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Quasisymmetry, measure and

a question of Heinonen

Stephen Semmes

Abstract. In this paper we resolve in the affirmative a question of
Heinonen on the absolute continuity of quasisymmetric mappings de-
fined on subsets of Euclidean spaces. The main ingredients in the proof
are extension results for quasisymmetric mappings and metric doubling
measures.

1. Introduction.

If F is a subset of R® and g : FF — R” is a mapping, then we
say that g is quasisymmetric if it is not constant and if there exists a
homeomorphism 7 : [0, 00) — [0, 00) such that

(1.1) |z —y| <tlr—2z implies [g(z)—g(y)l < n(t)|g(z) —g(2)],

whenever z,y, z € F'. We shall sometimes say that g is n-quasisymme-
tric to be explicit, or we shall refer to n as the function that governs the
quasisymmetry of g when we want to be specific but not explicit.

This condition is a little bit hard to digest at first, but it means
that the mapping approximately preserves relative distances, even if it
may distort distances in an unbounded manner. In other words, if = is a
lot closer to y than to z, then the corresponding property for g(z), g(y),
and g¢(z) should also hold, even though the distances themselves may
change dramatically. For instance, the mapping defined by g(z) = ax
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is m-quasisymmetric with 7(t) = ¢ for all positive numbers a, but this
mapping distorts distances strongly when a is very large or very small.

See [TV] for basic facts about quasisymmetric mappings.

In the case of mappings defined on all of R” the quasisymmetry
condition is equivalent to the more famous quasiconformal condition,
which is an infinitesimal version of the same idea. It turns out that
quasisymmetric mappings on R™ send sets of measure zero to sets of
measure zero when n > 1, see [V1]. This is not true when n = 1,
because of an example in [BA].

Problem 1.2. (Juha Heinonen.) If F is a compact subset of R, n > 1,
and g : F' — R" is quasisymmetric, is it true that g(F) has Lebesgue
measure zero if F' has Lebesque measure zero?

We shall see that the answer is yes. The proof will not give a new
approach to the result for global quasisymmetric mappings, instead
it will work by reducing to a method of Gehring [G] for the global
case. Note however that quasisymmetric maps defined on subsets of
R™ need not extend to global quasisymmetric mappings, so that the
most obvious path to reducing to the global case is not available to us.

It will be more convenient to use the following reformulation of this
problem.

Theorem 1.3. Let F' be a compact subset of R*, n > 1, and suppose
that g : F — R™ is quasisymmetric. Then g(F') has positive Lebesgue
measure if F' has positive Lebesque measure.

Let us check that this resolves Problem 1.2.

Lemma 1.4. If g : F — R" is quasisymmetric, then g~ : g(F) — R
makes sense and is quasisymmetric.

This is well-known and easy, but let us go quickly through the
proof for the sake of completeness. Our mapping ¢ is injective if it is
quasisymmetric, so that its inverse is well-defined. From (1.1) we have
that

(1.5) n(t) lg(x) —g(2)| <lg(x) —g(y)| implies ¢tz —z| <|z—yl|

One can sort this out to see that g—! is quasisymmetric, but with 7(t)

replaced by (p~1(1/t))~1. This proves the lemma.
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To see that Theorem 1.3 implies a positive answer to Problem 1.2
one need only switch from g to g~! using the lemma.

In order to prove Theorem 1.3 we shall make some modifications
to g and F'. It would be simpler if we could just extend g to a mapping
on all of R", but this is not possible in general. Our plan will be to
replace g with a map which lives on a thick set, and then to show that
the pull-back of Lebesgue measure under this mapping behaves well.

The modifications of g will proceed in steps. Basically we want to
progressively thicken the domain F' of g. We begin with a definition.

Definition 1.6. Let Fy, F' be subsets of R*, with Fo C F. We shall
say that Fy is a sertous subset of F' if there exists a constant C' > 0 so
that if x € Fy and 0 < t < diam Fy, then there is a point y € F such
that

(1.7) Clt<|z—y|<t.
We say that F' s serious if it is serious as a subset of itself.

This is a mild nondegeneracy condition which forbids isolated is-
lands in a quantitative and uniform way. This is useful for the quasisym-
metry condition (1.1), which provides information only about relative
distances.

The property of a set being serious has been considered before
under various names (unknown to the author until it was too late) such
as “uniformly perfect” and “homogeneously dense”, and it is a special
case of the thickness conditions discussed in [VVW]. It may be that the
relative property for subsets was not considered before.

We are going to be working with serious sets, and it would be nice
if we could find a serious set of positive measure inside any given set of
positive measure. Unfortunately this turns out not to be true, Pertti
Mattila tells me that there are counterexamples. The following simple
observation will suffice for our purposes.

Lemma 1.8. Let F' be a compact subset of R™ with positive measure.
Then for each € > 0 there is a compact subset Fy of F' such that Fy is
a serious subset of F' and |Fy| > |F| —¢.

We do not give bounds on the seriousness constant here.
To prove this we use points of density and Egoroft’s theorem. From
Lebesgue’s theorem we know that almost every element of F' is a point
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of density of F'. That is,

. |FNB(z, 2_j)|
lim - =
j—oo  |B(x,277)|

for almost all x € F. Let € > 0 be given. By Egoroff’s theorem
we can find a measurable subset Fy of ' on which we have uniform
convergence for this limit and |[Fy| > |F| —e. We can take Fy to be
compact because we can always replace it, if necessary, with a compact
subset with almost the same measure.

Uniform convergence implies that there is a 6 > 0 such that

|F' N B(x,277)]

L B, 277)

1
>
-2
when 2 € Fy and 0 < 277 < 6. It is not hard to see that this implies
that Fjy is a serious subset of F', but with a horrible constant which
depends on 0. (At scales finer than 0 the constant is bounded. In other
words, we could control the seriousness constant if we were willing to
give up control on the measure.) This proves Lemma 1.8.

Of course (1.9) is much stronger than seriousness, but seriousness
is a more natural condition for most of what we shall do.

Given a quasisymmetric mapping defined on some set we would
like to modify it to get a mapping which is defined on a thicker set.
The next result will be the first step of such a process, and then we
shall go another step afterwards.

Proposition 1.10. Suppose that F' is a closed subset of R, that g :
F — R" is quasisymmetric, and that Fy 1s a closed serious subset of
F. Then we can find a serious closed set F* in R™ which contains
Fy (but need not be contained in F) and a quasisymmetric mapping
g* : F* — R" such that g* = g on Fy. The seriousness constant
for F* and the function n* which controls the quasisymmetry of g*
are controlled in terms of the dimension, the seriousness constant for
(Fo, F), and the function n that controls the quasisymmetry of g.

The point here is that F* is serious as a set unto itself, not as a
subset of something else.

Before stating the next thickening result we need another defini-
tion.



QUASISYMMETRY, MEASURE, AND A QUESTION OF HEINONEN 731

Definition 1.11. A closed set E of R™ s said to be a strong set if there
is a constant C > 0 so that for each x € R*\E there is a y € E such
that

(1.12) |z —y| < Cdist (z, E)
and
(1.13) dist (y, R*\E) > C~ ! dist (z, E) .

In other words, a strong set is always approximately at least as big
as its complement.

Proposition 1.14. Suppose that F' is a serious closed subset of R"™
and that g : F' — R" s quasisymmetric. Then there is a strong set
S CR" such that S O F and g admits an extension to a quasisymmetric
mapping G : S — R™. The strongness constant for S and the function
which governs the quasisymmetry of G can be chosen to depend only
on the function that governs the quasisymmetry of g, the seriousness
constant for F', and the dimension n.

We shall need to know that the image is a strong set, and there is
a general result to this effect.

Proposition 1.15. If G : S — R"™ s quasisymmetric and S s a strong
subset of R™, then so is G(S), with a constant that depends only on
the dimension, the strongness constant for S, and the function which
governs the quasisymmetry of G.

It may not be clear that these statements reflect progress, but the
they do, and this is manifested in part by the following fact, which says
that strong sets are large measure-theoretically.

Proposition 1.16. If S is a strong subset of R*, then there is a
constant C' > 0 so that

(1.17) SN B(x,r)|>C™tr",

forall x € S and r > 0. C depends only on the dimension and the
strongness constant of S.
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Here |A| denotes the Lebesgue measure of a set A.
The next point is to convert from mappings to measures. We begin
with some definitions.

Definition 1.18. Let E be a closed subset of R™, and let p be a
Borel measure with support equal to E.

a) We say that p is doubling on E if there is a constant C > 0 so
that

(1.19) w(B(z,2r)) < Cpu(B(z,r)),

forallx € E and 0 < r < diam E.
b) Define 6(x,y) = 0,(x,y) for z,y € E by

(120)  o(a,y) = (u(Ba, [z — y) U Byl — )"

We say that p is a metric doubling measure on E if p is doubling on E
and if there is a true metric d(xz,y) on E —i.e., a symmetric nonnegative
function which vanishes exactly on the diagonal and which satisfies the
triangle inequality— and a constant C' > 0 such that

(1.21) C~ld(z,y) < d(x,y) < Cd(,y),
forall x,y € E.

These are good classes of measures for studying quasisymmetric
mappings. The notion of metric doubling measures comes from [DS],
in a slightly different form, see also [S1].

Proposition 1.22. [fG : S — R" s quasisymmetric and S s a strong
subset of R™, then the measure p on R™ defined by u(A) = |G(ANS)]
1s a metric doubling measure on S, with constants that depend only on
n, the strongness constant for S, and the function which governs the
quasisymmetry of G.

This is exactly the measure that we are interested in for Theorem
1.3. The question now is what more we can say about it.

Proposition 1.23. If S is a strong subset of R® and p is a metric
doubling measure on S, then there is a metric doubling measure v on
R"™ which agrees with v on subsets of S. The metric doubling constants
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for v are controlled in terms of the corresponding constants for u, the
strongness constant for S, and the dimension n.

This is what we want because of the following absolute continuity
result.

Theorem 1.24. If i is a metric doubling measure on R* and n > 1,
then p and Lebesgue measure are absolutely continuous with respect to
each other.

This result was basically proved by Gehring [G]. He did not state it
this way, but his argument gives this result with little extra effort. This
extension of Gehring’s result was observed in [DS]. See Proposition 3.4
of [S1] for a detailed argument for this form of the result.

If 1 is a metric doubling measure on R”, n > 1, then the density
of pis an “A., weight”, which gives a uniform and scale-invariant ver-
sion of absolute continuity. In other words Theorem 1.24 comes with
quantitative estimates.

The original point of Gehring’s argument was to get information
about the jacobian of a global quasisymmetric mapping on R*. We are
doing roughly the same thing here, except that we are exploiting some
flexibility in metric doubling measures that quasisymmetric mappings
do not enjoy. Specifically, in Proposition 1.23 we have an extension
result which does not have a counterpart for quasisymmetric mappings.
There are no topological obstructions to building extensions of metric
doubling measures.

Not all metric doubling measures on R™ arise from global qua-
sisymmetric mappings in the manner described above. See [S2] for
counterexamples.

Let us now summarize some of the main conclusions of these propo-
sitions.

Theorem 1.25. Suppose that F' is a closed subset of R", that g : F —
R" is quasisymmetric, and that Fy 1s a closed serious subset of F'. Then
there is a metric doubling measure v on R"™ such that v(A) = |g(A)] for
all Borel subsets of Fy. In particular |g(A)| = 0 if and only if |A| =0
when A C Fy, by Theorem 1.24. The metric doubling constants for v
depend only on n, the seriousness constant for (Fo, F), and the function
which governs the quasisymmetry of g.
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Indeed, under these conditions we can use Proposition 1.10 to ex-
tend the restriction of g to F to a quasisymmetric mapping on a serious
set, and then we can use Proposition 1.14 to extend to a strong set. This
permits us to reduce to the case where Fj is a strong set. We then use
Propositions 1.22 and 1.23 to get a metric doubling measure, first on the
strong set, and then on all of R”. This proves Theorem 1.25, modulo
the previous propositions.

Theorem 1.3 is an immediate consequence of Lemma 1.8 and The-
orem 1.25. Thus we need only prove the various propositions. They
are slightly messy, but all pretty straightforward, and largely implicit
in the literature, if not explicitly stated in the form that we need. For
the sake of readability we shall often provide more detail than needed
for experts in the area, and we shall sometimes treat issues with bare
hands instead of sending the reader to the literature for lemmata.

Related papers concerning quasisymmetric mappings include [TV],
[V2], and [V3].

Although Propositions 1.10 and 1.14 look very similar, they really
aren’t, in the sense that Proposition 1.10 is much closer to the defini-
tions, whereas the proof of Proposition 1.14 relies on the structure of
Euclidean space.

2. The proof of Proposition 1.10.

This is quite straightforward. We are going to take Fj, take a
reasonably dense but scattered subset of F'\ Fyy, replace g by something
simple on little disks centered at points in this scattered subset, and
that will do the job. Our first task is to find this reasonably dense but
scattered subset. We shall employ this well-known construction again
in the next section.

Lemma 2.1. Let E be a closed subset of R™, and let H be a subset of
R"\E. Then we can find a subset I of H such that

(2.2)  for every x € H there is a point u € I such that
1 ..
|z —u| < 5 dist (z, E)

and

1
(2.3) for everyy, z € I we have that |y — z| > 3 dist (y, E) .
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Thus I is reasonably dense in H and also reasonably scattered.

Let E and H be given, and let I be a maximal subset of H which
satisfies (2.3). It is not hard to find such a maximal subset. For in-
stance, one can write R*\E as the increasing union of compact sets
K, one can build sets I recursively by taking I; 1 to be the maximal
subset of H N K1 which satisfies (2.3) and contains I;, and then take
I to be the union of the I;’s. In each compact part the maximal subset
has to be finite, which makes it easier to verify its existence, and then
the pieces nest together properly to give maximality for the union.

Thus we can take I to be a maximal subset of H which satisfies
(2.3). Let x € H be given. Either x € I already, or it is not, in which
case I U {x} will not satisfy (2.3). This means that there is a point
w € I such that

1 1
(2.4) either |z —u|< 3 dist (z, FE) or |z—u|< 3 dist (u, F) .

In the first case we get (2.2) directly. In the second case we compute
that

1
(2.5) dist (u, F) < |z —u| +dist (z, E) < 3 dist (u, E) + dist (z, E)

to conclude that dist (u, E') < 3dist (x, F)/2, and hence that (2.2) holds.
This proves Lemma 2.1.

Lemma 2.6. Let E,H, and I be as in Lemma 2.1, and set B(x) =
B(z,207dist (z, E)) when x € I. If v € I and y € 2 B(x), then

11
(2.7) % dist (v, ) < dist (y, ) < 7 dist (s, B).

If v,z €1 and x© # z then

(2.8) 2B(z)N2B(z) = 2.

Indeed, if z € I and y € 2 B(x), then

(2.9) |dist (y, E) — dist (z, E)| < 10~ !dist (z, E) .
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This implies (2.7).
Now suppose that z,z € I and = # z, but that (2.8) fails to hold,
so that there is a point y in the intersection. Then

1 1
(210) |z —z|<|z—y|+|y—2| < m dist (z, F) + 10 dist (z, E)
and
. 10 . 11
(2.11) dist (z, E) < n dist (y, F) < n dist (z, E)

because of (2.7) (applied to both x and z). Combining these we get
that

1
(2.12) |z — 2| < 3 dist (z, F),

in contradiction to (2.3). This proves (2.8), and the lemma follows.
Let us now prove Proposition 1.10. Let g, F', Fyy be as given there,
and apply Lemma 2.1 with £ = Fy and H = F\Fy. We get a subset I
of F.
Define F* by

(2.13) F*=FU ( U B(fr)) :

xzel

where B(z) is as in Lemma 2.6, with £ = F,. We shall define ¢g* a
little later. Let us first verify some simple properties of F*.

Lemma 2.14. F™* is closed.

Let {z;} be a sequence of points in F** which converges to some
point z € R™. We have to show that z € F*. If there is a subsequence
of {#;} which is contained in Fj, then z € Fy, and z € F*. If {z;} has
a subsequence which is contained in any one of the B(z)’s, then z lies
in the same B(z), and hence in F*. The remaining possibility is that
there is a subsequence of {z;} such that each term lies in a different
B(z). Since {z;} converges and hence is bounded, we must have that
the elements of this subsequence accumulate on Fp, because of the way
that we defined the B(x)’s. In this case we conclude that z € Fj and
hence z € F'*. This proves the lemma.
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Lemma 2.15. diam F* < 2diam F'.

If p € F*, then either p € Fy C F, or p € B(x) for some x € I. In
the latter case we have that

(2.16) dist (p, F') < |p — | < 107 dist (, Fy) < 107 diam F,
since « € F'. This implies the desired bound for diam F™.

Lemma 2.17. For each point x € F' there is a point u € F* such that
|z — u| < dist (x, Fy)/2.

This is trivial. Either x € Fj, in which case we take u = x, or not,
in which case we take u € I as in (2.2) (with £ = Fj). This gives the
lemma.

Lemma 2.18. F™* is serious.

Let p € F* and 0 < t < diam F'* be given, and let us try to find a
point ¢ € F* with

(2.19) C't<|p—q|<Ct

for a suitable constant C. We may as well assume that ¢ < diam F/,
since otherwise we can use Lemma 2.15 to reduce the problem to the
definition of diam F™*.

Suppose first that p € Fy. The we can use the assumption that Fj is
a serious subset of F' to find a point z € F such that C~1¢ < [p—z| < .
Lemma 2.17 provides a point u € F* such that |z —u| < dist (x, Fy)/2 <
lp — x|/2. Thus |p — u| < |p — z| + |z — u| < 2t, which gives the upper
bound in (2.19) (with ¢ = u). For the lower bound we have that

1
(2.20) p—zl<lp—ul+lu—z|l<|p—ul+ 3z —pl,

and hence |p — z|/2 < |p — u|. This gives the lower bound in (2.19).

Now suppose that p € B(z) for some z € I. If t < dist (z, Fy), then
we can find the required ¢ inside B(z). If ¢t > dist (2, Fp), then let y be
a point in Fy such that |y — z| = dist (2, Fp). Choose x € F so that
C7 1t <|y—=z| <t, as we can do because of the seriousness of Fy inside
of F'. Let u € F'* be associated to x as in Lemma 2.17. Then

p—ul <|p—zl+|z—yl+ |y — 2|+ v —u
(2.21) <t+t+t+ dist (z, Fy)
< 3t+ | —y| <A4t.
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This gives the upper bound that we want for (2.19) (with ¢ = u). For
the lower bound we observe that

jy =2l <Ip—ul+lp—yl + o — ul
L.
<Ip—ul+ (Ip =2l + |2 — y)) + 5 dist (z, Fy)

(2.22) 1
< |p — u| + dist (z, Fp) + dist (z, Fp) + 3 |z — y

. 1
< |p—u|+2dlst(z,F0)+§|x—y|.

Thus C~ ¢ < |y — x| < 2|p—u| +4dist (2, Fy). If ¢t is much larger that
dist (2, Fo) then this implies the lower bound in (2.19). If not, then
again we simply take a suitable ¢ in B(z). This proves Lemma 2.18.

Let us now define g* : F* — R™. Of course we set g* = g on Fj,
and we define g* on each B(z) as follows. Given x € I choose a point
m(x) € Fy so that

(2.23) |z — m(x)| = dist (z, Fp) .
Define ¢g* on B(z) by

l9(z) — g(x(2))]

(2.24) 9" (w) =g(z)+a & — ()]

(w_x)v

for all w € B(x). Here a is a small positive number to be chosen in the
next lemma. Thus on the ball B(x) we have taken g* to be a similarity
with the same value as g at the center and whose distortion ratio is
approximately the same as that of g at that location and scale.

Let (z), € I, denote the ball which is the image of B(x) under
g*. Thus

(2.25) B(z) = B(g(z),20"  alg(z) — g(m())]),

by the definition of ¢* and B(x) (in Lemma 2.6).
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Lemma 2.26. If a is small enough, depending only on the function
which governs the quasisymmetry of g, then the balls 2 f(x), © € I, are
pairwise disjoint and each is disjoint from g*(Fy) = g(Fp).

This is just a question of the quasisymmetry condition. Suppose
that y,z € I, y # z. Using (2.3) we get that |y — 7n(y)| < 3|y — 2|,
and similarly we have that |z — 7(2)| < 3 |y — z|. Quasisymmetry then
implies that

(2.27) l9(y) — g(m(y))| + |g(2) — g(m(2))| < Clg(y) — g(2)|.

This implies that 2 8(y) and 2 8(z) are disjoint if a is small enough.

Now suppose that z € [ and w € Fy. We want to show that
g(w) ¢ 26(x). We have that |z — n(z)| = dist (z, Fy) < |z — w]|, by
definition of 7(z), and so

(2.28) l9(z) — g(n(2))] < Clg(z) — g(w)],

by quasisymmetry. This implies that g(w) ¢ 2 3(z) if a is small enough.

This proves Lemma 2.26. Fix now a choice of a as above, depending
only on the function that governs the quasisymmetry of g.

It remains to prove that g* is quasisymmetric. The argument for
this has some generality, and we shall need it again later, and so we
formulate it in more general terms than required for the present cir-
cumstances.

Lemma 2.29. Let A be a closed subset of R™, and let {B;}icr and
{Bi}ier be collections of closed balls in R*. Set A* = AUJ;¢; Bs and
let A" denote the union of A and the set of centers of the balls B;, 1 € I.
Suppose that H : A* — R™ has the property that the restriction of
H to A’ is quasisymmetric, that H(B;) = (3; for eachi € I, and that the
restriction of H to each B; is a quasisymmetric mapping with a function
governing the quasisymmetry that can be taken to be independent of 1.
Suppose also that the balls 2 B;, © € I, are pairwise disjoint and are
disjoint from A, that the balls 2 3;, 1 € I, are pairwise disjoint and
disjoint from H(A), and that there is a constant C > 0 so that

(2.30.a) C~tdist (B;, A) < radius B; < dist (B;, A),
and

(2.30.b) C~tdist (B;, H(A)) < radius 8; < dist (8;, H(A))
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for all i € 1. (Note that the upper bounds follow from the disjointness
of the 2 B;’s from A, the 2 3;’s from H(A).)

Then H : A* — R" is quasisymmetric, with bounds which depend
only on a uniform choice of a function which governs the quasisymmetry

of the various restrictions of H mentioned above, and on the constants
in (2.30).

If we can prove this lemma then we get that ¢* is quasisymmetric,
because our balls have the correct disjointness properties and satisfy
the analogue of (2.30) (by their definitions), because the restrictions
of g* to the various B(z)’s are trivially quasisymmetric, with uniform
bounds, and because the restriction of g* to A’ = Fy U I agrees with g
and hence is quasisymmetric.

Thus Proposition 1.10 will follow once we prove Lemma 2.29.

Beware of the small changes in notation from the previous situation
to the lemma, B(z) to B;, etc.

The lemma is a straightforward but unpleasant exercise, a matter
of checking cases. Let A, H, etc. be as above.

Let us first record a small observation.

Sublemma 2.31. Suppose that p,q € B; and w € A*\B;. Then

(2.32) Clg—w| <|lp—w <Clg—w|,

(2.33)  C7'|H(q) - H(w)| < |H(p) — H(w)| < C|H(q) — H(w)],

(2.34) lp — w| > C~'diam B;
and
(2.35) |H(p) — H(w)| > C~'diam 3;

for a suitable constant C'.

This follows from the our assumptions, which ensure that 2 B; is
disjoint from A*\B;, and that 2 (3; is disjoint from H(A*\B;).

Suppose that we are given x,y,z € A* and t > 0 which satisfy
|z —y| < t|z—z|. We want to show that |H(x) — H(y)| < 0(t) |H(x) —
H(z)| for some 6(t) which tends to 0 when ¢ — 0 and which is bounded
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on finite intervals. (See Lemma 2.42 below for a small technical point
here.)

If z,y,z all lie in A’, or all lie in some B;, then we get the desired
bound from our hypotheses.

If no two of x,y, z lie in the same B;, then we can reduce to the
previous case where x,y,z all lie in A’, by using Sublemma 2.31 to
switch from a point in some B; to the center of B;. That is, such
a change will not affect any of the distances involved by more than
a bounded factor. (Remember that A’ consists exactly of A and the
various centers of the B;’s.)

Thus we may assume that exactly two of x, y, z lie in some B;, and
that the remaining point lies in A*\ B;.

We may as well assume that z is one of the two points that lies in
B;. For if it is not, then we can use Sublemma 2.31 to reduce to the
case where y and z are both equal to the center of B;, and where x
either lies in A or is the center of some other B;. Again these changes
will not affect the relevant distances by more than a bounded factor.
After these changes all three points would lie in A’, which is already
covered by our assumptions.

Thus we may assume that x lies in B;, and that exactly one of
y and z do too. We may also assume that the remaining point lies
in A’, because Sublemma 2.31 again permits us to make the substitu-
tion without affecting the quantities involved by more than a bounded
factor.

In order to deal with this remaining situation we make another
small observation.

Sublemma 2.36. For each ¢ € I let ¢; denote the center of B;, and
choose & € A such that |¢; — &;| = dist (¢;, A). Then

(2.37) C~!diam B; < |¢; — &;| < Cdiam B;
and
(2.38) C~tdiam ; < |H(c;) — H(&;)| < C diam 3;

for each v and a suitable constant C'.

The bounds (2.37) follow from (2.30) and the definitions of ¢; and
&;. (See also Sublemma 2.31.)
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As for (2.38), notice that |H(c;) — H(;)| is comparable in size to
dist (H(c¢;), H(A)), because of quasisymmetry and the fact that |¢; —
&;| = dist (¢;, A). This implies (2.38), because of (2.30) again.

This proves Sublemma 2.36.

Let us come back to our original problem of the quasisymmetry of
H. We have our three points z,y,z with | —y| < t|z — 2|, and we
want to prove something like |H(z) — H(y)| < 6(t) |H(z) — H(z)|. We
have already reduced to the case where x and exactly one of y and z
lies in some B;, and where the remaining point lies in A"\ B;.

This last situation is slightly obnoxious because it is really a com-
bination of two cases. For the sake of explanation suppose that it is y
which lies in B;. Then we could have that |z — y| is very small com-
pared to the radius of B;, and that dist (z, B;) is large compared to the
radius of B;. In order to establish quasisymmetry we should show that
such a circumstance leads to something similar in the image. It is more
convenient however to do this in two steps, first to compare |z —y| with
the radius of B; and make a similar comparison in the image, and then
to compare dist (z, B;) with the radius of B; and to make a similar com-
parison in the image. Our final estimate will be obtained as a product
of estimates from these two parts.

Assume first that y € B;, so that z € A"\ B;. Set

. [z —y e =&l
e =&l IEEETE
(2.39)
R |H(z) — H(y)| g |H (c;) — H(&)]

CH(e) - H(&) © 0 [H(z) - H(2)]

By assumption we have that rs < ¢, and we want to bound RS by a
function of ¢ which tends to 0 as ¢t — 0.

Sublemma 2.40. r,s, R, S < C for some constant C.

For r and R this follows from Sublemma 2.36 and the fact that
xz,y € By, H(z),H(y) € B;. For s and S we observe that z ¢ B;,
H(z) ¢ B;, so that Sublemma 2.31 can be applied. With this obser-
vation the bounds for s and S follow from Sublemma 2.36 also. This
proves Sublemma 2.40.

Since 7s < t we get that one of r and s is < v/t. Our quasisym-
metry hypotheses imply that the corresponding R or S is bounded by
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a good function of v/¢. (For r we have to use (2.37) to get to the qua-
sisymmetry of H on B;.) We conclude that RS is bounded by a good
function of /%, since they are each bounded separately. This is the
bound that we need.

Assume now that z € B;, so that y € A’\B;. Define r, s, R, S as

above. Again we have rs < t by assumption, and we want to control
RS.

Sublemma 2.41. 7,5, R, S > C~! for some constant C.

This is practically the same as Sublemma 2.40, but with the roles
of y and z reversed.

In this case we can conclude that each of  and s is bounded by a
constant multiple of ¢. Our quasisymmetry hypotheses then imply that
each of R and S is bounded by a function of ¢, and so the product is
too.

This completes the proof of Lemma 2.29. Note that we have not
given the most efficient estimates in the argument.

For the record, let us mention a small lemma which we have used
implicitly.

Lemma 2.42. Suppose that 0 : [0,00) — [0,00) satisfies 6(0) =0, 6(t)
15 continuous at 0, and 0 is bounded on bounded sets. Then there is a
homeomorphism © : [0,00) — [0,00) such that 0(t) < O(t) for all t.

Indeed, following Viisild we set O(t) = ¢ + supg<g<q: 0(t) when
t = 2" n € Z, and use affine interpolation to define © on the rest.
(Thanks to Alestalo for pointing out the author’s stupidity for the first
version. )

3. The proof of Proposition 1.14.

The argument will parallel the proof of Proposition 1.10 in the
previous section, except for one piece of information that we shall have
to obtain for ourselves.

Let g and F' be given, as in Proposition 1.14. Let I be as in Lemma
2.1, applied with F = F and H = R*\F. Let B(z), x € I, be defined
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as in Lemma 2.6 (with £ = F'). Define the set S by

(3.1) S:FU(UB(JE)),

xel

as in (2.13).

In the next two lemmas we give basic properties of S. At this
stage we do not use the assumption that F' is serious, only that it is
closed. The seriousness will not be used until we start to work with our
quasisymmetric mapping.

Lemma 3.2. S s closed.
This is the same as Lemma 2.14, with only cosmetic changes.

Lemma 3.3. S is a strong set.

Let x € R*\S be given, as in Definition 1.11. Thus z € R"\F.
The point is that z must be reasonably close to B(u) for some u € I,
but it is helpful to distinguish between the cases where x is very close to
some B(u) or never too close. Actually our threshold will be sufficiently
generous that the latter never happens.

Suppose first that

(3.4) dist (z, S) < %dist (&, F).

Choose z € S so that |z —z| = dist (z,.5). Then z ¢ F', and so z € B(u)
for some u € I. Because |z — z| < dist (z, F') /2 we get that

1
(3.5) 5 dist (z, F) < dist (=, F) < gdist (2, F).

This means that dist (z, F') is comparable in size to the radius of B(u),

because of (2.7) in Lemma 2.6 and the definition of B(u). Since |[x—z| =

dist (z, S) and z € B(u) it is easy to see that we can find a point y of

the type required in Definition 1.11, inside B(u) (and not just in S).
Now suppose that

1
(3.6) dist (z, S) > 3 dist (z, F') .
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In fact this cannot happen. Indeed, apply Lemma 2.1 to get a point
u € I such that | —u| < dist (z, F)/2, as in (2.2). Then

1
(3.7) dist (z,5) < |z —u| < 5 dist (z, F') < dist (z, S),

a contradiction.
This completes the proof of Lemma 3.3.

To prove Proposition 1.14 we need to build a quasisymmetric ex-
tension G of g. We would like to do this in the same way as in Section 2
(around (2.24)), but in the present situation we have the problem that g
is not yet defined at the elements of I. The main point of the argument
that follows will be to extend g quasisymmetrically to I. Once we do
that we can proceed as in Section 2 (using Lemma 2.29).

The elements of I basically represent holes in F', large puddles of
its complement. We need to show that these holes correspond to holes
in the complement of g(F) in a reasonable manner. The next couple of
lemmas will enable us to do that.

Lemma 3.8. Let a homeomorphism 1 : [0,00) — [0,00) and a dimen-
ston n be given. For each € > 0 there exist 0 > 0 and R > 1, depending
on €,1n, and n, with the following properties. Let E be a subset of R™
and h : E — R be an n-quasisymmetric mapping which satisfy the
normalizations

(3.9) O,uc B and h(0) =0, h(u) =u,

where v = (1,0,...,0). Suppose that E is §-thick in B(0, R), in the
sense that

(3.10) dist (z, B) <§  whenever x € B(0, R).
Then h(E N B(0, R)) is e-thick in B(0,1), so that
(3.11) dist (2, h(E)) < e  whenever z € B(0,1).

This is a weaker version of [V3, Theorem 3.1], weaker by dint of
having estimates which depend on the dimension and which are ob-
tained through very nonconstructive means. For the reader’s conve-
nience we include a proof by compactness which is mentioned in the
introduction of [V3] (and attributed to Tukia).
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Suppose that Lemma 3.8 is not true. Then there exist n,n, and
e as above, a sequence {Fj} of subsets of R", and a sequence {hy}
of n-quasisymmetric mappings from Ej into R™, such that {Ej} and
{hi} satisfy the analogues of the normalizations (3.9), each E}, is 1/k-
thick inside B(0, k), but each hy(E, N B(0, k)) fails to be e-thick inside
B(0,1).

Claim 3.12. There is a sequence of integers k; and an n-quasisym-
metric mapping H : R" — R"™ such that the hy, ’s converge to H “uni-
formly on compact sets” in the sense that

(3.13) lim sup |hg, () — H(z)| =0,

Jj—oo 2€BNEy;
for every ball B i R™.

This is pretty standard, but let us be careful.

The first step is to show that we have equicontinuity of the hg’s
on compact sets. That is, for each ball B there exists a function wp :
[0,00) — [0,00) such that wp(0) = 0, wp is continuous at 0, wp is
bounded on finite intervals, and

(3.14) e () = he(y)| < wp(lz —yl),

for all x, y € BN Ey and all k. This follows from the uniform qua-
sisymmetry hypotheses and the normalizations.

Once we have this equicontinuity condition we can conclude that
there is continuous mapping H : R* — R" and a subsequence {hy;, }
of {hr} which converges to h in the sense of (3.13). This is not hard
to prove, using an Arzela-Ascoli argument. Here is one way to do it
from scratch. Let {p,,} be a countable dense subset of R™. For each
Pm choose a sequence of points {pm, 1} 5o, such that p,, € Ej, for each
k and |[pm r — pm| < 1/k when p,, € B(0,k). We can do this because
of our thickness hypotheses. Next choose the subsequence {hy,} of
{hx} in such a way that lim;_, o hg; (Pm,k;) exists for each m, and call
the result H(p,,). We can find such a subsequence because of the usual
Cantor diagonalization argument. We are also using our normalizations
and the equicontinuity property (3.14) to know that {hg(pm.x)}x is a
bounded sequence for each m. Once one has {hy;} with this property
it is not hard to show that H must have a continuous extension to all
of R", and that we have convergence in the sense of (3.13), using the
equicontinuity property (3.14).
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It is easy to derive the n-quasisymmetry of H from the correspond-
ing property of the hy’s.
This completes the proof of Claim 3.12.

Let us now finish the proof of Lemma 3.8. Let H be as in the
claim. The main point now is that H must be surjective, H(R") = R".
This is well-known (a consequence of invariance of domain and the
connectedness of R". One does not really need H to be quasisymmetric
here, it is enough for H to be proper). On the other hand we are
assuming that hy(E}y) fails to be e-thick inside B(0,1) for each k. It is
not hard to derive a contradiction to this assumption. Indeed, let k& be
large, to be chosen soon, and suppose that z; € B(0,1) satisfies

(3.15) dist (zi, b (Ex N B(0,k))) > €.

Because H is a surjection there is a point z; € R™ such that H(zy) = 2.
In fact we have that x, € B(0, L) for some large L and all k, because H
is m-quasisymmetric, and because z, € B(0,1) for all k. In particular
we have that z € B(0, k) for large enough k. For sufficiently large k&
we can find a point y € Ei N B(0,L + 1) such that |z — yx| < 1/k,
because of the thickness property. If & is large and among the k;’s then

|2k — hi (k)| = [H (zk) — hi(yr)|

(3.16) < [H (k) — H(ye)| + [H (yr) — he(yr)| < e,

because of the uniform continuity of H on B(0, L+ 1) and the uniform
convergence (3.13). This contradicts (3.15), and Lemma 3.8 follows.

For our purposes the following reformulation of Lemma 3.8 will be
more convenient.

Lemma 3.17. Let a homeomorphism 1 : [0,00) — [0,00), a dimension
n, and a number A > 1 be given. Suppose that X is a subset of R"
and that f : X — R is n-quasisymmetric. Suppose also that we have
z,y € X,z #y, and z € R*"\X such that

(3.18) lz—2z| <|z—y| and dist(z,X)>A" |z —y|.

Then there is a point w € R*\ f(X) such that

(3.19.a) jw— f(z)| < M|f(z) - f(y)
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and
(3.19.b) dist (w, f(X)) > M~ |f(x) — f(y)],

where M > 0 depends on n,n, and A, but not on anything else.

Roughly speaking, this says that holes in the complement of X
correspond under f to holes in the complement of f(X) in a nice way.

This is an easy consequence of Lemma 3.8. We may as well assume
that = 0, y = u = (1,0,...,0), f(0) = 0, and f(u) = u, because we
can reduce to that case using affine similarities. We apply Lemma 3.8
with o = f~! and £ = f(X). (Lemma 1.4 is relevant here.) More
precisely, we argue by contradiction. Suppose that there is no point w
as in (3.19), so that £ = f(X) is 1/M-thick in B(0, M). If M is large
enough, then we can apply Lemma 3.8 to conclude that h(E) = X is
e-thick in B(0,1) with ¢ = 1/(2A), for instance. This contradicts our
assumption (3.18), and Lemma 3.17 follows.

Let us return now to our earlier story of F,g, and I. We want
to take points in I and associate to them points in the complement of
9(F).

Let us decompose I into Iy U I7, where Iy = {u € I : dist (u, F) <
bdiamF}, I = {u € I : dist (u,F) > bdiam F'}, and b € (0,1) is
a small constant that will be chosen in a moment. Iy is the more
interesting one, I; can be handled practically without thinking. We
shall concern ourselves with only I for the time being. Note that
I =1y and I} = @ when F' is unbounded.

Given u € Iy, choose points m(u), p(u) € F such that

lu — w(u)| = dist (u, F),

(3.20) dist (u, F) < |m(u) — p(u)| < Cdist (u, F) .

To get p(u) we are using our assumption that F' is serious. It is here
that we choose the constant b, once and for all, depending only on
the seriousness constant of F'; we can find such a p(u) so long as
dist (u, F') < bdiam F' and b is small enough. These points 7(u), p(u)
are not unique or canonical or anything like that, we simply choose
them without worrying about it.

Lemma 3.21. For each u € Iy there is a point ¢p(u) € R*\g(F') such
that

(3.22) |6(w) = g(m(w))] < Clg(m(u)) = g(p(u))]
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and

(3.23) dist (¢(u), g(F)) > C~" |g(m(u)) — g(p(w))]
for a suitable constant C' > 0.

This follows from Lemma 3.17, applied with f =g, X = F, z =
m(u), y = p(u), z = u, and with ¢(u) taken to be w.
For u € I; we can behave more stupidly.

Lemma 3.24. For each u € I; we can find a point ¢(u) € R*\g(F)
such that

~ diam g(F")

(3.25) dist (¢p(u), g(F)) = Fo—— dist (u, F') .

Keep in mind that dist (u, F') > bdiam F' this time. This means
that there really is no point in choosing something like 7(u), an element
of F' closest to u, because they are all about the same. It is just a
question of the distance to F'.

The lemma is easy to prove, and we leave it as an exercise. For
instance one can find a closed half-space which contains F' and which
touches F' at the boundary, and then choose ¢(u) on the ray which
emanates from that point in the direction orthogonal to the hyperplane
and away from F'.

Thus we have now chosen points ¢(u) € R*\g(F) for all u € I.
We need to modify them slightly to keep them from getting too close
to each other.

Lemma 3.26. For each v € I we can find a point ¢(u) € R*\g(F)
with the following properties.

i) If u € Iy, then

(3.27) [9(w) = g(m(u))| < Clg(m(w) = g(p(w))]

and

(3.28) dist ((u), g(F)) = C™* [g(m(u) — g(p(u))] -
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i) If u € I, then

o1 diam g(F)

Tam T dist (u, F') < dist (¢(u), g(F))

diam g(F')
diam F'

iii) There is a number ¢ € (0,1/10) such that the balls

B(u) = B(y(u), cdist (Y (u),9(F))), uwel,

have disjoint doubles.
The constants C and ¢ depend only on n, the seriousness constant
for F', and the function which governs the quasisymmetry of g.

(3.29)
dist (u, F') .

To prove this we basically want to take the 1(u)’s to be the same
as the ¢(u)’s, but with some small perturbation to get the disjointness
condition iii). This will require a small coding argument, and first we
need to control some multiplicities.

Sublemma 3.30. For each u € I there are at most a bounded number
of v € I with

(331) 6(v) — Bw)] < 3 dist (¢(u) g(F))

To prove this we need the following.

Claim 3.32. If u,v € I satisfy (3.31), then

(3.33) lu —v| < Cdist (u, F)
and
(3.34) C~tdist (u, F) < dist (v, F') < Cdist (u, F)

for a suitable constant C'.

Let u,v € I be given, with u and v satisfying (3.31). Notice that
(3.31) implies that

(3:33) 5 dist (4(u), g(F)) < dist ($(0),g(F)) < 5 dist (9(), 9(F)).
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Suppose first that u,v € I;. In this case we can get (3.34) from
(3.35) and (3.25). This implies (3.33) immediately, because dist (u, F')
> bdiam F'.

Now suppose that exactly one of v and v lies in Iy, let us say v.
From (3.25) we get that

(3.36) dist (¢(v), g(F)) > bdiam g(F').
On the other hand we have that
(3.37) dist (¢(u), g(F)) < C diam g(F)

because of (3.22). Using (3.35) we conclude that

(3.38.a) C~tdiam g(F) < dist (¢(u), g(F))
and
(3.38.b) dist (¢(v), g(F)) < Cdiam g(F).

Going back to (3.25) we get that

(3.39) C~!diam F < dist (v, F') < C diam F'.
Let us check that

(3.40) C~!diam F < dist (u, F) < C diam F.

The upper bound is automatic, because v € Ip, the lower bound is
the interesting one. It follows from (3.38.a)), Lemma 3.21, and the
quasisymmetry of g on F.

These last two estimates imply (3.34), and (3.33) follows since
dist (u, F') is bounded from below by a constant times diam F'. (This
would also be true if we switched the roles of u and v, and immediately
s0, since we were assuming that v € I.)

We are left with the case where both v and v lie in Iy. Set R(z) =
l9(m(z)) = g(p(x))| for £ = u,v. Then
(3.41) C~ ! R(z) < dist (¢(z), g(F)) < C R(z)

when z = u, v, because of Lemma 3.21. Thus

(3.42) C ' R(u) < R(v) < C R(u)
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by (3.35). On the other hand |p(x) — g(7(x))| < C R(x) when z = u, v,
because of (3.22), and this implies that |p(z) — g(p(x))| < C R(z) for
x = u,v too. Using our assumption (3.31) we get that all the points
g(m(w)),g(m(v)),g(p(u)), and g(p(v)) have mutual distance bounded by
C R(u), and also by C' R(v). Quasisymmetry then applies to say that
the points 7(u), 7(v), p(u), p(v) all have mutual distances bounded by
C'|m(u) — p(u)], and by C'|7(v) — p(v)|. In particular

(3.43) CHm(v) = p(v)] < |7 (u) — p(u)] < C'lm(v) — p(v)] -

This implies (3.34), because of (3.20). We also get (3.33) from these
bounds on the mutual distances and (3.20). This proves Claim 3.32.

Now let us derive Sublemma 3.30 from the claim. Fix v € I,
and let I(u) denote the set of v € I for which (3.31) holds. Thus
(3.33) and (3.34) hold for all v € I(u). Consider the collection of balls
B(v), v € I(u), where B(v) is as in Lemma 2.6. These balls all have
approximately the same radius as B(u), because of (3.34), and they are
all contained in the ball k B(u), where k is a large constant, because of
(3.33) and (3.34). They are also disjoint, because of Lemma 2.6. This
implies a bound on their total number, and Sublemma 3.30 follows.

Let us return now to the proof of Lemma 3.26.

Sublemma 3.44. If the constant ¢ > 0 is chosen small enough, then
for each u € I we can find a point ¢ (u) € R™\g(F) such that

(3.45) |p(u) — ()] < 10~ 2dist (¢(u), g(F))
and property iii) of Lemma (3.26) holds.

To do this we arrange the points in I as a sequence {u;}32,, in
which each element of I appears exactly once, and we choose 1) (u;) for
one j after another. More precisely we want to choose these points so
that for each j we have that (3.45) holds for u = u;, i = 1,..., 7, and,
if the balls S(u) are as defined in Lemma 3.26.iii), then for each j we
have that

(3.46) 20(u;)) N2P(ug) =@ when 1<i<k<j.

If we can do this for each 57 then we shall be finished.
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Set 1(u1) = ¢(uy). This satisfies all the requirements for j = 1
trivially.

Suppose that 9(u;) has been chosen for ¢ < j in accordance with
the requirements stated above, and let us try to choose 1) (u;). Of course
the disjointness property (3.46) is the thing that we have to keep our
eyes on, and it is only an issue for ¢ < j, k = j.

Consider first an ¢ < j such that

(3.47) 6(us) — Bl > 3 dist (9u5), 9 (F))

We are assuming that we chose 1 (u;) so that (3.45) holds. If we are
also careful to choose 1 (u;) so that (3.45) holds, then (3.47) will ensure
that the disjointness property (3.46) will hold (with k& = j) as soon as
¢ is small enough. This is not hard to check, using also a computation
like (3.35).

The interesting issue is to deal with the i’s such that (3.47) fails,
so that

(3.49) 6(0s) — Blug)] < 5 dist (9(u5), g (F))

The point is that Sublemma 3.30 ensures that there are at most a
bounded number of such #’s. If ¢ is chosen small enough then we can
choose t(u;) so that (3.45) holds and so that (3.46) holds for these
dangerous ¢’s. This is not hard to see, the point is that we have only to
avoid a bounded number of points in a given ball, and we can then get
a ¢ which is bounded from below in a way that depends on our bound
on the number of bad points. This is slightly vague, but the reader is
probably happier filling in the details rather than reading them.

Thus one can choose (u;) so as to have the required properties.
We can repeat this indefinitely to do this for all the u;’s, and Sublemma
3.44 follows from this, as noted above.

Let us now finish the proof of Lemma 3.26. We take 1(u) to be as
provided in Sublemma 3.44, so that we have property iii) of Lemma 3.26
already. There remains the problem of verifying properties i) and ii) of
Lemma 3.26. We want to derive them from (3.45) and the corresponding
properties of ¢(u). Notice first that (3.45) implies that

(3.49) % dist (¢p(u), g(F)) < dist ((u), g(F)) < 2dist (p(u), g(F)),
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as one can easily check. From here we get (3.29) when u € Iy, using
also the equality (3.25) for ¢(u). Similarly (3.28) holds when u € I,
because of (3.49) and (3.23), while (3.27) follows from (3.22), (3.45),
and the fact that

CH g(n(w)) — g(p(w))| < dist (p(u), g(F))
< Clg(n(w)) = g(p(w))|

(which itself comes from combining (3.22) and (3.23)).
This completes the proof of Lemma 3.26.

(3.50)

Define h: FUI — R"™ by

F,
(3.51) h= { g o8
v onl.

We want to show that this mapping is quasisymmetric. This is not
difficult but neither is it pleasant. We begin with small observations.

Lemma 3.52. Ifp,q € FUI, p# q, then

(3.53) lp—q| > é (dist (p, ') + dist (¢, F)) .

This follows easily from (2.3).

At the moment 7(u) and p(u) are defined only for v € Iy. We
extend them to u € F simply by taking m(u) = p(u) = v when u € F.

Lemma 3.54. Let x,z € F'U Iy be given, and suppose that u 1s either
x, w(x), or p(z), and that w is either z, w(z), or p(z). Then

(3.55) lu—w| < Clz -z,

where C' depends only on the seriousness constant of F'.
This is an easy consequence of Lemma 3.52 and (3.20).

Lemma 3.56. I[f x and z are distinct elements of F'U I, then
(3.57)  |h(z) = h(2)| = C™* (dist (h(x), g(F)) + dist (h(2),g(F))) ,

where C' depends only on the dimension n, the seriousness constant of
F', and the function that governs the quasisymmetry of g.
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Indeed, if either z or z lies in F' then this is a tautology. If both x
and z lie in I, then this follows from Lemma 3.26.iii).

Lemma 3.58. Let x,z € F'U Iy be given, and suppose that u 1s either
x, w(x), or p(z), and that w is either z, w(z), or p(z). Then

(3.59) |h(u) = h(w)| < C|h(z) — h(z)].

This constant depends only on the dimension n, the seriousness con-
stant of F', and the function that governs the quasisymmetry of g.

Let us check that
(3.60) dist (h(p), g(F)) < |h(p) — h(q)| < Cdist (h(p), g(F))

when p € FUIj and ¢ is either m(p) or p(p). This is trivial when p € F,
all the relevant quantities vanish, and so we need only consider p € Ij.
The first inequality follows from the fact that ¢ € F' by definitions. The
second inequality follows from (3.27) and (3.28). (Think first about
q = m(p) and then ¢ = p(p). Remember that h(p) = ¥ (p), by (3.51).)
Thus (3.60) is true.

The bound (3.59) follows now from Lemma 3.56 and (3.60). This
proves Lemma 3.58.

Lemma 3.61. Let x,z € F U Iy be given. We can choose x' €
{m(x), p(x)} and 2" € {n(2), p(2)} so that

3.62 s oA
(3.62) o 2|2

Note that the reverse inequality is provided by Lemma 3.54.

For the proof we follow a suggestion from the Unknown Finn. Let
us check first that if u € F'U Iy and v € R" is arbitrary, then
(3.63) ju—v| <2 (|Jr(u) —v] + |p(u) —v]) .
We have that

(3.64) |7 (u) — v + |p(u) — o] = |7 (u) = p(u)| = dist (u, F),
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by (3.20). If |u — v| < 2dist (u, F') then we get (3.63) from (3.64). If
|lu —v| > 2dist (u, F') then
u =] < fu—m(u)| + |7 (u) — vl
= dist (u, F') + |7 (u) — v|
< fu—=0[/2+[m(u) =],
and so |u —v| < 2|m(u) — v|. Thus (3.63) holds in this case too.
From (3.63) (applied twice) we conclude that if u,v € F'U Iy, then
u— v <4 (|7 (u) = 7(v)[ + [p(u) = p(v)]
+[m(w) = p(v)| + |p(w) — 7 (v)]) -

Lemma 3.61 follows from this.

(3.65)

Lemma 3.66. Let x,y,z € FU Iy andt > 0 be given, with © # y and
|z —y| < t|z —z|. Then

(3.67) dist (h(z), g(F)) < Cn(Ct) |h(z) — h(z)],

where 1 1s the function that governs the quasisymmetry of g, and where
C' depends only on n, the seriousness constant of F', and .

This lemma is trivial when = € F', and so we assume that x € Ij.
Lemma 3.52 permits us to convert our hypothesis into

(3.68) dist (z, F) < 6t|x — z|.
Let 2’, 2z’ be as in Lemma 3.61. We can convert (3.68) into
(3.69) lz' —q| < Ctl|z' - 7|

for ¢ = w(x), p(x). This follows from (3.68), using (3.62) and (3.20).
All these points z’,z’, ¢ lie in F', on which h equals g, and so we can
use the quasisymmetry of g to get

(3.70) (") = h(g)] < n(C't) |h(z') = h(z")]

for ¢ = m(x), p(x), where n is the function that governs the quasisym-
metry of g. Because z’ is one of 7(x), p(x), we can take ¢ to be the
other one, and we get

(3.71) [h(m () = h(p(x))| < n(Ct) |h(z") = h(z')].
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Lemma 3.26.1) permits us to replace this with
(3.72) dist (h(z), g(F)) < Cn(C't) [h(z") — h(2")].
Using Lemma 3.58 we get that
(3.73) dist (h(z),g(F)) < Cn(Ct) [h(z) — h(2)].
This proves Lemma 3.66.
Lemma 3.74. The restriction of h to F'U 1y is quasisymmetric, with
the quasisymmetry governed by the function Cn(C't), where n is the
function that governs the quasisymmetry of g, and where C' depends
only on the dimension n, the seriousness constant of F', and 7.

Let x,y,z € F'U Iy, t > 0, be given, such that
(3.75) |z —y| <tlz— 2.
We want to show that
(3.76) |h(@) = h(y)| < Cn(Ct) |h(x) = h(z)],
where C' and 7 are as above. We may as well assume that y # x.

Let ', 2 be associated to x,z as in Lemma 3.61. Then (3.75)
implies that |z —y| < C't |z’ — 2/|, by (3.62). Therefore
(3.77) 7' —q| < Ctl|z' - 7|
for each of ¢ = 7(y), p(y), because of Lemma 3.54 (applied to = and y).
Because ', 2/, 7(y), p(y) all lie in F', and because h equals g on F', we
conclude that

(3.78) [7(2") = h(q)] < n(C't) |h(z') = h(z")]

for each of ¢ = w(y), p(y), where 7 is the function that governs the
quasisymmetry of g. Lemma 3.58 permits us to convert this into

(3.79) h(2) = h(g)| < Cn(Ct) |h(z) = h(2)],

for each of ¢ = w(y), p(y).
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Lemma 3.66 implies that
(3.80) dist (h(z), g(£")) < Cn(Ct) |h(z) — h(2)].

From (3.60) (with p = z, ¢ = ') we have that |h(x) — h(z’)| <
Cdist (h(x), g(F')). Combining these estimates with (3.79) we get that

(3.81) h(x) = h(g)] < Cn(C) [h(x) = h(2)],

for each of ¢ = w(y), p(y).
In particular we have that

(3.82) |h(m(y)) — h(p(y))| < Cn(Ct) |h(z) — h(z)],
and hence
(3.83) |h(y) — h(m(y))| < Cn(Ct) |h(z) — h(2)|

by (3.27). Combining this with (3.81) (with ¢ = 7(y)) we get that
(3.84) h(x) = h(y)| < Cn(Ct) [h(x) = h(z)].

This proves the lemima.
Our next main goal is to prove the following.

Lemma 3.85. h: FUI — R" s quasisymmeltric, with bounds that
depend only on the dimension n, the seriousness constant of F', and the
function that governs the quasisymmetry of g.

In order to prove this we may as well assume that
(3.86) diam F = diamg(F) =1,

because we can always make rescalings on the domain and image with-
out altering our assumptions. This assumption will be in force through-
out the proof of Lemma 3.85.

In the following the constants C' are permitted to depend only on
the dimension n, the seriousness constant of F', and the function that
governs the quasisymmetry of g.

The reader might wish to review the definitions of Iy and I, which
are given shortly before (3.20). In particular they imply that

(3.87) diam (F U Iy) < 3.
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Using this and Lemma 3.26.1) we get that

(3.88) diamh(F U I) < C.

Sublemma 3.89. If pe FUI and q € I, then

(3.90) C7lp—ql < |hp) — (@) < Clp—ql,

We may as well assume that p # q.
Let us prove the upper bound first. We can do it crudely, starting
with

|h(p) — h(q)| < dist (h(p), g(F)) + diam g(F')
(3.91) + dist (h(q), 9(F))
= dist (h(p), g(£)) + 1 + dist (h(q), g(F")) -

On the other hand we have that

1
Ip—gl 2 & (dist (p, F) + dist (g, F))
> O~ (dist (p, F) + dist (¢, F) + 1) .

(3.92)

The first inequality comes from Lemma 3.52, while the second follows
from our assumption that ¢ € I;. From (3.29) we get that

(3.93) dist (h(q),g(F)) < Cdist (¢, F) .

If p € I; we have the analogous inequality for p instead of ¢, and then
the upper bound in (3.90) follows from (3.91) and (3.92). If p € F U I,
then dist (h(p),g(F)) < C by (3.88), and the upper bound in (3.90)
again follows from (3.91) and (3.92). This proves the upper bound in
(3.90).

Let us now prove the lower bound. Lemma 3.56 implies that

(3.94)  |h(p) = h(g)| = C7" (dist (h(p), g(F)) + dist (h(q), g(F))) ,
Using (3.29) we get that

(3.95)  dist (h(q),g(F)) > C~!dist (¢, F) > C~ ! (dist (¢, F) + 1).
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We are also employing the assumption that ¢ € I; to get the last
inequality. If p € I, then we get the analogue of (3.95) for p as well,
and then

(3.96) \h(p) — h(q)| > C~ (dist (¢, F) + 1 + dist (p, F)) .

This implies the lower bound in (3.90), using also (3.86). If p € F' U Iy,
then we have

|h(p) — h(q)| > C~* (dist (¢, F) + 1)

(3.97) > C~1 (dist (g, F) + diam (F U Iy)),

by (3.87). This implies the lower bound in (3.90) in this case.
This proves Sublemma 3.89.

Let us come back now to the proof of Lemma 3.85. Let z,y,z €
FUI and t > 0 be given, with

(3.98) |z —y| <tlz— 2.
We want to show that
(3.99) |h(x) = h(y)| < 0(t) |h(z) — h(2)],
where 6 : [0,00) — [0,00) vanishes at the origin, is continuous at the
origin, and is bounded on bounded sets. (Lemma 2.42 is relevant here.)
If all three of x,vy, z lie in F' U Iy then we can use Lemma 3.74 to
get the required estimate.
If x € I; then we have that
(3.100) [h(z) = h(y)| < Ct[h(z) — h(z)],
because of Sublemma 3.89. Thus we may assume that
(3.101) reFUI.
If both y and z lie in Iy, then we get (3.100) again from Sublemma
3.89. If they both lie in F'U I then all three points lie there and we

are back to a case that we know. Thus we may require that

(3.102) exactly one of y and z lies in F'U I .
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Let us pause for a small observation.
Sublemma 3.103. Ifp € F U Iy and q € Iy, then |p—q| > C™1.

Indeed, in this case 6 |p — q| > dist (¢, F'), by Lemma 3.52, and
Sublemma 3.103 follows from the assumption that q € I.

Let us come back now to the task of proving an estimate like (3.99)
under the conditions (3.98), (3.101), and (3.102). Assume first that
y € I;. In this case we have

(3.104) lz —y| >C71,

by Sublemma 3.103. This implies that diam F' < C't |x — z|, and so the
quasisymmetry of h on F'U Iy (Lemma 3.74) implies that

(3.105) 1 =diamg(F) < Cn(Ct) |h(x) — h(z)],

where 7 is the function that controls the quasisymmetry of g. On the
other hand

(3.106) [h(z) = h(y)| < C |z —yl,
by Sublemma 3.89, and so

h(z) = h(y)| < Otz — 2|
(3.107) < Ctdiam (F U I)
< Ct < Ctn(Ct)|h(z) — h(z)|

by (3.87) and (3.105). This is the kind of estimate that we want.
Assume now that z € I, so that z,y € F'U Iy. Notice that

(3.108) lz—z|>C™!
and
(3.109) C o —z| < |h(z) — h(2)| < Clz — 2|

by Sublemmas 3.103 and 3.89. Our assumption (3.98) implies that
either

(3.110) o —y| < Vi
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or

(3.111) 1<Vt |z —2|.

Assume first that (3.111) holds. Then we have that

|h(z) — h(y)| < diamh(F U I)
<C
< CVt |z — 2|
< OV h(z) - h(2)],

(3.112)

by (3.109). This estimate does the job for this case. So suppose now
that (3.110) holds. In this case we have that

(3.113) [A(x) = h(y)| < w(V)

for a certain function w on [0, 00) which vanishes at the origin, is con-
tinuous at the origin, and is bounded. Indeed, we have x,y € F'U I in
the present situation, and so (3.113) follows from the quasisymmetry of
h on F'U Iy and (3.87), (3.88). Using (3.108) and (3.109) we get that

(3.114) [h(x) = h(y)] < Cw(Vt) |W(z) = h(2)],

which does the job in this case.
This completes the proof of Lemma 3.85.

Note that we have not tried to give sharp estimates here, it was
more interesting to just get it over with.

Let us now finish the proof of Proposition 1.14. Let S be as in
(3.1), and let us define a mapping G on S. We set G = g on F, and if
x € I we set

cdist (h(z),g(F))

(3.115) G(p) = h(=x) + 20~ 1dist (z, F)

(p—x) for p € B(x).

Here ¢ is chosen as in Lemma 3.26.iii); the ratio in (3.115) is simply the
ratio between the radius of the ball #(x) defined in Lemma 3.26.iii) and
the radius of the ball B(x) which is used in (3.1). In fact G maps the
center of B(x) to the center ¢(x) = h(z) of B(x), by definitions, and so
we get that G(B(z)) = B(x) for all z € 1.
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We want to say that G : S — R” is quasisymmetric with a suitable
bound. We apply Lemma 2.29, with A = F, H = G, and with the
balls B; and f; taken to be the B(z)’s and ((z)’s, with the obvious
changes in notation. We have to check that the hypotheses of Lemma
2.29 hold in this case. The requirement that “the restriction of H
to A’ is quasisymmetric” is satisfied in this case because of Lemma
3.85. We just checked that H maps the B;’s onto the ;’s, and the
restriction of H to each B; is a similarity, and hence quasisymmetric
with uniform bounds. We know from Lemma 2.6 that the doubles of the
B;’s are disjoint, and they are disjoint from A = F' by their definition.
Similarly the (3;’s have disjoint doubles because of Lemma 3.26.iii), and
the doubles are disjoint from H(A) = g(F') by their definition. The
bounds (2.30) also follow from the definitions of the B;’s and f3;’s. Thus
the hypotheses of Lemma 2.29 are satisfied in this case, and we conclude
that H : A* — R” is quasisymmetric, which is the same as saying that
G : S — R" is quasisymmetric. Of course we also get the correct
bounds.

This completes the proof of Proposition 1.14.

4. The proof of Proposition 1.15.
Let us address first a preliminary point.

Proposition 4.1. If F' is a serious subset of R® and g : F© — R"
is quasisymmetric, then g(F) is also serious, with a constant which
depends only on the seriousness constant of F' and the function that
governs the quasisymmetry of g.

This is less amusing than Proposition 1.15, because it is really
a fact about (quasi-) metric spaces rather than subsets of Euclidean
spaces.

Let x € F' be given. For each 0 < t < diam F' choose a point
y(t) € F so that
(42) Citt<lo—y] <t,

where () is the seriousness constant of F'.

Claim 4.3. There is a constant C > 0 so that for each 0 < s <
diam g(F') we can find a 0 < t < diam F' such that

(4.4) Chs < |g() —g(y®)| < Cs.
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To prove the claim we use a continuity argument. We have that
(4.5) C~ldiamg(F) < |g(z) — g(y(t))| < C diam g(F)

when t > diam (F')/2 and diam F' < oo, because of (4.2) and quasisym-
metry, and

(4.6) lim |g(z) — g(y(t))| = oo

t—o0

when diam F' = co. The continuity of g implies that

(4.7) lim |g(x) — g(y(t))| = 0.

t—0

We also have that

(4.8) C7*g(@) —g(y(®)] < lg(z) — g(y(t/2)] < Clg(x) — g(y (1))l

when 0 < ¢t < diam F', by quasisymmetry. The claim follows from these
three observations.

Proposition 4.1 follows easily from Claim 4.2.

Now let us prove Proposition 1.15.

Let S be a strong subset of R" and let G : S — R" be quasisym-
metric. We want to show that G(S) is strong, with bounds. We know
from Proposition 4.1 that G(S5) is serious. Of course S is unbounded,
since it is strong, and so G(5) is also unbounded. G(S) is also closed,
since S is.

Let x € R*\G(S) be given. Choose zy € G(S) so that dist (z, G(5))
= |x — x|, and choose z1 € G(S5) so that

(4.9) C 1z, — 20| < |z — m0| < |21 — 70| ©

We can do this because G(S) is serious and unbounded.

We can apply Lemma 3.17 (with X = G(S), f = G~ (remember
Lemma 1.4), x = 29, y = 1, and z = x) to get a point w € R™\S such
that

(4.10) lw — G (o) < C |G Hwo) — G (1)
and

(4.11) dist (w, S) > C~HG  (zo) — G (m1)].
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Our assumption that S is strong implies the existence of a point v € S
such that

(4.12) lw —v| < Cdist (w, S)
and
(4.13) dist (v, R*\S) > C~dist (w, S) .

Let us rephrase (4.13) as
(4.14) B(v,C~!dist (w, S)) C S.

Set y = G(v). We want to show that

(4.15) |z —y| < Cdist (z,G(5))
and
(4.16) dist (y, R*\G(S)) > C~dist (z, G(9)) .

We shall derive these from (4.12) and (4.13) using the quasisymmetry
of G.
From (4.10) and (4.11) we have that

CHG Y zo) — G Hxy)| < dist (w, S)
< C|G Hzp) — G ()]

(4.17)
Combining (4.12) and (4.10) we get that

(4.18) v — G ()| < C |G Hao) — G H(zy)].
Since G is quasisymmetric we conclude that

(4.19) ly — x| < C'lzog — 21].

Using (4.9) we can convert this into

(4.20) ly —z| < C |z — x|

This implies (4.15), because of our choice of x.
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It remains to prove (4.16), which we can rewrite as
(4.21) B(y,C~dist (z,G(5))) C G(9).

Of course the point is to use (4.13). Let B denote the ball on the left
side of (4.14). Because of invariance of domain we have that G(B) is
an open subset of R™ which contains y.

Claim 4.22. dist (y, G(B\(B/2))) > C~dist (z,G(9)).
To see this we want to show that
(4.23) dist (y, G(B\(B/2))) > C™* |zo — 1] .

To prove this we use the quasisymmetry of G. Let z € B\(B/2) be
given. Then

(4.24) CTHGTH(wo) = GT (1) < |2 =] < CIGTH (wo) = G (a1)],
because of (4.17). This implies that

(4.25) lz —v|>C7 v — G ()], i=0,1,

by (4.18). Using this and quasisymmetry it is not hard to show that
(4.26) 1G(2) —y| > C7 Y oo — 21]

(Remember that y = G(v).) With (4.26) in hand we get (4.23) imme-
diately, and Claim 4.22 follows from (4.9) and our choice of .

Let us now use the claim to derive (4.21). Let p € R*"\G(B) be
chosen so that |p — y| is as small as possible. We can do this because
G(B) is an open subset of R”, and we also get that [p—y| > 0. Set p; =
y+t(p—y) for 0 <t < 1, so that each p; lies in G(B). For ¢ sufficiently
close to 1 we must have that p; € G(B\(B/2)); for if this were not the
case, then p would lie in G(B/2), in contradiction to our choice of p
(lying outside G(B)). Thus p; € G(B\(B/2)) for t sufficiently close to
1, and we conclude from Claim 4.22 that |p — y| > C~dist (x, G(9)).
This proves (4.16).

Thus we have proved that G(S) is a strong set, and Proposition
1.15 follows.
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5. The proof of Proposition 1.16.

Let S be a strong subset of R”, and let us try to prove (1.17). It
suffices to show that there is a constant k£ > 1 so that

(5.1) SN B(p,kr)| >k~ |B(p,r)\S|

for all p € S and r > 0.

Let p € S and r > 0 be given, and let us apply Lemma 2.1 with
E =S and H = B(p,r)\S. Lemma 2.1 produces a subset I of H with
the properties listed there. From (2.2) we get that

(5.2) |B(p,r)\S| < C ) (dist (x,5))"

xel

Given z € I choose 7(x) € S so that

(5.3) |z — 7(x)| < Cdist (z,5)
and
(5.4) dist (7(z), R*\S) > C~'dist (z, S) .

We can do this because S is strong. Note that these inequalities imply
that

(5.5) C~dist (z, 9) < dist (1(z), R*\S) < Cdist (z, 9).
Given z € I, set
(5.6) B(x) = B(r(x),dist (7(z), R*\S)/2) .

From (5.2) and (5.5) we have that

(5.7) 1B(p,r)\S| < C ) |B(z)].

zel

We want to use this to prove (5.1).

Lemma 5.8. For each x € I there are at most a bounded number of
z € I such that B(x) intersects B(z).
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Suppose that z, z € I satisfy f(x) N [3(z) # &. Then
(5.9) IT(z) — 7(2)| < % (dist (7(z), R*\S) + dist (7(z), R*\5)) .
This implies that
(5.10) %dist (1(z), R*\S) < dist (7(2), R*\S) < 3dist (7(z), R*\S).

Using (5.5) we conclude that

(5.11) C~tdist (z, S) < dist (2, 5) < Cdist (z,S) .
We also get that

(5.12) |z — 2| < Cdist (z,95),

because of (5.3), (5.9), (5.5), and (5.11).
Let I(x) denote the set of z € I such that (x) N G(z) # @. From
(2.3) and (5.11) we obtain that

(5.13) ly — z| > C~ldist (x,S) wheny,zel(x), y+#z.

It is easy to see that I(x) can have only a bounded number of
elements, using (5.12) and (5.13). This proves the lemma.

Lemma 5.8 permits us to convert (5.7) into

(5.14) B \S| < c| ).

zel

Let us check that

(5.15) U B() € B(p.Cr)ns.

xzel

We have f(xz) C S from the definition (5.6). We also know that its
radius is bounded by C'dist (x,.S), and this is at most C'|z —p| < C'r
for € I. The inclusion (5.15) follows easily from these observations,
and the fact that I C B(p,r) by definitions.

Combining (5.15) with (5.14) we get (5.1). This completes the
proof of Proposition 1.16.
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6. The proof of Proposition 1.22.

The proof of Proposition 1.22 is a straightforward consequence of
the previous results and the definitions, but let us be slightly careful.
Let S be a strong subset of R” and let G : S — R" be quasisymmetric,
as in the proposition. Define the measure v on R” by v(A4) = |ANG(9)].
Note that G(S5) is a strong subset of R™, because of Proposition 1.15.
Thus

(6.1) C™tr" < v(B(z,r)) < Cr"

for some constant C' and all x € G(S), r > 0, by Proposition 1.16. Of
course v has support equal to G(5).

Define the measure g on R® by pu(A) = |G(A N S)|, as in the
statement of Proposition 1.22. Thus p is a measure with support equal
to S which is obtained by pulling back v using the homeomorphism G.

That p is doubling on S, as in Definition 1.18 a), is easy to check,
using (6.1) and the quasisymmetry of G. The point is that if we are
given x € S and r > 0, then we can find a ball B = B(G(z),t) such
that G(B(z,7)NS) 2 BN G(S) and G(B(z,2r)NS) C kBNG(S9),
where k is a constant that does not depend on z or r.

To see that p is a metric doubling measure on S, as in Definition
1.18.b), it suffices to show that

(6.2) C7G (@) = G(y)| < d(z,y) < C|G(z) - G(y)l

for some C and all z,y € S, where (z,y) is as in (1.20). This is
sufficient because d(z,y) = |G(z) — G(y)| is obviously a metric on S.
To get these bounds the main point is that

B(G(x),C™ 1 |G(z) = G(y)) N G(S)
(6.3) C G(B(x, |z —y)nS)
C B(G(2),C|G(x) = G(y)) N G(S).

These inclusions follow from the quasisymmetry of G. Once we have
them (6.2) follows easily from the definition (1.20) of é(x,y) and the
estimate (6.1).

This completes the proof of Proposition 1.22.
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7. The proof of Proposition 1.23.

Let S be a strong subset of R", and let p be a metric doubling
measure on S. We want to find a metric doubling measure v on all of
R™ which equals p on S.

Let {Q;}icr be a Whitney decomposition of R™\S. Thus the Q);’s
are closed cubes with disjoint interiors whose union is all of R*\:S and
which satisfy

(7.1) diam Q; < dist (Q;, S) < 4diam Q; ,

as in [St, Theorem 1, p. 167].

We shall use this Whitney decomposition to define v, we shall
define it in a simple way on each (); and then combine the pieces. In
order to define v on the ();’s we need to look at p inside S, and we need
to use our assumption that S is a strong set.

For each ¢ € I choose ¢; € (; so that

(7.2) dist (¢;, S) = dist (Q;, S) .

Using the fact that S is a strong set we can find a cousin for each ¢;
inside S, namely a point p; such that

(7.3) Ipi — qi| < Cdist (g;,5)
and
(7.4) dist (p;, R™\S) > C~'dist (¢;, S) .

These inequalities imply easily that

(7.5) C~tdist (g;, S) < dist (p;, R\ S) < Cdist (g;, 5) -
Given ¢ € I set

(7.6) Bi = B(pi, dist (pi, R*\5)/2).

Define v by

(7.7) v(A) = w(AnS) +Z |AmQ|

1€l

|Q1,
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We want to show that this is a metric doubling measure on R™.

(It is not hard to see that (7.7) is the right way to define v. There
are various ways to package this extension, but basically there is only
one reasonable way to do it, and this is it.)

The proof that v is a metric doubling measure is pretty straight-
forward, a matter of checking that certain things follow from certain
other things. We begin with some small technical observations. The
constants C' that appear below are allowed to depend only on the di-
mension n, the metric doubling constants for p, and the strongness
constant for S.

Lemma 7.8. If Q; is a Whitney cube and dist (z, Q;) < diam (Q;)/10,
then

(7.9) % diam Q; < dist (, ) < 6 diam Q; .

This is an immediate consequence of (7.1).

Lemma 7.10. If two Whitney cubes Q; and Q; satisfy dist (Q;,Q;) <
diam (Q;)/10, then

This follows from (7.1) and Lemma 7.8.

Lemma 7.12. If two Whitney cubes Q; and Q; satisfy dist (Q;, Q;) <
diam (Q;)/10, then

(7.13) CHu(Bi) < m(B;) < Cu(B) .

If Q; and @; are as above, then
(7.14) lpi —pj| < Cdiam @,

by (7.3), (7.2), and (7.11). Also the radii of both g; and f3; are com-
parable to diam );, because of (7.5) and (7.2). Thus we conclude that
B; is contained in some bounded multiple of 3;, and vice-versa. The
doubling condition then yields (7.13).
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Lemmma 7.15. For each ¢ € I there is only a bounded number of
J € I such that 3; intersects (3; .

This is very similar to Lemma 5.8. If 8; N 3; # &, then one can
show that the radii of 3; and 3; are the same to within a factor of 3,
for the same reason as in (5.10). This implies that

(7.16) C~'diam Q; < diam Q; < CdiamQ;

for some constant C. Next 3; N 3; # @ implies that [p; — p;| <

C diam @);, because of (7.5), (7.2), and (7.1). Using (7.3) we get that

If we fix 7, then there can be only a bounded number of j’s for which
(7.16) and (7.17) are valid, because the @;’s have disjoint interiors.
Lemma 7.15 follows from this.

Lemma 7.18. u(B(z,r)) < v(B(z,r)) < C u(B(z,r)) whenever x € S
and r > 0.

Let x € S and r > 0 be given. The first inequality is trivial. For
the second it suffices to show that

(7.19) v(B(z,r)\S) < k u(B(z,kr))

for some constant £, since p is doubling on S.
Set J={iel: Q;NB(x,r)# @}. Then

(7.20) v(Bla,\S) < 3 u(B,).

ieJ

by the definition (7.7) of v. Lemma 7.15 permits us to convert this into

(7.21) v(B(xz,m)\S) < Cu(|J B)

icJ
Thus we are reduced to proving that

(7.22) UB csnB,Cr).

ieJ
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Of course the (3;’s are all contained in S, by their definition, and so it
is just a question of showing that 3; C B(z,Cr) for alli € J. If i € J,
then dist (Q;,S) < dist (Q;, ) < r. Hence diam @; < r, by (7.1), and
so |p; — x| < Cr, by (7.3) and (7.2). We also get that the radius of f;
is bounded by C'r, by (7.5) and (7.2). Therefore 8; C B(z,C'r), and
(7.22) follows. Of course (7.19) follows from (7.21) and (7.22), and so
the proof of Lemma 7.18 is complete.

Lemma 7.23. v is a doubling measure on R™.
Let x € R® and r > 0 be given. We want to prove that
(7.24) v(B(z,2r)) < Cv(B(z,r)).

If € S, then this follows from Lemma 7.18 and the doubling
condition for . Thus we may assume that x € R™\S.

Suppose that r > 2dist (z,5). Pick a point z € S such that |z —
z| = dist (x,S). Then

(7.25) v(B(z,r)) > v(B(z,1/2)).
Since z € S we can use the preceding case to conclude that
(7.26) v(B(z,7/2)) > C™v(B(z,3r)).

Clearly B(z,3r) D B(x,2r), and so we get (7.24) in this case.

Now suppose that r < 1073dist (x, S). Fix a Whitney cube Q; such
that © € @;. Then dist (z, 5) < 6diam @;, by Lemma 7.8, and therefore
every element z of B(z,2r) satisfies dist (z,Q;) < 27 < diam (Q;)/50.
This means that if j € I and Q; intersects B(z,2r), then C~1u(3;) <
p(B;) < Cu(B;), by Lemma 7.12. For this set of j’s —let us call it J—
we also have that |@;| is comparable to |Q;|, because of Lemma 7.10.
Of course B(zx,2r) does not intersect S in this case, and so we get

v(B(z,2r)) = M |B(z,2r) N Q|

= Q4]

<oy w(p:) 1B(x,2r) N Q|
T Qi

_ o 1)
Qi

| B(x, 2r)|
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(7.27) <c |g|)| (@.7)]
—CZ |Q| (z,7)N Q]
jeJ
<CZN|Q€] (z,7) N Q|
JjeJ

=v(B(z,r)).

(In brief, v is comparable in size to p(3;)/|Q;| times Lebesgue measure
on B(z,2r). We shall use this again in the proof of Lemma 7.35 below.)
Thus we have (7.24) under these circumstances as well.

We are left with the case where 1073dist (z, S) < r < 2dist (x, S).
Again choose ¢ € I so that x € @);, and observe that

(728)  w(B( 7">)>“|égz|) Bla,r) Qi > O u(Bh).

This uses Lemma 7.8 too. In this case there is a constant k£ > 1 such
that

(7.29) ki 2 B(x,2r).

Indeed, the radius of f; is comparable to diam ();, and hence to r, by
Lemma 7.8, and the distance from x to 3; is bounded by C'diam ); <
C'r, by (7.3), (7.2), and (7.1). The inclusion (7.29) follows from these
facts. The doubling condition for u together with Lemma 7.18 implies
that

(7.30) w(B) > Ctu(kB) > C vk B) > Crv(B(x,2r)).

Thus we get (7.24) from combining (7.28) and (7.30).
This completes the proof of Lemma 7.23.

REMARK 7.31. For the proof of Lemma 7.23 we did not need to know
that p is a metric doubling measure on S. In other words, if S is a
strong set and p is doubling on S, and if we define v as above, then v
is a doubling measure on R".

It remains to prove that v is a metric doubling measure. Let
du(z,y) be defined for z,y € S as in (1.20), and let J,(x,y) be de-
fined for all z,y € R™ in the analogous manner. Our assumption that
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i be a metric doubling measure on R" means that there is a metric
d,(x,y) on S such that

(7.32) C™ldyu(w,y) < dulw,y) < Cdulw,y),

for all x,y € S.
There is a simple compatibility property between d,(z,y) and
d,(z,y), which is given by the following.

Lemma 7.33. 6,(x,y) < 6,(z,y) < Co,(x,y) for all z,y € S.
This is an easy consequence of Lemma 7.18 and the definitions.

We shall prove that v is a metric doubling measure using the fol-
lowing criterion.

Lemma 7.34. In order to show that v is a metric doubling measure
on R™ it suffices to show that there is a constant Cy so that

k—1
(7.35) Oy (@1, 2x) < Co > 6y (wir ig1),

=1

for any finite sequence {x;}%_, of points in R*, k > 2. (Of course Cy
is not permitted to depend on k.)

This is Lemma 3.1 in [S1]. It is proved by taking d(x,y) to be the
infimum of Zf:ll 6, (i, xi41) over all finite sequence {x;}X_; of points
in R*, k£ > 2, which connect = to y. The inequality (1.21) follows then
from (7.35), and d(z,y) is a metric because the triangle inequality is
built into its definition.

Note that the sufficient condition of the lemma is also necessary.

The proof that v satisfies this criterion is not difficult but neither
is it so lovely. We begin with some minor technical observations.

Lemma 7.36. 0,(x,y) is a quasimetric, i.e., there is a constant C' > 0
so that

(737) 5y(~T,Z) S C((su(xvy) +5V(yaz)) )

forall x,y,z € R*.
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This is a straightforward consequence of the doubling property for
v.

Lemma 7.38. Define B(p) forp € R* by B(p) = B(p, 10~*dist (p, S)).
(Thus B(p) = {p} when p € S.) Then there is a number A\ = X(p) and
a constant C such that

(7.39) C Mz —vy|<d,(z,y) <CA|z -y,
for all x,y € B(p).
Indeed, let p be given as above, and assume that p ¢ S, since

otherwise the lemma is trivial. Choose ¢ € I so that p € ;. The same
sort of argument as used in the paragraph containing (7.27) yields

1 1(Bi) 1(Bs)
Q] Qs

when A C 10 B(p). Once we have this we get (7.39) from the definition
of 6, (x,y), with A = (u(3;)/|Q:])*/™. This proves Lemma 7.38.

(7.40) o 4] < w(a) < ¢ BED 4

In Lemma 7.38 we do not have any control over the number A, but
we do not care. Once we know that 0, (x,y) is comparable to a multiple
of the Euclidean metric on B(p) we have the information that we need.
(All we really need to know is that it is comparable to some metric
there.)

Let us now start to prove that v is a metric doubling measure. Let
a finite sequence {x;}*_, of points in R” be given, as in Lemma 7.34,
and let us try to prove (7.35).

Lemma 7.41. We can find a subsequence {y;}_, of {xi}¥_, (i.e., the
y;’s are taken from the x;’s, with no repetitions, and the ordering is
preserved) with the following properties:

(7.42) Y1 =21, Yji = Tk
(7.43) there exists 1 <1 < j such that y;+1 ¢ B(y;)
when 1 <i <1 and y; € B(y;) wheni>1,

7j—1 k—1

(7.44) 251/(%', Yir1) < CZ O (@i, Tit1)
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This is pretty easy to prove. Let us first choose some integers
a(m) as follows. Set (1) = 1. If z; € B(x) for all ¢ > 1 then we stop,
otherwise we choose «(2) to be the smallest ¢ > 1 such that x; ¢ B(z1).
If a(1),...,a(m) have been chosen already then we proceed as follows.
If #; € B(xa(m)) for all i > a(m) then we stop. Otherwise we choose
a(m + 1) to be the smallest integer i > «(m) such that z; ¢ B(zq(m))-
Of course we are always restricting ourselves to ¢ < k here.

Let [ denote the largest value of m for which «(m) is defined. Set
Yi = To@) when 1 < i < [ and set yj4; = To()44 for as long as this
make sense. More precisely, we do nothing for the second definition if
a(l) = k, and otherwise we use it for 1 <4 < k — «(l). This defines our
subsequence {y;}/_,, with j =1+ k — «(l).

It is not hard to check that (7.42) holds, by construction. We also
have (7.43) automatically from our construction.

Let us check (7.44). It suffices to show that

a(i+1)—1
(745) 61/(3/1'7 yi+1) S C Z 61/(37177,7 xm-l—l)

m=c(t)

when ¢ < [. Keep in mind that y; = z4(;) and y; 41 = To(i41) here. We
may as well assume that a(i+ 1) > «(i) + 1, otherwise (7.45) is trivial.
By construction we have that x,,, € B(x4(;)) when a (i) < m < a(m+1).
From Lemma 7.38 we conclude that

a(i+1)—2
(746) )y (-Ta(i)v xa(i-}—l)—l) <C Z )y (-va xm—i—l) .

m=a(1)

That is, Lemma 7.38 permits us to get back to the triangle inequality
for the Euclidean metric in this case. On the other hand we have that

6V~Tai7$ai SC 6V$aiaxai -
(7.47) (Tagiy Tagit1) < C (0u(Tagiy Tagirn)—1)

+ 61/ (l‘a(i—i—l)—lv xa(i—i—l)))

by Lemma 7.36. Combining this with (7.46) yields (7.45). The estimate
(7.44) follows from (7.45).

Of course it is very important here that these constants C' do not
depend on k or [ or the z;’s, etc.

This completes the proof of Lemma 7.41.
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We let {y; gzl and [ be as in Lemma 7.41 from now on. In order
to prove (7.35) it suffices to show that

7j—1

(7.48) 0u(y1,y;) < C 60 (yir igr) -

i=1
This assertion follows from (7.42) and (7.44).

Lemma 7.49. In order to prove (7.48) we may assume thatl > 1, and
it suffices to show that

-1
(7.50) Ou(yr,m) < C Y60 (ir vigr) -

=1

The point here is that we have replaced the j in (7.48) with . In
particular we may as well assume that [ < j, otherwise there is nothing
to do.

To prove the lemma we observe that

j—1
(7.51) 0oy, y;) < C Y 00 (Ui Yisr) -

1=l

Indeed, we have that y; € B(y;) when ¢ > [, because of (7.43), and so
(7.51) follows from Lemma 7.38. Once we have (7.51) we see that (7.48)
is automatic when [ = 1, and that (7.48) would follow when [ > 1 if we
had (7.50), because of Lemma 7.36. This proves Lemma 7.49.

Thus we assume from now on that [ > 1, and we want to prove
(7.50).

Choose z; € 5, 1 <1 <, so that
(7.52) |z; — y;| = dist (y;, S)
for each 4. Thus z; = y; when y; € S.

Lemma 7.53. 5,,(,2,-, y,) + 61,(Zi+1, yi-{—l) S C&l,(yi, yi-{—l) fO’/’ 1 S 1 <.

Indeed, we know from (7.43) that y; 1 ¢ B(y;), whence |y;41—y:| >
10~ *dist (y;,S). This implies that |y;y1 — y;| > 107°dist (y;41,5), as
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one can check. (If |y;01 — vi| < 10™°dist (y;41,S), then dist (y;, S) <
2dist (y;+1,5), etc.) Once we have these inequalities it is not hard
to derive Lemma 7.53 from the definition of J, (z,y) and the doubling
property for v.

-1
Lemma 7.54. §,(z1,2) < CZ(S,}(yi, Yit1) -
i=1

Indeed, Lemma 7.53 implies that

= -1
(7.55) > 6z zie1) S C D00 (yisvis1) -
i=1 i=1

Here is where we use our hypothesis that p is a metric doubling measure.
Because the z;’s lie in S we have that §,,(2;, zit+1) < 0,(%i, zi+1) for each
i, as in Lemma 7.33. Thus

-1 -1
(756) Z 6“(,2,', Zi+1) S Z 5,, (Zi, Zi_|_1) .
=1 =1

The metric doubling condition for p (see (7.32)) implies that

-1

(7.57) Sulz1,20) < CY 6l zig1) -

i=1
Combining these inequalities we get

-1
(7.58) 8ulz1,2) < CD 6, (s yisa) -

i=1
This implies Lemma 7.54, because of Lemma 7.33.

-1

Lemma 7.59. J,(y1,y) < CZéy(yi,yiH) :
i=1

This follows from Lemmas 7.54, 7.53, and 7.36.

Lemma 7.59 asserts the validity of (7.50). Lemma 7.49 implies that
(7.48) holds, and we saw already that (7.48) implies that (7.35) is true.
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Thus we have proved that v satisfies the criterion for being a metric
doubling measure in Lemma 7.34.

This completes the proof of Proposition 1.23.
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