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Abstract. Let {2 be homogeneous of degree 0 in R” and integrable on
the unit sphere. A rough maximal operator is obtained by inserting a
factor €2 in the definition of the ordinary maximal function. Rough sin-
gular integral operators are given by principal value kernels Q(y)/|y|”,
provided that the mean value of €2 vanishes. In an earlier paper, the
authors showed that a two-dimensional rough maximal operator is of
weak type (1,1) when restricted to radial functions. This result is now
extended to arbitrary finite dimension, and to rough singular integrals.

1. Introduction.

Let © > 0 be an integrable function on the unit sphere S™~! in
R", and extend it to a function in R™\{0}, homogeneous of degree 0.
The rough maximal operator corresponding to €2 is defined by

Mof(@)=swp— [ Q)|f@@—w)ldy, [eLi ().
r>0 T ly|<r

This operator is bounded on LP(R™),1 < p < 00, as seen by the method
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of rotations. It is, however, unknown whether it is of weak type (1,1).

Under (weak) additional assumptions on €2, several authors have
proved the weak type; see the authors’ paper [S-S| for details. That
paper contains a proof that Mg is of weak type (1,1) in the plane when
restricted to radial functions f, for a general Q € L. In fact, the same
result is proved for n = 2 when M, is replaced by the larger operator

Mif@) = [ 0w) M@)o

Here and below, dw is the area measure on S"~!. Further, M, is the
one-dimensional maximal operator in the direction w € S™~1, defined
by

M, f(x) = sup — /|f:1:—tw|dt
r>0T

As we pointed out in [S-S], M, cannot be of weak type (1,1) on general

functions even when 2 is the constant function 1. In this paper, we

shall extend the above to R", as follows.

Theorem 1. The operator M, is of weak type (1,1) when restricted to
radial functions in R™, for any nonnegative Q € L (S™~1) and any n.
The same is true for Mgq.

Rough singular integral operators can be defined analogously. Now
Q e L'(S™ ') must have mean value 0. Let

Tof(a) = p. [ j’yﬂy) fz—y)dy= lim 29) £ gy,

Pi::go e<|ly|<R Y|

whenever the limit exists. The LP boundedness of such operators
(which is easy when  is odd) was proved by Calderén and Zygmund
[C-Z] assuming Q € Llog L(S™1). There is a nice proof due to J.
Duoandikoetxea and J. L. Rubio de Francia [D-RF] when Q€ L4(S™1),
q > 1. With the same condition on 2, S. Hofmann [H] proved the weak
type (1,1) in the plane. The same was proved for Q € Llog L(S™1!)
by M. Christ and J. L. Rubio de Francia [Ch-RF]. In an unpublished
work, they also extended the result to dimension at most 7. More
recently, A. Seeger [Se] has proved it in any dimension, again under
the hypothesis Q € Llog L(S™~!). We remark that the L inequality,
1 < p < 00, cannot hold without additional assumptions on €2, since



ROUGH MAXIMAL FUNCTIONS AND ROUGH SINGULAR INTEGRAL OPERATORS 3

the Fourier multiplier corresponding to Tg need not be bounded (cf.
[St, Chapter II]). In our result, we have no additional assumption on
(), but apply the operator only to radial functions.

Theorem 2. Let Q € L'(S"™ ') with [g,  Qdw = 0. The operator
Tof is well defined for any radial function f € LP(R™), 1 <p < 00, in
the sense that the principal value exists for almost every x. Moreover,
when restricted to radial functions, Tq is of weak type (1,1) and bounded
on LP, 1 < p < oo, and so is the mazximal singular integral operator

/ 2y) (z —y)dy|.

Tof(x) = sup ~
<lyl<r 1Yl

0<e<R<o0

To prove the two-dimensional estimate for Mg, in [S-S, Theorem 3,
we applied Theorems 1 and 2 of [S-S]. These two results say that
y~'G(y-) x f(x) € LY*°(ydx dy, y > 0) for any f € L*(R) and suitable
G € LY(R). Our method to prove Theorem 1 in the present paper is
similar. Implicit in our proof is a version of Theorem 2 of [S-S|, where
R is replaced by S™~!. We point out that a version with R replaced by
R"™ also follows from the arguments below. However, we leave it to the
interested reader to state it explicitly.

Theorem 1 of this paper is proved in Section 2. It is then one of
the tools used to prove Theorem 2 in Section 3.

Finally, with respect to the notation in this paper, an integral
f: with @ > b should be interpreted as 0. Further, C' denotes many
different positive finite constants.

2. Proof of Theorem 1.

We write z € R® as ¢ = 70 with r > 0 and # € S"!, and
denote as in [S-S] by A(w,0) = A(w,z) € [0,7) the angle between
w e St and 0. Also let s(w, ) = max {sin A(w, ), A(w, 0)/2}. With
0 < ge LY(t""1dt) defined on Ry, we follow [S-S] in defining

1 [ tdt
A, = - t .
g(z) " /rs(w,e)g( ) (2 — r2s(w,9)2)1/2

Consider the operator

Py(z) = / ey 20 Aua)
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where 6 > 0 will be a small constant. The first part of the proof of
[S-S, Theorem 3], which is carried out for each n > 2, now shows that
we need only find an estimate

P: LY[0,00), t" " tdt) — LY*°(S" 1 x [0,00), r" "t dOdr) .

Notice that )
Auglw) < - Glrs(w,0)),

where s
o° t e dt

Essentially as in [S-S, proof of Theorem 3], we majorize G by

G<CY 27"?G, +Ch,

v=0
where
227"y
G, (u) = 2”u1_"/ g(t)t"tdt
u
2(2—k)2 v
(2.1) < CZ/MN g(t)t"tdt
kEZ
ovok27Y(n—1)
2"2 Xy 2(1_,9)2_u]( )
and

This implies

Pg(x) < CZZ_”/Qr_lf Qw) Gy (rs(w,d)) dw
=0 s(w,0)<9d
(2.2) +Cr! / Q(w) h(rs(w,d)) dw
s(w,0)<9d

=CY 27’Pg(z)+ CQg(x),

v=0
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the last equality defining P, and Q.

To extend the technique used to control P, and @ from [S-S], we
need analogues of dyadic cubes in S"~!. First, we divide S”~! into a fi-
nite number of disjoint subsets E5, s =1, ..., sg, with piecewise smooth
boundaries and of small diameters. In each E;, we can then introduce
coordinates simply by projecting E, orthogonally onto a hyperplane
of R™ tangent to E at some point of F,. In this hyperplane, i.e. in
R*~1. we introduce the ordinary hierarchy of dyadic cubes. Thus for
each j € Z, we have a partition of R*~! into cubes of side 277. Some
of these cubes have images in F; under the inverse projection. These
images will be denoted (IJ’)z and called 277-cubes. This is for j > jo,
some jo. Suitably adapted near 0Fj, all these sets will form a hierarchy
of partitions of E, and, hence, of S?~1.

The conditional expectation at level j, 5 > jp, of a function f €
LY(S™™1) is now defined by

B;f(x) = 1! / F. wesl

where [ J’ is that 277-cube in S™~! which contains the given point .
Now consider (). The desired estimate

Q: L'(t"tdt) — LY ("t dhdr),

can be seen as a version of Theorems 1 and 4 of [S-S|, where R and R",
respectively, are replaced by S"~!. Instead of a convolution, we now
have the integral defining Qg in (2.2). However, the proof technique
carries over without problems. We can assume that the decreasing
function h has the form h = Zakx[o —— Also, it is enough to

consider dyadic values of r (¢f. the inequality (2.3) below). One can
now easily relate Q to the conditional expectation, essentially as in
[S-S]. The estimates needed for conditional expectation carry over. This
takes care of ).

To control the operator P, we must also estimate the P,. It is
enough to prove that each P, maps L!(t"~!dt) boundedly into
LY (rm=1dfdr), with a constant that grows only polynomially in v.
This will allow summing in LY. As in the proof of Theorem 2 in [S-S],
we let 7 take only the values r = 22¥7, j € Z, and prove that

> 2in{o e S"T1: Pg(2276) > A}

(2.3)
C 1
S C (]_ + l/) X ||g||L1,oo(tn—1dt) .
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Here | - | is the area measure of S"~1. This will complete the proof.
To verify (2.3), it is enough, as in [S-S, proof of Theorem 2], to sum
in (2.1) only over those k of the form k = £2""!v + k, £ € Z, for each
k=0,...,2" 1y — 1. For simplicity, we shall consider only x = 0. The
level set in (2.3) will thus be replaced by the set of those § € S*~1 for
which

221—"—2ue

(2.4) 2z /s(w,9)<6Q(w) ( ; /2—2ue g(t) ¢ dt)

L ovo2(n—1)ve
2v2 Xr,..(6) (w)dw > A,

where R,,(0) is the ring
Ry(0) ={we Snt: 272m < s(w,0) < 22 "~2my

Because of the condition s(w,#) < ¢ in the integral in (2.4), we need
only consider m > myg here, for some mg > 0. This means that the sum
in (2.4) is taken over £ > mgy — j. Notice that the radius and the width
of R,,,(0) are approximately 272¥™ and 27%~2"™ respectively.

Next, we let the point # move within a 277(1+27m)_cube Ili/(l—i—Zm)
and form

R, = |J Ra().
GEIi(1+2m)

This set is contained in a ring of width at most C'27¥(1+2m)  Clearly,

R! is covered by those 277(1+2™)_cubes intersecting it. Their number
is at most C'2("=2)¥_ Among these 277(1+2™)_cubes, we discard those

which are not in the same FE, as IIi(l—l—Qm)' Then we enumerate the

s(1pamy 4= 1,...,q0 = O(2™=2%) in a coherent

way as ¢ varies. By this we mean that the direction from the midpoint

of If/(l +am) (which is the approximate centre of the ring-like set R%,) to

remaining ones as

the midpoint of I;‘((li’_g;m) should not vary too much with 7, for a fixed

q. It is enough if two such directions never form an angle greater than
7 /4, say, measured in the coordinate system of each F;.

In (2.4), we shall now replace Ryy;(0) by I:‘((lif;e”j) when 0 €
If/(l +20425)) for a fixed q. More precisely, this means that the level set
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in (2.3) is replaced by the union of those I* for which

(142£+25)

1—v _
22 2vd

9= 2i /Q(w)( - ./ZM g(t) t"—ldt>

£>mo—j

—1)we
i e X o) (W) dw > A.
v(1+42€+25)

This version of (2.3), call it (2.3’), implies the theorem, since we can
sum in ¢ by means of the adding-up lemma in L as in [S-S].

The mean value of © in I;‘((if;sz)
of the translated conditional expectation from the proof of Theorem 2
of [S-S]. In fact, the arguments used in that proof now carry over and
prove (2.3”). We leave the details to the reader. This ends the proof of

Theorem 1.

can be seen as an S™~! version

3. Proof of Theorem 2.

We start with the L' case. Let
. Qy
5@ = [ 2y,
e<|y|<R Y|

Notice that all the conclusions follow from the weak type estimate for
the maximal operator 7. Also, in the definition of T f(x), we need
only take R > 10|z| = 10 p. This is because in the case R < 10 p, one

has QO
[ B iy = T ) — T s ).
e<|y|<R |y

Together with 75", we consider

(3.1) 75" () - | ) fo gy ay.
IIy—|rB||—<IIw2| |>e | |

We shall estimate the difference between these two operators.

The notation x = pf, y = rw, A = A(f,w) will be as in Section
2. A radial function f € L! will be written f(z) = g(|z]), with g €
LY(Ry; p"~1dp). The distance t = |z — y| satisfies

(3.2) t?=p*+1r?—2prcosA.
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Hence,
(3.3) r=pcos A+ \/t2 — p2sin®A .

Proposition 3. The operator

Taf(x) = sup |[T5" f(x)],

e>0
R>10|z
is of weak type (1,1) when restricted to radial functions.

Proposition 4. The operator

Dyf(z) = sup |[Tg"f(z) - T5 f(2)],
R;iﬁﬂ

is of weak type (1,1) when restricted to radial functions.

It is clear that the L' part of Theorem 2 follows from these two
results.

PROOF OF PROPOSITION 3. In the integral defining ZINS’Rf(x), we pass
to polar coordinates, getting

TSR f(z) = /Sn_l Q(w) dw/ gz =rw)) ..

r
[lz—rw|—p|>e
0<r<R

Next, we shall transform the inner integral here, using ¢t = |z — r w| as
a new variable of integration. One has dr = tdt/(r — pcos A). The
correspondence between 7 and ¢ is not quite one-to-one, and the sign
in (3.3) must be chosen correctly. As seen geometrically, one obtains a
sum of four integrals. Indeed,

N Ry (p) t
5t = [ e [ 2y
A>m/2 pre  pcos A+ /t2 — p2sin?A
tdt
2 — p2sin®A




ROUGH MAXIMAL FUNCTIONS AND ROUGH SINGULAR INTEGRAL OPERATORS 9

R2(p) t
+/ Qw) dw/ ()
A<r/2 pre  peos A+ /12 — p2sin®A
tdt
2 — p2sinA

pP—¢€ t
+/ Qw) dw/ 9(t)
A<n/2 psinA pcos A — \/t2 — p2sin®A
tdt
2 — p2sinA

pP—E€ t
+ / Qw) dw/ 9(t)
A<n/2 psinA pcos A+ /t2 — p2sinA
tdt
t2 — p2sin?A

=hL+L+13+1,.
Here R;(p) € [R—p, R+ p] for j =1,2.
The integrand is the same in I; and I3, and one finds

R V2 — p?sin®A — A
p? sin p COS
11+12:/ Q(w)dw/ o(t) -
Sn—1 pte p
tdt
2 — p2sin’A

Here the error £ is due to the fact that R;(p) need not equal R, j =1, 2.

It follows that

Q
Bl < / U (0~ ) dy < 0 Maf(a),
R—p<lyl<B+p 1Y

+FE.

and Theorem 1 gives the weak type estimate for sup, p |E|. Thus we
have

R
t pcos A
Il+12:/ gtidt/ Qw) dw+ E
p () p? — 2 sn—1 t2 — p2sin®A

+e
- Jl + E7
where we used the equality [ Q(w)dw = 0. Moreover,
p=e t A
T+ Iy = / 9(t) dt/ 2Qw) o dw
0 p*—t A<n /2 2 — p2sinA

sin A<t/p
=Js.
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That part of J; obtained by integrating only over ¢ > 2p is easy to
control, since its absolute value is at most

R 1

c [ o)l

2p

I

dt |2}y -

It is then enough to observe that

o0 o o0 p o0 —
/ p1@/ mmﬁasc/ ()] de.
0 2p 0

This takes care of the supremum in R.

That part of J, which corresponds to t < p/2 can also be easily
handled. Indeed, it equals what one gets by restricting the integral
defining T§ f(z) to the region |y — x| < min {p/2, p—¢€}. Since |y| ~ |z|
in this region, we can dominate by Mg f(x) and apply Theorem 1 to
get the desired weak type estimate.

The remaining integrals are thus

2p t A
Jl = / g(t) " di / Q) L2 4,
p

+e p? —t? Sn—1 t2 — p2sin”A
and
p=e t A
p/2 p=—t A<n)2 t2 — p?sin“A
sin A<t/p

Notice that the value for t = p of the inner integral in Jj is
a(f) = /Sn_l Qw) sgncos Adw.
The corresponding quantity for JJ is
/ 2Q(w) dw = a(),
A<n)2

because of the vanishing mean value of 2. Clearly a is a continuous
function on S™ 1.
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If we replace the inner integrals of .J] and Jj by a(6), the resulting
expressions will add up to

t
“(9)/ 9(t) 5—5 dt.
lo/2,200\lp—c,pte] PP — 12

This integral is a truncation of a smooth principal value singular inte-
gral on Ry. By standard methods, it can be shown to define a weak
type (1,1) operator for the measure t"~! dt. So does the corresponding
maximal singular integral, defined as the supremum in € of the integral.

Since a is a bounded function, we also get a bounded operator from
L(t"=1dt) into L1°°(R™).

Thus, to prove Proposition 3, it only remains to estimate the dif-
ference operators arising when we subtract a(6) from the inner integrals
in J{ and Jj. For these operators, we shall actually derive strong type
estimates.

For the case of J{, we write

‘ pcos A

V12 — p?sin?A

1 1
—sgncosA‘:‘pcosA( )‘

V2 — p2sin?A  p|cos Al
V12 — p2sin®A — p|cos A

p|cos A|\/t2 — p2sinA
t2 _ p2

~ 12 — p2sin?A

< p|cosA|

where we multiplied and divided by the conjugate quantity of the nu-
merator, to get the last inequality. Our difference operator is thus
controlled by

dw
t2 — p2sin®A

2p
x@mmzf mmmﬁ”|mw
p Sn—1
One finds

/ Vig(p,0)do
Sn—l

20 do
< t)|tdt Q d _ .
_1;mm|QLH|wnwL%de%wA
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Writing s = t/p € (1,2), we see that the innermost integral here is

)2 /”/2 sin "2 o da O )2 ! u™2 du
P o s2—sin*a P 0o V1—u2(s2—u?2)

! du
<C _2/
==r 0o V1I—u(s—u)

1 dv
=C —2/
P )y Vols—1+0)

This implies

/ p"Hdp Vig(p,0) df
0 Sn—1

o0 t
d
<c [ a2 o,
0 t/2 t—p
¢ [ gl gl
0

Since Vig does not depend on e, this is the desired strong type (1,1)
estimate.

To deal with the difference operator coming from .Jj, we observe
that, almost as in the case of Ji,

A
‘/ 2Q(w) peos dw — 2Q(w) dw‘
A<n /2 V2 — p2sin?A A<m/2
sin A<t/p
2 t2
<2 / Q(w))| P dw
A<n /2 pcos A\/t2 — p2sin?A
sin A<t/p
+ 2/ |Q(w)|dw
ALm/2
sin A>t/p

=K+ K.
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With s =t/p € (1/2,1), we now get

pP—E€ t
df 9(t)| 5—5 dt K1
/S" 1 p/2 p2 —t2

P df
< 2/ Ig(t)ltdtp_zf IQ(w)IdW/ :
p/2 Sn-1 A<nj2 COS AV 8% — sin®A

sin A<s

Here the innermost integral is

arcsin s . —2 n 2du,
¢ 2 2 2
cos o 2—sma o (1—u?) V2 —u?
_/0 l—u Vs —u
A 1—s+u

C

| |
Q

VAN
Q

u

I
Q

IN

T

This implies

00 p ¢

n—1

p dp/ d9/ g(t dt K
./0 Sn—1 p/2| ( )|P2—t2 '

2 —1-2+1/2 dp
< C/ gl(t tdt/ p" Q

<c / o) de s -

Similarly,

pP—¢€ t
d9/ ()| —— dt K
oo 0l g,

p t
< 2/ 9(t)| ——— dt/ |Q(w)|dw/ a9
P/2 p t Sn—l

A<Lm /2
sin A>s

Here the innermost integral is found to be O(v/1 — s). Integrating the
above against p"~!dp, we get at most

¢ [loetar)os
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as before. This strong type estimate ends the proof of Proposition 3.

PROOF OF PROPOSITION 4. Observe that Tg ™ f(x) — T5™ f(x) is in-
dependent of R. One has

‘ Q(y
B4 Dafe) <suw [ 5w — )y,
e>0 |y|
ly|>e
[lo—yl—|z||<e
We assume that f,g > 0. Notice that r = ¢ is equivalent to t = .,
where

(3.5) t2=p?+e*—2pecosA.

One can assume that € < p/2, since otherwise the integral in (3.4) is
taken over a region where ¢ < |y| < Ce. Then the rough maximal
operator of Theorem 1 applies.

As in the preceding proof, we write the integral in (3.4) in polar
coordinates and replace the integration in r by integration in ¢. Again,
we divide the resulting integral into four parts, though not quite in the
same way as before. For the supremum of each part, we shall derive a
strong or weak type (1,1) estimate.

Part 1: A > /2. Then cos A < 0, and ¢ > p. This part of the integral
in (3.4) is dominated in absolute value by

pte
/ |Q(u))|du)/ g(t) tdt
A>m/2 . pcosA+ /12 — p2sin®A \/t2 — p?sin®A
pte A 2 _ p24in2A
:/ |Q(w)|dw/ p| cos |-|-2\/t : p? sin
A>m/2 t t“—p
g(t)tdt
2 — p2sinA

/P+€ g(t)tdt
t

t2_p2’

€

(3.6)

< 2/ 10(w)] dw
A>m/2

since here p|cos A| < \/t2 — pZsin®A.
The last inner integral is no larger than

pte dt pte 1 1
[0 s [ gwmin{ e,
te t—p = Jp t—p te—p

€
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Since the minimum here is decreasing in ¢t for p < t < p+ ¢, it is
well known that the right hand integral is dominated by the maximal
function of g at p times

pte 1 1
/ min{—, }dt:1+1og ° .
p t—p te—0p le —p

Instead of the ordinary maximal function Mg(p), we can here use
Mfg(p) = M(gX[p/272p])(p) )

since € < p/2. Because of (3.5), we have

t 1
log —— = 1o 5 elle +0) < :
te —p g2+ 2pefcosA| | cos A

Altogether, the expressions in (3.6) are majorized by

2 Myg(p) /

1
Q 1+ log —— ) dw.
Sn—1| (w)|( * Og|(:osA|> “

Here the first factor is in L»*°(p" "1 dp) and the second in L(S™™1)
as a function of #, as shown via Fubini’s theorem. A product of this
type belongs to L2 (p"~tdpdh). Since the product is independent of
€, this ends Part 1.

Part2: A< w/2and r < (pcosA)/2. Since

r=pcosA—\/t2 — p2sin’4 |

this implies

1
(3.7) \/t2 — p2sin?A > 5 pcos A.

We can assume that

1
(3.8) 5pcosA>€,
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because otherwise we get nothing. The part of the integral in (3.4) we
get is

te
/ Q)| dw/ g(t) tdt
A<n/2 p—e pcos A —\/t2 — p2sinA /12 — p2sin®A

:/ |Q(w)|dw/t6 pcos A+ \/t2 — p2sin®A g(t)tdt
AL /2 p—e

p? — 12 t2 — p2sin”A
t
° t)tdt
<cf el IS
A<Lm /2 p—e P -1

the last step because of (3.7).
We proceed as in Part 1. The logarithm to be estimated is now

e(p+ie)
2pecos A —g2’

log I log
p—le

By means of (3.8), we get rid of the €2 term in the denominator, and
the logarithm is seen to be dominated by log (1/ cos A). The rest is like
Part 1.

Part 3: A < /2 and (pcosA)/2 < r < 2pcosA. This part of the
integral in (3.4) is dominated by the rough maximal function Mg f(z).
We apply Theorem 1.

Part 4: A < w/2 and r > 2 pcos A. Notice that this inequality for r is
equivalent to ¢ > p. We can assume that A > 7/4, because otherwise
p/C <1 < Cp for some C, and M¢ will apply.

The integral we now get is

pte
/ Q(w)| du)/ g(t) tdt
T/A<A<T /2 p pcosA+ /12— p2sin®A /12 — p?sin®A

20 t) tdt
<[ el [ G0N
T/A<ALT )2 p t2—p?sin“A

Notice that the last expression does not contain €. Its integral with
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respect to doz = Cp"~tdpdf is

> 2p t) ¢ dt
C/ p"_l dp/ do |Q(w)|dw/ —g() —
0 Sn—1 T /4<A<n /2 p t2—p?sin®A

e’} t
< 0/ g(t)tdt/ |Q(w)|dw/ Ldp
0 sn-1 t/2

/ do
T/4<ALT )2 t2 — p2 + pcos?A’

The innermost integral here is

o /2 sin” 2 ada o 1/v2 du C
2 21 2cos2a§ 2 21 2u2S 5 5
/4 prTp 0 p=Tp p\/t° — p

It follows that the fourfold integral is no larger than

¢ [gwyetaefas
This ends Part 4 and the proof of Proposition 4.

For the LP part of Theorem 2, it is clearly enough to prove versions
of Propositions 3 and 4 with strong type (p,p) instead of weak type
(1,1). This requires only small modifications of the proofs just given.
For instance, in the proof of Proposition 3 one obtains several strong
type (1,1) inequalities by integrating various expressions with respect
to p"~tdpdf. For the LP inequality, one can instead estimate these
expressions by quantities like

C Mqg(p) /

1
Q 1+1 d
gn—1 | (w)|( +log |cosA|> o

which is in LP(p""Ldpdf) if g € LP(p" 1 dpdh). We leave the details
of the rest of the LP case to the reader.
This ends the proof of Theorem 2.
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