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measurable rectangular matrix

functions and the vector-valued
Riemann problem

Marek Rakowski and Ilya Spitkovsky

Abstract. We define spectral factorization in L, (or a generalized
Wiener-Hopf factorization) of a measurable singular matrix function
on a simple closed rectifiable contour I'. Such factorization has the
same uniqueness properties as in the nonsingular case. We discuss ba-
sic properties of the vector valued Riemann problem whose coefficient
takes singular values almost everywhere on I'. In particular, we intro-
duce defect numbers for this problem which agree with the usual defect
numbers in the case of a nonsingular coefficient. Based on the Riemann
problem, we obtain a necessary and sufficient condition for existence of
a spectral factorization in L, .

1. Introduction.

Let T' be a simple closed rectifiable contour which is the posi-
tively oriented boundary of a finitely connected region Dy, and let
D_ = Cou\(D4+ UT). Let G and g be functions on I'. The Riemann
problem consists in finding functions ¢4 and ¢_ which are analytic
in D, and D_, respectively, and whose nontangential boundary limits
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satisfy equation

(1.1) b+(t) + (1) - (1) = g(0).

This problem is also called a Hilbert problem [6], or a barrier problem
[2], in the literature. The name Hilbert problem originates in [7], where
the homogeneous version of the problem was considered under the as-
sumptions that I' is a smooth contour which is a boundary of a simply
connected region, G is twice differentiable, and the scalar functions ¢
and ¢_ are continuous up to I'.

A classical solution of the Riemann problem in the case where I'
is smooth and bounds a finitely connected region, G and g are Holder
continuous, and G does not vanish, is as follows. Assume I' = T'qyUIT'; U
---UI'y where I'y encloses I'y U- - -UI'y, and consider the homogeneous
problem

(1.2) ¢4 (t) = —G(t) p-(1).

Suppose the change of argument of G(t) along the contour I'; is 27\,
t = 0,1,...,N. Assume 0 € D,, and pick a point «; in the hole
bordered by I'; (i =1,2,...,N). Let

(1) ) = M — ) (- an)™,
let K =X+ A1+ -+ Ay, and let
(1.4) Go(t) = —t7"r(t) G(t).

Then log Gy(t) is continuous on I' and satisfies the Holder condition.
Consequently, if

(1.5) v(2) ! /rwdt

:2—7rz' t— =z

and v1(z) = 7(2) for z € Dy, y4(f) — 7-(t) = log Go(¢). Hence
6’7+(t) fd 677 (t)GO(t), and
1

(1.6) wi(z) = ) e’ () and o_(2) = 27"’
m

are functions whose nontangential limits to I' are Holder continuous
and satisfy equation (1.2). Functions ¢4 and ¢_ can be used to obtain
solution of the nonhomogeneous problem.
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Equation (1.4) shows that the Riemann problem can be approached
through factorization of its coefficient. Suppose we can find a factor-
ization

(1.7) G(t) =G (A1) G-(1),

where G4 (t) and 1/G4(t) are boundary values of functions analytic
in D4 and continuous up to I', G_(t) and 1/G_(t) are boundary val-
ues of functions analytic in D_ and continuous up to I', and A(t) =
(t —ty)"/(t —t_)" for some points t; € Dy and t_ € D_ and an
integer k. Then (1.1) is equivalent to

¢+ (t) g(t)
(1.8) G (1) +A(t) G_(t) p_(1) G0
The decomposition g(t)/G+(t) = g+(t) + g—(t), where g4 (respectively
g_) is a boundary value of a function analytic in D, (respectively D_)
and continuous up to I', immediately yields all solutions of equation
(1.1). We note that factorization (1.7) exists e.g. when G is Holder
continuous and does not vanish on I' [2].

The factorization approach applies naturally to more general ver-
sions of the Riemann problem considered in the literature. The problem
with G(t) a square nonsingular matrix valued function has been treated
in [6]. Factorability of an essentially bounded nonsingular matrix func-
tion G and the Riemann problem in L, were considered in [12]. The
case where (G is a measurable nonsingular matrix function and ¢, and
¢_ arein L,(I") has been treated in [13] (see also [9]). Below, we extend
some of the results presented in [9] to the case where G takes singular
values. In particular, we relate the properties of the Riemann problem
with a measurable singular matrix valued coefficient with existence of
a factorization of the coefficient.

Let G be a continuous nonsingular matrix valued function on a
simple closed rectifiable contour I'. A (left) standard factorization of G
relative to ' is a factorization G = G4 A G_ where G (z) and G, (2)™?
are analytic in Dy and continuous up to I'; G_(z) and G_(z)~! are
analytic in D_ and continuous up to I', and

t—ty\™
0
=3
' t—t \™
0 M
t—t_

(1.9) A(t) =



672 M. RAKOWSKI AND I. SPITKOVSKY

for integers k1 > --- > ky,. This factorization is also called a Wiener-
Hopf factorization or a spectral factorization relative to I'. The proper-
ties of a standard factorization relative to I" are described in [2].

Let E,4 (respectively E,_) be the space of functions f analytic in
D, (respectively D_) such that { ka |f|P} is bounded for some sequence
of rectifiable contours I'y, approaching I' in D, (respectively D_; see
[5]). If the components of G4 (z) and G4 ()" are in E,; and E,
where 1/p + 1/q = 1, the components of G_(z) and G_(2)~! are in
E,_ and E,_, and A is given by (1.9), G = GLAG_ is called a (left)
factorization in L, [9]. We note that factorization with a different A
has been considered in [14].

A function G' may admit a left factorization in L, although the
space of all g € Ly(I") for which the problem (1.1) is solvable is not
closed. Suppose the contour I' is such that the operator of singu-
lar integration (Sf)(t) = (1/7t) [ f(7)/(T — t) dT on the space L,(I)
is bounded. Suppose G and its multiplicative inverse are essentially
bounded, and G = GLAG_ is a factorization in L,. Then the set of
all g € L,(I") for which problem (1.1) is solvable is a closed subspace
of L,(I") if and only if the operator G4SG7' is bounded. If G and
G~! are bounded, a factorization G = G+AG;1 in L, with the op-
erator G4SGT' bounded is called in [2] a generalized (left) standard
factorization relative to T'.

The definition of a standard factorization relative to a contour has
been extended to the singular case in [3] by requiring that G4 have a
left (respectively G_ a right) multiplicative inverse which is analytic in
D (respectively in D_) and continuous up to the boundary, and that
A be a square nonsingular diagonal matrix function as in (1.9). If G
is a rational matrix function, a necessary and sufficient condition for
existence of a canonical standard factorization (k1 = --+ = ki = 0),
together with realization formulas for the factors, has been obtained in
[11]. Below, we apply this idea to factorization in L, of measurable
singular matrix valued functions. In addition to allowing functions to
take singular matrix values, we make only general assumptions on con-
tours. We assume that the contour I' is simple, closed, and rectifiable.
We do not require that I" be regular [4] or Smirnov. Thus, the operator
of singular integration on the space L,(I') is in general unbounded.

The paper is organized as follows. In Section 2 we indicate basic
properties of factorization in L, of singular matrix functions. In Section
3 we discuss the vector valued Riemann problem with singular matrix
valued coefficient G. In Section 4 we relate the factorization of the
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coefficient G with the Riemann problem.

2. Spectral factorization in L, .

Below, L, with p > 1 will denote L,(I') (with respect to the
usual Lebesgue measure). We will denote by L,, and L,_ the closed
subspaces of L, formed by nontangential boundary limits of functions
in B,y and E,_, where E,; are as defined above and Fo.4 (respec-
tively Foo_) is the space of functions analytic and bounded in Dy (re-
spectively D_). We will identify L, and L,_ with E,; and E,_.
Lp_ will denote functions in F,_ which vanish at infinity. If X €
{Lp, Ly, , Ly, Lp_}, we will denote by X™*™ the space of m x n ma-
trices over X. To simplify notation, we will write X™ instead of X X"
or X<,

Definition 2.1. Let G be an m X n matriz valued function with mea-
surable entries and let p > 1. By a (left) spectral factorization in L,
relative to I' we will understand a factorization

(2.1) G=GiAG_,

where

i) G4 € ngerk and there exists GY € L’gfm (with ¢ = p/(p — 1))
such that G%(t) G4 (t) = I almost everywhere on I,

i) G_ € ngf" and there exists G € L' Fsuch that G_(t) GE(t)=
I almost everywhere on I,

iii) the middle factor

t—t \™ 0
t—t_

52 A = |

' t—1t,\"k
0 (=)
t—t_

where t is a point inside I', t_ is a point outside I', and k1 > ko >
-+ 2> K are integers.

A right spectral factorization of G relative to I' is a factorization
G = G_AGy with A as above and G_ € L}™* and G, € LE"




674 M. RAKOWSKI AND I. SPITKOVSKY

such that there exist functions G¥ € L’;fm and G¥ € L’;f_" for which
GE(t) G_(t) = I and G4(t) GE(t) = I almost everywhere on T.

Note that if a function G' admits a spectral factorization in L,
relative to I', then the rank of GG is constant almost everywhere on I'.
Also, since A € L¥X* by Holder’s inequality G € LT"*™. To simplify
notation, we will assume 0 € D and write

t 0
g
(2.3) At) =
0 trk
We show first that the integers x1, ko, ..., kK are unique.

Theorem 2.2. Suppose 1 < p; < ps < oo and let G14+A1G1— and
G2+A2G2_ with

(1)

th1 0
s’
Ay (t) = .
0 e
and
(2)
th1 0
(2)
13
Ao(t) = |
0 tor

be spectral factorizations in Ly, and Ly, of a function G € L"*" rela-
tive to a contour I'. Then Kigl) > Kigz) forg=1,2,... k.

PROOF. Let G € L?** and GE, € L™ be right and left multi-
plicative inverses of G2_ and G14. Then

(2.4) AH_=H_Ay,
where Hy = G, Gyy € LEX" and H_ = G1_GE_ € LEX* with p =

1/(1/q1+1/p2) =1/(1—1/p1+1/p2) > 1. Also, G14+ and Gay have the
same column span almost everywhere on I', so H; takes nonsingular
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values almost everywhere on I'. Similarly, H_ takes nonsingular values
almost everywhere on I'.
It follows from (2.4) that

IEOIINE)

(2.5) 5" = (i, ) = Ho(i,5).

Since L,4 N L,_ consists of constants, Hy(¢,7) = 0 if /@52) > Iigl) and

(1) _ (2
J

H, (%, j) is a polynomial of degree at most x;

rD > gl Then, for all j < r and i > r, Hy(i,7) = 0 contradicting

nonsingularity of H, almost everywhere on I'.

otherwise. Suppose

Corollary 2.3. The integers ki, k2, ...,k in (2.2) are unique.

The integers k1, Ko, ..., kg in (2.2) or (2.3) are called the indices of the
factorization, and the sum of all indices is called the total index of the
factorization. If all the indices of the factorization are equal to 0, the
factorization is said to be canonical.

The proof of Theorem 2.2 actually gives the nonuniqueness of all
the factors in a spectral factorization.

Theorem 2.4. Suppose 1 < ps < p1,
(2.6) Gi4+AGq—
is a spectral factorization in Ly, of a function G relative to a contour T,
and G admits spectral factorization in Ly, relative to I' with the same
total index. Then
(2.7) Got A Go
is a spectral factorization in Ly, of G relative to I' if and only if
(28) G2_|_ = G1+H+ and Gg_ = A_lH_IlA Gl_
where Hy s a matriz polynomial such that det Hy # 0 and
i) Hy(i,7) =0 if ki < Kj

ii) Hy(4,7) is a constant if k; = Kkj ,
iii) deg Hi(i,75) < ki — Kj if ki > Kj .
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PROOF. Suppose (2.7) is a spectral factorization in L,, of G. In the
notation of the proof of Theorem 2.2,

(29) H+ - Gf+G2+

where H is a matrix polynomial whose determinant is not equal to zero
identically and which satisfies properties i)-iii). In particular, H; €
L. Multiplying both sides of (2.9) by G14+ we obtain

(210) G1+H+ - G1+Gf+G2+ .

Since G1+Gf+ is a projection onto the column span of Gy, and the
column spans of G14+ and Ga4 coincide almost everywhere on T,

(2.11) G14(2) G14(2) G2+ (2) = G2+ (2)

for almost everywhere z € I'. Since a function analytic in D4 with
nontangential boundary values equal to 0 on a set of positive measure
is identically 0, equality (2.11) is valid inside I' and

(212) G]_+H_|_ - G2+ .
Hence
G:H_A Gl_ - G2+A Gg_ - G1+H+A GZ— - G1+AA_1H+A GZ—

and the second equality in (2.8) holds as well.

Suppose now (2.6) is a spectral factorization of G in L,, relative to
I’ and H with det Hy # 0 satisfies conditions i)-iii) of the theorem, and
G214 satisfy (2.8). Then det H is a nonzero constant, and Hfl € Looy.
Also, A=YH A is a matrix polynomial in 1/z with a nonzero constant

determinant, and (A"H,A)*! € L, . Hence Gy, € Lgifrk, Gy_ €

L’;lx_", and G¥ | a right multiplicative inverse of G, is an element of

L’Iflx_". Suppose Goy AGo_ is a factorization of G in L, relative to T’

and G, € L’;;ﬂrm is a left multiplicative inverse of G5. Then

GL GoyA=AGy GE |

or G4A = AG_ where G4 = G¥, Gay € L¥¥* and G_ = G,_GE_ €

L’ffk . By the same argument as above, G is a unimodular ma-

trix polynomial and Ga4 has a left multiplicative inverse in L§2X+m.
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Since Goy A G = C~}’2+A G5_ and the functions A, A=! and G;l are
bounded, Ga— € Ly*". Thus, (2.7) with Ga4 and Ga_ given by (2.8)
is a spectral factorization of G in L,, relative to I'.

In particular, Theorem 2.4 determines possible nonuniqueness of a
spectral factorization in L, of a function G relative to I'. It also has
the following corollary.

Corollary 2.5. Suppose 1 < p1 < p2 and a matriz function G admits
spectral factorizations in Ly, and L,, relative to I' with the same total
index. Then

i) G admits a spectral factorization in L, relative to I' for every
p € [p1, p2],

ii) if po € [p1, p2], a spectral factorization in L,, of G relative to
I' is a spectral factorization in Ly, for all p € [p1, pa].

A meromorphic matrix function W has a pole at a point A € C if
it has a nonzero coefficient at a negative power of z — X in the Laurent
expansion at A. Equivalently, W has a pole at A if at least one of
its entries has a pole at A. The function W has a zero at A if each
meromorphic multiplicative generalized inverse of W has a pole at A.
If the function W is analytic at A, it has a zero at A if the rank of W (z)
drops at z = A. Every rational matrix function without poles or zeros
on I' admits a spectral factorization relative to I' with all the factors
rational (see [2] for the discussion of the regular case, that is, the case
where the function is square and takes nonsingular values at all but a
finite number of points; the argument in the nonregular case is similar).
Later, we will need the following observation.

Proposition 2.6. If G € LT"*" admits a spectral factorization in
L, relative to I' and F' and H are rational M x m and n x N matriz
functions analytic and with full column respectively row rank on I", then
the function FGH also admits a spectral factorization in L, relative to
r.

PROOF. Let G4AG_ be a spectral factorization in L, relative to I' of
the function G. Since F' is a rational matrix function, there is a finite
set {A1,A2,..., Ay} C Dy which contains all the poles and zeros of F' in
Dy. Pick XA € {1, A2,..., Ay} After multiplying FG’+ on the right by
a unimodular matrix polynomial in z — A, we can obtain a matrix func-
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tion whose columns have linearly independent leading coefficients in the
Laurent expansion at A. Indeed, suppose FGy = (fi f2 ... fx)
and the leading coefficients in the Laurent expansions at A of f;’s are
linearly dependent. Then we can replace say f; by

n
(2.13) fi(2) = fi(2) —ch (z = A" fi(2),

=
with ¢;’s constants and «;’s nonnegative integers such that ﬁ has a
pole at X of a smaller order, or vanishes at A to a higher order, than f;.
Since the columns of F' are linearly independent over the field of scalar
rational functions, for every function ¢ analytic and nonzero at A the
order of the zero at A of the product F' C~¥+¢ is bounded by the largest
partial multiplicity of the zero of F' at A\. Hence the finite number of
operations as in (2.13) can provide a matrix function whose columns
have linearly independent leading coefficients in the Laurent expansions
at A. It follows that there exists a square rational matrix function Ry
whose determinant is not identically equal to zero and which has neither
poles nor zeros on I' such that FG R, = G+ € L;nfk has full column

rank at all points z € Dy and Ry 1Gi le L’gfm.

Similarly, there exists a square rational matrix function Ry whose
determinant is not equal to zero identically and which does not have
poles or zeros on I' such that RoG_H = G_ € LkX" has a right multi-

plicative inverse in Lgfk. If RlARz is a spectral factorization relative
to I' of the rational matrix function R7*'AR; !, (GLR)A(RyG_) is a
spectral factorization in L, relative to I' of the function G.

We illustrate the concepts of this section with an example.

EXAMPLE 2.7 Let I’ be the unit circle. Pick a branch of z1/3 on

C\ (—00,0), and let /
G(t) = (Eil/:s;s) ;

where the value of ¢1/2 is determined almost everywhere by the selected
branch. Let ®(z) be a branch of (z + 1)?/3 which is analytic in C \

(—o00, —1], and let ¥(z) be a branch of (z/(z + 1))2/3 which is analytic
in Cy \ [—1,0], such that

(2.14) Gt) = ( t‘{’lfft))> (W) = Go(t) G_(t).
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Let p > 3. Then G, € L?)il and G_ € L,_. Also, GZ' € L,_ and G
has a left multiplicative inverse G%(z) = (®(2)~" 0) € Léiz. Thus,
(2.14) is a canonical spectral factorization of G in L, relative to the

circle.
Suppose p € (1,3). From (2.14),

1
t+1¢® t+1 ~ ~
(215) G =|"" (¢) (T\If(t)> = GL(t) (t)G_(t).
t+1 (?)

Plainly, G € L?,jﬁl and G_ € L,_ . Also, G-' e L,_ and G, has a
left multiplicative inverse @f_(z) = ((z+1)/®(z) 0) € LyX?. Thus,
(2.15) is a spectral factorization of G in L, relative to the circle.

Suppose G admits a spectral factorization in Lz relative to the cir-
cle. By Theorem 2.2, the total index of the factorization is either 0 or 1.
Then, by Corollary 2.5, either (2.14) or (2.15) is a spectral factorization
of G in L3 relative to the circle. Since G_ ¢ L3/o_ and Gy ¢ Lsy,
this is a contradiction. Thus, G admits a spectral factorization in L,
relative to the circle if and only if p € (1,3) U (3, 00).

3. Vector-valued Riemann problem with singular coefficient.

Suppose G is a measurable m x n matrix valued function on a
contour I', and p > 1. The vector-valued Riemann problem consists in
finding for a given function g € L}’ a pair of functions (¢4,¢_) with

¢4+ € Ly and ¢_ € LZ_ such that

(3.1) $1(t) + G(t) o () = g(t).

For brevity, we will refer to this problem as the Riemann problem with
coefficient G. The set of all functions g € Ly for which the problem is
solvable is called the image of the problem. If the image of the Riemann
problem is closed, the problem is said to be normally solvable. The set
of all solutions of the homogeneous problem is called the kernel of the
problem.

The dual problem consists in finding for a given h € Ly a pair of

functions ¢_ € L;‘_ and ¢4 € Ly!, such that

(3:2) Y (t) + G () 4 (t) = h(t) .
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Here ¢ is the conjugate exponent to p, that is, 1/p+1/g = 1. Similarly
as in the case where G takes nonsingular values almost everywhere on
I" [9], there is a connection between the Riemann problem and its dual.
Identify Ly with the dual space of Lj through the map

TR Sy RACIOL

for all f(t) =377, fi(t)e; € Ly and all g(t) = >0, g;(t)e; € Ly. 1f
L C Ly, the annihilator of L is the closed subspace of Ly

{gely: (f,g)=0, forall feL}.

Proposition 3.1. The annihilator of the image of the Riemann prob-
lem with coefficient G contains the space of “+” components of elements
in the kernel of its dual. If G € L™, the two spaces coincide.

PROOF. Suppose ¢_ + GTp, = 0 for some ¢p_ € Lg_ and ¢ € Lk
Then @bfG = —1_ € LZ_, and hence

(g, (P4 +Go)) = (Y4, b4) — (Y-, d-) =0,

for all ¢4 € L7 and ¢_ € Lp_. Thus, 14 annihilates the image of the
problem.

Suppose (1, ¢4 + Gp_) =0 for all ¢, € L™ and all $_ € LI_
such that G¢_ € Lj*. Then (¢, ¢y) = 0 for all ¢, € L}, and
o=y € L. If G € L™, Gp_ € L™ for all ¢_ € L?_ and
so GT4, annihilates L?_. That is, GT9y € L?_ and 9, is the “+”
component of an element in the kernel of the dual problem.

If the coefficient G of a Riemann problem takes almost everywhere
nonsingular values, the defect numbers of the problem are the dimen-
sion ar of the kernel and the co-dimension Sz of the closure of the
image of the problem. If G takes singular values, both ar and fgr are
generically infinite. In view of Proposition 3.1, Sz can be defined as
the co-dimension of {¢, € Ly, : 4G = 0} in the annihilator of the
image of the problem. This definition discards the generic left kernel of
G.

A similar observation holds for the dual problem.
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Proposition 3.2. The annihilator of the tmage of the dual problem
contains the space of “—7 components of elements in the kernel of the
problem. If G € L7X*™, the two spaces coincide.

Suppose G takes nonsingular values almost everywhere on I". Then
{(Yy,p-) € Ly x Ly -+ G Ty =0}
(3.3) ~{ypelp, : Gy, el }
~{yY_ € I'/Zi s - +GTypL =0, for some 1y € Lyt

Indeed, if GT¢, = 0, then 1, = 0. Hence the map (¢4, ) — _ is
a bijection from the first space in (3.3) to the third one. Plainly, the
map (Y4,1%_) — 9_ is a bijection from the first space in (3.3) to the
second one. If G takes singular values on I', the same ¢_ € L,_ may
occur in several (in fact, infinitely many) elements in the kernel of the

dual problem. Thus, the second congruence in (3.3) does not have to
be valid. More precisely,

{9 ) e Ly x Ly : ¢+ GTpy =0}
= {ypeLl : GTpy e LI}
~fp_e L : p_ +GTp, =0 for some ¢, € Ly
+{yr e Ly GTyp =0},
The space on the right hand side of the preceding direct sum represents
the generic kernel of GT. The dimension of the space on the left hand

side of this direct sum can be finite when the generic kernel of GT is
infinite dimensional. Similarly,

{(pr,0-) e Ly x Lp_: ¢y +Gip_ =0}
={p_eLll : Gp_e L,
={py €Ly ¢4 +Gp_ =0 forsome ¢_ € Ly }
+{p_ L' : Gp_ =0}.

The direct summand on the right hand side of the last congruence can
be finite dimensional although ker GG is generically infinite dimensional.

Definition 3.3. The defect numbers of a Riemann problem with co-
efficient G are the dimension agr of the space of “+7 components of
elements in the kernel of the problem, and the co-dimension Br of

(3:4) {¢p e Ly = Gy =0}
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in the annihilator of its image. If ar or Br is finite, the difference
ar — PBr is called the index of the problem. The defect numbers of the
dual problem are the dimension ap of the space of “—7" components of
elements in the kernel of the dual problem, and the co-dimension Bp of

(3.5) {¢p_ e L?_: G¢_ =0}

in the annihilator of the image of the dual problem. If ap or Bp is
finite, the difference ap — Bp is called the index of the dual problem.

Note that if G takes nonsingular values almost everywhere on I,
the spaces (3.4) and (3.5) are trivial and Definition 3.3 is equivalent to
the usual definition of defect numbers. Also note that (3.4) and (3.5)
are closed subspaces of Ly and Lg To see that (3.5) is closed, suppose
¢ € Ly is such that G¢ # 0. Without loss of generality assume that G
consists of a single row. Let GT(t) = G(t)* if G(t) = 0, and let

otherwise. Then G is a measurable matrix function whose values are
Moore-Penrose inverses of the values of G. We have

¢ =G'Go + (I — GTGW =: 1 + P2

and ||¢1]|, > 0. For any ¢ € Ly such that G =0,

¢ = llp = ll$1 + (b2 = D)llp > by -

and it follows that {¢ € L : G¢ = 0} is a closed subspace of L}. Hence

(3.5), the intersection of this space and L™, is closed. The space (3.4)
is closed by a similar argument.

The defect numbers of a Riemann problem and its dual are related
as follows.

Proposition 3.4. If ar, Br, ap, and Bp are the defect numbers of a
Riemann problem and its dual, then

(36) aR S ﬁD and ap S ﬁR .

Also, inequalities (3.6) are equalities if the indices of the problem and
its dual are finite and opposite or if G € L7 *™.
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PrRoOOF. The space of “ + 7 components of elements in the kernel
of the Riemann problem is isomorphic to the quotient space of “ —7"
components of elements in the kernel of the problem modulo {¢p_ €
Ly : Gg_ = 0 }. Hence, by Proposition 3.2, ap < Bp with equality
if G € L™, Similarly, by Proposition 3.1, ap < fr with equality if
G e men
mm,
Suppose the indices of the problem and its dual are finite and
opposite. Then

ar —fBp =PBr—ap -
Since by (3.6) ar — Bp < 0 and Sr — ap > 0, it follows that ar = Bp
and ap = ﬂR.

We discuss now the homogeneous Riemann problem in the case

where the coefficient G admits a spectral factorization in L, relative to
I.

Proposition 3.5. Suppose GLAG_ s a spectral factorization in L,
relative to I' of the coefficient G of a Riemann problem, let G_LF € ngim

be a left multiplicative inverse of G, and let GE € Lgfk be a right
multiplicative inverse of G_. Then

i) (¢4, ¢—) is a solution of the homogeneous problem ¢4 +Gp_ =0
iof and only if

(3.7) ¢y =Gypr and  ¢_=r_—GEATpy,

where py is a vector function with j*"-entry a polynomial of degree at
most kj — 1 if kj > 0 and zero if k; < 0, and r— € Ly_ is such that
Gr_ =0,

i) (¢4,9_) is a solution of the homogeneous dual problem _ +
GTep, =0 if and only if

po=GTp_  and Yy =ry— (GY)TATp,

where p_ is a vector function with j** entry zero if kj > 0 and a
polynomial in z=% of degree at most —k; which vanishes at infinity if
ki <0, and ry € LgY is such that GTr, =0.

PRrROOF. We verify assertion i). Suppose (¢4, ¢_) is a solution of the
homogeneous problem. Then

(3.8) Ghoy =—AG_¢_=py .
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Comparing both sides of the equality (3.8) we find out that py is a
vector polynomial satisfying the degree requirements. We have

G Ghoyr =Gypy .

Since ¢ € im G4 almost everywhere on I, G+GJLF¢+ = ¢4 and the
first equality in (3.7) holds. By (3.8),

(3.9) G_¢p_=—-N"1p,.
Since —GEA~1p, is a solution of equation G_z = —A~1py in LP_,
r_i=¢_+GEATIp, € Lg_ is such that Gr_ = 0. Thus, the second
equality in (3.7) holds.

Conversely, suppose ¢, and ¢_ satisfy (3.7) with appropriate r_
and p4. Then

Py +Go_=Grpy +Gro —Gipp =0,
and (¢4, ¢—) is a solution of the homogeneous problem.

It follows from Proposition 3.5 that if the coefficient G in a Rie-
mann problem admits a spectral factorization in L, relative to I', then
ar equals the sum of positive indices of the factorization, and ap equals
the absolute value of the sum of negative indices of the factorization.
In fact, a stronger statement is true.

Theorem 3.6. Suppose the coefficient G in a Riemann problem admits
a spectral factorization in L, relative to I' with indices k1, Ka,. .., K.
Then

aR:ﬁD:Z{FLi: Kii>0}

and

O[DZBR:Z{—H,,': Kii<0}.

Proor. We show that Bp is the sum of the positive indices; the argu-
ment regarding (g is similar. Since LZ_ is contained in the image of
the dual problem, the annihilator of the image of the dual problem is
a subspace of L . Let G = G AG_ with A as in (2.3) be a spectral
factorization in L, relative to I', let j be such that x; > 0 > K;41, and



SPECTRAL FACTORIZATION OF MEASURABLE RECTANGULAR MATRIX 685

let G1,Go,...,G; be the first j columns of GE ¢ Lgfk. We show that
the elements of the set

(3.10) {t7°Gy(t): 1<1<j, 1<i<kK}

form a basis for a space which complements the space (3.5) in the an-
nihilator of the image of the dual problem. Since GF(o0) has linearly
independent columns, the elements of the set (3.10) are linearly inde-
pendent. Using the factorization G = G +AG_, we can rewrite the
space (3.5) as

(3.11) {¢p_ el : G_¢p_=0}.

Since G;’s are the columns of a right multiplicative inverse of G_, the
span of the set (3.10) intersects trivially with the space (3.11). Now
members of the set (3.10) annihilate L7  and

tT'G(t) Gy(t) € Ly, 1<1<j, 1<i<k.

Hence the members of the set (3.10) annihilate the image of the dual
problem. Finally, consider an arbitrary ¢_ € LZ_ that annihilates the
image of the dual problem. Choose f_ in the linear span of (3.10) such
that AG_(¢_ — f_)(c0) = (0) and let ¢_ = ¢p_ — f_. Then ¢_ € L™_
and

(3.12) / b (TG (1) A(E) G ()T (t) dt = 0

for all ¢4 € L, such that GEAGY ¢, € L?. In particular, (3.12) holds

whenever ¢, = (G%)Tp with G% € LEX™ a left multiplicative inverse
of G4 and p a vector polynomial. Hence

/F(A(t) G_(t)_(t)) p(t)dt =0

for each vector polynomial p and AG_é € L’f+. Since AG_<$_ € L’f_,

it follows thatAAG_qAS_ =0and ¢o_ = f_ + qAB_ where f_ is in the span
of (3.10) and ¢_ is a member of the space (3.11).

Corollary 3.7. If the coefficient G of a Riemann problem admits a
spectral factorization in L, relative to I', then the index of the problem,
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and the opposite of the index of the dual problem, are both equal to the
total index of the factorization.

In particular, if G admits a spectral factorization in L,,, the indices
of the Riemann problem and its dual are finite and opposite.

4. Condition for existence of a spectral factorization.

We will need below the following lemma. If G is a meromorphic
matrix function defined on a connected domain D, its rank is constant
at all but a countable number of points in D. This rank is usually called
the normal rank of G.

Lemma 4.1. Suppose I' is a simple closed curve which forms a bound-
ary of a connected domain Dy, let p > 0, and suppose G € Lp**"
is formed by nontangential boundary values of a matrix function G 4
meromorphic in Dy with normal rank k. Then rankG = k almost
everywhere on I'.

Proor. If k < min{m,n}, let H(t) be any (k+ 1) x (k + 1) sub-
matrix of G(t) and form H, from the corresponding entries of G .
Then det Hy = 0 implies det H(t) = 0 almost everywhere on I'. Thus,
rank G(t) < k for almost everywhere t € I'.

Choose a point z4 € Dy such that rank G4 (24) = k, and pick ma-
trices A € C**™ and B € C"** such that rank (AG (2, )B) = k. Then
AG 4 (z)B is a meromorphic k x k matrix function and det (AG 4 (2)B) #
0. Hence det (AG(t)B) # 0 and consequently rank G(t) > k almost ev-
erywhere on I'. Thus, rank G = k almost everywhere on I'.

One can formulate the following necessary and sufficient condition
for existence of a canonical spectral factorization in L, of a function G
relative to I' (¢f. [14, Theorem 3.2] and [8]). Recall that if G admits
a spectral factorization relative to I', then the rank of GG is constant
almost everywhere on I'.

Theorem 4.2. If G € LT"*" with rank G = k almost everywhere on T,
the following are equivalent:

i) there exist collections of linearly independent constant vectors
{a1,a2,...,ar} and {b1,ba,...,b;} such that the image of the Riemann
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problem with coefficient G contains {t tay,t " tas,...,t 7 tay} and the
image of the dual problem contains {by,bs, ..., by}.

ii) the function G admits a canonical spectral factorization in L,
relative to I'.
Moreover, if the equivalent conditions i) and ii) are satisfied, the image
of either of the problems contains all rational vector functions in its
closure.

PROOF. Suppose first i) holds. Pick ¢;4 € EJY and ¢;— € E"g_ such
that

(4.1) ¢+ () + G(t) gy (t) =t ay,  j=1,2,....k,
and let @ = (p1_ ¢o_ ... ¢p_). Then F(t) := t G(t)P_(t) € Lg_zjk
and F(0) = (a1 as ... ag). Similarly, pick ¢;4 € E™ and ¢_ € EP
such that
(4.2) Y-+ GT ) P(t) =05, j=1,2,....k,
and let Wi = (14 Yoy ... ¥p4). Then H = GTV, € E*F and
H(o0) = (by by ... by).
Let S(t) = tWL(t)G(t)®_(¢t). Since
(4.3) S(t) = L()F(t) = H' (t)(t@—(1)),

S(t) € L’fik N L%k Thus, S(t) = S is a constant. Also, det S #
0. Indeed, by Lemma 4.1, F(¢) has linearly independent columns for
almost everywhere ¢t € I'. Since rank G' = k almost everywhere on I, the
column spans of F' and G are equal almost everywhere on I'. Thus, to
prove that S is nonsingular it suffices to show rank (02 G) = k almost
everywhere on I'. But this follows from Lemma 4.1 and the fact that

(GTW ) (00) = H(co) = (by by ... by).

Let
Gi(t) = F(t), GL(t) =871 (Y),
G_(t)=ST*HT(t), GEt)=td_(t).
Then Gy € L%, GE e LEX™, G_ € LE*", and GE € L?*F. By
(4.3),
GEt)Gi(t)=1 and G_(t)GE(®)=1.
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By (4.3) and the definition of F,
GEWGH)GR(t) =1
almost everywhere on I'. Hence
RAL RAL RAL
GIGY{GGIGEY = G2GY,

or GXG G* = G* where G* = GEGJLF. Since rank G* = rank G almost
everywhere on I', G G*G = G (see [1, Theorem 1.5.2]; cf. [10, Lemma
3.8] ). Thus,

G(t) = G(t) td_(t) ST (1) G(t) = G4 (t) G (t)

almost everywhere on I' and it follows that G' admits a canonical spec-
tral factorization in L, relative to I'.

Conversely, suppose ii) holds and let G = G.G_ be a canonical
factorization. Let GE ¢ L;‘fk be a right multiplicative inverse of G'_.

Then t—*GE(t) € Lgi(k, and

G(t) (7' GE() = 716G (1) = 7G4 (0) + 171 (G (t) — G4(0)).

Hence the columns of =G, (0) are in the image of the problem. Sim-
ilarly, if G{; € L;"fk is a left multiplicative inverse of G, GT(Gi)T =
GT and so the columns of GT(c0) are in the image of the problem.
Thus, ii) implies i) and the conditions are equivalent.

The argument from the last paragraph can be used in a more gen-
eral situation. Suppose GG _ is a canonical spectral factorization in
Ly, relative to I'. Let G% € ngim and G ¢ Lgfk be one-sided multi-
plicative inverses of G4 and G_, and let r € L¥ _ be a rational vector
function. Then GEr € Lgfk, and

G(GEr)y=Gyr

differs from a rational vector function by an element in L% . Hence
Q(G4r), where Q is a canonical projection of L;nJr-i-Lg"”_ onto L;”_, is
a rational vector function in the image of the problem. We claim that
any rational vector function in the intersection of LIT_ and the closure

of the image of the problem arises in this way. Indeed, let f_ € L?o_
be a rational vector function such that

(4.4) fo ¢ {Q(G4r): re L* is a rational vector function} .
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We may assume f_ has a single pole, located at A € D,. Suppose the
leading coefficient in the Laurent expansion of f_ at A is contained in
the image of G+ (\). Then after subtracting from f_ an element in the
set on the right hand side of (4.4), we obtain a strictly proper rational
vector function analytic in C\{A} with the pole at A of smaller order.
By induction, there exists a strictly proper rational vector function with
the only pole at A whose leading coefficient in the Laurent expansion
at A is not contained in the image of G4 (). Call this function again

F.

Consider a problem

(4.5) ¢+ + G- =g,

where ¢_ € Lg_ is such that G¢_ € L and ¢4 € L7, . The image of
the problem (4.5) is contained in the image of the Riemann problem.
Since rational functions without poles on I' are dense in L,, and the
projection P is bounded on L1+-i—I'/1_, Loy is dense in L, . Hence the
closures of the images of both problems coincide. Now

(I~ G4 (1) GE(1) G(1) = (G (1) — G (t) GL(1) G (1)) G- (1) = 0

almost everywhere on I' and, since I — G4 (A\)G% ()) is an m x m matrix
of rank m — k whose null space coincides with the image of G4 (A),

(I = G4(2) GY(2)) [-(2)

has a pole at z = A. Consequently, there exists a function ¢ € Liim
such that wz: f— has a simple pole at A and fF @b{g equals zero for all
functions ¢ in the image of the problem (4.5). Let X be a subspace of
Ly spanned by f_ and the image of the problem (4.5). Then

T —> /F Yy ()T x(t) dt

is a continuous linear functional on the space X whose kernel contains
the image of the problem (4.5) and which has nonzero value at f_. By
the Hahn-Banach Theorem, there exists a continuous linear functional
V¥ on L which annihilates the image of the problem (4.5) and such
that W(f_) # 0. Hence f_ is not in the closure of the image of the
problem (4.5).
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In order to obtain a condition for existence of a spectral factoriza-
tion of a function G in a non-canonical case, we will need the following
lemma.

Lemma 4.3. Suppose the defect numbers ar and Bp of the Riemann
problem with coefficient G and its dual are finite and positive. Then
there exists a square rational matrix function H with a nonzero deter-
minant and without poles or zeros on I' such that the Riemann problem
with coefficient GH and its dual have the corresponding defect num-
bers smaller by 1. Moreover, the Riemann problem with coefficient G
(respectively its dual) contains all rational vectors functions in its clo-
sure if and only if the image of the Riemann problem with coefficient
GH (respectively its dual) contains all rational vector functions in its
closure.

PROOF. Pick (¢4, p_) € L™ +L?_ such that ¢ # 0 and
P4+ Go_=0.

Then o_ ¢ {¢ € L”_: G¢ = 0} and there exists a point zy € D_ such
that ¢_(zp) is not a member of

(4.6) span {¢_(z0) : ¢— € L?_ and Gp_ = 0}.

After adding to ¢ a linear combination of functions in {¢_ € L -
G¢_ = 0}, and multiplying G on the right by a nonsingular constant
matrix, we may assume @_(zg9) = e; and

span{¢_(z9) : ¢_ € LZ_ and G¢_ = 0} C span{ea,e3,...,€,}.

As usual, we assume 0 € D,. Let

Z — 20

z

H(z) =
0 1
We show that the space of “+” components of the members of the

kernel of the problem

(4.7) by +GHY_ = g
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has dimension one less than the corresponding number for the problem
with coefficient G'. First, note that ¢4 is not a “4+” component of a
member of the kernel of problem (4.7). Indeed, suppose there exists
¢_ € L"_ such that ¢, + GHp_ =0, and let f_ = Hp_ — ¢_. Then

f-€eLr  Gf-=0,and
f=(20) ¢ span{eq,...,en},

a contradiction. Secondly, suppose (¢4, ¢_) is in the kernel of the
Riemann problem with coefficient G. If ¢_(z9) = (0,%,...,%), the
element (¢4, H 1¢_) is in the kernel of the problem (4.7). If ¢_(z0) =
(A, %, ..., %) with A # 0,

1 1
<<P+ - X¢+’H_1 (90— — X¢—>>

is contained in the kernel of the problem (4.7). Thus, each “+” compo-
nent of a member of the kernel of the Riemann problem with coefficient
G is a linear combination of ¢4 and a “4” component of a member of
the kernel of the problem (4.7). Finally, if (¢4, ¢—) belongs to the ker-
nel of the problem (4.7), (¢4, H¢_) satisfies the homogeneous Riemann
problem.

Consider now the problem dual to (4.7),

(4.8) Y-+ (GH) 'y = h.
After multiplying both sides of (4.8) by H~!, we obtain a new problem
(49 H'w_+GTy,.=h, ¢_eLl ¢y eLl, andhe Ll

Let W be the image of the problem dual to the Riemann problem with
coefficient G. Then the image of the problem (4.9) equals WW+span (z—
2p) " lep. Since

/ o_(2)T(z — z9) " terdz = —2mi,

r

by Proposition 3.2 (z — 29) "te; ¢ clW. We have cl (W + span {(z —
zo)e1} = clW + span{(z — zp)e1}. Since multiplication by H is an

isomorphism L7 — Lp, it follows that the closure of the image of
problem (4.8) equals

(4.10) H(clW)+span {H (z)(z —z0) ‘e1} = H(clW)+span {% 61} :
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Now the space {¢_ € L . Gé_ = 0} has a finite co-dimension fp in
the annihilator of ¥W. Hence the co-dimension of the space

(4.11) {H'¢_: ¢_ € L}_ and Gp_ = 0}

in the annihilator of H(clW) equals fp. Consequently, the co-dimen-
sion of the space (4.11) in the annihilator of (4.10) equals Sp —1. Since

{¢p—eLr_: GHp_ =0} ={H *¢_: ¢_ € LI and Gp_ = 0},

the co-dimension of the closure of {¢_ € LZ_ : GH¢_ = 0} in the
annihilator of the space (4.10) equals fp — 1.

It remains to verify the assertion about the images. First, note
that the images of the Riemann problems with coefficients G and GH
coincide. Indeed, since H LZ_ C LZ_, the image of the problem with

coefficient GH is contained in the image of the problem with coefficient
G. Since

by + G =y — Apy +GH(H  (p- — Ap_))

for any scalar A, and for each ¢_ € Lg there exists A such that

H=Y¢_ —dp_) € Lp_, the image of the problem with coefficient G is
contained in the image of the problem with coefficient GH.

Suppose the image of the problem dual to the Riemann problem
with coefficient G contains all rational vector functions in its closure,

and let a rational vector function f be a member of the set (4.10). Then
H=Yf(2) — z7tey) € AW, s0 H7Y(f(2) — 27 tey) € W and

fe HW) +span {H(z)(z — z9) ei}.

Thus, f is a member of the image of problem (4.8). Conversely, suppose
the image of the problem (4.8) contains all rational vector functions
in its closure, and let f € clWW be a rational vector function. Then
Hf € H(clW) C H(clW + span {H (2)(z — z0) " te1}, so Hf € HW +
span {H(z)(z — z0) ‘e1}. Thus, f € W + span{(z — 29) “'e;}. Since
(z—z0)"ter € W, feW.

In a similar way one can show the following dual version of Lemma
4.3. We omit the details of the proof.
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Lemma 4.4. Suppose the defect numbers ap and Br of the Riemann
problem with coefficient G and its dual are finite and positive. Then
there exists a square rational matriz function F' with a nonzero deter-
minant and without poles or zeros on I' such that the Riemann problem
with coefficient F'G and its dual have the corresponding defect numbers
smaller by 1. Moreover, the image of the Riemann problem with co-
efficient G (respectively its dual) contains all rational vector functions
in its closure if and only if the image of the problem with coefficient
FG (respectively its dual) contains all rational vector functions in its
closure.

We can give now a necessary and sufficient condition for existence
of a spectral factorization in L, of a summable singular matrix valued
function (cf. [13, Theorem 3.1]).

Theorem 4.5. If G € LT"*" and rank G = k almost everywhere on T,
the following are equivalent:

i) the indices of the Riemann problem with coefficient G and its
dual are finite and opposite, and the image of each of the problems
contains all rational vector functions in its closure,

ii) G admits a spectral factorization in L, relative to I.

PROOF. Suppose first i) holds. By Proposition 3.4, agr = fp and
ap = Pr. Applying Lemmas 4.3 and 4.4 a finite number of times, we
can find regular rational matrix functions F' and H without poles or
zeros on I' such that

1) the annihilator of the image of the Riemann problem with coef-
ficient G = FGH coincides with {y € L% : G4y = 0},

2) the annihilator of the image of the dual problem equals {¢_ €
ir_: G- =0},

3) the image of either of the problems contains all rational vector
functions in its closure.
Let

Q4 =span{y;(0) : ¢4 € L and Gly, = 0}.
Since rank G = k almost everywhere on I', by Lemma 4.1 dim Q4 <

m — k. Hence there exist linearly independent vectors {ay,as,...,ar}
such that wa; = 0 whenever w € Q4 and ¢« = 1,2,...,k. Suppose
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Yy € L7 and G4 = 0. Then ¢ ()Tt a; € Ly, and so

/?,b+(t)Tt_1aidt:0, for i=1,2,...,k.
r

It follows that the set

1 1 1
-a1,—0a9,...,—0a
t 17t 2 7t k

is in the closure of the image, and hence in the image, of the Riemann
problem with coefficient G.
Similarly, let

Q_ =span{¢_(o0): ¢_ € Ly, and Go_ =0}

and pick linearly independent vectors {b1,bs, ..., by} such that w_b; =
0,for j=1,2,...,k and all w_ € ©_. Suppose ¢_ € L;_ is such that

G¢_ = 0. Then z¢_(2)b; € L,_ and hence

/qs_(t)bj dt = /(t¢_(t)bj)t—1dt =0,

for j = 1,2,...,k. Thus, the set {by,bs,...,bx} is contained in the
closure of the image, and consequently in the image, of the problem dual
to the Riemann problem with coefficient G. Consequently, by Theorem
4.2, the function G = FGH admits a canonical spectral factorization
in L, relative to I'. Hence, by Proposition 2.6 the function G admits a
spectral factorization in L, relative to I'.

Conversely, suppose ii) holds. By Theorem 3.6, the indices of the
problem and its dual are finite and opposite. Applying Lemmas 4.3 and
4.4 a finite number of times, we can find square rational matrix functions
F and H whose determinants are not equal to zero identically and which
have neither poles nor zeros on I' such that the Riemann problem with
coefficient FGH and the dual problem have defect numbers

ar=0Pr=0ap=0p=0.

By Proposition 2.6 and Theorem 3.6, the function FGH admits a
canonical spectral factorization in L, relative to I'. By Theorem 4.2,
the image of the Riemann problem with coefficient FGH and the image
of the dual problem each contain all rational vector functions in their
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closures. By Lemmas 4.3 and 4.4, the image of the Riemann problem
with coefficient G' (respectively image of the dual problem) contains all
rational vector functions in its closure.

We note that the part of condition i) in Theorem 4.5 involving
rational vector functions cannot be in general omitted. Indeed, suppose
[' is the unit circle, p = 3, and let

+2/3
G(t) = <t5/3>
be as in Example 2.7. Since G' admits a spectral factorization in L,
for p in a deleted neighborhood of 3, by Theorem 3.6 the numbers ag
and ap are finite when the problem is considered in L, or L,, with
p1 < 3 < pa. Since L3 C Ly, and Lz C Ly, /(p,—1), @r and ap are
finite when p = 3. Since G € L., by Proposition 3.4 agr = fBp and
ap = [r. Thus, the indices of the problem and its dual are finite

and opposite although G does not admit a spectral factorization in Ls
relative to the circle.

References.

[1] Ben-Israel, A., Greville, T. N. E., Generalized Inverses: Theory and
Applications. John Wiley & Sons, 1974.

[2] Clancey, K., Gohberg, 1., Factorization of Matriz Functions and Singular
Integral Operators. OT 3, Birkhauser Verlag, 1981.

[3] Clancey, K., Rakowski, M., Factorization of rectangular matrix functions
relative to a contour. Manuscript, 1990.

[4] David, G., Opérateurs intégraux singuliers sur certains courbes du plan
complexe. Ann. Sci. Ecole. Norm. Sup. 17 (1984), 157-189.

[5] Duren, P., Theory of H? spaces. Academic Press, 1970.

[6] Gohberg, I., Krein, M. G., Systems of integral equations on a half line
with kernels depending on the differences of arguments. English trans-
lation: Amer. Math. Soc. Trans. Ser. 14 (1960), 217-287.

[7] Hilbert, D., Grundzige einer allgemeinen Theorie der linearen Intergle-
ichungen, 2nd edition. Verlag von B. G. Teubner, 1924.

[8] Lax, P. D., On the factorization of matrix-valued functions. Comm.
Pure Appl. Math. 29 (1976), 683-688.

[9] Litvinchuk, G. S., Spitkovsky, I. M., Factorization of Measurable Matrix
Functions. English translation: OT 25, Birkhduser Verlag, 1987.



696 M. RAKOWSKI AND I. SPITKOVSKY

[10] Rakowski, M., Generalized pseudoinverses of matrix valued functions.
Integral Equations and Operator Theory 14 (1991), 564-585.

[11] Rakowski, M., Spectral factorization of rectangular rational matrix func-
tions with application to discrete Wiener-Hopf equations, J. Funct.
Anal. 10 (1992), 410-433.

[12] Simonenko, I. B., Some general questions in the theory of the Rie-
mann boundary problem. English translation: Math. USSR - Izvestia
2 (1968), 1091-1099.

[13] Spitkovsky, I., Factorization of measurable matrix-value functions and
its relation to the theory of singular integral equations and the vector
Riemann boundary-value problem, I. English translation: Differential
Equations 17 (1981), 477-485.

[14] Spitkovsky, 1., Generalized factorization of matrix-valued functions and
the Riemann boundary value problem with infinite partial indices. En-
glish translation: Soviet Math. Dokl. 33 (1986), 145-149.

Recibido: 2 de junio de 1.995

Marek Rakowski*

Department of Mathematics

The Ohio State University
Columbus, OH 43210

U.S.A.
rakowski@math.ohio-state.edu

and

Ilya Spitkovsky'

Department of Mathematics

The College of William and Mary
Williamsburg, VA 23187-8795
U.S.A.

ilya@math.wm.edu

* The research of the first-named author was partially supported by the National Sci-

ence Foundation Grant DMS-9302706 and by Consejo Nacional de Ciencia y Tecnologia.
T

Science Foundation Grant DMS-9401848.

The research of the second-named author was partially supported by the National



