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Elliptic gaussian

random processes

Albert Benassi, Stéphane Jaffard and Daniel Roux

Abstract. We study the Gaussian random fields indexed by R? whose
covariance is defined in all generality as the parametrix of an elliptic
pseudo-differential operator with minimal regularity asumption on the
symbol. We construct new wavelet bases adapted to these operators;
the decomposition of the field on this corresponding basis yields its
iterated logarithm law and its uniform modulus of continuity. We also
characterize the local scalings of the field in term of the properties of
the principal symbol of the pseudodifferential operator. Similar results
are obtained for the Multi-Fractional Brownian Motion.

Résumé. Nous étudions les processus aléatoires gaussiens X indexés
par R? tels qu’il existe un opérateur pseudo-différentiel A d’ordre donné
admettant pour parametrix la covariance de X.

Nous construisons une base d’ondelettes adaptée a 'opérateur A.
La décomposition du processus X sur cette base conduit a la loi du
module de continuité uniforme et a la loi du logarithme itéré. Nous car-
actérisons aussi les propriétés d’échelle locales du processus au moyen de
la partie principale du symbole. Nous étendons ces résultats au Mou-
vement Brownien Multi-Fractionnaire qui est associé a un opérateur
d’ordre variable.
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1. Introduction and statement of results.
1.1. Introduction.

Let X (x) be a (centered real valued) Gaussian Random Process
defined on R?, of covariance R(z,y) = E(X(z) X(y)). Two isomor-
phic Hilbert spaces are associated with X: the space H defined by the
closure of the random variables Z = > «a; X (t;) for the scalar product
(Z|T)=E(ZT) and the Reproducing Kernel Hilbert Space (R.K.H.S.)
H composed of the functions which can be written

(1) f2(t) = E(X(t) Z),
with Z € H; the scalar product in H is

(fz, [y)E=E(ZY).

By Riesz’s representation theorem, we can define a self-adjoint positive
operator A: H — H', the dual of H by

(2) (fs9)m = (A() | 9) 1) -

where (-|-) g gy means the (H', H) duality.

Of particular significance is the case where the norm in H is equiv-
alent with the norm of one of the Sobolev spaces H® or of the homoge-
neous spaces H* (in this last case H is defined by additional conditions,
for instance by vanishing conditions at the origin). We will call Elliptic
Gaussian Random Processes the processes such that

Cillfll. < (AN 1Pz < Coll flls

which is an ellipticity asumption on the operator A (we borrow this
terminology from Guyon [17] where it covers a similar idea). These
norm estimates imply that the operator is everywhere of order 2s. We
will show later that the techniques we introduce allow also to study
the Multifractional Brownian Motion, a case where the order of the
operator is a function of z.

We specify the setting by requiring A to be a pseudodifferential
operator, and we will make some limited regularity asumptions on its
symbol o(z, ). Since theoretically all the information on X is contained
in the operator A, we want to investigate in details the correspondence
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between the properties of X and A. Some points are classical; for
instance X has the Markov field property if and only if A is differential;
X has stationary increments if and only if the symbol o(z, ) does not
depend on z (the norm in H is then shift-invariant).

In this work, we will mainly study two properties of the process:

1) local self-similarity,

2) regularity of the sample paths, looking for exact constants in
the laws of local and uniform moduli of continuity.

Let us recall that a process X is said to be selfsimilar of order «
at the origin if, for all p > 0,

(3) Law {p~*X (pz), © € R?} = Law { X (), = € R%}.

For instance, the Fractional Brownian Motion of order « is selfsimilar
(of order «) at the origin. Dobrushin in [13] gives a complete charac-
terization of selfsimilar gaussian fields with stationary increments; and
it follows from [13] that the exact scaling law (3) can hold only for very
specific processes. The renormalisation operators Rf . are defined by

Ry X(x)= : (X (o + px) — X(0))

Zo,pP - [e%

and, by definition, a process X 1is locally asymptotically self-similar
(L.A.S.8.) of order « € (0,1) at g if R , X has a non trivial limit in
law when p — oc.

The case a = 1 requires a different renormalisation formula, see
(39), and the corresponding processes will be called locally asymptoti-
cally critical processes (L.A.C.).

Regularity properties for Gaussian processes have been considered
in full generality in [16]. In the general case the uniform and local
moduli of continuity are known only up to a multiplicative constant. For
a large class of stationary increments processes Kono in [26] and Marcus
in [29] obtain the exact constants in laws of the moduli, but these cases
do not include in the elliptic setting the critical order s —d/2 € N. One
of our purposes is to solve completely this problem (Theorem 1.3) in
the general elliptic pseudodifferential setting.

One of the main ideas behind the results we will describe is that
the local properties of an elliptic gaussian process are contained in the
principal part of the symbol associated with the operator A. Let us
illustrate this idea on a very simple example.
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Let W be the one dimensional Brownian motion issued from 0.
The corresponding operator Ag is the second derivative, whose sym-
bol oo(z,&) is [€|2. The fact that o is an homogeneous function of
¢ independent of z implies that W is selfsimilar of degree 1/2. The
Orstein-Uhlenbeck process V' is the solution of the stochastic differen-
tial equation dV = —q V dt +dW . One easily checks that the R.K.H.S.
of this process is exactly the Sobolev space H' so that the correspond-
ing operator is A = ¢?Id — 9?/0x? of symbol o(z, &) = |£|* + ¢2. Since
the modification of the symbol bears on low order terms only, for every
bounded open subset U of R, Law (V|y) = Law (W|y) (the two pro-
cesses restricted to U are locally undistinguishable on one realization),
see [32]. This has two more consequences:

1) The Orstein-Uhlenbeck process V will satisfy the following local
scaling property at any point ¢

V(t+pu)—VI(t)
172

lim Law{

p—0t

,uER} — Law W,

and we observe that the symbol of the “asymptotic process” is the
“principal part” of o.

2) The uniform modulus of continuity and the iterated logarithm
law (the local modulus of continuity) of V' and W are the same.

1.2. The Model.

In this paper we consider triples (A, Ha, X 4) constituted by

e An elliptic symetric positive pseudodifferential operator A de-
rived from a symbol o : R x R? — R by the usual formula

oy [ €€ FE &,

@ (AN = G

where f is the Fourier transform of f. We will use the notation A =
Op(o).

e A Hilbert space H4 whose scalar product is given by the gener-
alized Dirichlet form

Aﬁm:/Amumwm%
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defined at least for f,g € D, with D = D(R?).

e A gaussian centered process X 4 with H 4 as Reproducing Kernel
Hilbert Space (R.K.H.S.), see [32]. The covariance function r of X4

r(z,y) = E(Xa(x) Xa(y)),

is the kernel of A~! (defined on appropriate spaces) and a parametrix
of the operator A.

Let us now define a class of symbols and state some precise asump-

tions for the symbols o we use.

Definition 1.1. A symbol o defined on R x R*\{0} belongs to S™,
m e R, n e N if

1) for any multi-index s with length |s| = s1 + -+ -+ sq < n, exists
Cs such that

(6) 020 (2,6)| < Cs (L+[EN™ 1 for € #0,

2) there exists € > €' > 0 such that

(7) o (2,€) — a(y, &) < C (L + €)™ |z — yl°.

Note that these properties are not the minimal asumptions which
imply continuity of the operator between Sobolev spaces (see [12] for
such conditions). But they are the minimal regularity asumptions im-
plying that the symbol behaves “locally as if it were constant in x at
high frequencies”, a fact we will need to characterize the local scaling
properties of the process X.

HypoTHESIS HA (m,7). Let m > 0 and v > 0. A = Op (o) satisfies
hypothesis HA (m, ) if

’UES[?]MH’

e there exists ¢ > 0 such that

clg]™ < o(x,€).
e There exist C; and Cy > 0 such that

Cy f €™ ()12 de < (A(f) | Pz < C f (1+ [E)™ |F©)2 de.
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REMARKS. a) The last inequalities can be rewritten as

Cull 1o < (A1) e < Coll £/ -

b) The hypothesis HA (m, ) is related to the existence of a dual
process for X (see [31] or [23]).

HypoTHESIS HAS (m,y). We say HAS (m, ) is satisfied when there
exists ¢ > 0, such that

c(L+[¢]™) <o(x,8), HEFO

and

(A Hzz ~ 112 mse -

THE MODEL UNDER HYPOTHESIS HAS (m,~y) WHEN m > d. Let us
suppose m > d and HAS (m,~) holds for the symbol o. Let Hy =
cl4(D), the closure of D = D(R?) with respect to the inner product A.
Then H™/?2 = Hy C L? C H'y and A~ : H', — Ha can be written
using the kernel theorem as

A f () = / r(z,y) f(y) dy,

with 7 a continuous kernel on (R%)2. As r is symetric and of positive
type we know (see [32]) that there exists a centered gaussian process
X4 with covariance function r. The triple (A, Ha, X4) satisfies the
conditions we ask for our model.

THE MODEL UNDER HYPOTHESIS HA (m,y) WHEN m > d. Let us now
suppose only HA (m, 7) holds. As the operator A may be non-inversible,
a definition of H 4 requires more care. In [9] Bourdaud gives a dilation
invariant realization of the homogeneous Sobolev space H™/2, Similar
ideas will be used here. Let us start with the case that turns out to be
the most important for us, for it leads to processes which are limits in
law of local renormalisations.

Suppose that m —d = 2(l + «) > 0 with [ an integer and a €
(0,1). Let o(&) = |€]™S%(¢/I€]), A = Op (o), where the function S is
continuous on the unit sphere of R? and takes only positive values. In
this case we set H = cl4(Dy) with

m—d}.

DO:{@DED:Dﬂw(O):O, if 8] < =
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Let W be a gaussian white noise on R?. The gaussian process X, is
defined by

0 X, = [ e liz€) o(6)

where exp;(y) = eV — Y jcp<; Y*/k!. For every ¢ € L? let

d¢
o)

The following result shows that (A, H, X) fullfills our conditions.

fol) = / expy(i 2 €) B(6)

Lemma 1.1. The symbol o satisfies HA (m,~y). The Hilbert space H
is the R.K.H.S. of the gaussian process X and we have

(9) H={f,: peL?},

(10) A(ftpuftpz) = (901 | (102)L2 .

As this lemma can be deduced from results of [13] we only sketch the
proof. It is easy to check that {f,, ¢ € L?} is a Hilbert space with A as
inner product and that (10) holds. We can also notice that for ¢ € Dy

A(forth) = (Vo fo | Vo) 12 = (8| VT ) 12 -

Therefore if A(f,,¢) = 0, for all p € Dy, we get ¢ = 0, and then
fo = 0. This shows that Dy is dense in H and thus (9) holds. It
remains to prove that H is the R.K.H.S. of X, i.e. for all + we have

ftp(x) = A(Kq, ftp) )

where K, (y) = E (X;X,) is the covariance function of the process X.
Since K, (y) = fx,, where

>

. expy(—iz§)
&) = st

thus

A(Kq, o) = (#

eXpl(—UEf) . T
RSl ) e~ o)
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REMARKS. When S(¢) = 1 and [ = 0, X is the d-dimensional Fractional
Brownian motion of order a.

If @ = 1, the integral (8) does not define a process any longer (to
study this case, we would have to split the integral). This is coher-

ent with the facts that in this case H'*+%/2 hag no dilation invariant
realization (see [9]) and that a different normalization is required for
Elliptic Gaussian Processes of critical order 27 + d (I € N) to have a
local asymptotic scaling law.

Finally one should notice that other spaces H4 can be associated
with a single operator A = Op (o). But the associated processes are lo-
cally the same. For example if Hypothesis HAS (m, 7y) holds, define H 4
(respectively Hy o) equal to cl4(D) (respectively clgq(Dy)) and denote
by X4, X4, the associated processes. For any open bounded subset
U C RN\{0} it is easy to see (think of the brownian motion and bridge)
that the laws of the restricted processes are equivalent, that is

(11) Law (X 4,0|v) = Law (X alv) -

CONVENTION. From now on we suppose the triple (A, Ha, X 4) is given
and satisfies the conditions of our model and, unless otherwise specified,
Hypothesis HA (m, ).

1.3. Outline of the method.

The method we will use in order to obtain the modulus of continu-
ity and the local scaling laws of the elliptic processes is the following.

a) For an operator A satisfying HAS (m,~y) we will construct in
Section 2 an orthonormal wavelet basis @) of H4 indexed by the dyadic
cubes, and such that each ®) is localized near the corresponding dyadic
cube (precise localization estimates are stated in Theorem 1.1 of Section
1.4). Using the canonical isomorphism between H and H 4 we get

(12) Xa(z) =) 6Dy,

where the &) are independant normalized centered Gaussian; In Section
4, the local properties of the process X4 will be deduced from this
decomposition.
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b) In the general case HA (m,vy) we will perform a modification
of the symbol at low frequencies in order to obtain a new process for
which the stronger asumption HAS (m, ) holds, and such that the two
processes have the same local properties. This will be true because low
frequency modifications do not alter such properties as local regularity
or asymptotic scaling. Let us state the modification and prove this
result. Let g be a nonnegative function in D(R™) such that supp (g) C
B(0,2), and

(13) g =1, if[l<1.
Let G be the operator of convolution with ¢ and set
(14) Ayj=(1d-G)A(Id-G) +G.

Clearly, if A is selfadjoint positive, so is Ay. X4, X4, will denote the
associated gaussian elliptic processes.

Proposition 1.1. The operator A, satisfies HAS (m,vy) and for any
bounded open subset U of R® such that 0 ¢ U

Law (Xa|y) = Law (X4, |v) -

PROOF OF PROPOSITION 1.1. The symbol o, of A, is given by

og(2,€) = 9(&) + (1 = 9(€))%0 (2, &) +1(z,€),

with 7(x, ) a regularizing kernel. It is easy to check that o, fulfills the
conditions of HA (m, ),

G [ EPIHOF dt < (A ez < € [+ EPIFO de.
The conditions for HAS (m, y) are satisfied because

(A | Dz ~ 104 = Gy + (G| D
~ [a-genigferas+ [o©1F©P s

~ [asigifer .
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Using (11) we can assume that the processes are starting from 0, i.e.
the related R.K.H.S. are the closure of Dy for A and A;. The local
equivalence result follows from [32, Theorem 8.6] if we check that

1) CU(-Tvy) = A_1|U><U(-T7y) - A;1|U><U(x7y) € H%j(U X U)7
ii) —1 is not an eigenvalue of Cyy : Ha, — Hy,.

Let us consider the operator B
(15) B:=A-A;=GAG-AG-GA+G.

As the function g belongs to D(R?) we know that B is a regularizing

operator;
A - A = AN (I +BAY) T - T)

and
(I+BAH)™ = (-)"(BAH".

n>0

Now if we consider the restrictions to open bounded U which are small
enough, the last series converges and the operator A=" — A" is of
Hilbert-Schmidt type with a spectral radius less than 1, so that condi-
tion ii) is satisfied.
For the first condition, it is sufficient to show that
(—A)7/4(=A)y/*C(x,y) € L (R? ® RY).

g

But, as before

(—A) (=AY (2, y)
= (=D)M(=A) AT B AT (=A) (),

n>1

which converges in L*(U x U) for U small enough, since A;! is an
operator of order —m and B is regularizing.

Finally we obtain the equivalence of laws for every bounded open
subset U of R¥\{0}, by decomposing U in a finite number of small
enough open subsets.
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1.4. Wavelets and pseudodifferential operators.

We will construct a wavelet basis associated with an operator A,
satisfying HAS (m, ). We obtain this basis by applying Ag_l/ 2 on the
“Littlewood-Paley” orthonormal wavelet basis of L? defined by Lemarié

and Meyer (see [30]). Let us recall some properties of this basis.

1.4.1. The “Littlewood-Paley” wavelet basis.

There exists ¢ and @, 1 € L := {0,1}%\{(0, ..., 0)}) such that ¢ is
C® and supported in the domain |¢| < 47/3; ¢() are C*° with support
included in the domain 27 /3 < [¢| < 87/3; the following translations
and dilations of these functions

$u(x) =gl —k), kel
Y (@) =2492p0 iz k),  jeN kezd e,

are an orthonormal basis of L?(R?) (notice that the family {wj(-l,l 1J €

Z,k €% 1 € L} is also an orthonormal basis of LZ(R%)).

In order to simplify the notations, let @b(()?,;""o) = ¢y, k € Z% and

YA =9\, A= (G k,1) € Zx 2 x LU{0} x 22 x {(0,...,0)} .
For a given A = (4, k,(), the integer j will be often referred to as jy,
and called the scale of A\. By abuse, A will often be identified with the
dyadic point A =k279 +1279-1 and the corresponding dyadic cube
cx = A+1[0,1]4277-1, Let A be the set of X’s such that j > 0, and A
for the whole set (j € Z).

The correlation (or Gram) matrix of a (S(R?) — S'(R%)) continu-
ous operator A is

(16) Ma(A ) = (AWa) [Ya)ez s AN €A



30 A. BENASSI, S. JAFFARD AND D. Roux

1.4.2. Wavelet orthonormal basis associated with a pseudo-
differential operator.

Let us define
(17) O\ = A2 (1hy), AeA.

We can restate the norm equivalence of Proposition 1.1 as follows:
Ay""? is of the form DMD with M bounded on 2 and D(A,\) =
2-Im/2§ a,x- The important result that we will prove at the beginning
of Part 2 is decay of the entries of M: we will show that this matrix
is “almost diagonal” (in a sense that will be made precise in Definition
2.1). This will easily imply that the @ have the following “wavelet-like”
decay properties and have an “asymptotic behavior” for large j’s.

Theorem 1.1. Let m,~y > 0, suppose that Hypothesis HA (m,~y) holds
and that Ay satisfies HAS (m, 7). The {®x}xea defined by (17) form an
orthonormal basis of H 4, with the following smoothness and localization
properties.

If |s| < [m/2],
. 93(d/2+|s1-m/2)
s < v i .
If |s| = [m/2],
o m/2—1s] 9id/2
19) | s() - 0 da(y) < Y

= T+ 20z = A)F
If [m/2] < |s| < [y +m/2],

C,, 29(d/2+Is|=m/2)

(20) 0" 0@ < T SanFEE

If [s] = [y +m/2],

21 0°P —0°P <2 .
@) )~ o) <

The following theorem which describes the asymptotic behaviour
of the wavelets when j — 400 shows that in this limit the wavelets are
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the same as wavelets associated with a Selfsimilar Gaussian Process;
thus it will allow us to derive the local scaling properties of the process
X.

Theorem 1.2. The hypotheses are the same as in Theorem 1.1. Let
(gx) be defined by its Fourier transform as follows

(€)= (@(X,€))72a(9).
Then for all €, there exists J such that, for s <m/2 and j > J

& 9(d/2+]s]-m/2)j
(1 + 27|z — A3+

|0°ga(x) = 0°®x(2)] <

1.4.3. REMARKS. Let us now give a few remarks concerning the kind
of symbols we consider here and the wavelets we use. First we used
nonnegative scales (j > 0) for the following reason. If we used all the

@bj(l,)c even for negative and arbitrary large j (and no ¢;) we would not
be able to decompose symbols that depend on z (and then in Part 4,
to analyse stochastic processes that have nonstationary increments). In
fact when the symbol depends on x and thus presents oscillation at (say)
scale 2770 its action on a wavelet indexed by —j < —jo does not give

a “vaguelette” at scale 277; the function we obtain oscillates too much.

Thus the matrix of A in a basis composed of all the 77b](l])¢ (including
negative and arbitrary large j) would not be “almost diagonal”.

On the other hand, since we have to use the ¢(x — k) we may not
allow the symbol to vanish or to have a pole at 0; otherwise it would
introduce a singularity at 0.

1.5. Regularity of the Elliptic Gaussian Processes.
In this part m > d, (I, a) € Nx]0, 1] is defined by

(22) mT_d:l—f—Oé.

Before giving the uniform modulus and the iterated logarithm law of
the processes X 4, let us start with a “global” regularity result which
is a straightforward consequence of the wavelet decomposition of X4,
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under hypothesis HA (m,~y) for A. Let us recall that a function f
belongs to the Besov space By  if

| flsp,q = | fllee + Z 10" f|.p,q <0,
|r|=[s]

where

wp(g,t) = |Sl|1£t 1(g(- +y) —g(-)lze,

f=s—1[s,
boa= [ ()T

with the usual modification when ¢ = oo. Let us also recall that Sobolev
and Holder spaces are given by H® = Bj , and C* = B5

g

1.5.2. Regularity of the process X4, .

Proposition 1.2. If the symbol o satisfies HA (m,~), then,

i) for each ® € Hy,, Ay(Xa,,®) is a well defined random variables
of law N(0, || @] 4,);

ii) for each bounded open set U C RY,

Xa, (1) = @x(x) Ag(Xa,, Bn),

AEA

with uniform convergence of the serie and its derivatives up to order |
on U.

iii) The above series converges locally in B; , when s <1+ a P
almost surely.

In dimension d = 1 and for the fractionnal brownian motion of
order «, assertion ii) of this proposition is proved in [11]. Note that
Besov spaces have also been used by D. Donoho and his collaborators
(see [14]) as a particularly convenient setting for wavelet based methods
in statistics.
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1.5.2. Laws of uniform and local moduli of continuity.

Let us define d; s(z,y) ((z,y) € R? x R?, i = 1,2) by
(23) di o(z,y) =E[(0°Xa(z) — 9" Xa(y))’],

a:+y> +8SXA(y)>2] )

(24) d2,(w,y) = E[ (8SXA(x) —2 8SXA(

Recall that m —d=2(l+ a), l € N, 0 < @ < 1. For any multi-index s
of lenght |s| = [ we define,

1) when oo =1,
. d2 s(xvy)
25 c2.5(y) = limsup —
(25) 2, (y) = limsup = ==
and
dy,s(,
(26) c1,5(y) = limsup Ls () = .
ey | = yly/log (Jo — y[~")
2) When o < 1,
dy,s(,
(27) c1,5(y) = limsup .s(@:y)

sy T —y|* .

Lemma 1.2. Under the hypothesis HA (m,~) and if |s| =1, the func-
tions c1q, Ca.s belong to CE=¢)/2(RY),

Let us now set, when D is a bounded open subset of R?,

Ci,s,D = SUup Ci,s(y) .
yeD

We can express the main result of this paragraph, where we use the
notation, for r small enough

L(r)zlog(1>, Lk(r):logo---olog(1>, k times.

T T
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Theorem 1.3. Under the hypothesis HA (m,¥), if m > d, s € N¢,
|S| =1,

i) law of the uniform modulus:

e when a < 1,

s X 95X
(28) lim sup 0" Xa(w) — 9" Xaly)l =Vv2dcisp,

zyeD Jo—y|=0 [ — y|*\/ Lz — y|71)

P almost everywhere,

e when a =1,

0°Xa(@) ~20°Xa (1Y) + 0°Xa(y)

lim sup
@9 ayen,le—yio 2=yl VL(Je —y[77)
=Vvad C2,5,D
P almost everywhere,
e and
0°X —0°X
(30) lim sup | a@) a(y) =V2dcisp,

z,y€D,|z—y|—0 |$ - y| L(|$ - y|_1)

P almost everywhere.

ii) Law of the iterated logarithm:

e when o < 1, for all y € R?,

(31) lim sup 0°Xa(@) — 9" Xa(y)]
e=y | —y|*y/La(|lz —y|™1)

= \/5 Cl,s(y) I

P almost everywhere,

e when o = 1, for all y € R?,

. 05X a(z) — 0*X 4(y)]
32 lim su —V2e1.(y),
. N N T VA (P W)

P almost everywhere.
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Note that the law of the iterated logarithm may be used to identify
the “principal part” of the symbol, when it exists. If we assume that
p pal p y )

3

(33) o(x, &) = aw<|£|

Yl + o (ig™).

we will obtain later, see (60), in the case a < 1, the very explicit formula

(34) ¢ (y) = sup /R g e e

wi=1Jre  [§]9T2a, (£/[€])

(31) shows the precise relationship between the “principal part” of the
symbol o and the exact local modulus of continuity of the process X.

Theorem 1.3 is proved in Section 4. The main idea is first to get the
results for the modified process X4, using its wavelet decomposition
(see Theorem 1.1) and then to transfer the regularity properties of X4,
to X4, as a consequence of Proposition 1.1.

1.5.3. REMARKS. When comparing (26) with (27), or (28) with (30),
or (31) with (32) it appears that the case = 1 is critical. In fact this
goes back to formula (18) which for o =1, |s| = [ gives

0Py (x) —0°Py(y) =~ C, |z —yl, |z —y| —0,

with Cy independent of the scale j of A. Assuming ®, is supported by
the dyadic cube cy, with center A and sidelenght 277, we would have
when =0, a=1, |y —z| <277

0°X (z) — 0° X (y)]
|z —y]

(35) ~(C Z Licy(2)} €n -

AEANE,jr<n

(30) and (35) will be obtained by studying large deviations for sums of
normal random variable indexed by a tree in Section 3.

On the other hand, formula (18) implies that in the case oo < 1 the
uniform and local moduli can be studied with sums restricted to the
scales j near log,(|z — y|), so that the proofs of (28) and (31) are close
to the proofs of [3].
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1.5.4. Comparison with known results.

When the symbol o is a function of £ only, and m > d the process
X 4 has stationary increments. Let us then define p(h) near the origin
by

(36) p(lz —yl) = ds(z,y) .

Kono in [26] assumes that p? is concave and increasing near 0. Formula
(27) shows that, even in the stationary case, none of these two condi-
tions needs to be satisfied. In dimension 1, Marcus [29, Theorem 3.8]
obtains the modulus of continuity under wider asumptions than Kono,
which however do not include the critical case «« = 1 that we consider.

The results of Lemma 1.2 imply the hypotheses of Theorem 2.10
in [15] which asserts the existence of a bounded random variable K (w)
such that if @ <1

1 1/2
0°Xa(e) =0 Xalw)| < K@) o =yl log (1)

P almost surely, and when a =1

0 Xa(e) — 0° Xaly)] < K(w) |z — yllog (),

[z —yl

P almost surely, which is clearly less accurate than Theorem 1.3 in the
elliptic context. If A = Hle(—A + ¢2), the results of Proposition 1.1
are proved in [8]. If A is differential with C°° coefficients, it is proved
in [1] that

P(Xa€H. % )=1, foralle>0.

loc

1.6. Local scaling properties of Elliptic Gaussian Processes.

In this paragraph, we suppose that the symbol o satisfies HA
(m, 7). We show that the process X 4 satisfies some local scaling prop-
erty when its symbol o admits a “principal part” (which is positively
homogeneous).

We will distinguish the two cases @« < 1 and = 1 (I and « are
defined by (22)).
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Definition 1.2. Suppose that 0 < a < 1. The E.G.P. X4 is Asymp-
totically Self Similar (L.A.S.S.) of order («,1) if
{ (A2 Xa(x +pu) = (=A)2 X a(x)
pa
exists for every x and is not trivial. X, is Weakly Asymptotically
Self Similar (W.L.A.S.S.) of order (a,l) if for every x, we can find a
sequence (pp) — 0% such that
(=A)PX 4 (2 + pou) — (=8)* X4 ()
P

converges in law to a non trivial limit.

(37)  lim Law

p—0t

,uERd},

, uE]Rd,

When m = d+2a, 0 < a < 1 (I = 0) the following theorem
characterizes the L.A.S.S. property. The general case is similar, after [
differentiations.

Theorem 1.4. If the symbol o satisfies HA (d + 2 a,7) for 0 < a < 1,
the following assertions are equivalent.

i) X4 is a L.A.S.S. of order («,0).
ii) For all zp € R?,

lim 0-(3707 pé)

(38) p—r 00 pd+2cx

- gwo (5) )

exists, 0 is an (d+2 «)-homogeneous non trivial symbol and 6 € Sgofga.
iii) For all o € R?,

X h) — X 4 (0))?
lim [ Xalvet ;l”z)a A7) _ 2 (),

h—0~t

exists and the function cg, s an a-homogeneous non trivial function.
We now consider the critical case o = 1.

Definition 1.3. Suppose that « = 1. The E.G.P. X 4 belongs to the
weakly Locally Critical (W.L.C.) class of order 1 if for every x, we can
find a sequence (py) which goes to 0T such that

(=AY 2X g (2 + pnu) — (=A)/2X 4(2)

pr/10g(1/pn) ’

ue R,
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converges in law to the process {(G,u), u € R} with G a gaussian
random variable on RE. It belongs to the Locally Critical (L.C.) class
of order (a,l) if for every x there exists G a gaussian random variable
on R? such that

lim Law

(A Xt p1) — (A2 Xale)
(39) o0t

, U € Rd}
p\/10g(1/p)

= Law {(G,u),u € R?}.
for every x.

The following theorem gives a characterization of the Locally Crit-
ical class.

Theorem 1.5. If the symbol o satisfies HA (d + 2,7), the following
assertions are equivalent.

i) X 4 is Locally Critical of order 0.

ii) For all 7y € R?,

. o(wo,pf)
(40) Jim =t = 00 (6),

exists and 04, is an (d + 2)-homogeneous and non trivial symbol which
belongs to Sglofg.

iii) For all xo € RY

. (Xa(z + hu) — X 4(z))?
Jim B2 1og(1/h)A

_ 2
- c$0 (U) ?
exists and the function cg, s an 1-homogeneous non trivial function.

Condition (38) or (40) means that the symbol has the following
asymptotic behavior

¢
€]

it excludes symbols which have some slow oscillations at high frequen-
cies like

o, €) = h(w) F () 1€ + o (&™),

o(x,€) = [¢]™(1 + sin®(log(1 + [£[%)))
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such symbols give rise to processes which belongs only to the above
weak classes. More precisely, let us consider a symbol ¢ such that

(41) (&) = a0(£) f(£)

where the symbol o is supposed to satisfy one of the equivalent condi-
tions of Theorem 1.4. Let Xy be the gaussian process associated to oy,
wich belongs to the L.A.S.S. class of order («,0).

Proposition 1.3. Let f be an even and C™ function on R* such that
the operator of symbol 1/ f is positive definite, 1/ f belongs to Li, . and,
for all s € N* there exists Cy > 0 such that

0% F(€)] < Cu(1 + [¢]) 71

The gaussian process associated with o in (41) belongs to the W.L.A.
S.S. class of order (a,0). Moreover X belongs to the L.A.S.S. class of
order (o, 0) if and only if lime| o (&) exists and does not vanish.

The proofs of the local scaling properties are given in Part 5.

1.7. Complements.

We now consider two interesting cases that do not fit strictly speak-
ing in the framework of Elliptic Gaussian Random Fields (E.G.R.F.),
but can nonetheless be studied by the methods introduced in this pa-
per. First we will consider the Generalized Gaussian Processes where
the order of A is less than d/2; in that case the corresponding process
is no more a function but a distribution. The second one is a Fractional
Brownian motion of nonconstant order that we will define in (42). It
will not be an E.G.R.F. but we will see that there is also a wavelet
basis “adapted” to this process so that the technique we developed will
immediately yield its regularity and scaling properties.

1.7.1. Extension to Generalized Gaussian Processes.

For the sake of simplicity we will consider only two cases which
are important in applications: the “1/f noise” which is used in signal
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analysis (see [28]) and the “free field” which is used in quantum field
theory (see [6] and [7]).

We consider in dimension 1 the operator A = (—A)/2; the process
X 4 is no longer a random function, but a random distribution, i.e. a
Generalized Gaussian Process (G.G.P.) which is called the 1/f noise
(see [33]), because of its spectral function.

Let now d > 2, ¢ € Rt and A = —A + ¢?. The process associated
with A is by definition the free field of mass q.

In both situations, let us define a “truncated process” as follows

Xo(z)= Y da(z)én,

with E = (0,1)%.

Theorem 1.6. For every d € N* there exists Cq > 0 such that,
1)ifd=1 or2,

1
limsup — sup | X,,(z)| = Cq, P almost everywhere,
n—oco N gzecE

2) ifd > 2,

2—n(d—1)
limsup {/ ——— sup | X, (x)| =Cq , P almost everywhere.
n— 00 n z€E

This result, which will be proved in Section 5, shows the rate of
divergence in the space of bounded functions of the processes X,, which
are approximations of X in the distribution sense. If d = 1 , we see
that X,, diverges very slowly. This shows why the fact that X is not a
function but a distribution is hard to detect on numerical simulations,
see [33]. In field theory [8] the difficulties of the renormalization increase
with d (If d = 4, | X,,|oe diverges like \/n 2°"/2 which shows one of the
reasons of the difficulty of P®, theory). We must also mention the
connected work [6] where the renormalisation of sums like

=) ¢alw) & 22,
Jasn

is studied when the &, are Rademacher or Gaussian random variables
€x, and ¢y () is the indicatrix function of a dyadic cell A.
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1.7.2. Multifractional Brownian Motion.

Let us state the definition we adopt for the Multifractional Brow-
nian Motion which extends (8).

Definition 1.4. Let a € C™(R%,(0,1)) for some r > supa(z) and W

a white noise. The Multifractional Brownian motion of order a(x) is

defined by
1,:1:.’;" -1 T
(42) / I3 |“<w)+d/z W(¢).

The function C' : R* — R defined by

C2(x) :/Md,,7

|| d-+2a(z)
belongs to C"(R?) and
E(|Ba(z + h) = Bo(2)[*) = C*(x) [h[**™) + o(h).
In order to obtain a wavelet decomposition of B,, one uses the follow-

ing decomposition of the white noise on the Fourier transforms of the
Littlewood-Paley wavelet basis

€)=Y maha(€) d€,
where the n, are i.i.d. standard gaussian; if

1,:1:.’;" -1 =
(43) / e VO d¢.
then

(44) Bu(e) = Y mwa(e)

and the following result will be a consequence of “vaguelettes” decay
estimates for the wy. In this part we define ag = inf,cga(z), Cgp =
SUD,c0-1(ap)E C(x), when E is a bounded open set.
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Theorem 1.7. Let E be an open bounded set. The Multifractional
Brownian motion B, satisfies the following law of the uniform modulus
of continuity

Ba - Ba
(45) lim sup [Ba(@) v) =CgVv2d,
wy€E, o—y|-0 |7 — y[*# \/log (1/]z — y])

P almost everywhere, and the law of the iterated logarithm, for all y €
Rd

(46) lim sup |B“($) — Ba(y)|

= \/5 C(JJ) )
sy |z —yloW/loglog (1/]z — yl)

P almost everywhere. Furthermore, B, is Asymptotically Self Similar
of order a(xy) at xo; i.e.

B(xo + pu) — B(xp)
pa(wo)

47)  lim Law{

p—0+

ue Rd} — Law { By(ay)} -

The reader can check that the same analysis would work after
introducing in (42) a directional dependancy S(&).

2. Wavelets and Elliptic Operators.

In this part we will construct the wavelet basis of H4 and prove
Theorems 1.1 and 1.2 under regularity hypotheses on the symbol 0. We
will also prove the equivalence in law stated in Proposition 1.1. This
opens the way to Theorem 1.3 (proved in Section 4) which gives the
uniform and local moduli of continuity of the process.

2.1. Wavelet matrices of pseudodifferential elliptic operators.

The basic idea here is not to work directly on the operator itself
but rather on the infinite matrix of its coefficients on a wavelet basis.
We will show that the matrices of the pseudodifferential operators we
consider and of their inverses are of the form DMD where D is a
diagonal matrix in a wavelet basis whereas M and M ~! are “almost
diagonal” in the following sense (see [30]).
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Definition 2.1. 1) A matriz M (X, \') belongs to the algebra M7 if
[M(A,N)] < Cwy(A N,
where

9—(d/2+7)1i—3'l

AN) = —— .
) = R 2 v

2) A matrizc M(X\,X') belongs to M¥™ (m € R) if M = DMD
with M € M” and DA\, N') = 20™/2 5y /.

For operators, we have the corresponding classes.

Definition 2.2. An operator A belongs to OP (M™™) if its matrix
My x = (A(Yr) | ar) in the “Littlewood-Paley” wavelet basis belongs
to M-,

The following Proposition shows that the class of symbols consid-
ered here is related to the class of matrices just defined. Therefore
let

(48) d(m,7y) = min{[’y]—kl,%}.

Proposition 2.1. If the symbol o satisfies HA (m,y), then A €
OP (M®™) for all § < 6(m, 7).

The following theorem asserts a kind of symbolic calculus for the
operators we consider.

Theorem 2.1. If A satisfies HAS (m,~), A=t belongs to OP (M®>~™),
for all 6 < §(m, ).

We now prove Proposition 2.1. Let r = [y]+d + 1, 6 = d(m,~).
We know that o belongs to S;”*. Denote by My x» the entries of My,
the matrix of A in (¢)x);,>0. Since A is self-adjoint, we consider only
the case 7' > j;

My = / / o(,€) €7x (€) P () i d

=200 [ [ o(a,€) e NGO (SN 0 — k) dadg
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and thus

My = 279G =9)/2 / / RAPY
(ag) a2
i@/ 2N =NZE GO (6) W) () da dE

Since the functions (") have fast decay, there exists a K > 0 such that,
for all I € {0,1}¢ and p > 1/2,

(50) / O (2)| de < Kp
|z|>p/2d

We distinguish two more cases.

Case 1. I' 0 and 27|\ — X| < 1/2.
The function F(\, X, z,&) = o(z 4+ N, &) e!@HN =M€ gatisfies esti-
mates (6) and (7). Thus, since ¢/(*) has a vanishing integral

My =270 [ [ O 277 0,216) G0 90 (0) d dg
= 9=dU'=9)/2 //(F(/\, N, 277z, 20€) — F(A, X, 0,20€))
0 (€) p" (z) da de,
so that
|My x| < Ch 9—d(5'—7)/2

' / 277" 2|5 (1 + 271 O (€)] [ 1) (2)] do dE
<Oy 9—(d/2+e+m/2)(5'=5) gmj/29mj' /2
S Cg w(s(m,,y)()\, /\/)

Case 2. 29|\ =N |>1/2.
Let

J = 2—d(j’_j)/2 // 0_( lj’ + )\/,2j£> ei(w/2j’+)\’_)\)2j£
je|>p/2d 2

O E) ) (z) da de .
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Using (50) and hypothesis HA (m, ), we have

< Coztd =D [ 20 ©)] 190 ) dadg
|lz|>p/2d
< ¢ 24" =0/ 24mi =
if p > 1/2. With p = 27'| X' — A| we obtain

9—d(j'—j)/2+mj O gml+i))? 9—(d/2+m/2+7)(j' —j)
= Uy

< - -
|J| = 04 2r]’|)\/ _ )\|7’ (2]|)\/ — )\|)T

The result will be achieved if we get a similar bound for

M)\ A = 2_d(j’_j)/2 // O'( xt’ + )\/’2j€>ei($/2j’+)\’—)\)215
’ ol <2 N —Al/2d N2
(€)1 (2) du dé .

In fact there exists a coordinate direction, say the k** one, such that

1
Ak = Akl > = [N = Al
d
Integrating by parts r times in the direction k, we get

My = 2-dG'=3)/2

// ei(m/zj"")\'—)\)zfg
j]<29'| A~ A|/2d (z 23‘(“7’“ FN )\k>>

27’

g (o (55 2€) B0 (©) ) (@) do de

In the domain of integration, |zj/27 4+ A, — Ag| > |(A — X)/(2d)| so
that

9—d(i'—35)/2

(27[A = X"

] e (o (4 302€) 000 o)
9—d(j'—3)/2

27’
<C : omJ ()| d
=S A+ 2= N /'wl (@)] do

9 (d/2+m/2)(5' )
(27]A = N])r

|My x| < Cs

<O, omj/29mj' /2
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Observe that if 2/ |[A—\'| < 1/2 and I’ = 0 we have necessarily j' = j = 0
and thus |k +1/2 — k'| < 1/2, which gives A = X’; hence Proposition
2.1.

2.2. Construction of the wavelets.

In all this subsection we suppose that HAS (m, ) holds and we
will construct the basis (®y) under this hypothesis. We define @) =
A~Y2(4y), where we can use for instance Kato’s formula to define

A—1/2
2 [ dt
a2 o
), tld+ A

The fact that the (®,) form an orthonormal basis of Hy is just an
algebraic computation since the definition of A=1/2 is such that A~1/2
is a positive selfadjoint operator satisfying A=1/20 A=1/2 = A~1,

Let us recall that a family of functions (fy)a is a system of §-
vaguelettes if and only if the matrix of the family in any wavelet basis
(with regularity strictly larger than 6) belongs to M?, see [30].

Proposition 2.2. We have ®5 = 2-™9/2(, where ¢\ are d-vaguelettes
for every 6 < d(m, 7).

Let us sketch the proof of Proposition 2.2. Let ¢ > 0. We define
H (t) as the completion of D(R?) for the norm

lullZr ey = ((F*Id + A)u |u).

Lemma 2.1. Wavelets are an unconditional basis of H(t) and the
following norm equivalences (uniform in t) hold

(51) lallzzcey ~ NullZrm + € llulg ~ D |UAIP63
A

where Uy are the wavelet coefficients of u and 0y = /2 4+ 2™m7,

The first equivalence is nothing but the asumption H1 on A, and
the second comes from the wavelet characterization of H* (see [30]).
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Proposition 2.3. The following decomposition holds
t’Id+ M = D'ND’,

where D' is diagonal on the L2-orthonormal (Littlewood-Paley) wavelet
basis, D' = Diag(0y) and for all § < §(m,v), N and Nt belongs to
M (uniformly in t).

Let us admit this proposition for now and see why Proposition 2.2
is a consequence of Proposition 2.3. Using the definition of A=/2, we
have the following estimate for the matrix coefficients of A—1/2

_ 1
M2 < 2 / S S
| AN | \/m| ( HW )

where w(\, N, t) = N;i,. But for every § < d(m,~) the Proposition
2.3 gives
lwA N )] < Cws(AN),

uniformly in ¢ (see the definition of ws(A, \’) in Definition 2.1). Thus

1
+2mi/t2  2md’

M2 < Cws(A N /
| A |— 5( ) 0 \/t2
hence

(52) |M>\ 1/2| <Cw5()\ /\/) (1+|j |)2 msup{]j}/Z

and since (I))\ = Z)‘, )\)\, @bx we have (I))\ = 2—mj/2 Z)‘/ 9)\,)\’ w)\’

where 6, x belongs to M7 for any v < d(m,~y). Hence Proposition
2.2.

We will now prove Proposition 2.3. In the following, t > 0 will be
fixed; the dependancy of the coefficients in ¢ will often be forgotten, but
all estimates will be uniform in ¢.

From Theorem 2.1 we have

(53) M = DND,

where D is diagonal, D = Diag(2™i/?), and N € M for any ' <
d(m,~y); then we get B
t’Id+ M = D'ND’,
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with o
— 2 +2mUTIZN,

Nax =
SN/ T s T

where () »1) is the Kronecker symbol. As N € M7 forally' < d(m, )
we obtain the same property for N and the first part of Proposition 2.3
is proved. We prove the second part after a study of invertibility of op-
erators in the algebra M? performed in the next subsection. Basically,
we will “freeze” the coefficients of the operator t2Id + M at the center
of the “numerical support” of the wavelets. The matrice of t?Id 4+ M in
a wavelet basis will thus be approximated by another matrix that will
be “invertible in M7 for large j’s”. We will give a precise definition of
these approximations of matrices, and this will lead to the “symbolic
calculus” result stated in Theorem 2.1. In Subsection 2.4, these general

results will be applied to the operator t?Id + M.

2.3. The “quasi-ideals” Z7.

Definition 2.3. A matriz S belongs to I° if S € M and for all € > 0
exists J such that j > J or j' > J implies

|S)\7>\I| S 8&)5()\, )\/) .

REMARK. Suppose that M € M? and 6’ < 6. Then M € 7% if for all
g, C' > 0, there exists J such that if j or 5’ > J,

(54) |j—4'|<Cand k277 — k27| < €277 implies |My x| < e.

In fact if j and j' are small, there is nothing to prove, and if either
|7 — 4| or |k279 — k'277| is large, the result holds because ws(\, ') <
ewsr (A, A).

Lemma 2.2. If S € Z° and M € M?® then for all 8 < 6, SM € 1%
and MS € T° .

Note that Z? is not an ideal in the algebra M?. The above lemma
shows that it shares the same property as ideals if we are ready to admit
an arbitrary small loss on the value of 4.

Let o

dist(A, N) = [j — 5] + A — X,
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which gives a distance on A. We can now sketch the proof of this
lemma. We know that SM € M?°. If A and X are distant (|5 — j'| large
or |k/27 — k' /27| large) then ws(A, \') < e wy (A, ') hence the result in
that case.

Suppose now that A and A are close; if j is small, we have nothing
to prove. If j (and thus j') is large

|[SM x| = ‘ E S My x
AI/

< ews(A ) ws(V,N)
AII
< C€w5()\, )\,) .

Hence the lemma in this case. The proof for M .S is the same.

The importance of Z° comes from the following Proposition which
shows that Z° will play a role similar to compact perturbations of in-
vertible operators.

Proposition 2.4. Suppose that M and M~ belong to M° and that S
belongs to I°. If M + S is invertible on 12 then (M + S)~t € M? and
forall ' <6, M+ S)"1 —M-1eT’.

PROOF OF PROPOSITION 2.4. The first step is to reduce the proposition
to the case where Sy x» = 01if j > J or 5/ > J. Let S the restriction of
Q to indexes (A, \') such that j > J or 5/ > J. The norm of S in Z°
can be made arbitrarily small by choosing J large enough. The set of
invertible elements in an algebra being open, M + S will be invertible
if J is large enough, hence the reduction that we claimed. We suppose
now Sy x =01if j > J or j/ > J. We have

M+S=M(Id+ M~'S)

and
(Id—-M18)t=1d+ M 'SId- M9,
Let E be the restriction of M~! to the indexes (A, \') such that j < .J
and j/ < J, and E) »» = 0 elsewhere. Then, one easily checks that
Id—ES is invertible, and that S (Id — M~1S)"! =Q (Id — ES)~L.
The fact that Id—ES belongs to M? is equivalent to
C

Id—F <
(55) |( S)AJ\ | = |1 +dist()\, )\/)|d+5 ?
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for all j,5' < J. The set of indexes we consider is a subset of Z% x
[0,...,J]. If it were a subset of Z, a symbolic calculus result (see
[21]) would show that (55) and the [2-inversibility of (Id — E'S) imply
that estimate (55) holds for the invert of Id—FES, hence that (Id —
ES)™1) € MY since all other non diagonal entries of this matrix vanish.
Actually, one checks by inspection that theorem of [21] also holds in the
d-dimensional case.
Thus (M + S)~1 € M°. Actually

M+S) ' —Mt=M1S(1d-ES) ‘M1

and since S € Z%, Lemma 2.2 implies that (M + S)~! — M~! € 7% for
all &' < 0.

Corollary 2.1. Suppose that P € M?° and is selfadjoint positive and
invertible on 2. If there exists Q € M° such that PQ —1d € I° then

PlteM and Pl_Qe 7 , for all ' < 4.

Proor. Let J > 0 be given. By hypothesis PQ) = Id + R + S where
Ryx =0ifj>Jorj >Jande=|S|m» can be choosen arbitrarily
small if J is large enough. Let I; be the operator

{(IJ)A)\IZI, 1f)\:/\’andj§J,
(IJ))H)\I = 0, else.
For 0 > 0 we consider A (B+01;) = Id+R+60PI;+S. First note that if

6 is large enough R+Id+0AI” is invertible on [2 because, decomposing
the matrices according to their action on j < J and j > J, we can write

(P P . R 0
r=(m n) = (5 1)
Thus
. R/—i—Id—f—gPl 0
v nvops, = (IR0,

Since P is selfadjoint positive invertible, P; has the same property, and

1P < (1Pl and (I (1P
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Thus choosing 0 large enough, Id+ R’ +6P; is invertible, and, using the
same argument as in the proof of Proposition 2.4, its inverse belongs to
M?.

The inverse of Id + R + 0PI is

< (Id+ R+ 6P;)~1 0)
—0P5(Id+ R +60P)~! 1d/

For a fixed 0, the norms of Id+ R+ 6P1; and of its inverse are bounded
indenpendantly of J. Choosing J large enough (which can be done
independantly of the choice of ), ¢ (= ||S]||) can be arbitrarily small,
and thus Id + R + 0PI, + S is invertible in /2.

Applying Proposition 2.4, we see that P(Q + 61;) is invertible in
M?®. The same property holds for P because P~ = (Q + 01;) (P(Q +
9[]))_1.

Furthermore P~ —(Q+61I;) € I% , for all ' < § and since I € T°,
we see that P~ — Q € Z°, for all & < 4.

2.4. Application of the Quasi-ideals.

We first end the proof of Proposition 2.3.
Recall that N is the matrix

—  ((FPId + M)y | Par) L2
0,0

AN =
and let

Pa = (0x0x) 7" < (82 + (X, €))9a | )L
Qan = 0x00 (12 + (N, €) n | a2 -

Lemma 2.3. Under hypothesis HA (m, ) the matrices P and @) belong
to MY for~" < d(m,7).

PROOF. As before we suppose 0 < j < j'. If [ —j'| > 2, PAx =0
because of the supports of the 1. If [j —j/| <2 and |\ - N | < C277,

L+ 82+ ™ . _aij2o—ai' /2|7 ( & &S
|PA’A'|§/1+t2+2jm2 2 ‘w(ﬁﬂ‘w(za”)‘dggc'
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If |j — /| <2 and 27|\ — \'| is large,

[ ro(NE) T € FA=AE o—dj/2 o—dj' /2
PMA'—/W‘”@)‘”(W)@ 2

and integrating by parts in a chosen direction as above,

P B 1
AN — ()\l . )\;)r 2(j+j')d/29>\9)\’
EN7( €
P q
S /8&0()\,5)35,(¢<§)w<2j’))dg’
ptg=r
so that
[Py x| < ¢ Z / (1+JE)m P27 d¢
R PSS NJY prq=r” €1<2787/3
and finally
C
P < =
[Pl < (29|A = N|)r

Hence Lemma 2.3 for P. The proof for () is similar.

Lemma 2.4. The matrizx N — P belongs to 77 and PQ* —1d belongs
to IV for any v < 6(m,7y).

PROOF. By symmetry we can suppose j < j';

— 1
N-P ;=
( Jax 020

/ (0(2,€) — 3 (A, €)) D (€) €7 P (@) dar de

Using the hypothesis HA (m, ),

_ C - , .
= Poant < g [l =R sy
9)\9)\1
[ip(€277) 2972 [y (27w — k)| dw dE
C -1 - -1
<~ 9—€j 9d(i—j')/2
— 0,0

- / / (1+ 29[€)™+ | (€)
o — 27 (A= X)| 2° [ (x)| der
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and, because of (54),

2—€j’2€’j(1 + 2mj) S Cl 2_(€—€I)j .

(N = P)x x| < 7
AU\

Thus N— P eI,
Let us now prove the second result of Lemma 2.4. We have

2 ~ ~
(PQ*))\,)\’ _ Z ((t + 0'(/\9,523\?{&)\ | 'w)\ )L

)\Il

ﬁ %,)Lz

=" 2 (2 + (A €) | ) e

(o | o ™).

. 9)\1 t2 +O'()\ f) -
-2 [z o PO D (O de.

If |7 — 4" > 2, (PQ*)a,a = 0 because the supports of @%\ and @ﬁx are
disjoint. If A = X,

OO (w,\”

(PQ* ) = /¢A AE)dE=1.

The remaining case is thus [j — j'| < 2, A # A'. Since we can suppose
that (54) holds, 6x//60y is of the order of magnitude of 1, and we have
to estimate

2 A R —
ow = [ 2@ (0 de

+o(N,§)
— 0-()‘75)_0'()\/,5) ~ —
= [ T Oy @ e,
(because of the orthogonality of the wavelets); but
A= NEH D™ 1 N[ (€
ol [ PR i ()] ()

<Clk—FK|F2E -9,
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This proves Lemma 2.4.

END OF THE PROOF OF PROPOSITION 2.3. From Lemma 2.4, NQ* —
Id € 77, for all ¥/ < 6(m,~y). From lemma 2.1, N is invertible on [2.

Using Corollary 2.1, N 'eM and N ' - Q* belongs to 77", for all
7" < d(m,~y), hence Proposition 2.3.

2.5. Properties of the ®,.

Let us check that Theorems 1.1, 1.2 and Proposition 1.2 are a direct
consequence of the results given in the previous section. We first prove

Theorem 1.1 which gives the localization and regularity of the wavelets
®,. Recall that

(I))\ = ZM)\_j\l/277b>\’ )
)\I
M2 < Cuy (A N 27w lad 2,

thus
0705 ()] < C Y wy(A,N) 27 lI 2|90 ()]
)\I
where

%y () = 24/2(0%) (272 — k).
If |s| < m/2, we have
|0°® ()| < C27m/271eDTN " g (A, N) [0°w ()]
AI

Since 0%y are vaguelettes and w, € M7, using standard calculations
explicited in [30], we deduce (18) and (19).
If |s| > m/2,

|0° ()| < C 27 (/271503
. Z2(m/2_|8|)3w7()\7 )\/) (1 + |j o ]/|) 2(m/2_|s|)j’as¢)‘ .
2\

As the matrix 2(m/2=15Diw_ (A \') belongs to MY~IsI=m/2 (20) and (21)
follow.
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As regards Theorem 1.2 we deduce from Lemma 2.4
M,\_i\'/z — (2™ 2g\ | ar) = an

where the matrix (275%(7:3)/2q, 4/) belongs to Z7 for all v/ < §(m, 7).
The inequality of Theorem 1.2 is now straightforward.

As an application of the smoothness and decay properties of the
wavelets, we now prove Proposition 1.2. We use the notation A(X 4, f)
for the random variable associated to the function f by the isomorphism
Ha — H, see (1).

On account of Theorem 1.1 the results i), ii) can be proven exactly
as in [3]. For the third result, we can use the following wavelet criterium
(see [30]) for Besov spaces: if (1x)aen is a wavelet basis of L2(R?), the
function f =}y, axtha belongs to the Besov space B, if and only

if the sequence {2j(d(1/2_‘1/p)+s)(2h:j |ax|P)}/P}; belongs to (9.
As the functions 2™7/2®, define a Riesz basis of L?(R%), see The-
orem 1.2, and satisfy wavelet localization properties, see Theorem 1.1,

we have only to show that

Z 2jq(s+d/2—d/p—m/2)( Z |~A(XA,\I/)\)|p>q/p .

j=J A€U,ja=7

with probability one. The domain U being bounded, the cardinal of
{X €U, jn =3} is of order 27% so that we get this inequality as conse-
quence of the Borel-Cantelli Lemma when s + d/2 —m/2 < 0.

2.6. Equivalence in law of X4 and X,4, .

PROOF OF PROPOSITION 1.1. Let g be the function defined in (13)
and A4 be the operator defined in (14). The symbol o4 of A, is given

by
og(x,€) = g(&) + (1 = g(£))?o(x,8) +r(x,£),

with r(z, ) a regularizing kernel. It is easy to check that o, fulfills the
conditions of HA (m, ). Moreover

01/|§|28|f(€)|2d§ < CI(A(f)|f)L2/(1+ €1%) 1F () de
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hence the following equivalences

(A | Dz ~ 104 = Gy + (G D
~ [a-genigf©rds+ [o©1i©P s

~ [asigifer .

Using the notation C'(z,y) for the kernel of an operator C, we can write
Xa, (@) = [ 470 dW ).
R

Xaw) = [ ATy awi).

where W (dy) denotes the brownian standard measure on R?.

In order to prove the equivalence of laws Law (X4, |y) = Law
(Xalv) for every bounded open subset U of R? we apply Theorem
8.6 of [32]. Therefore, we will check that

1) CU(-Tvy) = A_1|U><U(-T7y) - A;1|U><U(x7y) € H,%gz(U X U)7
ii) —1 is not an eigenvalue of Cy : Hap, — Hy,.
Let us consider the operator B defined in (15). As the function g
belongs to D(R%) we know that B is a regularizing operator
~1 —1 _ 41 —1y-1
A7 A=A (I+BA; )" = 1)

and

((I+BASH)™ =D (-1)"(BASH)".

n>0

Now if we consider the restrictions to open bounded U which are small
enough, the last serie converges and the operator A=! — A;l is of
Hilbert-Schmidt type with a spectral radius less than 1, so that condi-
tion ii) is satisfied.

For the first condition, it is sufficient to show that

(=AY (=AY C(2,y) € L (R* @ RY).
But, as before
(—A)/ (=AY C (2, y)
= Y (M2 AT (BAT) (- A) (w,y)

n>1



ELLIPTIC GAUSSIAN RANDOM PROCESSES 57

which converges in L?(U x U) for U small enough, since A is an
operator of order —m and B is regularizing.

Finally we obtain the equivalence of laws for every bounded open
subset U of R?, by decomposing U in a finite number of small enough
open subsets.

2.7. Quadratic variations.
In this paragraph, we will prove Lemma 1.2. For this purpose, we

will study some quadratic variations related to wavelets.
For y € R and s € N?, |s| = [, we define

T—Y

. 1
) =lmsup \/Zm B (2) — 00 (1))

where 6,(h) =1if @ < 1 and d,(h) = y/log (1/h) if @« = 1. If n is the
integer defined by 27" < |z — y| < 217" we deduce from (18)

a) for j < mn,

Z |0°®x(z) — 0°DA(y)|* < C |w — y[? 220707

b) for j > n,

D [9*@a(x) — 9*@a(y)|* < C 27,

Summing up these inequalities for j > 0 yields
>_10°0x(2) = 0" Pa(y)[* < C (o nlz —y|* + 272,
A
with g, = n (respectively 22(1=)7) if o = 1 (respectively < 1). As
27" < o —y| < 2t7m,
cis(y)§0<oo, for all y € R%.

Let us now show that c? s 18 Holderian of order €” := ¢ — &', where ¢
and ¢’ are defined in (7). Let us distinguish two cases.



58 A. BENASSI, S. JAFFARD AND D. Roux

Casel. a < 1.
For e > 0 fixed, using as above the results of Theorem (1.1), we
have

(56) Z |88@>\(x) - 8:¢A(y)|2 S 062(1—06) ,
j<n—logy(1/e) o=yl
s _9s 2
(57) Z |8 (I))\ ('T) 82;1))\ (y)| S C€2a 7
j2n+log, (1/e) [z =yl
(58) Z |0°@a(x) = °PA(y)]? < Ce20-0)
i [z —y[*®

where in the last inequality

1 1 2
Ayme={AeA s m—logy (2) <j<ntlog (2) ly—Al>—}.

€ €
Let ¢ = 1/n; when n grows to oo the value of ¢ 4(y) is given by the
sum restricted to V. = A\Ay ,, c. Define hy by its Fourier transform

~ 1 ~
ha(§) = m Ya(§)

and observe that the estimates (18), (19) hold for hy. Then inequalities
(56), (57) and (58) hold with ®, replaced by hy. Using Theorem 1.2,
for n large enough

5 D 1107 @a(x) — 0°a(y)|* — [0°ga(x) — 0°ga(y)I|
99 AEVy e

§C€/|x_y|2a,

thus hypothesis HA (m,y) implies that for A € V,,,, . (59) holds for hy
instead of g). Thus

s _9s 2
&2 \(y) = limsup 3~ 1@ Z P

i R P

Define the function H by
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so that

[0°ha(z) — 0%ha(y)* = (0"H(w — ) = 0"H(y — ) [$a)L>

Since 9 is an orthonormal basis of L2,

2 . H 1:135 1, .’;" (5)
1. (8) = limoup P g f e e s

: : €17
= limsu /sm dg .
w0 (5) 50
We want to bound I(z,u) — I(y,u) where

1 o (uby €[
I(y,u) := IS /sm <7) (0.8 d§ .

Recalling that |s| = [, 2(I4+a) = m—d, and using the change of variable
= [ulg,

¢/l
1 =1l < [ o
oty 6/l ot ¢/lub] S e

(60)

As
(61) lo(-, &) > Ci(1+ )™
(62) lo(y, &) — 0(2,6)] < Ca(1+ €)™y — 27",

we get, using 0 < sin®(¢) < min {1, 2},

1 0o
e0) = 1) < Caly— = ([ 2 ars [ vty
0 1
<Cyly—z

and thus the ¢”-Hélder property for ¢7 .

Case 2. a = 1.
The difference with the previous case is that

Z 0°® () — 0°PA(y)?

|z — y|?

k,l
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no longer decreases (as j increases). We must replace the set A, ,, . by

1 2
and define now Vy, . = A\Ayyn,s. We can then proceed exactly as
above and obtain

63 ) =limsup Y M@ =MW 5 )

1
vy A |x_y|210g<|$_y|>

with 1 SEE
B R 2 (USY S|
I@””‘mwmaumn/“n(z>a%adé

Using again (61), (62), we see that ¢} , is Holder of order ¢”. Hence
Lemma 1.2. Let us, still in the case a = 1, consider the expression

. 1
cg,s(y) = lim sup 7= 9] \/Z
A

T—Y

T+

‘ 2

020 (2) — 20°05 (L) +0°5 (1)

Y

with y € R?, s € N*, |s| = [. Using once again the bounds for 9" ®)
(with |r| =1+ 2) given in (18), we have for n := [logy(|z — y|)]

k,l

Tr+y

2 .
) +0°0a(y)| < Cla—ylt2¥,

90, (z) — 208@(

if 7 <n, and

2

k,l

0°® (z) — 200, (LY

2 .
)+ 8S@>\(y)‘ <C27Y,

if 7 > n. Thus, after summation
3,(y) < C < o0, for all y € R?.

The required smoothness of ¢y s follows as above.
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3. Sums on the 2%-adic tree.

The key idea to prove the law of uniform modulus in the criti-
cal case a = 1 is to notice the relationship between the expression of
the process X4 decomposed on the ®,’s and sums of normal random
variable on the 2%-adic tree.

As explained in Section 1, we have to study when n = log,(|z —
y|) — oo, the following sums

0°X a(w) — 0° X a(y)]
[z —y

~ Const. Z 1c>\(:n) é)\ 5

AEAND, jr<n

see (35). But the last sum is exactly the sum of Gaussian standard
random variables on the paths of length n of a 2%-adic tree. This will
be performed after introducing some notations.

Let T be the 2%-adic tree of root * (each “father” has 2¢ children).
We denote by L the set {0,1}? and by L the set L\{(0,...,0)}. The
elements of 7 can be coded in the following manner

t=tolity---t;, with j €N, tg =%, t; € Lfori=1,...,5.

The lenght j of ¢ is denoted by |t| := j. For integers 0 < k < |t| we
write
by =totr- - tx,

so that the path from the root to ¢ is
Cy={x...,t5 ..., t}.

Let (€2, F,P) a probability space on which is defined the i.i.d. family
{&, t € T} of Gaussian standard random variables. We set

St =Y &,

seCy
Sy =max S(t).

[t|=n
Proposition 3.1. With the above notations the following limit holds

limsup& =+/2dlog2,

n—oo N
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P almost surely.

The aim of this paragraph is to prove Proposition 3.1 and to give a
corollary used in the proof of Theorem 1.3 in the critical case (o = 1).
A proof of Proposition 3.1 can be found in a recent work, see [10],
where more general trees are considered. Our proof is very different
and intends to show the production of asymptotic independent sums in
the tree, so that we the study will be reduced to the i.i.d. case.

A few more notations will be needed.

The sub-tree of index j of 7 is defined by

T,={teT :|t|<j}.
The set of leaves of 7T; is defined by
N={teT :|t|=j}.

The tree is ordered by u > t which means that ¢ € C;. The cells
(g;(t), t € T;) are defined by

Qj(t):{SE/\j : S>—t}.

We now define the Haar basis of [*(A;).
Forl € L and 0 € L, let

d
e1(0) = [ [ (6,
i=1
where £¢(0) = €o(1) = €1(0) = +1, e1(1) = —1.
Let us now define the functions ¢} . on I?(A;) by
",b; s(t) = 2d(|s|—j)/2 l{tqu(s):t;aés} El(t|s|+1) .

’

If we add to the family {@b;,s}se&j,l,leL the function 1, which is iden-
tically 2% on [%(A;) and if we set |¢| = —1, we obtain the following
result whose proof is straightforward.

Lemma 3.1. The family {wé',t}—lgtgj—l,leL is an orthonormal basis
Of l2(/\j).
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1. Upper bound.
For t,u € T let

tu = xtq1 - - -t|t|u1 T Uy
Se(u) = S(tu) = S(t),
(S1)j = max Si(u)

so that
S} =&+ Tﬂi)l({st};_l .
If E¢, denotes the expectation with respect to the law of &, we get

P(S% < 0) = (HP@; St31<9))

|t]=1
= B, (P(&+ 5, < 0)%)
SP(E S <0 (Jensen)
and by induction on j,
P(S} <0) 2P(E++& < 6)

Let n be a gaussian normal random variable and 6 = 3 (j + 1);

PS;>pU+1)<1-(1-P(m>pBVji+1)
<20 (> Byj+1)

9jd o—B%(j+1)

2+B(+1)

using a classical estimation on the gaussian tail.
Choosing 8 > v/2dlog2 , we have

Y P(S;>B(n+1) <oo

and from the Borel-Cantelli Lemma we can conclude

g
(64) limsup - < /2dlog?2,

Jj—o0 J

63
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P almost surely.

3.2. Lower bound.

Let G;(t,u) = E[S(t) S(u)] be the covariance of S on A;. In the
following lemma we give the spectral decomposition of G;. We define

2d(i—Isl) _ 1

@s 2d _ 1

Lemma 3.2. Fort,u € A; we have

(65) Gi(tu)= Y g, (6) 9], (u).
—1<]s|<g—1
leL

This lemma is a direct consequence of the obvious formula

J
Gﬂ(t7u) = Z(Sﬁkaﬁk )

k=1

where ¢, = xt1ty - -1g, and 0 is the Kroneker symbol.
Now we define the kernel Gj_l/2 (t,u) by

—1/2 _
G = S a7 el )¢t ()
_1<ls1<j—1
leL

and the random variables 7, by

n(s) =Y G7Y2(s,0)8(t), sen;.

tEN;

Lemma 3.3. The family n(s), s € A; is i.i.d. with common law

N(0,1).

The proof is immediate since in the gaussian centered case E ({n) =
0 is equivalent to the independance of £ and 7.
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Let us introduce some more notations. For x > 0 let I(z) =

[log (w)/dlog2] = [logaa(x)], j = j — () and 7j5(s) = D4eq (s 1(1)/ 3

the last expression being the arithmetic mean on g;(s) when |s| = j.
The upper bound will be obtained by proving

1
(66)  limsup —maxS(s) > v/2dlog2 —¢, for alle > 0.

j—oo J Is|=j

First , we observe that

(67) m-(s):% SN S a2yl (6, (u) S(u).

t€q;(s) WEA) |p|<i—1
leL

As Zteqj(s) @bgﬂ,(t) is equal to jsl(§|r|+1) 24(Ir1=3)/2 or to 0 according
to (r < s, r # s) or not, the expression (67) can be simplified in

i(s) =Y > eulsppn) o V22Xl (u) S(u).

UEN; r<s
leL

We consider now the decomposition 7j;(s) = 75(s) + 73 (s) with

i) = D D oDy () S(u),

u€q;(s;(.)) IEL
r<s

n(s)= D D elsyp) o 20Dyt (u) S(u)

w€N\q; (8 (o)) IEL
r<s

and j(e) = j—21(j/e). Using the same cancellation property as above,
the summation in n? can be restricted to r < s;). The following
Lemma allows us to bound [73|.

Lemma 3.4. For every € > 0 there exists a random variable N and a
constant C' such that for all s € Nj()

(68) Z Z |Oé;1/2 2d(|7“|_j)/2 wé,r(u) S(’LL)| S C(":, on {j Z N},

UEN; =3
r<s

P almost surely.
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PrOOF. Let 6 > y/2dlog2, and let N be some random variable such
that |S¥| < 0j on {N(w) < j} which we determined during proof of

the upper bound. From the inequalities |af1/27,b§-7,,(u)| < 24rl1=9) and
card {u € Aj : u = r} < 240710 we get

i)
Do D NP2 =D YL (u) S(w)| <65 282 = Ce,
k=0

UEN; =3
r<s

on {j > N(w)}. Hence Lemma 3.4.

Counsider now the following decomposition

ni(s)= > By+Cy,
V=5 ji(e)
lv]=5—21(j)

where

B, = ( >y #u,l,r>5(v)a

u€q;(v)l,r<s

Cv = Z Z llfu,l,rs'u (U),

u€q;(v)l,r<s

and ‘
Kol = ar_1/2 €l (§|r|+1) 2d(|T|_])/2 w;,r(u) :

Lemma 3.5.

lim Y B, =0,
J—00

VZSj(e)
|v|=3j—2I(3)
VES j21(5)

P almost surely.

PROOF. The summation on r is in this case reduced to 1 < s (;_g(;))-

We have
J—21(3)

STt <Y 232 < =0

TR -21(5) F=0



ELLIPTIC GAUSSIAN RANDOM PROCESSES 67

(69) ‘ Z Z Moy 1,7 < j_l .
ueq;(v) l

T=85_21(j)

As we can bound the cardinal of {v > 5 () lo| =j—=21(j)} by 92dl(1/¢)
we get when 7 — oo

A= > > e S(s4) =0,
VrSie)  u€gqy(v)
[v|=5—21(5) T=8_21(5)
VES j_a1()

P almost surely. We still have to study

R;:( - Bv>—A.
VZS (e
ol =j~21())
VES;a1(j)

R = < Z #u,l,r) < Z Sﬁj(s) (U))
u€g;(v) V=8 j(e)
r=8j 21(j) lv]=4—21(j)
! VES j-21(5)

But

and using the independance of the random variable Ss  (v) we have

85(e)
E(R?) < Cj~2. The convergence we claimed is now clear.

Lemma 3.6. The following limit holds

jll}IEO Z Co =0,

V=S ey
lv|=7—21(5)

P almost surely.

PRroOF. Using the definition of C, we can write

> Co=Qi+ Ry,
K0!
lv|=5—21(j)
UFES j21(j)
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where

R = Z Z Pt Ss s a5y (4)

UEQ;(8 5 21(5)) 8501 (j) <75
l

so that only r < S j_oi(j) are involved in ();. We can proceed as in the
preceding lemma to get lim;_, ., @; = 0, P almost surely. Now we use
the upper bound to obtain for j large

J=UJ)
Ry <OVIGI( Y eard{g;(s,) 24797%))

k=j—21(5)

(vecall |s| = j—1(j) and |y 1| < 23Ur1=9)4/2) and then R; < C\/1(5)/J,
hence the lemma.
It remains to estimate

Bj:(z > uu,z,r>5(§j_zLj)-

Lr weq;(s;_sr;)

As the summation in r is reduced to r < 5;_oy ., we get Bj = S(s;_5,;)
j(1+¢€5)/j where e; — 0.
The previous Lemmas and estimations give us

S(£j—2Lj)

n;(s) = ;

(1+13),

with limj_, T; = 0, P almost surely. and the lower bound is now a
direct consequence of the following lemma

Lemma 3.7.

limsup max |7;(s)| =+/2dlog2.

j—ooo |s|=j—Lj

PROOF. The random variables v/j 7};(s) are independant Gaussian cen-
tered and of variance 1; so that the lemma is a classical asymptotic
result, see [32] for instance.
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3.3. A corollary.

We can identify the 2%-adic tree § and D the set of dyadic points in
(0,1)%. Let ¢ be a continuous function on (0,1)%, and (&)tepy an i.id.
family of centered Gaussian random variables such that var (§;) = ¢(t).
We define the process Z; by

Zi=> &.

seCy

Let € = max;¢(g,1)« c(t)-

Proposition 3.2.

1
(70) limsup—,nTax|Zt| =t+/2dlog2,

j—oo J [t|=j

P almost surely.

ProoOF. The upper and lower bounds of the previous demonstration,

c =1, can be adapted to the present case. We need only to change the
constant of Lemma (3.7) which becomes ¢ /2 dlog 2.

4. Regularity of Elliptic Gaussian Processes.

In this part we prove Theorems 1.3 and 1.7. Recall that here m > d
(then X4 is an ordinary Gaussian process), [ € N and a € (0, 1] are the
numbers defined by (m —d)/2 = [+ «. Recall also that we can suppose
that HAS (m, ) hold.

We begin with the proof of Theorem 1.3. For the results of this
section the process X 4 is restricted to a bounded domain D. Without
loss of generality, we suppose that D = (0,1)%. We prove first the law
of the uniform modulus with [ = 0, = 1, then we study the case
[ = 0, we prove the law of iterated logarithm (local modulus), when
a =1 and also when o < 1. Finally we explain how to get the results
without restrictions on [.

As explained in Section 1, we will use the decomposition of X4 on
a wavelet orthonormal basis of H4. We introduce therefore a few more
notations. If {®y, A € A} is the wavelet basis of the Hilbert space H 4,
given by Theorem 1.1, for each f € H 4,

F=Y Hhon,  with fxi= A(f, ).

AEA
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If g denotes a strictly increasing function of N in Ry (which will be
later chosen), we define the functions f, f,, with A = (4, k,[), by

(71) fle)y=> > ®x(@) fi,

320 |z=X|<277g9(j) V7

(72) fu(z) = D @a(x) fr,

0<j<n
and in addition,
(73) Rf:f_fv Rnf=f—1Fn-

We need another operation which will perform averages. Recall that cy
is the dyadic cell with center A and side length 277. For f € L} (R%),
let

(74) F(n) = 274 / f(z) do

4.1. Law of the uniform modulus when [ =0, o = 1.

The main idea is to make reductions in order to be able to use
Lemma 3.1 and its corollary. This is done with the help of the projectors
defined above. Let X,, be the process defined by (71), (72) and define

(75) A, ={(z,y) €D xD: 2"t < |z —y|<27"}.
Let us explain the reductions we plan to do.

First reduction. We will prove

X, (z) — X,
limsup max [Xn(2) W)l
(76) n—oo (,9)€An [z — y[y/log |z — y|~!
X(x)— X
= limsup max X () W)l

n—oo (#.9)€A, |z —y|\/loglz —y|~1

P almost surely. That is,

(77) hmsup max [BnX(2) — Ra X (y)]

=0,
n—oo (2,y)€A0n |x — y|\/log |z — y|~1
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P almost surely, and

RX,(z) — RX,,
(78) limsup max [FXn (@) = BXn(y)l =0,
n—oo (z.¥)€An |x — y|y/log|x —y|~L

P almost surely.

Second reduction. In order to describe this second reduction we must
first introduge some additional notations. For n € N let us definem € N
and the set A,, C A by

_ 2" - L
(79) n:[logm], A, ={reA:jy=n}.

Now if 1 € (0,1), the integers n, and m, and the set A# are defined by
nH:[(l_u)n]v mu:[ﬂn]7 AZ:{)\EA j)‘:mﬂ}'

Denote by @),, (respectively Q) the set of dyadic cells {¢y, jx = 7}
(respectively {c#, jx =m,}). In a c#-cell there are 2"~ "»¢,,-cells.

REMARK 5.1. Let n® be the integer defined by
21,0)

log (9(n°)*n o< log (g(n° +1))?(n® 4+ 1)
n0 n%+1

(80) ,
then @ > my,, for all n > n®.

When (z,2') € Ap, (y,y') € A, and |z — y| > 27™#, the ran-
dom variables (X,,(z) — X,,(z')) and (X,,(y) — X.(y’)) are condition-
ally independent knowing o{&y, jx < no}. Now for every A € A, the

neighbourhood V() of A is defined by
(81) \/()\) = {)\, €A : jx=7x and dcy N0y # @}.

Then if X,,()) is defined as in (74), let d,()) be defined by
Xa(A) = Xa ()]

82 d,(\) =

(82) Y= s, W

Thanks to Remark 5.1, we are now in the situation of applying Propo-
sition 3.2 and the second reduction consists in proving that

1
lim sup — max d,, ()
(83) n—oo T ) €A,
Xn - Xn
= limsup max [Xn(2) )|

n—oo (z,9)EA, |$ — y| 10g |aj - y|_1 7
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P almost surely, and
1
(84) limsup — max d,(A\) =v2dCp,
n—oo N AeA,
P almost surely, with

€2 _ timsup EIEE@) = X))

epcp 1T —y?loglz —y[7t "
|lz—y|—0

Step 1. Proof of (84).

As we have seen, if jx = m, there is 27=™u cells of @,, in each
gy cell. Let K! be the set {1 .2 and if A € AE let i(N)
be the position in c# of the i"* cell ¢} of @, N ¢k (with the abuse
Q,Nct={ceq, : exists ¢ € ¢ and ¢ C ¢}). Let

(X,(A) — Xn(X))?

W) =E
A = o A= V]

and

20y) _ 2 '
a(N) —A}’Q\Z}z&)a (A A).

On the other hand, let us define functions {¢x (A, A'), k =1,...,n} and
random variables {ng(A), K =1,...,n} such that

(Xn(n) - X 2. (N) = 2 (N)
Py 23 > (e
< |g—r|<2-kdg(k)VE
=) NN ) k(A

k<n

Let n° be the integer of Remark 5.1. Tt is clear that {ny : jx > no} is
an i.i.d. family of Gaussian normal random variables. Furthermore,

n
D A X) = (M),
k=1
Hence, if p is fixed and n is large enough we will be in the situation
of Proposition 3.2. Therefore, for every sequence {i},>o such that
in € K,

1
lim sup — max d,,( =+ (1 —=p)2logdCp ,

n—oo N |v|=ny
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P almost surely. Let  — 0, we obtain

1
limsup — max d,,(A) > v2d Cp ,
n—oo 1 Jx=n
P almost surely. Since the upper bound is easily deduced from the one
of Proposition 3.2, we have proved (84).

Step 2. Proof of (83).
Here we must go from averages to pointwise values. Let

Xo(x) = Xaly)

|z — y|y/log |z —y[~L’

for x € ¢y, (z,y) € A,. In order to prove (83) it is enough to show
that,

1
S\ Nz, y) = - dn(A, A) —

(85) limsup max [S(\,N;z,y)]=0,
n—00 AEA,
A'ev(r)
TECH
(z,y)€An

P almost surely, but
1S(A, N2, )|

S L e (e

k<n jr=k
- T
2% |r—A|<g(k)VE

_gnd / A(@r(y,;__n@r(y)> dy/> ¢

On the other hand,

/ (@, («) — @, (2)) da’ — / (@,(y) — B, (y)) dy/

CX CX

_ c(znd / D20, (A, N) (da, dz) +€> ,
e

for C' > 0. Denote by A, this quantity; using Theorem 1.1,

|Ar| <C2" 2(d/2—m/2+2)r 9—2n _ CQ(d/2—m/2—1)n .
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Thanks to a result proved in [3] we have

Z |A,| <4n,

28| A—r|<g(k)VE

if n is large enough. So

IS\ N5 2,y)| <20 2" E VE 2k 9d/2=m/2=1)n
mn
k<n

if n is large enough. Then (83) follows.

Step 3. Proof of (76).
It is sufficient to prove (77) and (78). Let us begin by (78). Taking
into account that |¢,| < v/2+/r if |r| is large enough, and that

1 1
2 G e ’
mawwﬁ(+|D g(k)VE

(78) becomes

IRX,(s) — RX,( <1§5 1

Ix—MngM—y|1 n <= g(k)’

but with a correct choice of function g we can deduce (78).
To prove (77) we use the same method as above. For § > 0 using
again Theorem 1.1, (77) becomes

Blogn
R,X(z) - R,X 1"
| n (.Z‘) n (y)|1§ Z \/_+2_\/_2k
|z —yly/log |z —y[~
2 3 logn

< 2 4 Zpe”

<Gt
if n is large enough; in the first part of the proof of the upper bound we
have used (2.2) with |a| = 1 and with |a| = 0 in the second one, where
furthermore the inequality |« — y| < |z| + |y| has been used, hence the
factor 2.
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Conclusion. The proof of the law of the uniform modulus (30) results
then from (84), (83) and (76).

4.2. Law of the uniform modulus when [ =0, 0 < a < 1.

In the present case, the reductions we perform will lead to a Brow-
nian motion-like situation (c¢f. Introduction) or more precisely [3]-like
situation. We set £, (r) = r<.

First reduction. Let # > 0, let us introduce the integers nzﬂt =n+t
[Blogn]. We have to prove

Imsup max =V,
nooo (@w)€A,  La(lz—yl)

P almost surely, and

|R,+ X (x) — R+ X (y)|
(87) limsup max £ 2

— 0,
nsoo (z,y)EA, lo(lz —y)

P almost surely. That is to say, low and high scales have no contribution
to the result. Let

Sn(w:y) = (B, X(2) = R~ X(y)) = (B, : X(2) = R+ X(y)),

g 8

corresponding to the terms of scale between ng and ng;

n I . X —X
88)  limsup max 2@ OL g XK@ = X))
nooo @nedlalle = yl)  @pes, lallz—yl)

Y

P almost surely, is a consequence of (86) and (87).

Second reduction. The second reduction will lead to a situation where
the wavelets will be thought of as compactly supported. We have to
show that

: [Sn (@, y)| . |Sn (2, )]
limsup max = lim sup ,
n— @weds la(lz—yl)  @yea, lallz —yl)
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P almost surely, where S (x,y) is obtained by applying the operator (71)
in each variable x and y.

Third reduction. The third reduction consists in defining a sequence
of partitions (P,)n,>0 of the domain D such that if ¢ and ¢’ are two
elements of P, sufficiently far away then {S,(z,y) : (z,y) € ¢ X ¢} and
{S,(z,y) : (z,y) € ¢’ x ¢'} become independent.

The integer 7 is, as before, equal to [log (2" /g(n)y/n)]. When s > 0
let my = m/n®. Consider the subsets

An={reA:jx=mn}, A ={rcA:jy=m,}.

Looking for the cells g, and ¢ if A € A, and X € Ki respectively, we
define g5 as the cell with the same center as ¢3, with faces parallel to
the axes and with side lengths 27" (7 — ns). In these conditions, for
all s > 0, by construction we have independence between o{Sn(z,y) :
(z,y) € @3 xq3} and o{S,(z,y) : (x,y) € ¢\(x,y) X gy (z,y)} for X # X,
Jx = Jx = TNs.

Now let V() as before the set of neighbours of A\. We have to show
that

Q !/
limsup  max 15 (A M)

n— 00 j>\=ﬁ—slogﬁ 2_0”7’\/ nd10g2

(89) A'ev(n)
= limsup max M ,
n—oo (T,¥)EA, l (-Tv Yy
P almost surely, and this is a consequence of
: Sp(A,N) Su(z,y)
90 limsup  max — =0,
( ) n—oo0 jy=n—slogn 2—anvnd10g2 lcx(| y|)

(z,9)EA,

P almost surely. The proof of (90) is in every way analogous to the one
of (83). Now the method of [3] can be directly used for showing

. [Sa(X, )|
1 = y/dlog2 C
151?;1) JA—nmas}%og n 27 o—dn [y \/_ Og Do

P almost surely, and also (86), (87). For the last results we use well
known bounds for independant gaussian random variables and the in-
equalities (18), (19).
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4.3. Law of uniform “Zygmund-class”-modulus when [ = 0,
a=1.

We can proceed as in the last paragraph, using (18), (19) to restrict

the sum only to scales jx ~ log (|z — y|). Following the method of [3]
the above reductions give the result.

4.4. Law of the iterated logarithm when [ =0, a = 1.

Here we set l§2)(r) = |r|y/logr—tlogloglogr—1. To prove that for
y € D we have

. | X (z) — X(y)|
lim su =V2C(y),
vy 1) (2 — y) v

P almost surely. We consider reductions of the problem absolutely
similar to the preceding ones. We will also use the well known result of
Levy-Kinchin,

: 1 -
(91) hﬂsip \/W‘kz_:l §k‘ =V2,
P almost surely, where (¢, £ € N) is an i.i.d. sequence of Gaussian
normal random variables.

Hence, using the modulus /2 (p) in place of I1(r) = |r|log(r—1) it is
possible to prove an inequality analogous to (77) and (78), therefore an
equality similar to (76). In these conditions (83) will become

1

limsup ————( max d, (A

9 n_,oop nloglogn(AeKk(y) ( ))
92 X X

imsup max X, (2) — X, (v)]

nooo (@9)€A [ (|z — y))

where Ag(y) = {\ € Ay and 2"d(\,y) < g(n)v/n}.
Then using (91) the first member of (92) converges to /2 C(y)
almost surely.
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4.5. Law of the iterated logarithm when [ =0, 0 < a < 1.

To prove the law of the iterated logarithm we have only to show
that

X — X
(93) lim sup | (g:)r) W)l = limsu max K,
a=y Ay (o —yl) n— 00 \/logn (z,y)EA,

P almost surely, with

)gr V21og2 Cs(g)

K:2an

> (®r(2) —

n—03loglogn<k<n+ploglogn
2" |y—r|<g(k)Vk

The same reductions as above show that we can use the proof of the
same result given in [BJR] for the one dimensional case. Hence (93).

4.6. The laws of moduli when [ # 0.

In order to end the proof of Theorem 1.3 we still have to consider
the case [ # 0.

Let s be a multi-index of length [. Let us set Y(z) = 0°X(z).
Thanks to Proposition 2.1,

=Y 0r(2) &= Y Ok

A€A AEA

Let A be the elliptic operator defining the topology of the auto-reprodu-
cing Hilbert space Hy, of Y. As ) is an orthonormal basis of H,, it
follows that 6, = A~ 1/27,0)\ as 0°py = 0°A” Uz@b)\, we get A-1/2 =
9*A~1/2. So, the symbol o, of A is of degree m — 2I; it satisfies Hy-
pothesis HA (m — 2l,7). Therefore, performing the same calculus as
above we obtain the theorem in the general case.

4.7. Approximation of elliptic gaussian generalized processes.

Let us now prove Theorem 1.6 which concerns generalized Gaussian
processes. From the estimations of Theorem 1.1 we know there exists
rqg > 0 such that

(Pa(z +h) — @a(2))?

. . )
AL D (e el
0<jr<log,(h~1)
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when d =1 or d =2, and

95) i) lm Y (@r(w + h) — 2x(2))”

] BE
0<jr<log,(h~1)

.2
=ry,

if d > 3. Using these limits we can transpose the proofs we gave for the
law of the uniform modulus to get the results of Theorem 1.6. Note that
when d = 1, d = 2 then o = 1 (critical case) so that Cy = rgv/21og2.
When d > 3, « =1/2 and Cy = r./2dlog?2.

4.8. Moduli of continuity for the multifractional Brownian
motion.

We constructed a collection of wavelets wy which, because of the
decomposition (44), plays for the multifractional Brownian motion ex-
actly the same role as the ®, for Elliptic Processes. The proofs of
regularity results for the multifractional Brownian motion are similar
to [3] and we will just sketch them. We first prove “vaguelettes-type”
localization estimates for the wy defined in (43).

Proposition 4.1. We assume the function a belongs to C"(R?, (0, 1)),
supa(xz) < r, r >0, (4,1) # (0,0) and K € N. Then there exists a
constant C' (which depends on K) such that

—ja(z 1 1
(96) jw ()] < 2774 )((1+|2fx—k|)K * (1+|kI)K>

and

wa (@) — wa(y)|

ety (Plz =yl + i la(z) — o) _ jla(z) - a(y)
On <o (SRR AR )

Proor. We want to bound

A3 R ) e@—A)§ 3
_ —9o—jda/2 [ = = 05
H / gparrarz VA8 d6 =12 efa@rarz ¥ (3

Let us recall that the support of @@ is included in {£ : 27/3 < €| <
87/3}. Setting v = £/27 in the integral we get easily

)df.

|H| < ¢2770)
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If this change of variable is made after K integrations by part in a
direction where
[z = Al < dlzp — A,

we get
H< cz—j(K+a(w))|x — 7K.

From these two inequalities we deduce (96).
For the second result we write wy(z) —wyx(y) = R+ S, where

. i(z—A)E (pi(y—z)E _ 1) - ¢
_ o—jaj2 [ ¢ G (<
f=2 / @iz Y (37) ¢

and

. ()€ _ 1) g~ %A 1 . 3
_g-idz [ (€ )e Do (L
§=2 / RECIEE (|§|a<y>—a(m> )i (57) .

To give a bound for R we use |e** — 1] < |h| |¢| and proceed as in the
proof of (96), so that

2|z —y|

R| < ¢2~9a(=) : )
Bl <c (1+ 27z — k)

Now we can split S as S = S + 5o,

. (y)£_1 —1§A 1 . é—
_g-ite@a [ )¢ (€
S1=2 / € /27 ]o(@)¥d/2 (|§/zj|a<y>—a<m>_1>”” (2].)615,

i i(a(x)—a (ez(y)§ B 1) €_i€>\ N é
S, = 2-74(9i(a(z)=alw)) _ 1)/ T @p(”(g) de |

With the same integrations by part, change of variable and using the
inequality

ro@—al@) 1 - O(la(y) — a(x)|logr max {'r“(m), 'r“(y)}) ,

we obtain

Si < 2—ja,(w) j |a’('/L.) - a’(y)| ,
Sil < e 1+ DK

and then the last estimate of the Proposition holds.
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Let us now prove the law of the uniform modulus. We use the
decomposition (44) in order to estimate (B, (x + h) — By (x)). Setting
n = [logy |h|™1] (so that 27"~ < |h| < 27™), we separate the sum into
four terms 7; which correspond to the cases

1) j <n—plogn,
2) j > n+ Blogn,
3) n— Blogn < j < n+ Blogn, j(ar — a()) < dlogJ,
4) n— Blogn < j<n+ flogn, jlag —a(A)) > dlogj.

Using well known properties of an independant sequence of stan-
dard gaussian random variables as in [3], when G(1 —ag) > 1/2, we get
from (97)

lim |2|~*T; =0,
h—0

and from (96)
lim |h|_aET2 =0.
h—0

In the same way we deduce also from (97) that

lim ||~ T5 = 0.
h—0

The relevant contribution of the sum is given by Ty. Now, using the
continuity of the function Cg and proceeding as in [3], we get

B,(x) — B,
lim sup |Ba() W)l = CE\/Ev
eyee T —yl*?y/logl/|z —yl
|z—y|—0

P almost surely. The proof of the law of the iterated logarithm follows
exactly the corresponding proof for E.G.R.P. in the non-critical case.

The asymptotic self similarity of the Multifractional B.M. B, is a
straightforward application of the following Proposition. We define

1:135 -1 R
= | g PO &
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Proposition 4.2. If the function a belongs to C™(R%,(0,1)), (r > 0),
we have the following asymptotic behavior

wa (@) = Ox(z)| < cjla(z) —a(A)]

. 1 1
. 9—j min{a(z).a(A)} , _
((1 TR —k)K T+ |k|)K>

The proof is along the lines of Proposition 4.1.

5. Scaling properties for Elliptic Gaussian processes.

In this part Theorems 1.4, 1.5 and Proposition 1.3 are proved. Re-
call that we want to study the local scaling properties for Elliptic Gaus-
sian processes. They will be connected them with scaling properties of
the associated symbols or wavelets. Consider a point o in R? which re-
mains fixed for the whole paragraph. The whole-scale Littlewood-Paley
basis (of L?) is denoted by {t,},eca, where A = Z x Z¢ x L.

Let s be a symbol on R*. We define when it makes sense the
function g3 by its Fourier transform

gi(8) = ——X

5.1. Scaling properties for elliptic symbols.

We suppose here that the symbol o fullfills hypotheses HA (m, ).
We consider only the case m =d+2a, 0 < a < 1.
For p > 0 we set

o (x, &) =o(xo+ 2,8), o0 (z,§) = p™o™® (px,%) :

Using the scaling properties of {5}, we have

oo

(98) 95" () = p~ g5 (p),

if p =277 Ap) =2797P(k+1/2) = pA. The extension to p positive
real is obvious.
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Consequently, when (§x)xea is an i.i.d. standard gaussian family,
we get

P> (957 (@277) — 957 (0))n
(99) x>0 . N
=3 (9501 (@) = 95011y ()6 -

Ja=0

This gives the following equality in law

p=® Z (957 (x272) — g37°(0))éx
(100) 720

Lemma 5.1. With the above notations, the convergence and the limit
of o° (x,&) when p — 0T is independant of z. In case of convergence,
the limit function 0 satisfies, for all & and r > 0,

(101) 0(r&) =r"0(8),
and also, for all £,
(102) clg™ < 10(9] < ClE™,

where ¢,C are the ellipticity constants given by hypothesis HA (m, )
for the symbol o.

ProOF. We know from HA (m,y) that
m+€'
Pm‘a(x0+px7§)_U($07§>‘§K0m(1+@) |px|67
p p p

with & > &’ > 0. This is bounded by K (p + |£])™ 1 |z|5p==¢" = o (p).
The first assertion of the Lemma is now clear. The homogeneity prop-
erty of the limit function is classical. And the last inequalities are
deduced from

clf]™ <o(z,) <CK™, ¢l =R,
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which are part of our hypothesis.

5.2. Local scaling for processes.

We define the scaling operators R, , when o < 1, L, when oo =1
by

Rop(1) = {022 D00

L(f) = 1 f(xo+p-) — fa(wo) .

V1og (1/7) p

We suppose here that the symbol o fullfills hypotheses HA (m, ), H1.
We consider A = op (o) and X the gaussian process associated with.
According to Proposition 1.2 we can write

Xy =) & (),

AEA

Y

with &) i.i.d. standard gaussian. We complete the family with &,
Ja < 0 keeping the i.i.d. property valid.
We say that the symbol o satisfies hypothesis H(zg) when

lim 07°(0,§) = 0(§), for almost every ¢ € R,
p—0+

In this case we set

AEA

We can now state convergence in law ((d)-lim) and equality in law (@)
for the locally scaled processes.

Lemma 5.2. We suppose that the symbol o of the E.G.P. X fullfills
HA (m,v), H(xzg) and HAS (m,v). If a < 1,

(103) (d)- lim Ry, X =Y,

p—0+

and for all p > 0,

(104) Ra,Y Yy
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If o = 1, there exists a gaussian vector G on R? such that

(105) (d)- lim L,X = (d)- lim L,Y = (G |z).

p—0+ p—0t

Proor. Case a < 1. Let us give first the idea of the proof. We
approximate

RapX = p~* > (Da(wo +p-) — Pa(w0)) x
a0

by
p=° Z (957 (p+) — g5 (0)) &x -

But as far as the laws are concerned we know from (100) that the
renormalization of the above process is equivalent to a shift on the
scales. We obtain

(d) a0 o0
Ry pX ~ Z (gu () — gu (0)) §u -
Ju2log, p
As lim, ¢+ logy p = —00 and the symbol o7° converges to ¢ (by hy-

pothesis) we get (103)

(@) Tim oy X, = Y60 g8(0).
= AEA

Now let us give the technical justifications for the three steps just de-
scribed. For the first step we use the approximation of wavelets given
by the Theorem 1.3, so that

lim p~* Y (95" (pz) — g5 " (0)) €x =0,

—0t
P Jir20

uniformly on every bounded set, P almost surely.
In the second step we apply directly (100) so that

ST (6 @2 =g 0) 6D S (00 (@) — g (0)) &

x20 Ju2—p
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For the last step we use the convergence of symbols given by hypothesis
H(xp) and also Lemma 5.1. Then

oo oo

(@)- tm > (g (@) —gn” (0) &= Z (95 (=) — g5(0)) &, -

This gives the first result of the Lemma. The second one is another
direct application of the scaling result (100).

Case o = 1. The canonical basis of R? is denoted by (eq,...,eq). We
know from our construction that 9;®,(x) ~ 6(l;,1), when z — p =
(7, k,1), where § denotes the Kronecker symbol, and at the same time

1
0;® <K .
e

Then, if p — 07, using the proof that led to the uniform modulus result
in the critical case o = 1, we get

Z :1:0+p:1: @“(xo)g
I
\/log (1/p) oA

x|e;
DI R Sy
0g (1/p) 0<;j<log(1/p)

where p;(x,7) is defined by p;(x,i) = (4, k,1) if and only if [ = (-, )
and z belong to a dyadic cube g; . The end of the proof is now an
application of the Central Limit Theorem.

As an immediate consequence we can now prove Theorem 1.4, 1.5.

5.3. Local scalings for X 4.

We first prove Theorems 1.4 and 1.5.

Lemma 5.2 gives ii) implies i) for both Theorem 1.4 and Theorem
1.5. As i) implies iii) is clear, we have only to prove iii) implies ii).

Let us consider the symbols

0(¢) = liminf op° (, &), 0(¢) := lim sup o7° (, §)

p—07F p—0Tt
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and recall that they satisfy (102) (see Lemma 5.1).
In the case o < 1, we deduce from the result (60) and the hypoth-
esis of convergence

and then to existence of the limit stated in ii).

In the case o = 1 the proof is the same, except that we use (63)
instead of (60).

We now prove Proposition 1.3.

The fact that o = oo f satisfies HA (m,y) and that Proposition 1.1
can be applied is easy to check.

As we know that

(see (38)) and also that the function f is bounded we obtain the exis-

tence of
a(pf)
d4+2a

lim sup
p—oo P

Then, with the same arguments as in the proof of Lemma 5.2, case
a < 1, we see that the process X 4 belongs to the weak L.A.S.S. class.
Moreover the process X 4 belongs to the L.A.S.S. class if and only

i 228

p—r 00 pd+2cx ’

if

exists and this, within our hypotheses, is equivalent to the existence of

lim, o f(§).
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