that

DK(@Dj‘l‘Cj)-l-(Sj:O, (Cl,...,cn)ER".

With that choice of the 1’s we have therefore —DF = (LU)(x + 1)

where
92

L= Z Rij (k Oxzaxj

1,7=1

R,g azy+ Z 'Va,ﬁcazcﬂj+2zbazca,37 i,jzl,...,n,
a,f=1 a=1
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where c¢o i = Xo9; (1 =1,...,n, @« =1,...,s). Let us use standard
matrix notations and set A = (aij) € Myxn, B = (bai) € Msxn,
I' = (7a,8) € Myxs. The characteristic form of —D then is

T
(A.1.1) a= <g BF > € Mytsnts

and the caracteristic form of L is

(A.1.2) F(a;C)= A+ C'rc+ BTC + C'B,
where C' = (cq,i) € Msxn. (T stands for the matrix transposition
operator).

The matrix a in (A.1.1) is non negative (c¢f. Section 2.7). This
implies that F'(a;C') > 0 and therefore in particular if we assume that
a > el for some € > 0 (this is the order relation of symmetric matri-
ces) we also have F' > eI. The proof of these facts is elementary linear
algebra. Indeed assume first that A, I' are the identity matrices then
a > 0 implies that ATaA > 0 (AT = (AT, u?), A € R*, p € R?) i.e.
NN+ MBTy + p"BX + pF'p > 0, setting p = —BA we obtain the
required result ATA — AT BT B > 0. In general, by standard perturba-
tion, we can assume that A, T’ are invertible. We set then C' = T'~1/2D
and obtain

F=A-BTr'B+ (DT + BT~ Y?(D+1"%B).

This means that it suffices to show that A — BTT~!B > 0. Towards
that by conjugating £%a £ with

AT
EZ( 0 r—1/2>

we can reduce the problem to the case where A and I' are the identity
matrices which is the special case that has just been treated.

In terms of our differential operators the above says that L is a
second order operator on R™ with positive characteristic and that L
is uniformly elliptic on R™ if D is uniformly elliptic on X. It is an
unfortunate fact that we cannot replace ellipticity by subellipticity in
the above statement (example: n =1, K =T, D = 0*/02? + 0?/06* +
2 cos 0 0% /0200, then 9?1 /060% = Fsin § and therefore 91 /00 = + cos O
= ¢(0) and L = sin® 0 0% /0x?).
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One important consequence of the above transformation where we
set U(x) = z; (i = 1,...,n), the n coordinate functions, is that the
process

y(t) = z(t) + ¢(k(t)) € R

is a vector valued martingale. Equivalently this says that for any linear
function U(z) = Y ujx; and any C' € R" the function F = U(zx +
(k) + C) is D-harmonic on X.

It is in general impossible to construct explicitely any other D-
harmonic function on X. When D is elliptic however it is very easy to
give an explicit construction of an important family of D-subharmonic
functions F' i.e. functions that satisfy

(A.1.3) DF(z) <0.

More precisely let & > 0 be small and let C = C, x K be the conical
region in X as defined in Section A.0. Then a subharmonic function
F as in (A.1.3) can be constructed to have the following additional
properties:

F € C*(X) for some (suitably high) k>0,  F >0,
(A.1.4) FEOonX\C’, F#£0onC,

F(z) = O(|z|?) for some A >0,
(A.1.5) F(ue,ex) — o0 as p — 00,
ex = identity in K .

The construction of F is easy. Indeed we start with F,., € C*T10(R")
as in Section C and for an appropiate choice of v, k we set U(z) = F,  in
our previous construction. It is clear then that if we choose appropiately
the constants C' = (C1,...,Cy,) € R™ the function

(A.1.6) F(z, k) =U(x1+¢1+Cy, ..., 80 + Yn + Cp)

has all the required properties. The role of the constants C' is simply to
translate the value of the argument (on 0C, x K) outside 0C,, where
Uis =0.
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A.2. The proof of (A.1).

All our notations will be preserved. We shall first prove the follow-
ing

Lemma. There exist C,c > 0 such that

> <e >1.
Pe[orggi(t|z(s)|_0t]_e , t>1

In fact for our purposes we only need the following weaker state-
ment

_ —A
(A.2.1) Pe[orggi(t |z(s)| > ct] =0(t™"), t>1,

for any A > 1. The proof of the lemma is easy. Let us define Ty =0 <
Ty, < --- a sequence of stopping times by

Tjy1 =inf{t > T; : |2(t) — 2(13)| > 1}.
For every j > 0, y;(t) = y(t + T;) — y(T}), (t > 0), with y(¢) as in

Section A.1, is then a martingale and it is easy to verify that S;(t), the
S-function of this martingale, satisfies (cf. [27, Section 5])

E(exp(a‘s‘?(t/\éj))//TTj) S Ca é‘] = 4j+1 _Tj7 t> 07 JZ 07

for a > 0 small enough. Since clearly by the stochastic integral rep-
resentation of that martingale we have cit < S7(t) < cat (0 < t < &,
J > 0 and some ¢y, co > 0) it follows that there exists ¢ > 0 such that

Plj41 —Tj =& > A//Tr,] = 0(e™),  E(§)>c>0.

One can then use Bernstein’s inequality for the sum of independent
random variables (c¢f. [22]) which works in this more general context
and deduces that

Pe[ max [2(s)| = en] =PG4+ & < 8], n~t,

has the correct bound. This proves the lemma.
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One can also prove (A.2.1) directly using the Doob maximal the-
orem on the martingale y(s) (s > 0) constructed in Section A.1. This
however requires the estimate ||y(s)||, = O(s*/3) (for p-large enough).
This final estimate is a consequence of the Gaussian decay

2

Pl|z(s)| > M] = O(GXP(—C M?))

which although correct is not trivial to prove [19]. The subellipticity of
D is needed for that estimate to hold. In our context the above Gaussian
estimate can also be picked up by the corresponding Gaussian estimate
on the original group G (cf. [1]).

Finally, for yet another approach to prove (A.2.1) one can use
S(t) the S-function of the martingale y(¢). Using the It6 (stochastic
integral) approach of the construction of the diffusion z(t) (¢ > 0) one
sees inmediately that ||S()]|eo = O(t'/2). The only complication here is
of course the fact that X is not RM but a manifold and the construction
has to be done in “patches”, cf. [28]. The estimate (A.2.1) follows again
by the standard martingale inequality ||S||, = || max||, (¢f. [27]). The
advantage of this approach is that again no subellipticity is used.

Let now C’ and F(x), z € X, be as in A.1 and satisfy the conditions
(A.1.4)-(A.1.5). We shall start diffusion at O = (Xe,ex) € C x K some
large A > 0 and denote

Cr=CnNla<|z| <R CR", T=71p=1inf{t : z(t) € ICrx K}.

The standard submartingale property of the process {F(x(t)) ; t > 0}
implies then that

(A.2.4) F(O) < E{F[z(r)]} < Co+P[lz(r)| = R| R,
where the Cy > 0 is independent of R and comes from the fact that
x(t) could exist at some small z(7) on which F'(z(7)) > 0. If we choose

A > 0 large enough however we are going to have F(O) > 2Cj and
therefore

(A.2.5) Pllz(t)|=R]>cR™®, R>1.
Our lemma on the other hand implies

(A.2.6) Plr < R; |z(7)| > ¢R] = O(R™4)
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for all A > 0. If we put (A.2.6) and (A.2.5) together we conclude that
Plr > R]>cR™9, R>1.

This clearly implies (A.1).

A.3. The proof of (A.2).

The estimate (A.2) can easily be transformed to a standard “17s*
eigenvalue” estimate. Indeed let us consider the operator D on the
M-ball of X

Xor = {o = (k) : |2 < M}

with Dirichlet boundary conditions (i.e. we “kill” the diffusion at the
boundary) and let A > 0 be the first eigenvalue and 0 < ¢ € C*°(X ),
|||z = 1 the corresponding eigenfunction. Then clearly

(A.3.1) le™ P 1|y > (1,e"*Pep) = e P da .
Xm

Using standard methods we shall presently see that
(A.3.2) /@bdx20>0, A< CM™2

It follows thus that for each £ > 0 there exists some xg € X s such that
Q(zo,t) =Py [lz(s)| < M; 0< s <t

ZCGXP(—C t>0.

i)
By the left action of R® on X we can assume that z¢o = (0, ko) € K.
To show that we can assume that xy = 0 we can use the parabolic
Harnack estimates that are verified by @Q(z,t) (these use the subellip-
ticity of D). Otherwise (without the use of the above Harnack) we have
automatically from (A.3.1)

sup Py [lz(s)| < M; 0<s <t]> Cexp(—c

)
LY Mo,
ToEK M?2

The estimate A < CM~2 in (A.3.2) is easy enough and is an immediate
consequence of the fact that the function

p(z.k) = (M —|z))*,  (2,k) €X,
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appropiately smoothed for |z| near 0 and M satisfies
lpll3 = M™ 2, (Dp,p) = M™.

The first estimate in (A.3.2) is a trifle more subtle (but also very stan-
dard). The subellipticity of D implies (¢f. [1]) that

(A.3.3) IFlp < CUDL N2+ fll2], f € G (X),

for some p > 2. The estimate (A.3.3) applied to ¢ implies (since M > 1)
that ||¢]], < C||¢|l2 which by standard convexity gives the required
estimate. A less sophisticated method to see that [ ¢ > C'is to combine
directly the fact |[1||2 = 1 with the Harnack estimate. Subellipticity is
again essential for this approach (if [ ~ 0, ||¢||2 = 1 then there exists
xo € X such that ¢(zg) > 0 also by standard elliptic estimates we
may suppose that dist{zg,0Xn} > ¢o > 0. Harnack applies on 1 and
does the rest).

A.4. Gaussian estimates for a Laplacian with a drift.

The Gaussian estimate for the heat kernel of a Laplacian with a
drift term A = — > X JQ + Xy is not quite standard and we shall outline
the proof here. The upper estimates are contained in [20] but here the
proof does not need the rather difficult technology of [20] and this proof
is already implicit in [19,I]. Indeed if u(t,z) is a solution of 0/0t — A
then v(t, x) = u(t, zetX0) is a solution of the (time dependent) evolution
equation

% — ) (Ad(e"*°)X;)* =0.

Let {Ts+: 0 < s <t} be the corresponding time inhomogeneous semi-
group [29] and let ¢ € C*° be such that |V,p| < 1 where V, denotes
the gradient of some fixed left invariant Riemmanian structure on G.
By the standard argument (cf. [19,I]) we then see that

12 Ty s €727 ||lamy2 < exp(—c (t — 5)A%) .
To give the proof of the upper Gaussian estimate of the corresponding

Heat kernel (and of all its derivatives) we simply use the local Har-
nack principle just as in [19,I;1]. One should simply observe that the
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canonical distance on GG induced by the fields X1, ..., X,, and the above
Riemmanian distance are “equivalent” at infinity.

It is of independent interest to observe that the following maximal
Gaussian estimate also holds (and we do not need subellipticity for this
estimate)

Pi(y) =P max |2(s)] > 7] < Cexp(=cy?/t),  0<t <1, y/t>1,
S
and that there here exists an alternative more direct proof of this fact.

This proof relies on a standard Laplace transform argument (cf. [21])
and the estimate P;(1) < ce™¢/* (t > 0) which is equivalent to

(A.4.1) P[T = inf[s; |z(s)| > 1] < t] < ce™ /¢, t>0.

This last estimate is non trivial. The only way I know how to prove it
is by considering in local coordinates the semimartingale expression of
t=122(s Nt AT), (s > 0) for fixed t < 1. It is easy to see then that
the S-function of that semimartingale satisfies || S|/ < C. This implies
(well known: we time change the martingale part of the semimartingale
and make it brownian motion) that the maximal function

M* =t sup |z(s AT)|
0<s<t

satisfies || exp(a(M*)?)||ooc < C and our estimate (A.4.1) follows from
the fact that on the set [T < ¢] we have M* = t%/2,

The proof of the lower Gaussian estimate (unless the drift is of
special form, cf. [19]) is as far as I can tell considerably more difficult
to prove. The pivot of the proof is the estimate

(A.4.2) P,[d(z(t),y) < 1071°] > Cexp(—%),

for 0 <t <1, z,y € G, 10719 < d(z,y) < 101° This estimate for
a Laplacian with a drift is essentially the Varadhan-Ventcel-Freidlin
large deviations estimates for the Heat kernel (c¢f. [30]). The details
are rather formidable to write out. This has been done in [19, II] (esp.
Section 4.3). In that reference the drift had a special form but the proof
given there works for a general drift. From (A.4.2) the lower Gaussian
estimate follows by standard methods (e.g. [19,1], Section 2.4).
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B. The large deviation estimate.

In this section we shall preserve all the notations of Section 4.4
and we shall prove the estimate (4.4.1). The proof is done in two steps.
The first step consists in modifying

(Bl) A(L,) = Ogig'lin exp(—d,-Lz-(bj))

where we set by = 0 and in showing that
(B.2) E(A, (L) - An(Ly)) = O(exp(—cnl/?)).

The second step consists in deducing (4.4.1) from (B.2).

To simplify notations I shall also assume throughout that d; = 1
(t=1,...,p). At any rate in both (4.4.1) and (B.1) we can also absorb
the d; with the L; and consider IN/Z' = d;L; instead.

PROOF OF THE STEP 1. By the C-condition we can fix £ > 2,1 <141 <
- <ig<pand as >0 (1 <s</)such that

l
asL;, #0, 1 <s</, ZasLiszo.
s=1

It is then clear from the geometry of the situation that there exists
c>0

/l
Li, ()| < CY Lf(x), weV,
s=1

therefore since

l
An(Ly) -+ An(Lp) < exp(— sup Y LF (b))
1<j5<s s=1

we conclude that (B.2) will follow as soon as we can prove that for any
a > 0 we have

1/3

(B.3) IE( exp(—a sup |L;, (b])|)) =0(e " ),

1<j<n

where ¢ > 0.
Observe now that U, = L;, (Xx) € R, (k=1,2,...) is a sequence
of real random variables and that the density functions ¢, of these
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variables P[Uy € dz] = ¢(z)dx clearly are Gs-functions on R (by
Chapter 3) uniformly in j = 1,2,.... Our estimate (B.3) is thus a
consequence of the following lemma

Lemma 1. Let Uy,U,,... be a arbitrary sequence of independent ran-
dom variables that satisfies the above condition. Let S, = Uy +---+U,
and V,, = sup;<j<,, |S;j|. Then for every a > 0 there exists ¢ > 0 such
that o

(B.4) E(e™") = O(e™"

Lemma 2. Let Uy,Us,... be as in Lemma 1. Then there exists € > 0
and an integer ng such that

PllUL + U+ -+ Upymz| <2m] <1-—¢, m=1,2,....

Lemma 1 follows from Lemma 2. Indeed from Lemma 2 it is clear
that

PVyngm2 <m] < (1—¢)?, m,p=1,2,...,

and therefore that

P[Vngm]gCexp(—c%>, n,m=1,2,...,
m

and (B.4) follows by integration.

PROOF OF LEMMA 2. Let ¢p(&) = ¥5(€), € € R, denote the char-
acteristic function of the variable Uy, kK = 1,2,.... The uniform lower
estimate of the Gs-condition 1y (z) > Cexp(—c ) 1mphes that ¢y (z) =
aG(x) + (1 — a)yg(x), where G(x) is a Gau351an distribution and 1y,
some other probability distribution and there exist thus 0 < a < 1,
¢ > 0 such that

(B.5)  Jew(@) S aexp(—c€)+1-a, k=12,....

Now again the uniform Gs-condition on the ;’s implies that ¢ €
C*°(R) uniformly in k£ and therefore since
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it follows that there exists ¢ > 0 such that
(B.6) lok(§)] < 1—cléf?, €l <c, k=1,2,....

Putting (B.5) and (B.6) together we conclude that there exists ¢, > 0
such that
1—n ifl¢l>1,
Iwk(é)lﬁ{ k=1,2,...

e—clEl” if |¢] < 1,

Let now

0<x.%€Co® NL'R), R(€) = / 7 x () di.

Then for any m =1,2,...,7 > 0 we have
x
[t x () s
rm

:rm/m---goma(s)»z(rmé) d¢
(B.7) < Tm/e_cm252)2(rm§) dé + (1 — )™ x(0)

= / e R(€) dE + (1= )™ x(0)

< e R(0) + (1 — 7)™ x(0) <1-4,

where the last estimate holds if r is small enough and m large enough.
For an appropiate choice of x we have x(z) > 1, |z| < 1 and thus (B.7)
gives

PllUL 4+ 4+ Up2| <rm]<1-9§

and Lemma 2 follows.

PROOF OF STEP 2. Let us fix N > 1 (to be chosen later) and denote
Ion={aN+1,aN+2,....(a+1)N} CN, a=0,1,2,.... Let Y, =
infjer, |X;| and let j, € I, be the first integer j € I, for which | X;| =
Y,. Let us further define

. p— 3 2 JE— . -
Bn(Lz) a;a]\lfréf;z-i—N exp(c Ya L’L(b]a)) ’
Cn(Lz) = inf exp(—Li (b]a)) y

a,aN<n+N
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(o= sup <Z|Xk|), bm s (Va).

a;aN<n+3N kel a;aN<n+3N
It is then clear that
(B.8) Anin(Li) < Bo(L;) < Co(L;) e,
(B.9) C(L;) < Ay (L;) e,

provided that C' > 0 is large enough.
By the independence and the Gaussian decay of the variables in-
volved, we see on the other hand that

P{Z|Xk|2)\}§0exp(—c)\2), a=1,2,...,

kel,
P[¢, > A] < Cnexp(—cA?),
where C, ¢ are independent of n, =1,2,..., (but may depend on )
and that
P[Y, > A] < Cyexp(—co N \?), a=1,2,...,
P&, > A < Con exp(—co N A%)

where Cy, ¢y are independent of n,a, N = 1,2,.... It follows in partic-
ular that

(B.10) le“m[l, = O(n'/?), 1 <p<+oo,

and that for every given £ > 0 and 1 < p < 400 there exists an N > 1
large enough for which

(B.11) e¥4n ], = O(n/7).

The proof of the step 2 is then a consequence of (B.2), (B.8), (B.9),
(B.10), (B.11) and a simple use of Holder’s inequality.
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C. The conical function and the Hessian.

Let e = (1,0,...,0) € R® and let r = |z|, let ¢o = 6 be the
latitude with respect to the north pole e and (¢1,...,¢pn—2) be an
appropiate set of local coordinates on S,,_5 (the n — 2 sphere), so that
(r,0,¢1,...,pn_2) are a set of “polar” coordinates on R™.

We shall now fix some small 0 < y and define a function F' = F, j,
on R*. First of all FF = 0 if (z,e) < |z|cosfy i.e. F = 0 outside
the region Cy (c¢f. Section A.0) with a@ = 6p. Next we require that
F(z) = r’u(f) for z # 0 for some large v = 1,2,... and 0 < u(f) €
C*. The function u(#), 0 < § < 7 will have the following properties
u(f) > 0 for =0y < 6 < Op; u(f) =1 for —e < 6 < e (for some small ¢)
and u(0) = (|0] — |6o])* for ||0] — |0o| | small where k = 2,4, ... is an
appropiate even integer. In this section we shall analyze the Hessian
H, 1, = Hess(F) = (h; ;).

Quite generally let us denote by § the set of symmetric real n x n
matrices and by P C § the cone of non negative matrices. Let £ =
(41,...,4,) € R", we shall denote by {® ¢ = ({;¢;) € P. It is clear that
any s € S can be written

(C.1) S—ZA+£+®5+ YNt e,
i=k+1

where )\;-t > 0 are the characteristic roots and E;-t (j =1,2,...) are the
corresponding orthonormal set of eigenvectors. We shall finally define
the scalar product in &

(S 5@y ng)sg), S® = (st es.

The following two notations will be needed

Po={p=(pij) €P : GZ il > Zpumuj > a_lz |52
for all (py,...,pun) € R}, a>1,
So={s€S : (p,s)y>0forallpeP,p}, a>1.

The connection between the above two definitions is described in the
following elementary.
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Lemma. Let s € S anda > 1. Then s € S, if and only if we can write
s in (C.1) with

(C.2) SOAF za(ZA;).
PROOF. Indeed p € P,1/» if and only if in (C.1) it can be written

(0'3) D= Zujﬂj & T

with a=1/2 < p; < a!/? and 7; € R® some orthonormal basis. If we
bare in mind that ({/® /¢, 7 @7) = (£, 7)? for the standard scalar product
on R"” we see that with s as in (C.1) and p as in (C.3) we have

(C4) (5,0 = SN padtf ) = DDA ally ).
Jo 7,

We clearly also have

(C.5) S m)? =3, eR.

«

From (C.4) and (C.5) it follows that (s,p) > 0 if (C.2) is verified. This
gives the first half of the lemma. To see the opposite direction for s € S
as in (C.1) it suffices to test the condition (s,p) > 0 on the matrix

— —1/2p+ + 1/2 p— -
p—Za 2 ®€j+Za Gl €Paye .
J J

The significance for us of the above notions lies in the following

Lemma. Leta > 1 be given. Then there exists ko = ko(a) such that for
all k > ko there exists u(f), satisfying the conditions of the definition
of Fu 1, and vy, vo(a,u) > 3 such that

H, ; = Hess (r"u(0)) € S, , V>,
at every point of R™.

The first step is to observe that we have

9 9 010 0
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valid for 7 > 0 and |#—6y| < |0y|/2 and (¢4, .. ., @p_2) in some appropi-
ate patch of local coordinates of S,,_». The matrix A = (a;;(¢)) has
C coefficients that only depend on (¢, ..., p,_2) and is independent
of r. For every p € P and the corresponding differential operator P we
have therefore

PF = <p7 Hl/,k>
_Z I
- Pij 8:1:18.%

— 1 OF
- Z % rdp; 37‘8(,0 r2 Zo % Db 8 8% ; or

ij=
r2 ZB

1=0

3%

where the coefficients are C°° and where the matrix (s;; ; 4,5 = —1,0,
1,...,m—2) > 0 is positive definite (with s_1 1 =s, s_1; = s;). For
F = r¥u it follows that

r?VPF = v(v — 1)su + 2usou’ + so.ou” + vau + Bou'

(C.6) =12(s + O(1/v))u+2v(so + O(1/v))u’ + s ou” .

Therefore for our special choice of u(f) and 6 close to 0y (|0] < |6p]) we
have

r2VPF = v2(0 — 0y) (s + O(1/v))
(C.7) + 2kv(0 — 0p) " (s0 + O(1/v))
+ k(k —1)(0 — 00) 2500 -

Given a > 1 it follows that the discriminant in (C.7)
D = k*(so + O(1/v))* — k(k — 1)so0(s + O(1/v))
is strictly negative for all
0 —6o| <eo, v>wr9, k>ko, pEPuy,
where vy = vg(a), k = ko(a) only depend on a.

Let us fix some k > ko and some u(f) that satisfies the conditions
of the definition of F' (for that k). Once u has been fixed, it follows
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from (C.6) that there exists v1 = v1(u) > vy (that depends on u) such
that PF > 0 for all |§ — 6y| > ¢ and v > vy. This completes the proof
of the lemma.

D. The random walk and the martingale.
D.0. Statement of the results.

Let S; = X1 + --- + X; € R denote an n-dimensional random
walk where the variables X; are independent and centered (E(X;) =0,
j =1,...), but not necessarily identically distribuited, and where there
exists a > 1 such that each covariance matrix satisfies

(D.0.1) (E(X§XINn gy €Pay G221,

(here we use the notations of Section C and X; = (X},..., X7) are the
coordinates). We shall also assume that for some 2 < p < +oc we have

(D.0.2) X, <C, j=12....

We shall generalize the above setup and consider a vector valued mar-
tingale
fj:d1+"'+dj€Rn, jzl,,fozo

The conditions we shall impose on the martingale differences will be a
natural generalization of (D.0.1) and (D.0.2)

E(dfd]//Ti-1) € Pa, E(diIP//Ti) SC, =1,
where 71 C 72 C - -+ are the o-fields of the martingale. Let (f; ; 7 > 0)

be a martingale as above we shall then show that if p > 2 there exists
C,c > 0 such that

n
(D.1) P[lil;gn|fj|SM]Zcexp(—CW>, n,M > C'.

We shall also show that (if p > py large enough) for any 0 < « < 1 and
A > 0 large enough there exists & > 0 such that

(D.2) Plfi€Cra; 1<ji<ml>m ™, m>¢,
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where C) , is as in Section A.0.

Both the above estimates are very easy to prove when n =
dimension = 1. For n = 1, (D.2) is well known. We can take p = 14+¢ >
1 arbitrary then, and we do not need the extra covariance condition.
To see this we shall consider u; = F(f;) where F(z) =0, x < —1, and
F(z) = x4+ 1, x > —1 which is a submartingale and then apply the
“optional stopping time theorem” on fjzr where ' = inf{j : f; < —1}.

The proof of D.1 for n = 1 is not very much harder. We set
T =inf{j : |f;| £ M} and compose f; = fjar with the function
Fy(z) = F(x/M) where F € C*,0 < F <1, F(z) =0 for |z]| > 1,
F(z) =1 for |z] < 1/2, F(z) > 0 for |z| < 1 and F(z) = C(1 — |=[)1°
for 1 —|z| < 1/10. Using the Taylor series of F, it is easy to verify that
(¢f. Section D.2 for details; in fact this verification is entirely trivial if
di] < 1)

E(Fy (f5)//Taoa) > e M Fy(fisy),  n>1.

If we iterate this for n,n — 1,... we see that (D.1) follows at once.

Both (D.1) and (D.2) are false in higher dimensions without the
covariance condition in (D.0.1). It is clear why (D.2) brakes down, it
suffices in the random walk S; = X + --- + X to consider “singular”
variables X; € hyperplane perpendicular to the axis of C,. To see why
(D.1) brake down when n = 2 we start with 7; = (r;,0) € R?, where
r; = £1 are Rademacher variables, and consider T; € SO3 so that the
last vector (€ R?) in the following summation

fi=r1+Ti(re) +To(rs) + -+ Tj_1(ry)

is orthogonal in R? to the sum of the first 5 — 1 terms. The rotations
T} can clearly be made 7;_;-measurable. We obtain thus a martingale
transform (cf. [27]) that satisfies |f;]| = /7.

REMARK. It is clear that the first condition (D.0.1) is equivalent to

n 2
aY Pal? ZE(| D Nads| //T5m1) 2 a7t Y Al
a=1
Therefore when the d;’s admit conditional densities

(D.0.3) Pld; € dy//Tja) = dpjuly),  G=12....

the condition (D.0.1) is equivalent to

(D.0.4) (/ Vot ditioy))  €Pu,  G=1,2,.

a,B=1
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D.1. A general notion of subharmonicity, the Taylor series
and the proof of (D.2).

We shall consider
;L(wa) e P(R"), x € R", « € A =some index set,

a family of centered (i.e. fRn Vi dpJ(wa)(y) =0, z€eR", ac A, i=

1,...,n) probability measures and F' > 0 some upper semicontinuous
function on R™. Let further R C R" be some open domain. We shall

then say that F' is subharmonic in R with respect to the above family
if

(D.1.1) F(z) < Fxpg(x), TER, acA.

For simplicity in what follow we shall drop the index oo € A and consider
only the case when A reduces to the one point set.

The interest for us of the above definition lies in the following
considerations. We shall consider the family of measures (D.0.3). These
measures in our applications will be given by dpu.(y) = p(y, x) dy where
the p’s are as in Section E. We shall furthermore fix F' and R as above
that satisfy (D.1.1) and define further

r=inf{n : f, € R}

the first exit time of the process f, = y(n) defined in Section E. What
is important for us is then the following

Lemma. Let F,R, T be as above. Then the process u, = F(fuar) is a
submartingale.

In our applications the martingale f, will be one of the two mar-
tingales y(n) or y(T;,) of Section E and then we deduce that for any
starting probability of the diffusion (x(t),¢ > 0) in Section A the process
un, = F(fonar) is a submartingale.

The proof of this lemma is straight forward and was given in [13,
I1, Section 4], it will therefore be omitted.

We shall now explain a general procedure that allows us to analyze
the convolution F x (6 — p) for any p € P(R™) with [z du(z) = 0.
Towards that we shall use the Taylor development at x € R® and write

For(u=0)(a) =23 (1= 1) Fijlo+ o) vy duy) dt.
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where F; ; = 0’F /0x;0x;, we assume here that F' is sufficiently differ-
entiable and that all the above integrals (y € R™, 0 < ¢t < 1) converge
absolutely.

We shall modify the above expression as follows

- (x Yi ay _ (z Yj
2%/(1—1&)&,1( +t)||||d y)dt = 22/ L (v 4y ||||d)\()

where dv(y) = |y|?du(y) and dX is the image of the measure (1 —
t)dt ® dv by the mapping (¢,y) — ty. We shall assume throughout that
[ ly|?du(y) < +o0 so that A is a bounded measure. Quite generally for
any measure A € P(R™) and any matrix (h;;) = H we shall introduce
the notation

MEH () = / hij(z +y )|y’| |y’| d\(y) .

With the above notation we have therefore

Fx(p—96)(z) =2A#Hess(F)(z),

where Hess(F') = (Fj;) denotes the Hessian matrix of F'.

For the new measure A we can no longer assert that it is centered
and its baricenter A = [ & dX\ may not be 0. Indeed this is not in general
true even for the measure v. Let us make the additional hypothesis that

B0 = ([ wiwydu(@) s i5=1,cn)ePuy [l auta) < 0,

for some C, 6 > 0, a > 1. It is then easy to see that there exist
0 <e < 1and R> 1 such that

(D.1.2) p{z : |z —xzo| <R—¢€}>¢ for all zp € R, |zo| =R

Furthermore R, e only depend on C, d, a. This means that the measures
oo, = X(jg_gojcneylt < 1 ([2o] = R) all satisty |[pzo gl > €. Tt
follows also that the measures A;, r that we can associate to jiz, r by
the same procedure satisfy ||Az, r|| > €3. In other words, the property
(D.1.2) is “inherited” by A and can be used as a substitute of A = 0.
This point will be used at the end of Section F below.

Let us now give the proof of (D.2) and to make the argument
that follows clearer let us assume first that 4 € P(R™) as above is
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compactly supported and that its moment matrix satisfies E(p) =
([ wixjdu(z) ; i,j = 1,...,n) € P, for some a > 1. The condition
that we have imposed on the moment matrix is then equivalent to the
fact that there exists € > 0 such that for any (n — 1)-dimensional sub-
space H C R"™ we have

(D.1.3) p{x @ dist(z, H) > e} > €.

Since supp p is compact it is easy to see that the measure A that corre-
sponds to the above p has the same property (D.1.3) and therefore it
follows that the corresponding moment matrix

(D.1.4) E(\) = (/a:zxj dA\(z) ; i,j = 1,...,n> € Py

for some b > 1.

We shall apply the above considerations to the function F(z) =
F, 1(x) of Section C. By the proposition of Section F and (D.1.4) we
deduce that for any p as above and |z| appropiately large we have

Fx(0d—p)(z) <0,

and our lemma applies. An easy adaptation of the argument (A.2.4),
(A.2.5), (A.2.6) completes then the proof of the assertion (D.2) for the
case p = +oo in (D.0.2).

There are several ways of getting rid of the compactness of the
support in (D.1.4) since we shall not need optimal results, let us proceed
as follows: Suppose as above that E(u) € P, and that supp p C {|z| <
R}, R > 1. It is easy to see (e.g. by scaling) that E(\) € P, where b ~
R? (if a is fixed). Let then p be an arbitrary measure that is assumed
to admit a high enough moment Ex = [ |z|Ndp < +oo (N > 1) and

let us denote by pur = X (> 1y P the part of p at oo, and by Ar the

measure that corresponds to pg we have then E(Ar) = O(R™) for an
arbitrary large « (provided that N is high enough). We can therefore
correct the contribution of A coming from pu® = X(a|<r) ™ by O(R™%)

and obtain that E(\) € P, with b1 ~ R=2 + O(R™“). For R large
enough we obtain thus again (D.1.4) for some b that only depends on
a, N and En. Working out the exact value of IV is not so hard and that
exact value of N is not so large either.

The proof of (D.2) for general values of p < +o0 in (D.0.2) can
then be completed as before except that we now have to use the second
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half of Section F. For our applications however the case p < 400 is not
essential. Indeed if we use the martingale y(7},) constructed in Sec-
tion E.2 then the supports of all the measures involved are (uniformly)
compact and p = +o0.

D.2. The radial function and the proof of (D.1) (The case
p = 400 in (D.0.2)).

Let 0 < ¢ € CN(R") be radial decreasing (i.e. ¢(z) = o(r),
r = |z| and N is sufficiently large) and such that ¢ = 1 if |z| < 1/2
and ¢ = 0if || > 1, ¢ > 0 if |x| < 1. Let us further assume that
p(x) = (1 —r)” for 3/4 <r <1 and v =4,6,... some appropiately
large even integer. The above function is clearly not convex (if n > 2
it is not even convex in some Nhd of the unit sphere r = 1). Let
Hess(p) = (0%¢/0x;0x;) be the corresponding Hessian matrix. This
matrix can easily be diagonalized and an easy calculation shows that
for |x| ~ 1 we have

Hessp =v(v —1)(1—7)""2p@p—cv(l—r)""10;®0;,

where p(z) is the unit vector along the radius Oz and 6;(z) (j =
1,...,n — 1) are an orthonormal complement of p(z) (tangent to the

sphere {y : |y| = [z[}.

The crucial fact in the structure of the above Hessian is that for
each o < 1 if we add some appropiately large multiple of ¢ we obtain
a positive matrix

Hessp +CpI >0, lz| < rop .
By scaling therefore ¢ (+) = ¢(-/M) (M > 0) we obtain
Hess o + CM 201 >0, lz| < M7y .

If we use the second order Taylor development of ¢, we obtain there-
fore that

ot (i — 0)(x) > —CM / om(@+1)dNy) . o] < Mry,

where p and A are as in Section (D.1) and are compactly supported
since p = +00, and p satisfies [(D.1.3) of Section D.1]. Then v and A
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also satisfy (D.1.3) and since @ps(r) is decreasing it follows that there
exist My, co > 0 such that

(D.2.1) opr*(p—08)(z) > —co M 2pp (), M > My, |g| <My .

The next observation is that for all ¢ > 1 there exists € such that if
1—7ry < e then Hess p € S,, || > 71 therefore also Hess oy € S, (M >
0, || > ryM). In informal terms this says that, near the boundary, ¢
“looks more and more like a convex function”. In fact by an elementary
calculation, that is best carried out by drawing a few pictures, we see
that (D.2.1) holds (with ¢y = 0) for |z| > r1M provided that 1 — r;
is small enough and M large enough. The final conclusion is therefore
that (D.2.1) holds for all z € R".

From the estimate (D.2.1) we deduce that there exist My, ¢ > 0
such that

(D.2.2) o * p(z) > e_CM_ngM(x), reR*, M > M, .

To finish the proof of (D.1) let us set T = inf{j : f; > M}, fi = fiar
and let us apply (D.2.2) with p = p;, as in (D.0.3). We obtain

* —cC -2 *
Elon (7)) Fi-1] = e ™ “on(fi 1)

which by iteration gives
(D.2.3) Elpm (f2)] > e /M n>1, M > M.
From (D.2.3) (D.1) follows at once. It has thus been shown that (D.1)
holds if p = +o0 in (D.0.2). The above argument can be adapted to
deal with p < +o00, the proof will be omitted since this is not essential
for us.
E. Discretising the continuous time martingale.
E.1. The deterministic discretisation t =1,2,....

We shall preserve all the notations of Section A and recall (Section

A1) that y(t) = 2(t) + ¢(k(t)) + C € R™ is a continuous time martin-
gale. It follows in particular that f; = y(j) (j > 0) is a discrete time
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martingale (unlike Section D.0 fo = C which is not necessarily 0) our
purpose is to examine

Plfj—fi-i€dy//fr=21,..., fj-1=2j-1] = p;j(y; 2) dy,,

for ¢ = (z1,...,2j-1), y € R*. To be formally correct the above
probability density is only defined z almost surely and is a measure
diz(y). The above abusive notation will be justified by what follows.
What is clear by the martingale property is that

/ydym(y):o, j=0,1,..., e R".

We shall show then that there exist C,Cy > 0 such that we have (uni-
formly in z)

2
(B.11) O exp(~Clyl) <py(.0) < Crexp(—20) yeRe.
It is essentially this estimate that justifies our previous abusive notation.
It is clear that it suffices to prove the same Gaussian estimates for
the “finer” conditional probabilities with respect to the fields 7; =
T{z(t); t < j—1}. By the Markov property we must therefore consider
the conditional properties

PIfi = fi-1edy//(2(5 = 1),k(j = 1)) = 2] = p;(y; x) dy,,

for y € R*, z = (2,k) € X = R® x K. These new Gaussian estimates
can be deduced from the Gaussian estimates for the diffusion kernel
qi(x1,22), (t > 0, x; = (25, ki) € X, i = 1,2) of the diffusion Q (cf.
Section A.0)

|21 — Z2|2>

(E.1.2) Crlexp(—Clz1 — 22|%) < qu(w1,20) < Cy exp(— C

To deduce (E.1.1) from (E.1.2) one simply “integrates” along the fibers
Fy={(zk) € X : 24 p(k) =y}

The upper Gaussian estimate (E.1.2) is perfectly standard and follows
from the more general (C°°-manifold) upper Gaussian estimates for
subelliptic operators and the intrinsic distance that they induce (cf.
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[1]). The lower estimates makes essential use of the left invariance of D
and the corresponding scaled (for “small balls” but spacially uniform)
Harnack estimate. The argument is an easy adaptation of [19]. Al-
ternatively, if the reader is not prepared to either believe or verify for
himself the above argument, he could refer to [1] where the above lower
estimate is explicitely proved for Lie groups G and left invariant opera-
tors. The diffusion €2 that we will be considering is non other than the
diffusion that in Section 2 is induced on R x K by the corresponding
diffusion in our original group G. The lower Gaussian estimate (E.1.2)
can then easily be picked up by the corresponding estimate in that
group. The verification will be left to the reader.

The reader should also observe that the above lower Gaussian esti-
mate is not essential for us here. Indeed the reason that we need these
estimates is that we have to show that the above martingale f; = y(j)
satisfies the conditions of Section D.0. For this it suffices to have the up-
per Gaussian estimate (E.1.1) which guarantees the moment condition
(D.0.2) and a much weaker lower estimate of the form

pi(y,x) =z, |yl <e,

for some € > 0. This is guaranteed by the uniform Harnack estimate
on X for the operator D.

E.2. The optional time discretisation.

There is an alternative way to discretise the time parameter of the
martingale y(¢), (¢t > 0). Let Tp = 0 and

Ty = inf{t/|z(t) — 2(0)| > C}, T; =inf{t/|z(t) — 2(Tj_1)| > C},
for j = 2,3,..., and some large C' > 0. We can set then f; = y(T}),
(j = 1,2,...) which is now a martingale as in Section D.0 with the

additional property that the martingale differences d; = f; — fj—1 € L™
are uniformly bounded. For this new martingale we shall define again

Pfi = fi-1 € dy//2(Tj—1) = (2(Tj-1), k(Tj-1)) = 2] = dfiz(y) ,
fory)=1,2,...,2€ X =R" x K, and

Plf; — fi—1 €dy//fi=21,..., fj—1 = 2j—1] = dp(y),
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for j = 1,2,..., x1,--- € R®, and we shall show that the measures
1, satisfy the covariance condition of Section D.0 uniformly in j > 1
and x € R™. For this it clearly suffices to prove the corresponding
covariance condition (D.0.4) for the measures fi,. To see this fact one
simply has to understand what a subelliptic diffusion means. The best
way to analyze this situation is to work with the “trajectories” of the
diffusion €2 (¢f. Section A.0).
Indeed if x,y € © C X where © is some open set of X then

Po[a?(Tj_l‘f‘t) €0, 0 <t<tp; dist(x(Tj_1+t0),y) <€//$(Tj_1) = .I]
=P,[z(t) € ©, 0 <t < tp; dist(z(to),y) <e] >0

for any ty and € > 0. This is a basic consequence of the subellipticity of
the operator D and follows from the smoothness of the heat diffusion
kernel and elementary (if lenghty and tedious) considerations that will
be left for reader.

For fixed x and j therefore, by appropiately chosing ty, and y we see
that measure . (dy) charges positively (and in and uniform fashion with
respect to 2 and j) a whole family of small discs around z. Furthermore
there are enough of these discs on every direction as we go away from
x to guarantee the covariance condition (D.0.4) for fi,. The details will
be left to the reader.

F. The geometry of the Hessian.
F.1. Dimension =n = 2.

To see clearly what is involved we shall first consider the case of
R? (i.e. n = dimension = 2). We shall preserve all the notations of
the previous sections and translate the f-variable (now of course the
polar coordinates are (x,y) = (r,0) € R?) by 6 = « so that the x-axis
becomes one of the two edges of the wedge Cy, and {x > 0, y =0} =
{r >0, 0 =0}.

For these coordinates we have

— = cos 0 2 —sinf 12 3 =sinf 2—kcos@ 12
or or rof’ oy or r oo

For § ~ 0 (§ > 0) and F = F, j;, as in Section C we obtain by a straight
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forward calculation that

HessF _ TV_29k_2 < 1/292 l/kg + 1/293 >

vkl + 1203 k% + (2vk + v — k)6% + v20*
(F.1.1)
_ T,I/—29k—27_[7

where each coefficient of the matrix A has to be multiplied in addition
by a factor = 1+ O(6?) + O(1/k) + O(k/v), and in the considerations
where H is used we shall assume throughout that 0 < 0§ < g9 < 1,
1<k, 1< v/k.

For a 6 that it is not close to 0 and F' = r”u(f) we also have the
following expression of the Hessian

o cos? 6 cos @ sin @
Hess F'=v (v —1)r 2“'(9) (cos@sin@ sin? >

(F.1.2)
=v(v—1)7r""2u@)H,

where every coefficient of the matrix H has to be multiplied by a factor
of the form (1 + O(1/v)) with a O(-) that depends of course on the
particular chice of w.

Let now quite generally K = (k; j(z)) € S, x € R*, denote an
arbitrary matrix and let g > 0 denote some non negative measure on
R™. We shall use then the same notation as in Section D.1

z

j
d
» n(z),

W)@ = Y [ ke +2)

where we shall assume that all the above integrals converge absolutely.
I shall denote

We have then

Proposition. Let i be as above and let us assume that E = (E;;) € Py
for some b > 1 and that p is a probability measure supported in the unit
ball: supppu C {x € R* : |z| < 1}. Then there exists a choice of v, k
and some ro > 0 such that

(F.1.3) (p#Hess F, ) (x) > 0, zeR", |z >rp.
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The proof is elementary but lenghty. Before we give the proof we
shall explicitely state the three basic properties of Hess F' that make
the things work. The proof of this properties will be left to the reader.

a) Using the notation of Section C.1 we shall diagonalize the matrix
H at every z € R?

H=XAe1 ®e1+ Aaea ey,

where (eq, e) is an orthonormal basis of R? and where A\; > 1/2 pro-
vided that 0 < 6 < g for gy small enough and k,v/k are large enough.
Furthermore by direct computations or by the considerations of Section
C we see that for all @ > 1 there exists tg, ko such that A\ > a|As]| for
l//k 2 to, k Z ko.

b) Let us assume that v and k are fixed, then A;(z) and e;(z) are
continuous functions of #. By the uniform continuity and the fact that
0 < y/|z| we see therefore that for all § > 0 there exists ro = ro(J; v, k)
such that

|Xi(z1)—=Ai(z2)| <0, lei(z1)—ei(z2)] <6, |z1—22| < 10, |2| > 70 .

c¢) Let us again fix v and k. Near § = 0 we have

(F.1.4) p#Hess F, p, = p#tr” 20" "2H|g—o + Error.

Let A > 0 be fixed for z; = (x1,y1) with |y1] < A and z; large
enough. We have

2
(’u#rz/—29k—2zH|9:0)(Zl) — k2 /Tu—29k—2 é? dp,(z)

=2y (co + O(1/21))

where ¢y > 0. To prove that ¢y # 0 we use already the hypothesis
E € P,. By an easy calculation on the other hand one sees that the
“error” in (F.1.4) is O(z4~37%) because all but the &2 terms of H involve
higher powers of 6.

The conclusion is that for fixed v, k and A we can find B > 0 such
that our estimate (F.1.3) holds in the region

Rap={2=(z,y) : ©= B, y< A}.
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What is furthermore important about the region R4 p is that (again
with v, k fixed) for any 6 > 0 we can find A and r( large enough so that
the co-factor of H in (F.1.1) ¢ = p(z) = r¥~20%=2 satisfies

o(z1)
o(22)
In other words that cofactor varies as slowly as we like outside the
regions R4 p for large |z|.

We shall now procede with the proof of the proposition. Because
of ¢) above, it remains to prove (F.1.3) in the region outside R4,7y.
With the notations already introduced we have then

p#Hess Fy, 1(20) = /w(zo; z)du(z — zp) ,

1-0< <140, |zn—2|<1, |al>ro, 21 ¢ Ray, -

where
Vi, 2) = l2) ()‘1(2)<61(Z)’ ﬁy + A2(2)<€2(Z)7 ﬁ>2>

and where z¢ lies in the region 0 < 6 < g.
For any € > 0 let us denote

Be(z0) ={z : |z— 20| <1, |{e1(20),2 — 20)| > €|z — 20|}

so that By is the unit ball centered at zy. Let us now fix € > 0, we can
then find tg, kg so that

z— 2 \2 100 z—2p \2
M0 o 25 2 0 () 222
1(2) {e1(20) i [A2(2)] ( e2(20) P
for v/k > to, k > ko, z € Be. Observe that here the argument z has
been frozen to z = zp in e;(-). We shall fix k = kg and will not change
it anymore. Using b) for every v > vy(ko) we can find ry = ro(v) such
that

2= 20 2 10 / / z — 20 2
)\1z<elz, >210 Aoz <622,7>,
@) (. = o)l {eale).
for v > vy, |z — 2| <10, |z| > ro(v), z € B.. Using ¢) and the slow
variation of ¢ outside R 4,r¢ we see that there exists A > 0 such that
for all v > vy large enough there exists r1(v) > 0 such that

o) Ma(2) {e(2), T2 )

)
|z — 20|

(F.1.5)
> 10° (") hal)] (2",

Z — 2z >2
2" — 20|
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for |2 — 2'| <10, 2 = (z,y) € R%, |z| > r1(v), |y| > A, 2 € B.. At this
point one should remember that we are working close to the edge of C|,
i.e. in a range 0 < 6 < ¢ for some small g9. The estimate (F.1.5) will
now be used in conjunction with the fact that because of our hypothesis
E € Py, for e > 0 small enough, we have u(By\B:) < 10710 (¢f. Section
D.1). If we integrate (F.1.5) against du(z — zo) du(z’ — zp) we obtain
that for all v > v there exists rg = ro(v) such that

21 — 20 >2
)

(F.1.6) p#Hess Fy, > 10_2<p(z1) A1(z1) <el(z1),
|21 — 20|

for v > Vo, zi = (x'wyz) S R27 1= 0,1, |Z0 _Z1| <1,z € B07
|zi| > ro(v), y; > 2A+10. In particular (F.1.6) holds for z; = z; which
together with ¢) shows that for £ = ko and every v > vy there exists
ro = ro(v) such that

(F.1.7)  p#Hess Fy, 1, (2) >0, v >y, 0<6<ep, 2] >10(v).

To finish the proof of the proposition, since k = k¢ has been fixed, we
shall complete the definition of u(6) in F, j, = r¥u(f) and use the for-
mula (F.1.2) for the Hessian. Using that formula and the same method
(this method now applies much easier. Indeed we do not have the edge,
where the co-factor ¥~2 vanishes, to worry about!) we finally see again
that there exists 1 > 0 such that for all ¥ > v there exists 7o = 79(v)
such that

p#Hess Fy i, (2) > 0, v >y, g0 < 0] <200 —eo, |2| >1(v).

If we combine this (F.1.7) we see that we have a proof of the proposition.

The rest of this section will be devoted to the proof of the propo-
sition when the support of u is not compact under some additional
conditions. This is interesting on its own right but is not essential for
the rest of the paper. We start by extracting as much as possible from
our previous argument.

Let &;(z), 4 = 1,2 be the two eigenvalues of HessF), j, with |£1] > |2
(when 0 < 6 < g¢ with our previous notations we have of course & =
rv=20k=2);, i = 1,2). By analizing our previous argument we see that
if supp p C [|z| < f] for some fixed 3, then we can find kg, vy, co > 0
such that for all ¥ > vy there exists rg = ro(v) such that

()2 <o [ €102 + o) du(a)

= col[Hess By go ||+ p(2),  |2[ 2 7m0(v).

(F.1.8)
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What is important is to analyze the dependence of ¢y on the parameters
of the construction. Following the construction through and preserving
the same notations we see that if § and b are kept fixed then we can
set co > C1(b, 8)e%. This € > 0 (which is assumed small) is the € that
was used in the definition of B.(zp).

The important aspect of the estimate (F.1.8) is that it is “scale
invariant”. First of all it is clear that nothing changes if we replace F, j
by CF, ) some constant multiple of F), ;. Because of the homogeneity
of F' it follows that we can replace p by any u, where 1, is the image of
the measure p by the dilatation p : x — px in R2. Clearly the dilatation
p replaces 3 by p3 and b by max{p?, p~2} b. It follows in particular that
we cannot shrink a large # to 1 without at the same time having b go
to oo.

The dependence of ¢y on b, for fixed say f = 1, must therefore be
examined. That dependence is of course picked up by the condition
u(Bo\B:) < 1071, This gives ¢ ~ b~'/2 and by the above dilatation
argument we conclude that for fixed b > 1, ¢y ~ 1/8. More explicitely
if b is fixed, we can choose kg, 1y, ¢ such that for all v > vy and all 8 > 1
there exists 19 = ro(v, 3) such that

p#Hess Fy i, (z) > ¢ &1(z + x) du(x)
(F.1.9) ) ﬂ/

= %/ |HessF, k, (z + @) || dp(z)

for p € Pllz| < 6], E(u) € Py, |2| > 1o(v,5). The only thing that
really counts in (F.1.9) is that the dependence of the co-factor of the
integrals is polynomial in 3. A co-factor of the form ¢/3'° would have
been just as good for our purposes.

With the help of (F.1.9) we shall generalise our proposition to
measure that are not compactly supported. To do this we have to go
back to Section D.1 and to start from some p € P (R™) such that

[l auto) < +oc
and such that
ﬁ:/azd,u(x)zo, (/ximjd,u(x);i,jzl,...,n)EPc,

for some large N large enough and some ¢ > 1. We shall next consider
the measure A that corresponds to g as in Section D.1. It is for that
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measure A that we shall need to generalize our proposition and prove
that

(F.1.10) (A#Hess Fy i, )(z) > 0, zeR", |z| > .

This new measure A also satisfies

/|x|Nd/\($) < 400,

B (/a;,-xjd/\(x); ij=1,...n) €Py

for some IV as large as we like and some b > 1 (but does not necessarily
satisfy A = [z dA(z) = 0).

The next step is to examine ||HessF, j|| as obtained from the two
formulas (F.1.1), (F.1.2). An easy calculation gives

Co(E2r" 205240217208 < ||HessF, i || < C1(k*r” 20524127 —20F)

valid in the 1/2-C,, cone (0 < 6 < 6)) that is closest to the edge 6 = 0.
It follows that in that region if we use cartesian coordinates we have

||HeSS Fyka ~ kz(ajy_kyk_z + m—k+2yv+k—4)

+V2(xu—k—2 k —k u+k—2) .

(F.1.11)
y +a vy

If we combine the two 1/2 subregions of C, we see that if we denote by
¢ = £(z) = dist(z, 0C,) we obtain the estimate

||HeSS Fyka ~ k2(x1/—k§k—2 + x—k+2€v+k—4)

(F'1'12) + 1/2 (xu—k—2€k + I—ké*l/-i—k—z) 7

valid in the whole C,. Let us consider the functions 14 p(2) = zAEB
(z € Cy) and Y(2) =0 (2 ¢ C,) where (A, B) takes the four possible
values that appear in the right hand side of (F.1.12). To prove (F.1.10)
it will suffice to show that any of the above four functions ¥4 B = ¥, 1
has the following property: There exist C7,C5 > 0 that do not depend
on v (but may depend on k) such that for all v > 1 there exists ug(v) > 0
such that

Cy

(F.1.13) ./|z|>6 Yy r(u+2)dA(z) < (?)”/2 /MSCI Yy r(u+2) dA(2) ,
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forv > 1, |u| > up(v), 8> 1, u € Cy. Indeed once we have (F.1.13) we
shall truncate A at [|z| < g]. If we use (F.1.9) and the same correcting
argument as at the end of Section D.1 we see that (F.1.10) follows.

Let us fix R,e > 0, let us assume that A satisfies (D.1.2) and let
us denote

myk(u) = sup  A{inflyk(2) @ [z -2 < R—e€]}.

zj|lz—u|=R *

It is clear from (D.1.2) that for an appropiate Cy > 0 we have then

iy (1) < Cy / Dot + 2) dA(2) .

|2|<C

(F.1.13) will therefore follow as soon as we can show that

Cor\v/2
/Mw Yo+ 2) dA(2) < (F> My 1o ()

with v, u and 3 as in (F.1.13). The only thing, of course, that really has
to be verified in the above estimate is that the constant Cy is uniform
in v. By the structure of the above functions 1 it is clear also that we
can fix A > R + ¢ and distinguish the following two cases.

Case 1. distance(u,0C,) > A. One then simply has to verify that

/|z|>ﬁ Yua(u+2) dA(2) < (%)szu,k(@ .

Case 2. distance(u, 0Cy,) < A.

Observe finally that we are essentially dealing with two types of

functions
P =g, rTeE",

where the notations and a,n > 0 are as in (F.1.12) and that the es-
timates obtained must be uniform in n. Clearly also because of the
symmetry about the axis of C, of the above functions we may suppose
that « lies in the half of C, that is closest to # = 0. We can then
substitute in the integrand the following two functions 775 (that up to a
multiplicative constant, dominate 1))

@Z(z) = y%2™, Y = %Y, z=(z,y) € Cu = {0 <0 <20p}
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and @Z is assumed to be = 0 outside Cl,.
For these new functions, and an appropiate choice of R,e and A
as above, the verification that we have to make in Case 2 reduces to

(F.1.14) /| . Do re(u+ 2) dA(2) < (%)Vﬂ%k((% A)),

for u = (z,y), |[u| > 1, 0 <y < A. Finally if 0 < Argu < 0y, i.e. if
u lies in the half of C, closest to the z-axis, it is easy to see that it
suffices to make the above verifications with a modified ¢ given by
7 yaxn, l.—a,yn7 z = ('Tvy)v Yy > 07 T > ]-7
P(z) = .
0, otherwise .

Four inequalities have to be verified (uniformly in n) and I can see no
other way than to just compute. Or rather let the reader compute
for himself. At this point life can be made considerably simpler if we
impose the following stronger condition on A

dA(z) < On(1+ |z) N1+ |y))Ndz  forall N >1.

This condition if applied to (F.1.14) “splits” with respect to the two
variables x and y and the calculations simplify since they now reduce to
the calculation of 1 dimensional integrals. Given that for all our appli-
cations the above stronger condition on A actually holds the verification
under this stronger condition is “good enough”. The details will be left
to the interested reader.

F.2. An alternative approach and higher dimensions.

For the dimension n = 2 the method that I developed in Section
F.1 is unduly complicated. Indeed in the case n = 2 it is much easier
(and also throws additional light to the problem) to procede differently.

I shall briefly outline here this alternative method. We shall only
examine what happens close to the boundary 0C,, because for 6§ away
from 460 everything is much easier. We shall therefore use the formula
(F.1.1). If we denote by HessF' = (a;j)i j=1,2 the coefficients of that
Hessian it is very easy to verify that for any 9 > 0 there exist kg, vg, 6o
(all depending on g¢) such that

(1+e0)ariaze > aly, v>uv, k>ko, 0<60<0,.
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The key to this alternative method is to show that under appropiate
conditions on the measure u(z), we can “make up” for the factor (1+¢¢)
and guarantee that the matrix B = (b;;); j=1,2

bi1 = /all(z) cos 0 dp(z) ,
bio = /a12(z) cosfsinfdu(z),

ba2 = /azz(z) sin” 0 dy(z)

satisfies by1b9g > b%z. The matrix B is therefore positive definite and
our proposition follows.

The details of the above method are easy to carry out. At any
rate they are much easier than what was done in Section F.1. The
reason why I presented the proof for n = 2 in Section F.1 as I did was
because the method of Section F.1 generalizes in a more or less obvious
way (although the computations are somewhat tedious to carry out) to
higher dimensions. I shall not write the proof down for n > 3 here.
Indeed in a future publication the whole problem will be reexamined
from a more general point of view.

F.3. A final remark.

The proofs given in this section of the appendix are very technical,
to say the least. All this work seems to be incompressible if we wish to
consider convolution operators with an arbitrary Gs-measure p € P (G)
as in Theorem B. If however we only wish to develop the necessary
tools for the lower estimate of Ay) then a completely different approach
(that is more sophisticated and deep but technically much easier) can
be used.

This approach will be developed at great lenght elsewhere I shall
give however here the basic principles. It relies on the following two
facts:

1) There exists u > 0 some non zero function on X that is contin-
uous, vanishes outside C' x K, and satisfies Du =0 in C x K.

The existence of such a positive “harmonic” function relies on non
trivial ideas from potential theory (A. Ancona [32] and L. Carleson [33]
are the key references) which we have to adapt in our context.
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2) A function u that satisfies the above conditions is automatically

unbounded and of polynomial growth.

The proof of 2) is “lighter” than that of 1) but does rely on a

scaled Harnack principle which, for large balls, can only be obtained by
the Moser iterative process (cf. [34]). At any rate all the details will
eventually be presented in a separate paper.
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