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A theorem of Semmes
and the boundary absolute

continuity in all dimensions

Juha Heinonen

Abstract. We use a recent theorem of Semmes to resolve some ques-
tions about the boundary absolute continuity of quasiconformal maps
in space.

In [S3], Semmes proves that the quasisymmetric image of any set in
R?, d > 2, of d-measure zero is again of d-measure zero. More formally,
if F CRY, d>2 andif h: F — R? is a quasisymmetric embedding,
then
Hqa(F)=0 ifand only if Hg(h(F))=0.

Here and hereafter, H, denotes the p-dimensional Hausdorff measure
for some positive integer p. Recall that an embedding h : F' — R? is
quasisymmetric if there is a homeomorphism 7 : [0,00) — [0,00) so
that

[ —a| <tle—b] implies  [h(x) — h(a)| < n(t)|h(z) — h(b)],

for all z,a,b € F. Semmes’s theorem has important consequences for
the problem of boundary absolute continuity of quasiconformal maps
in space, as will be explained in this note. In particular, we shall give
a positive answer to Problem 1 in [H3, Section 6|, and thereby improve
upon the main result in [H2].
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First we require some definitions. Suppose that A C X C R”. We
say that A is linearly locally connected in X if there is a constant C' > 1
so that, for all a € A and r > 0,

1) points in AN B(a,r) can be joined in X N B(a,Cr), and

2) points in A\ B(a,r) can be joined in X \ B(a,r/C).

Here joining means joining by a continuum, B(z,t) is an open
n-ball with center z and radius ¢, and bar denotes the closure. The
importance of the concept of linear local connectivity in the quasicon-
formal mapping theory was observed by Gehring in the sixties (in the
nonrelative form, where A = X).

A metric space Y is said to be a bi-Lipschitz p-ball if there is a
bi-Lipschitz homeomorphism ¢ of the open unit ball B? of RP onto Y.
A metric space E is said to be contained in a bi-Lipschitz p-ball Y if
there is an isometric embedding 7 : £ — Y.

Finally, recall (from geometric measure theory) that a subset of R"
is p-rectifiable if it is contained in a countable union of Lipschitz images
of RP plus a set of H,-measure zero; a set is purely p-unrectifiable if it
contains no p-rectifiable subset of positive and finite H,-measure.

Theorem 1. Suppose that f is a quasiconformal mapping of B™ onto
a domain D C R", n > 3, and that A C D is bounded, pathwise
connected, and linearly locally connected in D. If E C AN OD is such
that Hp_1(E) = 0 and Hp,—1(f~1(E)) > 0, then there is no bi-Lipschitz
(n —1)-ball containing E. If E C ANOD is such that H,_1(f1(E)) =
0, then E is purely (n — 1)-unrectifiable.

The meaning of f~!(E) will be explained in the proof below; note
that a priori f~! is not defined on AN OD. Also note that the second
assertion is non-vacuous only if F has positive, possibly infinite (n —1)-
measure.

Theorem 1 says, in particular, that if n > 3, then a quasiconformal
homeomorphism f : B™ — D preserves the null sets of Hausdorff (n—1)-
measure on the part of the boundary 0D that both lies on a bi-Lipschitz
(n — 1)-ball and can be touched from inside of D by a nice subset A.
Notice, however, that we do not require that A meet the boundary in
rectilinear cones, or anything like it; in principle, A can be a fractal
object wildly twisting and spiraling when approaching 0D.

The first assertion in Theorem 1 is reminiscent of the Bishop-Jones
theorem [BJ], which claims that if f is a conformal map of B? into the
complex plane that maps (via its radial extension) a subset E C 0B?
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of positive length onto a set f(F) of zero length, then f(E) cannot
lie on a rectifiable curve. It is well-known that Theorem 1 is false for
quasiconformal maps in dimension n = 2.

PRroOOF. The proofis simply a combination of Semmes’s aforementioned
theorem [S3] and the generalized subinvariance principle [H1, Theorem
6.6]. It follows from [H1, 6.6] that

Tl A— YA
is a quasisymmetric map, and hence extends to a quasisymmetric map

f7H A — FIA).
We understand f~'(E) C f~1(A) precisely as the image of a set E C
AN OD under this extension, which is uniquely determined by f. Note
that the inverse of a quasisymmetric map is quasisymmetric as well, so
we have a quasisyminetric map

(2) (Y71 FIA) — A

A couple of remarks need to be made here. The domains D and D’ in
[H1, 6.6] are assumed to be bounded, but this is a redundant assumption
which was unfortunately made in [H1]; if we only assume that A is
bounded, the same proof works verbatim. Also, the assumptions on
A in [H1, 6.6] are slightly differently phrased, but easily seen to be
equivalent to the assumptions of Theorem 1 above.

Suppose now that E C AN 0D satisfies H,,_1(E) = 0. Suppose
also that ¢ : B*~! — Y is a bi-Lipschitz homeomorphism such that Y
contains F/, and let ¢ : ' — Y be an isometric embedding. Then the
quasisymmetric embedding

h=ptoio(f YL () — R

maps the set f~1(E) C 0B" into R"~1. Here (f~1)~! is the map given
in (2). Because n —1 > 2, we can apply Semmes’s result to the map
h. (The fact that the set f~1(E) lies on a smooth (n — 1)-dimensional
surface OB" instead of R"~! makes of course no difference here.) The
conclusion H,,_1(f~1(E)) = 0 then follows upon observing that bi-
Lipschitz maps preserve the null sets of every Hausdorff measure H,.
This proves the first assertion of the theorem.
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The proof of the second assertion follows similarly. We need a
theorem about Lipschitz maps (see [F, 3.2.2]): if h : B? — R, 2 <
p < n, is Lipschitz such that the image h(B?) has positive p-measure,
then there is a subset in hA(B?) of positive p-measure on which h has a
Lipschitz inverse. The rest is definition and Semmes’s theorem. This
completes the proof of Theorem 1.

A point w lying on the boundary of a domain D in R" is said to
be an interior cone point of D if, for some ball B C D, the cone

wB={Aw+px : z€B, A\p>0, with A+p=1}

lies in D U {w}. Note that the height and the opening of the cone is
allowed to depend on w. Denote by ZCp the subset of 0D consisting of
all the interior cone points of D.

Theorem 3. Suppose that f is a quasiconformal mapping of B™ onto
a domain D C R", n > 3. Then, for any set E C ICp, we have that
Hn—1(E) = 0 if and only if Hp—1(f~H(E)) = 0, where f denotes the
radial extension of f which exists outside a set of n-capacity zero, hence
of Hausdorff dimension zero, on 0B™.

REMARKS 4. a) The fact that f(z) = lim,_,; f(rz) exists for z € 9B"
outside an exceptional set of zero n-capacity is well known. Moreover,
an easy application of the quasiconformal Lindel6f’s theorem shows
that, for each w € ZCp, there is a point z € OB™ such that f(z) = w.

b) A weaker version of Theorem 3 where ZCp is replaced by the
set of boundary points admitting both an exterior and interior cone,
was proved in [H2] in dimensions n > 3, n # 4. Again, the theorem is
false in dimension n = 2.

PROOF. Suppose that E C ZCp with H,—1(E) > 0. It follows by
standard arguments (c¢f. [H2, Proof of Theorem 4.3]) that there is a
subset in E of positive H,,_; measure that lies on the boundary of a bi-
Lipschitz n-ball A contained in D. (The set A is a union of cones of the
form wB, w € E, where B has rational radius and rational coordinates
for its center.) Because A is a bi-Lipschitz ball, it is linearly locally
connected and its boundary is a union of two bi-Lipschitz (n — 1)-balls.
It thus follows from Theorem 1 that Ho_1(f~HE)) > 0. A similar
argument shows that H,_1(f~'(F)) =0if H,_1(F) =0 for E C ZCp.
The theorem follows.
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Theorem 1 is interesting, and new, already in the case when A = D,
which is equivalent to f being quasisymmetric in all of B™. A suf-
ficient (but not necessary) condition for this occurrence is that f be
quasiconformally flat, i.e. f extends to a quasiconformal homeomor-
phism R" — R". What is more, Semmes’s result brings some new light
into the absolute continuity properties of quasisymmetric embeddings
of lower dimensional sets into R™. For completeness, we record the
following theorem.

Theorem 5. Suppose that E C RP and that f : E — R" is
a quasisymmetric embedding, where 2 < p < n. If Hp(E) > 0 and
Hy(f(E)) =0, then there is no bi-Lipschitz p-ball containing f(E). If
Hy(E) =0, then f(E) is purely p-unrectifiable.

PrROOF. The first assertion is an immediate corollary of Semmes’s
theorem; the second assertion likewise reduces to it upon invoking [F,
3.2.2] as in the proof of Theorem 1.

REMARKS 6. a) Gehring [G] (quasiconformally flat case) and Viisala
[V] (the general case) proved that if f is a quasisymmetric embedding
of an open set G C RP into R", where 2 < p < n, and if the p-measure
of f(G) is finite, then f is absolutely continuous; that is, H,(f(£)) =0
if H,(FE)=0for E C G. It is not known, even if f is quasiconformally
flat, whether f~! is absolutely continuous in this case.

b) Stephen Semmes raised the interesting question whether it is
always the case that the quasisymmetric image inside R™ of a set £ C
RP of positive p-measure has positive p-measure. Here 2 < p < n. No
counterexamples are known to me, and the only positive results that are
known assume that the map is defined in a neighborhood of E whose
image is an Ahlfors-David p-regular set, c¢f. [S1, 3.4], [H2, 2.7]. In
contrast to the equidimensional case required in [S3], the case p < n
is not symmetric any more in that a set £ C RP of zero p-measure
may easily transform to a set of positive p-measure, or to a set of lower
dimension, under a quasisymmetric embedding f : E — R"; in fact,
it is well known that this can happen for a global quasiconformal self
map f of R*. The point in Semmes’s question is that E has positive
measure in top dimension. One may also wonder what happens if the
range space R” is replaced by an arbitrary metric space.

¢) A question similar to the one in b) arises in the study of the
boundary behavior of a quasiconformal map f : B® — R”. Thinking of
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f being defined capacity almost everywhere on 0B" (cf. Remark 4.a)),
one may ask how small can the set f(E) be for E C 0B"™ of positive
(n—1)-measure. To this effect, it was shown in [HK] that the Hausdorff
dimension of f(E) is at least (2K)Y/ (=) if f is K-quasiconformal. It
is possible that, for n > 3, the Hausdorff dimension of f(F) has a lower
bound that does not depend on K, and it is possible that this bound
be n — 1. If the latter is true, we would have an analog of Makarov’s
theorem for quasiconformal maps in space.

One is tempted to approach this problem by trying to embed f(FE)
into R"~! by a bi-Lipschitz map, if the dimension of f(F) is low. Then
Semmes’s result would give a contradiction. However, such attempts are
futile, as there are countable sets in R® that do not admit bi-Lipschitz
embeddings into R?. For example, one can take the three-fold Cartesian
product of the sequence {1,1/2,1/3,...}. (I learned this example from
Jouni Luukkainen.)

d) One could replace throughout the text a bi-Lipschitz p-ball Y
by a quasisymmetric p-ball Y that has the additional property that
all quasisymmetric homeomorphisms A : B? — Y preserve null sets
of Hausdorff p-measure. The family of such spaces Y is known to be
strictly larger than the family of bi-Lipschitz balls (see [S1], [S2]), but
whether or not a given space is in this family is quite difficult to check.
This is of course true for bi-Lipschitz balls as well; T simply chose to
formulate the theorems in this paper in terms of the latter.

Acknowledgements. [ thank Stephen Semmes and the referee for
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