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Elliptic gaussian

random processes

Albert Benassi� St�ephane Ja�ard and Daniel Roux

Abstract� We study the Gaussian random �elds indexed by Rd whose
covariance is de�ned in all generality as the parametrix of an elliptic
pseudo�di�erential operator with minimal regularity asumption on the
symbol� We construct new wavelet bases adapted to these operators�
the decomposition of the �eld on this corresponding basis yields its
iterated logarithm law and its uniform modulus of continuity� We also
characterize the local scalings of the �eld in term of the properties of
the principal symbol of the pseudodi�erential operator� Similar results
are obtained for the Multi�Fractional Brownian Motion�

R�esum�e� Nous �etudions les processus al�eatoires gaussiens X index�es
par Rd tels qu�il existe un op�erateur pseudo�di��erentiel A d�ordre donn�e
admettant pour parametrix la covariance de X�

Nous construisons une base d�ondelettes adapt�ee 	a l�op�erateur A�
La d�ecomposition du processus X sur cette base conduit 	a la loi du
module de continuit�e uniforme et 	a la loi du logarithme it�er�e� Nous car�
act�erisons aussi les propri�et�es d��echelle locales du processus au moyen de
la partie principale du symbole� Nous �etendons ces r�esultats au Mou�

vement Brownien Multi�Fractionnaire qui est associ�e 	a un op�erateur
d�ordre variable�

��
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�� Introduction and statement of results�

���� Introduction�

Let X
x� be a 
centered real valued� Gaussian Random Process
de�ned on R

d � of covariance R
x� y� 
 E 
X
x�X
y��� Two isomor�
phic Hilbert spaces are associated with X� the space H de�ned by the
closure of the random variables Z 


P
�iX
ti� for the scalar product


Z jT � 
 E 
Z T � and the Reproducing Kernel Hilbert Space 
R�K�H�S��
H composed of the functions which can be written


�� fZ
t� 
 E 
X
t�Z� �

with Z � H� the scalar product in H is


fZ � fY �H 
 E 
Z Y � �

By Riesz�s representation theorem� we can de�ne a self�adjoint positive
operator A � H � H �� the dual of H by


�� 
f� g�H 
 hA
f� j gi�H��H� �

where h � j � i�H��H� means the 
H �� H� duality�
Of particular signi�cance is the case where the norm in H is equiv�

alent with the norm of one of the Sobolev spaces Hs or of the homoge�
neous spaces �Hs 
in this last case H is de�ned by additional conditions�
for instance by vanishing conditions at the origin�� We will call Elliptic
Gaussian Random Processes the processes such that

C�kfk��Hs � 
A
f� j f�L� � C�kfk�Hs �

which is an ellipticity asumption on the operator A 
we borrow this
terminology from Guyon ���� where it covers a similar idea�� These
norm estimates imply that the operator is everywhere of order �s� We
will show later that the techniques we introduce allow also to study
the Multifractional Brownian Motion� a case where the order of the
operator is a function of x�

We specify the setting by requiring A to be a pseudodi�erential
operator� and we will make some limited regularity asumptions on its
symbol �
x� ��� Since theoretically all the information on X is contained
in the operator A� we want to investigate in details the correspondence
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between the properties of X and A� Some points are classical� for
instance X has the Markov �eld property if and only if A is di�erential�
X has stationary increments if and only if the symbol �
x� �� does not
depend on x 
the norm in H is then shift�invariant��

In this work� we will mainly study two properties of the process�

�� local self�similarity�

�� regularity of the sample paths� looking for exact constants in
the laws of local and uniform moduli of continuity�

Let us recall that a process X is said to be selfsimilar of order �
at the origin if� for all � � ��


�� Law f���X
� x�� x � R
dg 
 Law fX
x�� x � Rdg �

For instance� the Fractional Brownian Motion of order � is selfsimilar

of order �� at the origin� Dobrushin in ���� gives a complete charac�
terization of selfsimilar gaussian �elds with stationary increments� and
it follows from ���� that the exact scaling law 
�� can hold only for very
speci�c processes� The renormalisation operators R�

x��r are de�ned by

R�
x���

X
x� 

�

��

X
x� � � x��X
x���

and� by de�nition� a process X is locally asymptotically self�similar


L�A�S�S�� of order � � 
�� �� at x� if R�
x���

X has a non trivial limit in
law when ����

The case � 
 � requires a di�erent renormalisation formula� see

���� and the corresponding processes will be called locally asymptoti�

cally critical processes 
L�A�C���
Regularity properties for Gaussian processes have been considered

in full generality in ����� In the general case the uniform and local
moduli of continuity are known only up to a multiplicative constant� For
a large class of stationary increments processes Kono in ���� and Marcus
in ���� obtain the exact constants in laws of the moduli� but these cases
do not include in the elliptic setting the critical order s�d	� � N � One
of our purposes is to solve completely this problem 
Theorem ���� in
the general elliptic pseudodi�erential setting�

One of the main ideas behind the results we will describe is that
the local properties of an elliptic gaussian process are contained in the
principal part of the symbol associated with the operator A� Let us
illustrate this idea on a very simple example�
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Let W be the one dimensional Brownian motion issued from ��
The corresponding operator A� is the second derivative� whose sym�
bol ��
x� �� is j�j�� The fact that �� is an homogeneous function of
� independent of x implies that W is selfsimilar of degree �	�� The
Orstein�Uhlenbeck process V is the solution of the stochastic di�eren�
tial equation dV 
 �q V dt� dW � One easily checks that the R�K�H�S�
of this process is exactly the Sobolev space H� so that the correspond�
ing operator is A 
 q�Id� 
�	
x� of symbol �
x� �� 
 j�j� � q�� Since
the modi�cation of the symbol bears on low order terms only� for every
bounded open subset U of R� Law 
V jU � � Law 
W jU � 
the two pro�
cesses restricted to U are locally undistinguishable on one realization��
see ����� This has two more consequences�

�� The Orstein�Uhlenbeck process V will satisfy the following local
scaling property at any point t

lim
����

Law
nV 
t � � u�� V 
t�

����
� u � R

o

 LawW �

and we observe that the symbol of the �asymptotic process� is the
�principal part� of ��

�� The uniform modulus of continuity and the iterated logarithm
law 
the local modulus of continuity� of V and W are the same�

���� The Model�

In this paper we consider triples 
A�HA� XA� constituted by

	 An elliptic symetric positive pseudodi�erential operator A de�
rived from a symbol � � Rd 
 R

d � R by the usual formula


�� 
Af�
x� 

�


���d��

Z
eix��
x� �� �f
�� d� �

where �f is the Fourier transform of f � We will use the notation A 

Op
���

	 A Hilbert space HA whose scalar product is given by the gener�
alized Dirichlet form

A
f� g� 


Z
A
f�
x� �g
x� dx �
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de�ned at least for f� g � D� with D 
 D
Rd��

	 A gaussian centered process XA with HA as Reproducing Kernel
Hilbert Space 
R�K�H�S��� see ����� The covariance function r of XA

r
x� y� 
 E 
XA
x�XA
y�� �

is the kernel of A�� 
de�ned on appropriate spaces� and a parametrix
of the operator A�

Let us now de�ne a class of symbols and state some precise asump�
tions for the symbols � we use�

De�nition ���� A symbol � de�ned on R
d 
 R

dnf�g belongs to Smn �

m � R� n � N if�

�� for any multi�index s with length jsj 
 s� � � � �� sd � n� exists
Cs such that


�� j
s��
x� ��j � Cs 
� � j�j�m�jsj � for � �
 � �

�� there exists � � �� � � such that


�� j�
x� ��� �
y� ��j � C 
� � j�j�m���jx� yj� �

Note that these properties are not the minimal asumptions which
imply continuity of the operator between Sobolev spaces 
see ���� for
such conditions�� But they are the minimal regularity asumptions im�
plying that the symbol behaves �locally as if it were constant in x at
high frequencies�� a fact we will need to characterize the local scaling
properties of the process X�

Hypothesis HA 
m� 
�� Let m � � and 
 � �� A 
 Op 
�� satis�es
hypothesis HA 
m� 
� if

	 � � Sm��	�d�� �

	 there exists c � � such that

c j�jm � �
x� �� �

	 There exist C� and C� � � such that

C�

Z
j�jm j �f
��j� d� � 
A
f� j f�L� � C�

Z

� � j�j�m j �f
��j� d� �



�� A� Benassi� S� Jaffard and D� Roux

Remarks� a� The last inequalities can be rewritten as

C�kfk��Hm�� � 
A
f� j f�L� � C�kfk�Hm�� �

b� The hypothesis HA 
m� 
� is related to the existence of a dual
process for X 
see ���� or ������

Hypothesis HAS 
m� 
�� We say HAS 
m� 
� is satis�ed when there
exists c � �� such that

c 
� � j�jm� � �
x� �� � if � �
 �

and

A
f� j f�L� 
 kfk�Hm�� �

The model under Hypothesis HAS 
m� 
� when m � d� Let us
suppose m � d and HAS 
m� 
� holds for the symbol �� Let HA 

clA
D�� the closure of D 
 D
Rd� with respect to the inner product A�
Then Hm�� � HA � L� � H �

A and A�� � H �
A � HA can be written

using the kernel theorem as

A��f
x� 


Z
r
x� y� f
y� dy �

with r a continuous kernel on 
Rd��� As r is symetric and of positive
type we know 
see ����� that there exists a centered gaussian process
XA with covariance function r� The triple 
A�HA� XA� satis�es the
conditions we ask for our model�

The model under Hypothesis HA 
m� 
� when m � d� Let us now
suppose only HA 
m� 
� holds� As the operator A may be non�inversible�
a de�nition of HA requires more care� In ��� Bourdaud gives a dilation
invariant realization of the homogeneous Sobolev space �Hm��� Similar
ideas will be used here� Let us start with the case that turns out to be
the most important for us� for it leads to processes which are limits in
law of local renormalisations�

Suppose that m � d 
 � 
l � �� � � with l an integer and � �

�� ��� Let �
�� 
 j�jmS�
�	j�j�� A 
 Op 
��� where the function S is
continuous on the unit sphere of Rd and takes only positive values� In
this case we set H 
 clA
D�� with

D� 

n
� � D � D	�
�� 
 �� if j�j � m� d

�

o
�
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Let W be a gaussian white noise on Rd� The gaussian process Xx is
de�ned by


�� Xx 


Z
expl
i x �� ��
��

d �W 
��p
�
��

�

where expl
y� 
 ey �P��k�l y
k	k � For every � � L� let

f

x� 


Z
expl
i x �� ��
��

d�p
�
��

�

The following result shows that 
A�H�X� full�lls our conditions�

Lemma ���� The symbol � satis�es HA 
m� 
�� The Hilbert space H
is the R�K�H�S� of the gaussian process X and we have

H 
 ff
 � � � L�g �
��

A
f
� � f
�� 
 
�� j���L� �
���

As this lemma can be deduced from results of ���� we only sketch the
proof� It is easy to check that ff
� � � L�g is a Hilbert space with A as
inner product and that 
��� holds� We can also notice that for � � D�

A
f
� �� 
 

p
� �f
 j

p
� ���L� 
 
 �� j p� ���L� �

Therefore if A
f
� �� 
 �� for all � � D�� we get �� 
 �� and then
f
 
 �� This shows that D� is dense in H and thus 
�� holds� It
remains to prove that H is the R�K�H�S� of X� i�e� for all x we have

f

x� 
 A
Kx� f
� �

where Kx
y� 
 E 
XxXy� is the covariance function of the process X�
Since Kx
y� 
 fkx � where

�kx
�� 

expl
�i x ��
j�jm��S
�	j�j� �

thus

A
Kx� f
� 

�

��
��� expl
�i x ��
j�jm��S
�	j�j�

�
L�


 f

x� �
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Remarks� When S
�� � � and l 
 �� X is the d�dimensional Fractional
Brownian motion of order ��

If � 
 �� the integral 
�� does not de�ne a process any longer 
to
study this case� we would have to split the integral�� This is coher�

ent with the facts that in this case �H l���d�� has no dilation invariant
realization 
see ���� and that a di�erent normalization is required for
Elliptic Gaussian Processes of critical order � l � d 
l � N� to have a
local asymptotic scaling law�

Finally one should notice that other spaces HA can be associated
with a single operator A 
 Op 
��� But the associated processes are lo�
cally the same� For example if Hypothesis HAS 
m� 
� holds� de�ne HA


respectively HA��� equal to clA
D� 
respectively clA
D��� and denote
by XA� XA�� the associated processes� For any open bounded subset
U � Rdnf�g it is easy to see 
think of the brownian motion and bridge�
that the laws of the restricted processes are equivalent� that is


��� Law 
XA��jU � � Law 
XAjU � �

Convention� From now on we suppose the triple 
A�HA� XA� is given
and satis�es the conditions of our model and� unless otherwise speci�ed�
Hypothesis HA 
m� 
��

��	� Outline of the method�

The method we will use in order to obtain the modulus of continu�
ity and the local scaling laws of the elliptic processes is the following�

a� For an operator A satisfying HAS 
m� 
� we will construct in
Section � an orthonormal wavelet basis !� of HA indexed by the dyadic
cubes� and such that each !� is localized near the corresponding dyadic
cube 
precise localization estimates are stated in Theorem ��� of Section
����� Using the canonical isomorphism between H and HA we get


��� XA
x� 

X
�

��!� �

where the �� are independant normalized centered Gaussian� In Section
�� the local properties of the process XA will be deduced from this
decomposition�
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b� In the general case HA 
m� 
� we will perform a modi�cation
of the symbol at low frequencies in order to obtain a new process for
which the stronger asumption HAS 
m� 
� holds� and such that the two
processes have the same local properties� This will be true because low
frequency modi�cations do not alter such properties as local regularity
or asymptotic scaling� Let us state the modi�cation and prove this
result� Let g be a nonnegative function in D
Rn� such that supp 
g� �
B
�� ��� and


��� g
�� 
 � � if j�j � � �

Let G be the operator of convolution with �g and set


��� Ag 
 
Id�G�A 
Id�G� � G �

Clearly� if A is selfadjoint positive� so is Ag� XA� XAg
will denote the

associated gaussian elliptic processes�

Proposition ���� The operator Ag satis�es HAS 
m� 
� and for any

bounded open subset U of Rd such that � �� U

Law 
XAjU � � Law 
XAg
jU � �

Proof of Proposition ���� The symbol �g of Ag is given by

�g
x� �� 
 g
�� � 
�� g
�����
x� �� � r
x� �� �

with r
x� �� a regularizing kernel� It is easy to check that �g ful�lls the
conditions of HA 
m� 
��

C�

Z
j�j�sj �f
��j� d� � 
A
f� j f�L� � C�

Z

� � j�j�s�j �f
��j� d� �

The conditions for HAS 
m� 
� are satis�ed because


Ag
f� j f�L� 
 k
Id�G�fk��Hs � 
G
f� j f�L�



Z


�� g
��� j�j�sj �f
��j� d� �

Z
g
�� j �f
��j� d�



Z


� � j�j��sj �f
��j� d� �
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Using 
��� we can assume that the processes are starting from �� i�e�
the related R�K�H�S� are the closure of D� for A and Ag� The local
equivalence result follows from ���� Theorem ���� if we check that

i� CU 
x� y� �
 A��jU�U 
x� y��A��g jU�U 
x� y� � H��
Ag


U 
 U��

ii� �� is not an eigenvalue of CU � HAg
� HAg

�

Let us consider the operator B


�"� B �
 A� Ag 
 GAG�AG�GA� G �

As the function g belongs to D
Rd � we know that B is a regularizing
operator�

A�� � A��g 
 A��g 

I � BA��g ��� � I�

and

I � BA��g ��� 


X
n��


���n
BA��g �n �

Now if we consider the restrictions to open bounded U which are small
enough� the last series converges and the operator A�� � A��g is of
Hilbert�Schmidt type with a spectral radius less than �� so that condi�
tion ii� is satis�ed�

For the �rst condition� it is su#cient to show that


�$�m�

x 
�$�m�


y C
x� y� � L�
loc
R

d � R
d� �

But� as before


�$�m�

x 
�$�m�


y C
x� y�



X
n��


���n
�$�m�

x A��g 
BA��g �n
�$�m�


x 
x� y� �

which converges in L�
U 
 U� for U small enough� since A��g is an
operator of order �m and B is regularizing�

Finally we obtain the equivalence of laws for every bounded open
subset U of Rdnf�g� by decomposing U in a �nite number of small
enough open subsets�



Elliptic gaussian random processes ��

��
� Wavelets and pseudodi�erential operators�

We will construct a wavelet basis associated with an operator Ag

satisfying HAS 
m� 
�� We obtain this basis by applying Ag
���� on the

�Littlewood�Paley� orthonormal wavelet basis of L� de�ned by Lemari�e
and Meyer 
see ������ Let us recall some properties of this basis�

��
��� The �Littlewood�Paley
 wavelet basis�

There exists � and ��l�� l � L �
 f�� �gdnf
�� � � � � ��g� such that �� is

C� and supported in the domain j�j � ��	�� ���l� are C� with support
included in the domain ��	� � j�j � ��	�� the following translations
and dilations of these functions

�k
x� 
 �
x� k� � k � Zd �
�
�l�
j�k
x� 
 �dj����l�
�jx� k� � j � N � k � Zd� l � L �

are an orthonormal basis of L�
Rd � 
notice that the family f��l�
j�k � j �

Z� k � Zd� l � Lg is also an orthonormal basis of L�
Rd ���

In order to simplify the notations� let �
���������
��k �
 �k� k � Zd and

�� �
 �
�l�
j�k� � 
 
j� k� l� � Z
 Z

d 
 L � f�g 
 Z
d 
 f
�� � � � � ��g �

For a given � 
 
j� k� l�� the integer j will be often referred to as j��
and called the scale of �� By abuse� � will often be identi�ed with the
dyadic point %� 
 k ��j � l ��j�� and the corresponding dyadic cube
c� 
 %� � ��� ��d ��j��� Let & be the set of ��s such that j � �� and &
for the whole set 
j � Z��

The correlation 
or Gram� matrix of a 
S
Rd � � S �
Rd�� continu�
ous operator A is


��� MA
�� ��� 
 
A
��� j����L� � �� �� � & �
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��
��� Wavelet orthonormal basis associated with a pseudo�

di�erential operator�

Let us de�ne


��� !� 
 A����g 
��� � � � & �

We can restate the norm equivalence of Proposition ��� as follows�

A
����
g is of the form DMD with M bounded on l� and D
�� ��� 


��jm������� � The important result that we will prove at the beginning
of Part � is decay of the entries of M � we will show that this matrix
is �almost diagonal� 
in a sense that will be made precise in De�nition
����� This will easily imply that the !� have the following �wavelet�like�
decay properties and have an �asymptotic behavior� for large j�s�

Theorem ���� Let m� 
 � �� suppose that Hypothesis HA 
m� 
� holds
and that Ag satis�es HAS 
m� 
�� The f!�g�	� de�ned by 
��� form an

orthonormal basis of HAg
with the following smoothness and localization

properties�

If jsj � �m	���


��� j
s!�
x�j � C� �j�d���jsj�m���


� � �j jx� �j�d�� �

If jsj 
 �m	���


��� j
s!�
x�� 
s!�
y�j � C� jx� yjm���jsj �jd��


� � �jjx� �j�d�� �

If �m	�� � jsj � �
 � m	���


��� j
s!�
x�j � C� �j�d���jsj�m���


� � �j jx� �j�d���m���jsj �

If jsj 
 �
 � m	���


��� j
s!�
x�� 
s!�
y�j � C� jx� yj��m���jsj �jd��


� � �j jx� �j�d �

The following theorem which describes the asymptotic behaviour
of the wavelets when j � �� shows that in this limit the wavelets are
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the same as wavelets associated with a Selfsimilar Gaussian Process�
thus it will allow us to derive the local scaling properties of the process
X�

Theorem ���� The hypotheses are the same as in Theorem ���� Let


g�� be de�ned by its Fourier transform as follows

�g�
�� 
 
�
�� ������� ���
�� �

Then for all �� there exists J such that� for s � m	� and j � J

j
sg�
x�� 
s!�
x�j � � ��d���jsj�m���j


� � �jjx� �j�d�� �

������ Remarks� Let us now give a few remarks concerning the kind
of symbols we consider here and the wavelets we use� First we used
nonnegative scales 
j � �� for the following reason� If we used all the

�
�l�
j�k even for negative and arbitrary large j 
and no �k� we would not

be able to decompose symbols that depend on x 
and then in Part ��
to analyse stochastic processes that have nonstationary increments�� In
fact when the symbol depends on x and thus presents oscillation at 
say�
scale ��j� � its action on a wavelet indexed by �j � �j� does not give
a �vaguelette� at scale ��j � the function we obtain oscillates too much�

Thus the matrix of A in a basis composed of all the �
�l�
j�k 
including

negative and arbitrary large j� would not be �almost diagonal��
On the other hand� since we have to use the �
x� k� we may not

allow the symbol to vanish or to have a pole at �� otherwise it would
introduce a singularity at ��

���� Regularity of the Elliptic Gaussian Processes�

In this part m � d� 
l� �� � N
��� �� is de�ned by


���
m� d

�

 l � � �

Before giving the uniform modulus and the iterated logarithm law of
the processes XA� let us start with a �global� regularity result which
is a straightforward consequence of the wavelet decomposition of XAg

�
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under hypothesis HA 
m� 
� for A� Let us recall that a function f
belongs to the Besov space Bs

p�q if

jf js�p�q �
 kfkLp �
X
jrj��s	

j
rf j	�p�q �� �

where

�p
g� t� 
 sup
jyj�t

k
g
 � � y�� g
 � ��kLp �

� 
 s� �s� �

jgjq	�p�q 


Z �

�

��p
g� t�
t	

�q dt
t
�

with the usual modi�cation when q 
 �� Let us also recall that Sobolev
and H'older spaces are given by Hs 
 Bs

��� and Cs 
 Bs
����

������ Regularity of the process XAg
�

Proposition ���� If the symbol � satis�es HA 
m� 
�� then�

i� for each ! � HAg
� Ag
XAg

�!� is a well de�ned random variables

of law N 
�� k!kAg
��

ii� for each bounded open set U � R
d �

XAg

x� 


X
�	�

!�
x�Ag
XAg
�!�� �

with uniform convergence of the serie and its derivatives up to order l
on U �

iii� The above series converges locally in Bs
p�q when s � l � � P

almost surely�

In dimension d 
 � and for the fractionnal brownian motion of
order �� assertion ii� of this proposition is proved in ����� Note that
Besov spaces have also been used by D� Donoho and his collaborators

see ����� as a particularly convenient setting for wavelet based methods
in statistics�
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������ Laws of uniform and local moduli of continuity�

Let us de�ne di�s
x� y� 

x� y� � Rd 
 R
d � i 
 �� �� by

d���s
x� y� 
 E �

sXA
x�� 
sXA
y���� �
���

d���s
x� y� 
 E

h�

sXA
x�� � 
sXA

�x � y

�

�
� 
sXA
y�

��i
�
���

Recall that m� d 
 � 
l � ��� l � N � � � � � �� For any multi�index s
of lenght jsj 
 l we de�ne�

�� when � 
 ��


�"� c��s
y� 
 lim sup
x�y

d��s
x� y�

jx� yj

and


��� c��s
y� 
 lim sup
x�y

d��s
x� y�

jx� yjplog 
jx� yj��� �

�� When � � ��


��� c��s
y� 
 lim sup
x�y

d��s
x� y�

jx� yj� �

Lemma ���� Under the hypothesis HA 
m� 
� and if jsj 
 l� the func�

tions c��s� c��s belong to C��������
Rd ��

Let us now set� when D is a bounded open subset of Rd �

ci�s�D 
 sup
y	D

ci�s
y� �

We can express the main result of this paragraph� where we use the
notation� for r small enough

L
r� 
 log
��

r

�
� Lk
r� 
 log � � � � � log

��

r

�
� k times �
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Theorem ��	� Under the hypothesis HA 
m� 
�� if m � d� s � N
d �

jsj 
 l�

i� law of the uniform modulus�

	 when � � ��


��� lim sup
x�y	D�jx�yj��

j
sXA
x�� 
sXA
y�j
jx� yj�pL
jx� yj��� 


p
� d c��s�D �

P almost everywhere�

	 when � 
 ��


��� lim sup
x�y	D�jx�yj��

���
sXA
x�� � 
sXA

�x � y

�

�
� 
sXA
y�

���
jx� yjpL
jx� yj���



p

� d c��s�D �

P almost everywhere�

	 and


��� lim sup
x�y	D�jx�yj��

j
sXA
x�� 
sXA
y�j
jx� yjL
jx� yj��� 


p
� d c��s�D �

P almost everywhere�

ii� Law of the iterated logarithm�

	 when � � �� for all y � Rd �


��� lim sup
x�y

j
sXA
x�� 
sXA
y�j
jx� yj�pL�
jx� yj��� 


p
� c��s
y� �

P almost everywhere�

	 when � 
 �� for all y � Rd �


��� lim sup
x�y

j
sXA
x�� 
sXA
y�j
jx� yjpL
jx� yj���pL

jx� yj��� 


p
� c��s
y� �

P almost everywhere�
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Note that the law of the iterated logarithm may be used to identify
the �principal part� of the symbol� when it exists� If we assume that


��� �
x� �� 
 ax

� �

j�j
�
j�jm � o 
j�jm� �

we will obtain later� see 
���� in the case � � �� the very explicit formula


��� c���s
y� 
 sup
jvj��

Z
Rd

�
sin�
v �	��

j�jd��� ay
�	j�j� d� �


��� shows the precise relationship between the �principal part� of the
symbol � and the exact local modulus of continuity of the process X�

Theorem ��� is proved in Section �� The main idea is �rst to get the
results for the modi�ed process XAg

� using its wavelet decomposition

see Theorem ���� and then to transfer the regularity properties of XAg

to XA� as a consequence of Proposition ����

������ Remarks� When comparing 
��� with 
���� or 
��� with 
����
or 
��� with 
��� it appears that the case � 
 � is critical� In fact this
goes back to formula 
��� which for � 
 �� jsj 
 l gives


s!�
x�� 
s!�
y� � C� jx� yj � jx� yj � � �

with C� independent of the scale j of �� Assuming !� is supported by
the dyadic cube c�� with center � and sidelenght ��j � we would have
when l 
 �� � 
 �� jy � xj � ��n


�"�
j
sX
x�� 
sX
y�j

jx� yj � C
X

�	�
E�j��n
�fc��x�g �� �


��� and 
�"� will be obtained by studying large deviations for sums of
normal random variable indexed by a tree in Section ��

On the other hand� formula 
��� implies that in the case � � � the
uniform and local moduli can be studied with sums restricted to the
scales j near log�
jx� yj�� so that the proofs of 
��� and 
��� are close
to the proofs of ����



�� A� Benassi� S� Jaffard and D� Roux

����
� Comparison with known results�

When the symbol � is a function of � only� and m � d the process
XA has stationary increments� Let us then de�ne �
h� near the origin
by


��� �
jx� yj� 
 ds
x� y� �

Kono in ���� assumes that �� is concave and increasing near �� Formula

��� shows that� even in the stationary case� none of these two condi�
tions needs to be satis�ed� In dimension �� Marcus ���� Theorem ����
obtains the modulus of continuity under wider asumptions than Kono�
which however do not include the critical case � 
 � that we consider�

The results of Lemma ��� imply the hypotheses of Theorem ����
in ��"� which asserts the existence of a bounded random variable K
��
such that if � � �

j
sXA
x�� 
sXA
y�j � K
�� jx� yj� log
� �

jx� yj
����

�

P almost surely� and when � 
 �

j
sXA
x�� 
sXA
y�j � K
�� jx� yj log
� �

jx� yj
�
�

P almost surely� which is clearly less accurate than Theorem ��� in the
elliptic context� If A 


Qd
i��
�$ � c�i �� the results of Proposition ���

are proved in ���� If A is di�erential with C� coe#cients� it is proved
in ��� that

P 
XA � H l�d��
loc � 
 � � for all � � � �

���� Local scaling properties of Elliptic Gaussian Processes�

In this paragraph� we suppose that the symbol � satis�es HA

m� 
�� We show that the process XA satis�es some local scaling prop�
erty when its symbol � admits a �principal part� 
which is positively
homogeneous��

We will distinguish the two cases � � � and � 
 � 
l and � are
de�ned by 
�����
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De�nition ���� Suppose that � � � � �� The E�G�P� XA is Asymp�

totically Self Similar 
L�A�S�S�� of order 
�� l� if


��� lim
����

Law
n 
�$�l��XA
x � � u�� 
�$�l��XA
x�

��
� u � Rd

o
�

exists for every x and is not trivial� XA is Weakly Asymptotically

Self Similar 
W�L�A�S�S�� of order 
�� l� if for every x� we can �nd a

sequence 
�n� �� �� such that


�$�l��XA
x � �nu�� 
�$�l��XA
x�

��n
� u � Rd �

converges in law to a non trivial limit�

When m 
 d � ��� � � � � � 
l 
 �� the following theorem
characterizes the L�A�S�S� property� The general case is similar� after l
di�erentiations�

Theorem ��
� If the symbol � satis�es HA 
d� ��� 
� for � � � � ��
the following assertions are equivalent�

i� XA is a L�A�S�S� of order 
�� ���

ii� For all x� � Rd �


��� lim
���

�
x�� � ��

�d���

 �x�
�� �

exists� � is an 
d�����homogeneous non trivial symbol and � � Sd���
��� �

iii� For all x� � Rd �

lim
h���

E

h 
XA
x� � hu��XA
x���
�

h��

i

 c�x�
u� �

exists and the function cx� is an ��homogeneous non trivial function�

We now consider the critical case � 
 ��

De�nition ��	� Suppose that � 
 �� The E�G�P� XA belongs to the

weakly Locally Critical 
W�L�C�� class of order l if for every x� we can
�nd a sequence 
�n� which goes to �� such that


�$�l��XA
x � �nu�� 
�$�l��XA
x�

�n
p

log
�	�n�
� u � Rd �
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converges in law to the process f
G� u�� u � R
dg with G a gaussian

random variable on R
d � It belongs to the Locally Critical 
L�C�� class

of order 
�� l� if for every x there exists G a gaussian random variable

on R
d such that


���
lim
����

Law
n 
�$�l��XA
x � � u�� 
�$�l��XA
x�

�
p

log
�	��
� u � Rd

o

 Law f
G� u�� u � Rdg �

for every x�

The following theorem gives a characterization of the Locally Crit�
ical class�

Theorem ���� If the symbol � satis�es HA 
d � �� 
�� the following

assertions are equivalent�

i� XA is Locally Critical of order ��

ii� For all x� � Rd �


��� lim
���

�
x�� � ��

�d��

 �x�
�� �

exists and �x� is an 
d� ���homogeneous and non trivial symbol which

belongs to Sd��
��� �

iii� For all x� � Rd

lim
h���

E

h 
XA
x � hu��XA
x���

h� log
�	h�

i

 c�x�
u� �

exists and the function cx� is an ��homogeneous non trivial function�

Condition 
��� or 
��� means that the symbol has the following
asymptotic behavior

�
x� �� 
 h
x�F
� �

j�j
�
j�jm � o 
j�jm� �

it excludes symbols which have some slow oscillations at high frequen�
cies like

�
x� �� 
 j�jm
� � sin�
log
� � j�j���� �
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such symbols give rise to processes which belongs only to the above
weak classes� More precisely� let us consider a symbol � such that


��� �
�� 
 ��
�� f
�� �

where the symbol �� is supposed to satisfy one of the equivalent condi�
tions of Theorem ���� Let X� be the gaussian process associated to ���
wich belongs to the L�A�S�S� class of order 
�� ���

Proposition ��	� Let f be an even and C� function on Rd such that

the operator of symbol �	f is positive de�nite� �	f belongs to L�
loc and�

for all s � Nd there exists Cs � � such that

j
sf
��j � Cs
� � j�j��jsj �

The gaussian process associated with � in 
��� belongs to the W�L�A�
S�S� class of order 
�� ��� Moreover X belongs to the L�A�S�S� class of
order 
�� �� if and only if limj�j�� f
�� exists and does not vanish�

The proofs of the local scaling properties are given in Part "�

���� Complements�

We now consider two interesting cases that do not �t strictly speak�
ing in the framework of Elliptic Gaussian Random Fields 
E�G�R�F���
but can nonetheless be studied by the methods introduced in this pa�
per� First we will consider the Generalized Gaussian Processes where
the order of A is less than d	�� in that case the corresponding process
is no more a function but a distribution� The second one is a Fractional

Brownian motion of nonconstant order that we will de�ne in 
���� It
will not be an E�G�R�F� but we will see that there is also a wavelet
basis �adapted� to this process so that the technique we developed will
immediately yield its regularity and scaling properties�

������ Extension to Generalized Gaussian Processes�

For the sake of simplicity we will consider only two cases which
are important in applications� the ��	f noise� which is used in signal
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analysis 
see ����� and the �free �eld� which is used in quantum �eld
theory 
see ��� and �����

We consider in dimension � the operator A 
 
�$����� the process
XA is no longer a random function� but a random distribution� i�e� a
Generalized Gaussian Process 
G�G�P�� which is called the �	f noise

see ������ because of its spectral function�

Let now d � �� q � R
� and A 
 �$ � q�� The process associated

with A is by de�nition the free �eld of mass q�
In both situations� let us de�ne a �truncated process� as follows

Xn
x� 

X

��E�j��n
!�
x� �� �

with E 
 
�� ��d�

Theorem ���� For every d � N� there exists Cd � � such that�

�� if d 
 � or ��

lim sup
n��

�

n
sup
x	E

jXn
x�j 
 Cd � P almost everywhere �

�� if d � ��

lim sup
n��

r
��n�d���

n
sup
x	E

jXn
x�j 
 Cd � P almost everywhere�

This result� which will be proved in Section "� shows the rate of
divergence in the space of bounded functions of the processes Xn which
are approximations of X in the distribution sense� If d 
 � � we see
that Xn diverges very slowly� This shows why the fact that X is not a
function but a distribution is hard to detect on numerical simulations�
see ����� In �eld theory ��� the di#culties of the renormalization increase
with d 
If d 
 �� jXnj� diverges like

p
n �
n�� which shows one of the

reasons of the di#culty of P!
 theory�� We must also mention the
connected work ��� where the renormalisation of sums like

Xn
x� 

X
j��n

��
x� �� �j�jd�� �

is studied when the �� are Rademacher or Gaussian random variables
��� and ��
x� is the indicatrix function of a dyadic cell ��
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������ Multifractional Brownian Motion�

Let us state the de�nition we adopt for the Multifractional Brow�

nian Motion which extends 
���

De�nition ��
� Let a � Cr
Rd � 
�� ��� for some r � sup a
x� and W
a white noise� The Multifractional Brownian motion of order a
x� is

de�ned by


��� Ba
x� 


Z
eix� � �

j�ja�x��d�� d
�W 
�� �

The function C � Rd � R de�ned by

C�
x� 


Z
�� cos�
x ��

j�jd��a�x�
d� �

belongs to Cr
Rd � and

E 
jBa
x � h�� Ba
x�j�� 
 C�
x� jhj�a�x� � o
h� �

In order to obtain a wavelet decomposition of Ba� one uses the follow�
ing decomposition of the white noise on the Fourier transforms of the
Littlewood�Paley wavelet basis

dW 
�� 

X

�� ���
�� d� �

where the �� are i�i�d� standard gaussian� if


��� ��
x� 


Z
eix� � �

j�ja�x��d��
���
�� d� �

then


��� Ba
x� 

X

�� ��
x�

and the following result will be a consequence of �vaguelettes� decay
estimates for the ��� In this part we de�ne aE 
 infx	E a
x�� CE 

supx	a���aE�
E C
x�� when E is a bounded open set�
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Theorem ���� Let E be an open bounded set� The Multifractional

Brownian motion Ba satis�es the following law of the uniform modulus

of continuity


�"� lim sup
x�y	E�jx�yj��

jBa
x�� Ba
y�j
jx� yjaEplog 
�	jx� yj� 
 CE

p
� d �

P almost everywhere� and the law of the iterated logarithm� for all y �
R
d


��� lim sup
x�y

jBa
x�� Ba
y�j
jx� yja�y�plog log 
�	jx� yj� 


p
� C
x� �

P almost everywhere� Furthermore� Ba is Asymptotically Self Similar

of order a
x�� at x�� i�e�


��� lim
����

Law
nB
x� � � u�� B
x��

�a�x��
� u � Rd

o

 Law fBa�x��g �

The reader can check that the same analysis would work after
introducing in 
��� a directional dependancy S
���

�� Wavelets and Elliptic Operators�

In this part we will construct the wavelet basis of HA and prove
Theorems ��� and ��� under regularity hypotheses on the symbol �� We
will also prove the equivalence in law stated in Proposition ���� This
opens the way to Theorem ��� 
proved in Section �� which gives the
uniform and local moduli of continuity of the process�

���� Wavelet matrices of pseudodi�erential elliptic operators�

The basic idea here is not to work directly on the operator itself
but rather on the in�nite matrix of its coe#cients on a wavelet basis�
We will show that the matrices of the pseudodi�erential operators we
consider and of their inverses are of the form DMD where D is a
diagonal matrix in a wavelet basis whereas M and M�� are �almost
diagonal� in the following sense 
see ������
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De�nition ���� �� A matrix M
�� ��� belongs to the algebra M� if

jM
�� ���j � C ��
�� ��� �

where

��
�� ��� 

���d�����jj�j

�j


� � jj � j�j��
� � �inf�j�j��j�� ��j�d�� �

�� A matrix M
�� ��� belongs to M��m 
m � R� if M 
 DMD
with M � M�

and D
�� ��� 
 �jm�� ����� �

For operators� we have the corresponding classes�

De�nition ���� An operator A belongs to OP 
M��m� if its matrix

M���� 
 hA
��� j���i in the �Littlewood�Paley� wavelet basis belongs

to M��m�

The following Proposition shows that the class of symbols consid�
ered here is related to the class of matrices just de�ned� Therefore
let


��� �
m� 
� �
 min
n

�
� � ��
m

�

o
�

Proposition ���� If the symbol � satis�es HA 
m� 
�� then A �
OP 
M
�m�� for all � � �
m� 
��

The following theorem asserts a kind of symbolic calculus for the
operators we consider�

Theorem ���� If A satis�es HAS 
m� 
�� A�� belongs to OP 
M
��m��
for all � � �
m� 
��

We now prove Proposition ���� Let r 
 �
� � d � �� � 
 �
m� 
��
We know that � belongs to Smr � Denote by M���� the entries of MA�
the matrix of A in 
���j���� Since A is self�adjoint� we consider only
the case j� � j�

M���� 


ZZ
�
x� �� eix� ���
�����
x� dx d�


 �d�j
��j���

ZZ
�
x� �� ei�x���� ���l�

� �

�j

�
��l��
�j

�

x� k�� dx d�
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and thus


���
M���� 
 ��d�j

��j���
ZZ

�
� x

�j�
� ��� �j�

�
� ei�x��j

�

�������j� ���l� 
����l��
x� dx d� �

Since the functions ��l� have fast decay� there exists a K � � such that�
for all l � f�� �gd and � � �	��


"��

Z
jxj����d

j��l�
x�j dx � K��r �

We distinguish two more cases�

Case �� l� �
 � and �j j�� ��j � �	��
The function F 
�� ��� x� �� 
 �
x � ��� �� ei�x��

����� satis�es esti�
mates 
�� and 
��� Thus� since ��l�� has a vanishing integral

M���� 
 ��d�j
��j���

ZZ
F 
�� ��� ��j

�

x� �j�� ���l�
����l��
x� dx d�


 ��d�j
��j���

ZZ

F 
�� ��� ��j

�

x� �j��� F 
�� ��� �� �j���

� ���l�
����l��
x� dx d� �

so that

jM���� j � C� ��d�j
��j���

�
ZZ

j��j�xj�
� � �j j�j�m��j ���l�
��j j��l��
x�j dx d�

� C� ���d�����m����j��j��mj���mj���

� C� �
�m���
�� �
���

Case �� �j j�� ��j � �	��
Let

J �
 ��d�j
��j���

ZZ
jxj����d

�
� x

�j�
� ��� �j�

�
ei�x��

j��������j�

� ���l�
����l��
x� dx d� �
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Using 
"�� and hypothesis HA 
m� 
�� we have

jJ j � C
 ��d�j
��j�

ZZ
jxj����d


� � �j j�j�mj ���l�
��j j��l��
x�j dx d�

� C
 ��d�j
��j����mj ��r

if � � �	�� With � 
 �j
� j�� � �j we obtain

jJ j � C

��d�j

��j����mj

�rj� j�� � �jr 
 C
 �m�j�j���� ���d���m���r��j��j�


�jj�� � �j�r �

The result will be achieved if we get a similar bound for

%M���� 
 ��d�j
��j���

ZZ
jxj��j� j����j��d

�
� x

�j�
� ��� �j�

�
ei�x��

j��������j�

� ���l�
����l��
x� dx d� �

In fact there exists a coordinate direction� say the kth one� such that

j��k � �kj � �

d
j�� � �j �

Integrating by parts r times in the direction k� we get

%M���� 
 ��d�j
��j���

�
ZZ

jxj��j� j����j��d

ei�x��
j��������j��

i �j
� xk

�j�
� ��k � �k

��r
� 
r�k

�
�
� x

�j�
���� �j�

�
���l�
��

�
��l��
x� dx d� �

In the domain of integration� jxk	�j
�

� ��k � �kj � j
� � ���	
�d�j so
that

j %M���� j � C�
��d�j

��j���


�j j�� ��j�r

�
ZZ ���
r�k��� x

�j�
� ��� �j�

�
���l�
��

�
��l��
x�

��� dx d�
� C�

��d�j
��j���


� � �j j�� ��j�r �mj

Z
j�l�
x�j dx

� C� �mj���mj��� ���d���m����j��j�


�j j�� ��j�r �
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Observe that if �j j����j � �	� and l� 
 � we have necessarily j� 
 j 
 �
and thus jk � l	� � k�j � �	�� which gives � 
 ��� hence Proposition
����

���� Construction of the wavelets�

In all this subsection we suppose that HAS 
m� 
� holds and we
will construct the basis 
!�� under this hypothesis� We de�ne !� 

A����
���� where we can use for instance Kato�s formula to de�ne
A����

A���� 

�

�

Z �

�

dt

t�Id � A
�

The fact that the 
!�� form an orthonormal basis of HA is just an
algebraic computation since the de�nition of A���� is such that A����

is a positive selfadjoint operator satisfying A���� �A���� 
 A���
Let us recall that a family of functions 
f��� is a system of ��

vaguelettes if and only if the matrix of the family in any wavelet basis

with regularity strictly larger than �� belongs to M
� see �����

Proposition ���� We have !� 
 ��mj���� where �� are ��vaguelettes
for every � � �
m� 
��

Let us sketch the proof of Proposition ���� Let t � �� We de�ne
H
t� as the completion of D
Rd � for the norm

kuk�H�t� 
 h
t�Id � A�u jui �

Lemma ���� Wavelets are an unconditional basis of H
t� and the

following norm equivalences 
uniform in t� hold


"�� kuk�H�t� 
 kuk�Hm � t�kuk�L� 

X
�

jU�j���� �

where U� are the wavelet coe�cients of u and �� 

p
t� � �mj�

The �rst equivalence is nothing but the asumption H� on A� and
the second comes from the wavelet characterization of Hs 
see ������



Elliptic gaussian random processes �	

Proposition ��	� The following decomposition holds

t�Id � M 
 D�ND� �

where D� is diagonal on the L��orthonormal 
Littlewood�Paley� wavelet

basis� D� 
 Diag
��� and for all � � �
m� 
�� N and N
��

belongs to

M
 
uniformly in t��

Let us admit this proposition for now and see why Proposition ���
is a consequence of Proposition ���� Using the de�nition of A����� we
have the following estimate for the matrix coe#cients of A����

jM����
���� j �

�

�

Z �

�

�p
t� � �mj

j�
�� ��� t�j �p
t� � �mj�

dt �

where �
�� ��� t� 
 N
��
���� � But for every � � �
m� 
� the Proposition

��� gives
j�
�� ��� t�j � C �

�� �

�� �

uniformly in t 
see the de�nition of �

�� �
�� in De�nition ����� Thus

jM����
���� j � C �

�� �

��
Z �

�

�p
t� � �mj

p
t� � �mj�

dt �

hence


"�� jM����
���� j � C �

�� �

�� 
� � jj � j�j���m supfj�j�g�� �

and since !� 

P

�� M
����
���� ��� � we have !� 
 ��mj��

P
�� ����� ���

where ����� belongs to M�� for any 
� � �
m� 
�� Hence Proposition
����

We will now prove Proposition ���� In the following� t � � will be
�xed� the dependancy of the coe#cients in t will often be forgotten� but
all estimates will be uniform in t�

From Theorem ��� we have


"�� M 
 DND �

where D is diagonal� D 
 Diag
�mj���� and N � M�� for any 
� �
�
m� 
�� then we get

t�Id � M 
 D�ND� �
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with

N���� 

t�������� � �m�j�j����N����p

t� � �mj
p
t� � �mj�

�

where ������� is the Kronecker symbol� As N � M�� � for all 
� � �
m� 
�

we obtain the same property for N and the �rst part of Proposition ���
is proved� We prove the second part after a study of invertibility of op�
erators in the algebra M� performed in the next subsection� Basically�
we will �freeze� the coe#cients of the operator t�Id � M at the center
of the �numerical support� of the wavelets� The matrice of t�Id �M in
a wavelet basis will thus be approximated by another matrix that will
be �invertible in M� for large j�s�� We will give a precise de�nition of
these approximations of matrices� and this will lead to the �symbolic
calculus� result stated in Theorem ���� In Subsection ���� these general
results will be applied to the operator t�Id � M �

��	� The �quasi�ideals
 I� �

De�nition ��	� A matrix S belongs to I
 if S � M
 and for all � � �
exists J such that j � J or j� � J implies

jS���� j � � �

�� �
�� �

Remark� Suppose that M � M
 and �� � �� Then M � I
� if for all
�� C � �� there exists J such that if j or j� � J �


"�� jj � j�j � C and jk ��j � k���j
� j � C ��j implies jM���� j � � �

In fact if j and j� are small� there is nothing to prove� and if either
jj � j�j or jk ��j � k���j

� j is large� the result holds because �

�� �
�� �

� �
�
�� �
���

Lemma ���� If S � I
 and M � M
 then for all �� � �� SM � I
�
and MS � I
� �

Note that I
 is not an ideal in the algebra M
� The above lemma
shows that it shares the same property as ideals if we are ready to admit
an arbitrary small loss on the value of ��

Let
dist
�� ��� 
 jj � j�j� j%�� %��j �
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which gives a distance on &� We can now sketch the proof of this
lemma� We know that SM � M
� If � and �� are distant 
jj� j�j large
or jk	�j � k�	�j

� j large� then �

�� �
�� � � �
�
�� �

�� hence the result in
that case�

Suppose now that � and �� are close� if j is small� we have nothing
to prove� If j 
and thus j�� is large

jSM���� j 

���X
���

S�����M������

���
�
X
���

� �

�� �
����

���� ���

� C ��

�� �
�� �

Hence the lemma in this case� The proof for MS is the same�

The importance of I
 comes from the following Proposition which
shows that I
 will play a role similar to compact perturbations of in�
vertible operators�

Proposition ��
� Suppose that M and M�� belong to M
 and that S
belongs to I
� If M � S is invertible on l� then 
M � S��� � M
 and

for all �� � �� 
M � S��� �M�� � I
� �

Proof of Proposition ���� The �rst step is to reduce the proposition
to the case where S���� 
 � if j � J or j� � J � Let S the restriction of
Q to indexes 
�� ��� such that j � J or j� � J � The norm of S in I

can be made arbitrarily small by choosing J large enough� The set of
invertible elements in an algebra being open� M � S will be invertible
if J is large enough� hence the reduction that we claimed� We suppose
now S���� 
 � if j � J or j� � J � We have

M � S 
 M 
Id � M��S�

and

Id�M��S��� 
 Id � M��S 
Id�M��S��� �

Let E be the restriction of M�� to the indexes 
�� ��� such that j � J
and j� � J � and E���� 
 � elsewhere� Then� one easily checks that
Id�ES is invertible� and that S 
Id�M��S��� 
 Q 
Id�ES����

The fact that Id�ES belongs to M
 is equivalent to


""� j
Id�ES����� j � C

j� � dist
�� ���jd�
 �
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for all j� j� � J � The set of indexes we consider is a subset of Zd 

��� � � � � J �� If it were a subset of Z� a symbolic calculus result 
see
����� would show that 
""� and the l��inversibility of 
Id � ES� imply
that estimate 
""� holds for the invert of Id�ES� hence that 
Id �
ES���� � M
 since all other non diagonal entries of this matrix vanish�
Actually� one checks by inspection that theorem of ���� also holds in the
d�dimensional case�

Thus 
M � S��� � M
� Actually


M � S��� �M�� 
 M��S 
Id� ES���M��

and since S � I
� Lemma ��� implies that 
M � S��� �M�� � I
� for
all �� � ��

Corollary ���� Suppose that P � M
 and is selfadjoint positive and

invertible on l�� If there exists Q � M
 such that PQ� Id � I
 then

P�� � M
 and P�� �Q � I
� � for all �� � � �

Proof� Let J � � be given� By hypothesis PQ 
 Id � R � S where
R���� 
 � if j � J or j� � J and � 
 kSkM� can be choosen arbitrarily
small if J is large enough� Let IJ be the operator

�

IJ����� 
 � � if � 
 �� and j � J �


IJ����� 
 � � else �

For � � � we consider A 
B��IJ� 
 Id�R��PIJ�S� First note that if
� is large enough R�Id��AIJ is invertible on l� because� decomposing
the matrices according to their action on j � J and j � J � we can write

P 


�
P� P


P� P


�
� R 


�
R� �
� �

�
�

Thus

Id � R � �PIJ 


�
R� � Id � �P� �

�P� Id

�
�

Since P is selfadjoint positive invertible� P� has the same property� and

kP�k � kPk and kP��� k kP��k �
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Thus choosing � large enough� Id�R���P� is invertible� and� using the
same argument as in the proof of Proposition ���� its inverse belongs to
M
�

The inverse of Id � R � �PIJ is�

Id � R� � �P��

�� �

��P�
Id � R� � �P��
�� Id

�
�

For a �xed �� the norms of Id�R��PIJ and of its inverse are bounded
indenpendantly of J � Choosing J large enough 
which can be done
independantly of the choice of ��� � 

 kSk� can be arbitrarily small�
and thus Id � R � �PIJ � S is invertible in l��

Applying Proposition ���� we see that P 
Q � �IJ� is invertible in
M
� The same property holds for P because P�� 
 
Q� �IJ� 
P 
Q�
�IJ�����

Furthermore P���
Q��IJ � � I
� � for all �� � � and since IJ � I
�
we see that P�� �Q � I
� � for all �� � ��

��
� Application of the Quasi�ideals�

We �rst end the proof of Proposition ����
Recall that N is the matrix

N���� 



t�Id � M��� j����L�

�����

and let

P���� 
 
������
�� � 

t� � �
�� ��� ��� j �����L� �

Q���� 
 �����

t
� � �
�� ����� ��� j �����L� �

Lemma ��	� Under hypothesis HA 
m� 
� the matrices P and Q belong

to M�� for 
� � �
m� 
��

Proof� As before we suppose � � j � j�� If jj � j�j � �� P���� 
 �

because of the supports of the ���� If jj � j�j � � and j�� ��j � C ��j �

jP���� j �
Z

� � t� � j�jm
� � t� � �jm

��dj����dj
���
��� ��� �

�j

���� ��� ��� �

�j�

���� d� � C �
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If jj � j�j � � and �j j�� ��j is large�

P���� 


Z
t� � �
%�� ��

�����
��
� �

�j

�
��
� �

�j�

�
ei����

��� ��dj�� ��dj
��� d�

and integrating by parts in a chosen direction as above�

P���� 

�


�l � ��l�r ��j�j��d�������

�
X

p�q�r

Z

p�l�
�� �� 
q�l

�
�
� �

�j

�
��
� �

�j�

��
d� �

so that

jP���� j � C

j�� ��jr �����
X

p�q�r

Z
j�j��j���



� � j�j�m�p ��qj d�

and �nally

jP���� j � C


�j j�� ��j�r �

Hence Lemma ��� for P � The proof for Q is similar�

Lemma ��
� The matrix N � P belongs to I�� and PQ� � Id belongs

to I�� for any 
� � �
m� 
��

Proof� By symmetry we can suppose j � j��


N � P ����� 

�

�����

Z

�
x� ��� �
�� ��� ���
�� eix� ���
x� dx d� �

Using the hypothesis HA 
m� 
��

j
N � P ����� j � C

�����

ZZ
jx� %�j�
� � j�j�m�����dj��

� j ��
���j�j �dj��� j�
�j
�

x� k��j dx d�
� C

�����
���j

�

�d�j�j
����

�
ZZ


� � �j j�j�m���j ��
��j

� jx� �j
�


�� ���j �� j�
x�j dx d�
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and� because of 
"���

j
N � P ����� j � C

�����
���j

�

��
�j
� � �mj� � C� ������

��j �

Thus N � P � I�� �
Let us now prove the second result of Lemma ���� We have


PQ������ 

X
���



t� � �
�� ��� ��� j ������L�

������

� �������
�

�����
��� �

t� � �
��� ��
����
�
L�



X
���

���

��


t� � �
�� ��� ��� j ������L�

�
�

�����
��� �

t� � �
��� ��
����
�
L�



���

��

Z
t� � �
�� ��

t� � �
��� ��
���
�� �����
�� d� �

If jj � j�j � �� 
PQ������ 
 � because the supports of ��� and ���� are
disjoint� If � 
 ���


PQ������ 


Z
���
�� ���
�� d� 
 � �

The remaining case is thus jj � j�j � �� � �
 ��� Since we can suppose
that 
"�� holds� ���	�� is of the order of magnitude of �� and we have
to estimate

�
����




Z
t� � �
�� ��

t� � �
��� ��
���
�� �����
�� d�




Z
�
�� ��� �
��� ��
t� � �
��� ��

���
�� ����� 
�� d� �


because of the orthogonality of the wavelets�� but

j�
����

j � C

Z j�� ��j�
� � j�j�m���


� � j�j�m
��� ���

� �

�j

���� ��� ���

� �

�j�

���� d�
� C jk � k�j� �j��

���� �
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This proves Lemma ����

End of the proof of Proposition ���� From Lemma ���� NQ� �
Id � I�� � for all 
� � �
m� 
�� From lemma ���� N is invertible on l��

Using Corollary ���� N
�� � M�� and N

�� �Q� belongs to I�� � for all

� � �
m� 
�� hence Proposition ����

���� Properties of the !��

Let us check that Theorems ���� ��� and Proposition ��� are a direct
consequence of the results given in the previous section� We �rst prove
Theorem ��� which gives the localization and regularity of the wavelets
!�� Recall that

!� 

X
��

M
����
���� ��� �

jM����
���� j � C ��
�� ��� ��m supfj�j�g�� �

thus
j
s!�
x�j � C

X
��

��
�� ��� ��m supfj�j�g��j
s���
x�j �

where

s��
x� 
 �dj��

s��
�jx� k� �

If jsj � m	�� we have

j
s!�
x�j � C ���m���j�j�jX
��

%��
�� ��� j
s���
x�j �

Since 
s�� are vaguelettes and �� � M� � using standard calculations
explicited in ����� we deduce 
��� and 
����

If jsj � m	��

j
s��
x�j � C ���m���jsj�j

�
X
��

��m���jsj�j��
�� ��� 
� � jj � j�j� ��m���jsj�j�
s�� �

As the matrix ��m���jsj�j��
�� ��� belongs to M��jsj�m�� 
��� and 
���
follow�
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As regards Theorem ��� we deduce from Lemma ���

M
����
���� � h�mj��g� j���i 
 ����� �

where the matrix 
�m sup�j�j���������� belongs to I�� for all 
� � �
m� 
��
The inequality of Theorem ��� is now straightforward�

As an application of the smoothness and decay properties of the
wavelets� we now prove Proposition ���� We use the notation A
XA� f�
for the random variable associated to the function f by the isomorphism
HA � H� see 
���

On account of Theorem ��� the results i�� ii� can be proven exactly
as in ���� For the third result� we can use the following wavelet criterium

see ����� for Besov spaces� if 
����	� is a wavelet basis of L�
Rd�� the
function f 


P
�	� ���� belongs to the Besov space Bs

p�q if and only

if the sequence f�j�d�������p��s�
Pj��j
j��jp���pgj belongs to lq�

As the functions �mj��!� de�ne a Riesz basis of L�
Rd �� see The�
orem ���� and satisfy wavelet localization properties� see Theorem ����
we have only to show that

X
j�J

�jq�s�d���d�p�m���
� X
�	U�j��j

jA
XA�(��jp
�q�p

�� �

with probability one� The domain U being bounded� the cardinal of
f� � U� j� 
 jg is of order �jd so that we get this inequality as conse�
quence of the Borel�Cantelli Lemma when s � d	��m	� � ��

���� Equivalence in law of XA and XAg
�

Proof of Proposition ���� Let g be the function de�ned in 
���
and Ag be the operator de�ned in 
���� The symbol �g of Ag is given
by

�g
x� �� 
 g
�� � 
�� g
�����
x� �� � r
x� �� �

with r
x� �� a regularizing kernel� It is easy to check that �g ful�lls the
conditions of HA 
m� 
�� Moreover

C�

Z
j�j�sj �f
��j� d� � C�
A
f� j f�L�

Z

� � j�j�s� j �f
��j� d� �
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hence the following equivalences


Ag
f� j f�L� 
 k
Id�G�fk��Hs � 
G
f� j f�L�



Z


�� g
��� j�j�sj �f
��j� d� �

Z
g
�� j �f
��j� d�



Z


� � j�j��sj �f
��j� d� �

Using the notation C
x� y� for the kernel of an operator C� we can write

XAg

x� 


Z
Rd

A����g 
x� y� dW 
y� �

XA
x� 


Z
Rd

A����
x� y� dW 
y� �

where W 
dy� denotes the brownian standard measure on R
d �

In order to prove the equivalence of laws Law 
XAg
jU � 
 Law


XAjU � for every bounded open subset U of Rd we apply Theorem
��� of ����� Therefore� we will check that

i� CU 
x� y� �
 A��jU�U 
x� y��A��g jU�U 
x� y� � H��
Ag


U 
 U��

ii� �� is not an eigenvalue of CU � HAg
� HAg

�

Let us consider the operator B de�ned in 
�"�� As the function g
belongs to D
Rd� we know that B is a regularizing operator

A�� �A��g 
 A��g 

I � BA��g ��� � I�

and


I � BA��g ��� 


X
n��


���n
BA��g �n �

Now if we consider the restrictions to open bounded U which are small
enough� the last serie converges and the operator A�� � A��g is of
Hilbert�Schmidt type with a spectral radius less than �� so that condi�
tion ii� is satis�ed�

For the �rst condition� it is su#cient to show that


�$�m�

x 
�$�m�


y C
x� y� � L�
loc
R

d � R
d� �

But� as before


�$�m�

x 
�$�m�


y C
x� y�



X
n��


���n
�$�m�

x A��g 
BA��g �n
�$�m�


x 
x� y� �
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which converges in L�
U 
 U� for U small enough� since A��g is an
operator of order �m and B is regularizing�

Finally we obtain the equivalence of laws for every bounded open
subset U of Rd � by decomposing U in a �nite number of small enough
open subsets�

���� Quadratic variations�

In this paragraph� we will prove Lemma ���� For this purpose� we
will study some quadratic variations related to wavelets�

For y � Rd and s � Nd � jsj 
 l� we de�ne

c���s
y� 
 lim sup
x�y

�

jx� yj���
jx� yj�
sX

�

j
s!�
x�� 
s!�
y�j� �

where ��
h� 
 � if � � � and ��
h� 

p

log 
�	h� if � 
 �� If n is the
integer de�ned by ��n � jx� yj � ���n we deduce from 
���

a� for j � n�

X
k�l

j
s!�
x�� 
s!�
y�j� � C jx� yj� �������j �

b� for j � n�

X
k�l

j
s!�
x�� 
s!�
y�j� � C ���j� �

Summing up these inequalities for j � � yields

X
�

j
s!�
x�� 
s!�
y�j� � C 
u��njx� yj� � ���n�� �

with u��n 
 n 
respectively �������n� if � 
 � 
respectively � ��� As
��n � jx� yj � ���n�

c���s
y� � C �� � for all y � R
d �

Let us now show that c���s is H'olderian of order ��� �
 � � ��� where �
and �� are de�ned in 
��� Let us distinguish two cases�
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Case �� � � ��
For � � � �xed� using as above the results of Theorem 
����� we

have

X
j�n�log������

j
s!�
x�� 
s!�
y�j�
jx� yj�� � C ������� �
"��

X
j�n�log������

j
s!�
x�� 
s!�
y�j�
jx� yj�� � C ��� �
"��

X
�	�y�n��

j
s!�
x�� 
s!�
y�j�
jx� yj�� � C ������� �
"��

where in the last inequality

&y�n�� 

n
� � & � n� log�

��

�

�
� j � n � log�

��

�

�
� jy � �j � ��n

�

o
�

Let � 
 �	n� when n grows to � the value of c��s
y� is given by the
sum restricted to Vy�n�� 
 &n&y�n��� De�ne h� by its Fourier transform

�h�
�� 

�p

�
y� ��
���
��

and observe that the estimates 
���� 
��� hold for h�� Then inequalities

"��� 
"�� and 
"�� hold with !� replaced by h�� Using Theorem ����
for n large enough


"��

X
�	Vy�n��

j j
s!�
x�� 
s!�
y�j� � j
sg�
x�� 
sg�
y�j�j

� C ��jx� yj�� �
thus hypothesis HA 
m� 
� implies that for � � Vy�n�� 
"�� holds for h�
instead of g�� Thus

c���s
y� 
 lim sup
x�y

X
�

j
sh�
x�� 
sh�
y�j�
jx� yj�� �

De�ne the function H by

�H
�� 

�p

�
y� ��
�
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so that

j
sh�
x�� 
sh�
y�j� 
 

sH
x� � �� 
sH
y � � � j����L� �

Since �� is an orthonormal basis of L��


���

c���s
y� 
 lim sup
x�y

�

jx� yj��
Z ���
eix� � eiy��


i��sp
�
y� ��

���� d�

 lim sup

u��

�

juj��
Z

sin�
�u�

�

� j�j�jsj
�
y� ��

d� �

We want to bound I
z� u�� I
y� u� where

I
y� u� �

�

juj��
Z

sin�
�u�

�

� j�j�jsj
�
y� ��

d� �

Recalling that jsj 
 l� �
l��� 
 m�d� and using the change of variable
� 
 juj��

jI
z� u�� I
y� u�j �
Z j�	juj jm
j�
y� �	juj��
z� �	juj�j

� j�
y� �	juj�� �
z� �	juj�j sin�
�u	�juj�
j�jd���

d� �

As

j�
 � � ��j � C�
� � j�j�m �
���

j�
y� ��� �
z� ��j � C�
� � j�j�mjy � zj��� �
���

we get� using � � sin�
t� � min f�� t�g�

jI
z� u�� I
y� u�j � C
 jy � zj���
�Z �

�

r����� dr �

Z �

�

r����� dr
�

� C
 jy � zj���

and thus the ����H'older property for c���s�

Case �� � 
 ��
The di�erence with the previous case is that

X
k�l

j
s!�
x�� 
s!�
y�j�
jx� yj��
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no longer decreases 
as j increases�� We must replace the set &y�n�� by

%&y�n�� 

n
� � & �

p
n � j � n � log�

��

�

�
� jy � �j � ��n

�

o

and de�ne now Vy�n�� 
 &n%&y�n��� We can then proceed exactly as
above and obtain


��� c���s
y� 
 lim sup
x�y

X
�

j
sh�
x�� 
sh�
y�j�

jx� yj� log
� �

jx� yj
� 
 � %I
y� u� �

with

%I
y� u� 

�

juj� log
�	juj�
Z

sin�
�u�

�

� j�j�l
�
y� ��

d� �

Using again 
���� 
���� we see that c���s is H'older of order ���� Hence
Lemma ���� Let us� still in the case � 
 �� consider the expression

c���s
y� 
 lim sup
x�y

�

jx� yj

sX
�

���
s!�
x�� � 
s!�

�x � y

�

�
�
s!�
y�

���� �
with y � R

d � s � N
d � jsj 
 l� Using once again the bounds for 
r!�


with jrj 
 l � �� given in 
���� we have for n �
 �log�
jx� yj��
X
k�l

���
s!�
x�� � 
s!�

�x � y

�

�
� 
s!�
y�

���� � C jx� yj
 ��j �

if j � n� and

X
k�l

���
s!�
x�� � 
s!�

x � y

�
� � 
s!�
y�

���� � C ���j �

if j � n� Thus� after summation

c���s
y� � C �� � for all y � R
d �

The required smoothness of c��s follows as above�
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	� Sums on the �d�adic tree�

The key idea to prove the law of uniform modulus in the criti�
cal case � 
 � is to notice the relationship between the expression of
the process XA decomposed on the !��s and sums of normal random
variable on the �d�adic tree�

As explained in Section �� we have to study when n 
 log�
jx �
yj� ��� the following sums

j
sXA
x�� 
sXA
y�j
jx� yj � Const�

X
�	�
D�j��n

�c��x� �� �

see 
�"�� But the last sum is exactly the sum of Gaussian standard
random variables on the paths of length n of a �d�adic tree� This will
be performed after introducing some notations�

Let T be the �d�adic tree of root � 
each �father� has �d children��
We denote by L the set f�� �gd and by L the set Lnf
�� � � � � ��g� The
elements of T can be coded in the following manner

t 
 t�t�t� � � � tj � with j � N � t� 
 �� ti � L for i 
 �� � � � � j �

The lenght j of t is denoted by jtj �
 j� For integers � � k � jtj we
write

t k 
 t�t� � � � tk �
so that the path from the root to t is

C�t 
 f�� � � � � t k� � � � � tg �

Let 
)�F �P� a probability space on which is de�ned the i�i�d� family
f�t� t � T g of Gaussian standard random variables� We set

S
t� 

X
s	C�

t

�s �

S�n 
 max
jtj�n

S
t� �

Proposition 	��� With the above notations the following limit holds

lim sup
n��

S�n
n



p

� d log � �



�� A� Benassi� S� Jaffard and D� Roux

P almost surely�

The aim of this paragraph is to prove Proposition ��� and to give a
corollary used in the proof of Theorem ��� in the critical case 
� 
 ���
A proof of Proposition ��� can be found in a recent work� see �����
where more general trees are considered� Our proof is very di�erent
and intends to show the production of asymptotic independent sums in
the tree� so that we the study will be reduced to the i�i�d� case�

A few more notations will be needed�
The sub�tree of index j of T is de�ned by

Tj 
 ft � T � jtj � jg �

The set of leaves of Tj is de�ned by

�j 
 ft � T � jtj 
 jg �

The tree is ordered by u � t which means that t � C�u� The cells

qj
t�� t � Tj� are de�ned by

qj
t� 
 fs � �j � s � tg �

We now de�ne the Haar basis of l�
�j��
For l � L and � � L� let

�l
�� 

dY
i��

�li
�i� �

where ��
�� 
 ��
�� 
 ��
�� 
 ��� ��
�� 
 ���
Let us now de�ne the functions �lj�s on l�
�j� by

�lj�s
t� 
 �d�jsj�j��� �ft	qj�s��t
�sg �l
tjsj��� �

If we add to the family f�lj�sgs	
j���l	L the function �� which is iden�

tically �dj on l�
�j� and if we set j�j 
 ��� we obtain the following
result whose proof is straightforward�

Lemma 	��� The family f�lj�tg���t�j���l	L is an orthonormal basis

of l�
�j��



Elliptic gaussian random processes ��

	��� Upper bound�

For t� u � T let

tu 
 �t� � � � tjtju� � � �ujuj �
St
u� 
 S
tu�� S
t� �


St�
�
j 
 max

juj�j
St
u� �

so that
S�j 
 �� � max

jtj��
fStg�j�� �

If E �� denotes the expectation with respect to the law of ��� we get

P 
S�j � �� 
 E ��

� dY
jtj��

P 
�� � 
St�
�
j�� � ��

�


 E �� 
P 
�� � S�j�� � ���
d

�

� P 
�� � S�j�� � ���
d


Jensen�

and by induction on j�

P 
S�j � �� � P 
�� � � � �� �j � ���
jd

�

Let � be a gaussian normal random variable and � 
 � 
j � ���

P 
S�j � � 
j � ��� � �� 
�� P 
� � �
p
j � ����

jd

� �jd P 
� � �
p
j � ��

� �jd e�	
��j���p

� � � 
j � ��
�

using a classical estimation on the gaussian tail�
Choosing � �

p
� d log � � we haveX
j

P 
S�j � � 
n � ��� �� �

and from the Borel�Cantelli Lemma we can conclude


��� lim sup
j��

S�j
j
�
p

� d log � �
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P almost surely�

	��� Lower bound�

Let Gj
t� u� 
 E �S
t�S
u�� be the covariance of S on �j � In the
following lemma we give the spectral decomposition of Gj � We de�ne

�s 

�d�j�jsj� � �

�d � �
�

Lemma 	��� For t� u � �j we have


�"� Gj
t� u� 

X

���jsj�j��
l	L

�s �
l
j�s
t��

l
j�s
u� �

This lemma is a direct consequence of the obvious formula

Gj
t� u� 


jX
k��

�t k�u k
�

where t k 
 � t�t� � � � tk� and � is the Kroneker symbol�

Now we de�ne the kernel G
����
j 
t� u� by

G
����
j 
t� u� 


X
���jsj�j��

l	L

�����s �lj�s
t��
l
j�s
u�

and the random variables �s by

�
s� �

X
t	�j

G
����
j 
s� t�S
t� � s � �j �

Lemma 	�	� The family �
s�� s � �j is i�i�d� with common law

N 
�� ���

The proof is immediate since in the gaussian centered case E 
��� 

� is equivalent to the independance of � and ��
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Let us introduce some more notations� For x � � let l
x� 

�log 
x�	d log �� 
 �log�d
x��� %j 
 j � l
j� and %�j
s� 


P
t	qj�s� �
t�	j�

the last expression being the arithmetic mean on qj
s� when jsj 
 %j�
The upper bound will be obtained by proving


��� lim sup
j��

�

j
max
jsj��j

S
s� �
p

� d log �� � � for all � � � �

First � we observe that


��� %�j
s� 

�

j

X
t	qj�s�

X
u	�j

X
jrj�j��
l	L

�����r �lj�r
t��
l
j�r
u�S
u� �

As
P

t	qj�s� �
l
j�r
t� is equal to j �l
s jrj��� �d�jrj�j��� or to � according

to 
r � s� r �
 s� or not� the expression 
��� can be simpli�ed in

%�j
s� 

X
u	�j

X
r�s
l	L

�l
s jrj����
����
r �d�jrj�j��� �lj�r
u�S
u� �

We consider now the decomposition %�j
s� 
 ��j 
s� � ��j 
s� with

��j 
s� 

X

u	qj�s j����

X
l	L
r�s

�����r �d�jrj�j��� �lj�r
u�S
u� �

��j 
s� 

X

u	�jnqj�s j����

X
l	L
r�s

�l
s jrj����
����
r �d�jrj�j��� �lj�r
u�S
u�

and j
�� 
 j�� l 
j	��� Using the same cancellation property as above�
the summation in ��j can be restricted to r � s j���� The following

Lemma allows us to bound j��j j�

Lemma 	�
� For every � � � there exists a random variable N and a

constant C such that for all s � �j���


���
X
u	�j

X
l	L
r�s

j�����r �d�jrj�j��� �lj�r
u�S
u�j � C � � on fj � Ng �

P almost surely�
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Proof� Let � �
p

� d log �� and let N be some random variable such
that jS�j j � �j on fN
�� � jg which we determined during proof of

the upper bound� From the inequalities j�����r �lj�r
u�j � �d�jrj�j� and

card fu � �j � u � rg � �d�j�jrj�� we get

X
u	�j

X
l	L
r�s

j�����r �d�jrj�j��� �lj�r
u�S
u�j � �j

j���X
k��

�k�d�� 
 C � �

on fj � N
��g� Hence Lemma ����

Consider now the following decomposition

��j 
s� 

X

v�s j���
jvj�j��l�j�

Bv � Cv �

where

Bv 

� X
u	qj�v�

X
l�r�s

�u�l�r

�
S
v� �

Cv 

X

u	qj�v�

X
l�r�s

�u�l�rSv
u� �

and
�u�l�r 
 �����r �l
s jrj��� �d�jrj�j��� �lj�r
u� �

Lemma 	���

lim
j��

X
v�sj���

jvj�j��l�j�
v 
�s j��l�j�

Bv 
 � �

P almost surely�

Proof� The summation on r is in this case reduced to r � s �j��l�j���
We have X

r�sj��l�j�

l

j�u�l�rj �
j��l�j�X
k��

�
�k�j�d�� � j�
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and thus


���
��� X
u	qj�v�

X
l

r�sj��l�j�

�u�l�r

��� � j�� �

As we can bound the cardinal of fv � s j���� jvj 
 j�� l 
j�g by ��dl������
we get when j ��

A �

X

v�s j���
jvj�j��l�j�
v 
�s j��l�j�

X
u	qj�v�

r�s j��l�j�

l

�u�l�r S
s j���� � � �

P almost surely� We still have to study

R �

� X

v�s j���
jvj�j��l�j�
v 
�sj��l�j�

Bv

�
�A �

But
R 


� X
u	qj�v�

r�s j��l�j�

l

�u�l�r
�� X

v�s j���
jvj�j��l�j�
v 
�s j��l�j�

Ss j���
v�
�

and using the independance of the random variable Ss j���
v� we have

E 
R�� � C j��� The convergence we claimed is now clear�

Lemma 	��� The following limit holds

lim
j��

X
v�s j���

jvj�j��l�j�

Cv 
 � �

P almost surely�

Proof� Using the de�nition of Cv we can writeX
v�s j���

jvj�j��l�j�
v 
�s j��l�j�

Cv 
 Qj � Rj �
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where
Rj 


X
u	qj�s j��l�j��

X
sj��l�j��r�s

l

�u�l�r Ss j��l�j�

u� �

so that only r � s j��l�j� are involved in Qj� We can proceed as in the
preceding lemma to get limj��Qj 
 �� P almost surely� Now we use
the upper bound to obtain for j large

Rj � C
p
l
j�

� j�l�j�X
k�j��l�j�

card fqj
s k� �
�k�j�d��g
�


recall jsj 
 j�l
j� and j�u�l�rj � �
�jrj�j�d��� and then Rj � C
p
l
j�	j�

hence the lemma�
It remains to estimate

Bj 

�X

l�r

X
u	qj�s j��Lj�

�u�l�r

�
S
s j��Lj� �

As the summation in r is reduced to r � s j��Lj � we get Bj 
 S
s j��Lj�
j 
� � �j�	j where �j � ��

The previous Lemmas and estimations give us

��j 
s� 

S
s j��Lj�

j

� � Tj� �

with limj�� Tj 
 �� P almost surely� and the lower bound is now a
direct consequence of the following lemma

Lemma 	���

lim sup
j��

max
jsj�j�Lj

j%�j
s�j 

p

� d log � �

Proof� The random variables
p
j %�j
s� are independant Gaussian cen�

tered and of variance �� so that the lemma is a classical asymptotic
result� see ���� for instance�
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	�	� A corollary�

We can identify the �d�adic tree � and D the set of dyadic points in

�� ��d� Let c be a continuous function on 
�� ��d� and 
�t�t	Dy an i�i�d�
family of centered Gaussian random variables such that var 
�t� 
 c
t��
We de�ne the process Zt by

Zt 

X
s	C�

t

�t �

Let c 
 maxt	�����d c
t��

Proposition 	���


��� lim sup
j��

�

j
max
jtj�j

jZtj 
 c
p

� d log � �

P almost surely�

Proof� The upper and lower bounds of the previous demonstration�
c � �� can be adapted to the present case� We need only to change the
constant of Lemma 
���� which becomes c

p
� d log ��


� Regularity of Elliptic Gaussian Processes�

In this part we prove Theorems ��� and ���� Recall that here m � d

then XA is an ordinary Gaussian process�� l � N and � � 
�� �� are the
numbers de�ned by 
m�d�	� 
 l��� Recall also that we can suppose
that HAS 
m� 
� hold�

We begin with the proof of Theorem ���� For the results of this
section the process XA is restricted to a bounded domain D� Without
loss of generality� we suppose that D 
 
�� ��d� We prove �rst the law
of the uniform modulus with l 
 �� � 
 �� then we study the case
l 
 �� we prove the law of iterated logarithm 
local modulus�� when
� 
 � and also when � � �� Finally we explain how to get the results
without restrictions on l�

As explained in Section �� we will use the decomposition of XA on
a wavelet orthonormal basis of HA� We introduce therefore a few more
notations� If f!�� � � &g is the wavelet basis of the Hilbert space HA�
given by Theorem ���� for each f � HA�

f 

X
�	�

f�!� � with f� �
 A
f�!�� �
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If g denotes a strictly increasing function of N in R� 
which will be
later chosen�� we de�ne the functions %f� fn� with � 
 
j� k� l�� by

%f
x� 

X
j��

X
jx��j���jg�j�pj

!�
x� f� �
���

fn
x� 

X

��j�n
!�
x� f� �
���

and in addition�


��� %Rf 
 f � %f � Rnf 
 f � fn �

We need another operation which will perform averages� Recall that c�
is the dyadic cell with center � and side length ��j � For f � L�

loc
R
d��

let


��� f
�� 
 �jd
Z
c�

f
x� dx �


��� Law of the uniform modulus when l 
 �� � 
 ��

The main idea is to make reductions in order to be able to use
Lemma ��� and its corollary� This is done with the help of the projectors
de�ned above� Let %Xn be the process de�ned by 
���� 
��� and de�ne


�"� $n 
 f
x� y� � D 
D � �n�� � jx� yj � ��ng �

Let us explain the reductions we plan to do�

First reduction� We will prove


���

lim sup
n��

max
�x�y�	�n

j %Xn
x�� %Xn
y�j
jx� yjplog jx� yj��


 lim sup
n��

max
�x�y�	�n

jX
x��X
y�j
jx� yjplog jx� yj�� �

P almost surely� That is�


��� lim sup
n��

max
�x�y�	�n

jRnX
x�� RnX
y�j
jx� yjplog jx� yj�� 
 � �
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P almost surely� and


��� lim sup
n��

max
�x�y�	�n

j %RXn
x�� %RXn
y�j
jx� yjplog jx� yj�� 
 � �

P almost surely�

Second reduction� In order to describe this second reduction we must
�rst introduce some additional notations� For n � N let us de�ne n � N
and the set &n � & by


��� n 

h

log
�n

g
n�
p
n

i
� &n 
 f� � & � j� 
 ng �

Now if � � 
�� ��� the integers n� and m� and the set &�
n are de�ned by

n� 
 �
�� ��n� � m� 
 ��n� � &�
n 
 f� � & � j� 
 m�g �

Denote by Qn 
respectively Q�
n� the set of dyadic cells fc�� j� 
 ng


respectively fc�n� j� 
 m�g�� In a c�n�cell there are �n�m�cn�cells�

Remark ���� Let n� be the integer de�ned by


���
log 
g
n���n��

n�
� �� �

log 
g
n� � ����
n� � ��

n� � �
�

then n � m�� for all n � n��
When 
x� x�� � $n� 
y� y�� � $n and jx � yj � ��m� � the ran�

dom variables 
 %Xn
x� � %Xn
x��� and 
 %Xn
y� � %Xn
y��� are condition�
ally independent knowing �f��� j� � n�g� Now for every � � &� the
neighbourhood �
�� of � is de�ned by


��� �
�� 
 f�� � & � j� 
 j�� and 
c�� � 
c� �
 �g �
Then if %Xn
�� is de�ned as in 
���� let dn
�� be de�ned by


��� dn
�� 
 max
��	����

j %Xn
��� %Xn
���j
j�� ��j �

Thanks to Remark "��� we are now in the situation of applying Propo�
sition ��� and the second reduction consists in proving that


���

lim sup
n��

�

n
max
�	�n

dn
��


 lim sup
n��

max
�x�y�	�n

j %Xn
x�� %Xn
y�j
jx� yjplog jx� yj�� �
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P almost surely� and


��� lim sup
n��

�

n
max
�	�n

dn
�� 

p

� d CD �

P almost surely� with

C�
D 
 lim sup

x�t	D
jx�yj��

E �
X
x� �X
y����

jx� yj� log jx� yj�� �

Step �� Proof of 
����
As we have seen� if j� 
 m� there is �n�m� cells of Qn in each

q�� cell� Let K�
n be the set f�� � � � � �n�m�g and if � � &�

n let i
��
be the position in c�n of the ird cell c�� of Qn � c�n 
with the abuse
Qn � c�n 
 fc � Qn � exists %c � c�n and c � %cg�� Let

��
�� ��� 
 E

h 
 %Xn
��� %Xn
�����

j�� ��j� log j�� ��j
i

and
��
�� 
 max

��	����
��
�� ��� �

On the other hand� let us de�ne functions f�k
�� ���� k 
 �� � � � � ng and
random variables f�k
��� k 
 �� � � � � ng such that�

%Xn
��� %Xn
���
	

j�� ��j 

X
k�n

X
jx�rj���kdg�k�pk

�!r
��� !r
�
��

j�� ��j
�
�r

�

X
k�n

�k
�� ��� �k
�� �

Let n� be the integer of Remark "��� It is clear that f�� � j� � n�g is
an i�i�d� family of Gaussian normal random variables� Furthermore�

nX
k��

��k
�� ��� 
 ��
�� ��� �

Hence� if � is �xed and n is large enough we will be in the situation
of Proposition ���� Therefore� for every sequence fingn�� such that
in � K�

n �

lim sup
n��

�

n
max
j�j�n�

dn
in
��� 

p


�� �� � log d CD �
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P almost surely� Let �� �� we obtain

lim sup
n��

�

n
max
j��n

dn
�� �
p

� d CD �

P almost surely� Since the upper bound is easily deduced from the one
of Proposition ���� we have proved 
����

Step �� Proof of 
����
Here we must go from averages to pointwise values� Let

S
�� ���x� y� 

�

n
dn
�� ����

%Xn
x�� %Xn
y�

jx� yjplog jx� yj�� �

for x � c�� 
x� y� � $n� In order to prove 
��� it is enough to show
that�


�"� lim sup
n��

max
�	�n
��	����
x	c�

�x�y�	�n

jS
�� ���x� y�j 
 � �

P almost surely� but

jS
�� ���x� y�j



�

n

���X
k�n

X
jr�k

�kjr��j�g�k�pk

�
�nd

Z
c�

�!r
x
��� !r
x�

��n

�
dx�

� �nd
Z
c�

�!r
y
��� !r
y�

��n

�
dy�
�
�r

��� �
On the other hand�Z

c�


!r
x
��� !r
x�� dx� �

Z
c�


!r
y
��� !r
y�� dy�


 C
�

�nd
Z
c�

D�!r
�� �
�� 
dx� dx�� � �

�
�

for C � �� Denote by Ar this quantity� using Theorem ����

jArj � C ��n ��d���m�����r ���n 
 C ��d���m�����n �
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Thanks to a result proved in ��� we have

X
�kj��rj�g�k�pk

jArj � �n �

if n is large enough� So

jS
�� ���x� y�j � �C
��n

n

X
k�n

p
k �k ��d���m�����n �

if n is large enough� Then 
��� follows�

Step �� Proof of 
����
It is su#cient to prove 
��� and 
���� Let us begin by 
���� Taking

into account that j�rj �
p

�
p
r if jrj is large enough� and that

X
jlj�g�k�pk

�


� � jlj�d��
� �

g
k�
p
k
�


��� becomes

j %RXn
s�� %RXn
y�j
jx� yjplog jx� yj�� �

�

n

nX
�

�

g
k�
�

but with a correct choice of function g we can deduce 
����
To prove 
��� we use the same method as above� For � � � using

again Theorem ���� 
��� becomes

jRnX
x��RnX
y�j
jx� yjplog jx� yj�� �

�

n

n�	 log nX
k�n

p
k � �

�n

n

p
k ��k

� �

n�
�

�

�
�

log np
n

�

if n is large enough� in the �rst part of the proof of the upper bound we
have used 
���� with j�j 
 � and with j�j 
 � in the second one� where
furthermore the inequality jx� yj � jxj� jyj has been used� hence the
factor ��
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Conclusion� The proof of the law of the uniform modulus 
��� results
then from 
���� 
��� and 
����


��� Law of the uniform modulus when l 
 �� � � � � ��

In the present case� the reductions we perform will lead to a Brow�
nian motion�like situation 
cf� Introduction� or more precisely ����like
situation� We set ��
r� 
 r��

First reduction� Let � � �� let us introduce the integers n�	 
 n �
�� logn�� We have to prove


��� lim sup
n��

max
�x�y�	�n

��Xn��

x��Xn��


y�
��

��
jx� yj� 
 � �

P almost surely� and


��� lim sup
n��

max
�x�y�	�n

��Rn��
X
x�� Rn��

X
y�
��

��
jx� yj� 
 � �

P almost surely� That is to say� low and high scales have no contribution
to the result� Let

Sn
x� y� 

�
Rn�

�
X
x�� Rn�

�
X
y�

	� �Rn�
�
X
x��Rn�

�
X
y�

	
�

corresponding to the terms of scale between n�	 and n�	 �


��� lim sup
n��

max
�x�y�	�n

jSn
x� y�j
l�
jx� yj� 
 lim sup

�x�y�	�n

jX
x��X
y�j
l�
jx� yj� �

P almost surely� is a consequence of 
��� and 
����

Second reduction� The second reduction will lead to a situation where
the wavelets will be thought of as compactly supported� We have to
show that

lim sup
n�

max
�x�y�	�n

jSn
x� y�j
l�
jx� yj� 
 lim sup

�x�y�	�n

j %Sn
x� y�j
l�
jx� yj� �
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P almost surely� where %S
x� y� is obtained by applying the operator 
���
in each variable x and y�

Third reduction� The third reduction consists in de�ning a sequence
of partitions 
Pn�n�� of the domain D such that if q and q� are two

elements of Pn su#ciently far away then f %Sn
x� y� � 
x� y� � q
 qg and
f %Sn
x� y� � 
x� y� � q� 
 q�g become independent�

The integer n is� as before� equal to �log 
�n	g
n�
p
n��� When s � �

let ns 
 n	ns� Consider the subsets

&n 
 f� � & � j� 
 ng � &
s

n 
 f� � & � j� 
 nsg �

Looking for the cells q� and qs� if � � &n and � � &
s

n respectively� we
de�ne %qs� as the cell with the same center as qs�� with faces parallel to
the axes and with side lengths ��n
n � ns�� In these conditions� for
all s � �� by construction we have independence between �f %Sn
x� y� �

x� y� � %qs�
 %qs�g and �f %Sn
x� y� � 
x� y� � %q��
x� y�
 %q��
x� y�g for � �
 ���
j� 
 j�� 
 ns�

Now let �
�� as before the set of neighbours of �� We have to show
that


���

lim sup
n��

max
j��n�s log n
��	����

jSn
�� ���j
���n

p
n d log �


 lim sup
n��

max
�x�y�	�n

j %Sn
x� y�j
l�
x� y�

�

P almost surely� and this is a consequence of


��� lim sup
n��

max
j��n�s log n
�x�y�	�n

��� Sn
�� ���
���n

p
n d log �

� Sn
x� y�

l�
jx� yj�
��� 
 � �

P almost surely� The proof of 
��� is in every way analogous to the one
of 
���� Now the method of ��� can be directly used for showing

lim sup
n��

max
j��n�s log n

jSn
�� ���j
��dn

p
n



p
d log � CD �

P almost surely� and also 
���� 
���� For the last results we use well
known bounds for independant gaussian random variables and the in�
equalities 
���� 
����
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�	� Law of uniform �Zygmund�class
�modulus when l 
 ��
� 
 ��

We can proceed as in the last paragraph� using 
���� 
��� to restrict
the sum only to scales j� 
 log 
jx � yj�� Following the method of ���
the above reductions give the result�


�
� Law of the iterated logarithm when l 
 �� � 
 ��

Here we set l
���
� 
r� 
 jrj

p
log r�� log log log r��� To prove that for

y � D we have

lim sup
x�y

jX
x��X
y�j
l
���
� 
jx� yj�



p

� C
y� �

P almost surely� We consider reductions of the problem absolutely
similar to the preceding ones� We will also use the well known result of
Levy�Kinchin�


��� lim sup
n��

�p
n log log n

��� nX
k��

�k

��� 

p

� �

P almost surely� where 
�k� k � N� is an i�i�d� sequence of Gaussian
normal random variables�

Hence� using the modulus l��
�� in place of l�
r� 
 jrj log
r��� it is
possible to prove an inequality analogous to 
��� and 
���� therefore an
equality similar to 
���� In these conditions 
��� will become


���

lim sup
n��

�p
n log logn

�
max

�	�k�y�
dn
��

	


 lim sup
n��

max
�x�y�	�n

j %Xn
x�� %Xn
y�j
l
���
� 
jx� yj�

where &k
y� 
 f� � &k and �nd
�� y� � g
n�
p
ng�

Then using 
��� the �rst member of 
��� converges to
p

�C
y�
almost surely�
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��� Law of the iterated logarithm when l 
 �� � � � � ��

To prove the law of the iterated logarithm we have only to show
that


��� lim sup
x�y

jX
x��X
y�j
l
���
� 
jx� yj�


 lim sup
n��

�p
logn

max
�x�y�	�n

K �

P almost surely� with

K 
 ��n
��� X
n�	 log log n�k�n�	 log log n

�kjy�rj�g�k�pk


!r
x�� !r
y�� �r

���p� log � Cs
g� �

The same reductions as above show that we can use the proof of the
same result given in �BJR� for the one dimensional case� Hence 
����


��� The laws of moduli when l �
 ��

In order to end the proof of Theorem ��� we still have to consider
the case l �
 ��

Let s be a multi�index of length l� Let us set Y 
x� 
 
sX
x��
Thanks to Proposition ����

Y 
x� 

X
�	�


s!�
x� �� ��
X
�	�

�� �� �

Let %A be the elliptic operator de�ning the topology of the auto�reprodu�
cing Hilbert space Hy of Y � As �� is an orthonormal basis of Hy� it

follows that �� 
 %A������� as 
s�� 
 
sA������� we get %A���� 


sA����� So� the symbol �y of %A is of degree m � �l� it satis�es Hy�
pothesis HA 
m � �l� 
�� Therefore� performing the same calculus as
above we obtain the theorem in the general case�


��� Approximation of elliptic gaussian generalized processes�

Let us now prove Theorem ��� which concerns generalized Gaussian
processes� From the estimations of Theorem ��� we know there exists
rd � � such that


��� i� lim
h��

X
��j��log��h���


!�
x � h�� !�
x���

jhj� log 
jhj���

 r�d �
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when d 
 � or d 
 �� and


�"� ii� lim
h��

X
��j��log��h���


!�
x � h�� !�
x���

jhj� 
 r�d �

if d � �� Using these limits we can transpose the proofs we gave for the
law of the uniform modulus to get the results of Theorem ���� Note that
when d 
 �� d 
 � then � 
 � 
critical case� so that Cd 
 rd

p
� log ��

When d � �� � 
 �	� and Cd 
 rc
p

� d log ��


��� Moduli of continuity for the multifractional Brownian

motion�

We constructed a collection of wavelets �� which� because of the
decomposition 
���� plays for the multifractional Brownian motion ex�
actly the same role as the !� for Elliptic Processes� The proofs of
regularity results for the multifractional Brownian motion are similar
to ��� and we will just sketch them� We �rst prove �vaguelettes�type�
localization estimates for the �� de�ned in 
����

Proposition 
��� We assume the function a belongs to Cr
Rd � 
�� ����
sup a
x� � r� r � �� 
j� l� �
 
�� �� and K � N� Then there exists a

constant C 
which depends on K� such that


��� j��
x�j � C ��ja�x�
� �


� � j�jx� kj�K �
�


� � jkj�K
�

and

j��
x�� ��
y�j

� C ��ja�x�
��j jx� yj� j ja
x�� a
y�j


� � j�jx� kj�K �
j ja
x�� a
y�j


� � jkj�K
�
�
���

Proof� We want to bound

H 


Z
eix�

j�ja�x��d��
���
�� d� 
 ��jd��

Z
ei�x����

j�ja�x��d��
���l�
� �

�j

�
d� �

Let us recall that the support of �� is included in f� � ��	� � j�j �
��	�g� Setting � 
 �	�j in the integral we get easily

jHj � c ��ja��� �
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If this change of variable is made after K integrations by part in a
direction where

jx� �j � d jxp � �pj �
we get

H � c ��j�K�a�x��jx� �j�K �

From these two inequalities we deduce 
����
For the second result we write ��
x�� ��
y� 
 R � S� where

R 
 ��jd��
Z

ei�x����
ei�y�x�� � ��

j�ja�x��d��
���l�
� �

�j

�
d�

and

S 
 ��jd��
Z


ei�y�� � �� e�i��

j�ja�x��d��
� �

j�ja�y��a�x� � �
�

���l�
� �

�j

�
d� �

To give a bound for R we use jeih� � �j � jhj j�j and proceed as in the
proof of 
���� so that

jRj � c ��ja�x�
�j jx� yj


� � j�jx� kj�K �

Now we can split S as S 
 S� � S��

S� 
 ��j�a�x��d�
Z


ei�y�� � �� e�i��

j�	�jja�x��d��
� �

j�	�jja�y��a�x� � �

�
���l�
� �

�j

�
d� �

S� 
 ��jd
�j�a�x��a�y�� � ��

Z

ei�y�� � �� e�i��

j�	�jja�y��d��
���l�
� �

�j

�
d� �

With the same integrations by part� change of variable and using the
inequality

ra�y��a�x� � � 
 O 
ja
y�� a
x�j log r maxfra�x�� ra�y�g� �

we obtain

jSij � c ��ja�x�
j ja
x�� a
y�j


� � jkj�K �

and then the last estimate of the Proposition holds�
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Let us now prove the law of the uniform modulus� We use the
decomposition 
��� in order to estimate 
B�
x � h�� B�
x��� Setting
n 
 �log� jhj��� 
so that ��n�� � jhj � ��n�� we separate the sum into
four terms Ti which correspond to the cases

�� j � n� � logn�

�� j � n � � logn�

�� n� � logn � j � n � � logn� j
aE � a
��� � � log j�

�� n� � logn � j � n � � logn� j
aE � a
��� � � log j�

Using well known properties of an independant sequence of stan�
dard gaussian random variables as in ���� when �
��aE� � �	�� we get
from 
���

lim
h��

jhj�aET� 
 � �

and from 
���

lim
h��

jhj�aET� 
 � �

In the same way we deduce also from 
��� that

lim
h��

jhj�aET
 
 � �

The relevant contribution of the sum is given by T
� Now� using the
continuity of the function CE and proceeding as in ���� we get

lim sup
x�y	E
jx�yj��

jBa
x��Ba
y�j
jx� yjaEplog �	jx� yj 
 CE

p
d �

P almost surely� The proof of the law of the iterated logarithm follows
exactly the corresponding proof for E�G�R�P� in the non�critical case�

The asymptotic self similarity of the Multifractional B�M� Ba is a
straightforward application of the following Proposition� We de�ne

�� 


Z
eix� � �

j�ja����d��
���
�� d� �
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Proposition 
��� If the function a belongs to Cr
Rd � 
�� ���� 
r � ���
we have the following asymptotic behavior

j��
x�� ��
x�j � c j ja
x�� a
��j
� ��jminfa�x��a���g

� �


� � j�jx� kj�K �
�


� � jkj�K
�
�

The proof is along the lines of Proposition ����

�� Scaling properties for Elliptic Gaussian processes�

In this part Theorems ���� ��" and Proposition ��� are proved� Re�
call that we want to study the local scaling properties for Elliptic Gaus�
sian processes� They will be connected them with scaling properties of
the associated symbols or wavelets� Consider a point x� in Rd which re�
mains �xed for the whole paragraph� The whole�scale Littlewood�Paley
basis 
of L�� is denoted by f��g�	�� where & 
 Z
 Z

d 
 L�
Let s be a symbol on R

d � We de�ne when it makes sense the
function gs� by its Fourier transform

�gs�
�� 

���
��p
s
x� ��

�

���� Scaling properties for elliptic symbols�

We suppose here that the symbol � full�lls hypotheses HA 
m� 
��
We consider only the case m 
 d � ��� � � � � ��

For � � � we set

�x�
x� �� 
 �
x� � x� �� � �x�� 
x� �� 
 �m�x�
�
� x�

�

�

�
�

Using the scaling properties of f��g�� we have


��� g
�x�	
� 
x� 
 ���g�

x�

����
� x� �

if � 
 ��p� �
�� 
 ��j�p
k � l	�� 
 ��� The extension to � positive
real is obvious�
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Consequently� when 
����	� is an i�i�d� standard gaussian family�
we get


���

���
X
j���

�
g�

x�

� 
x ��p�� g�
x�

� 
��
	
��



X
j���

�
g
�x�	
������
x�� g

�x�	
������
��

	
�� �

This gives the following equality in law


����

���
X
j���

�
g�

x�

� 
x ��p�� g�
x�

� 
��
	
��

�d�



X
j���p

�
g
�x�	
� 
x�� g

�x�	
� 
��

	
�� �

Lemma ���� With the above notations� the convergence and the limit

of �x�� 
x� �� when �� �� is independant of x� In case of convergence�

the limit function � satis�es� for all � and r � ��


���� �
r �� 
 rm�
�� �

and also� for all ��


���� c j�jm � j�
��j � Cj�jm �

where c� C are the ellipticity constants given by hypothesis HA 
m� 
�
for the symbol ��

Proof� We know from HA 
m� 
� that

�m
�����x� � � x�

�

�

�
� �

�
x��

�

�

���� � K�m
�

� �
j�j
�

�m���

j� xj� �

with � � �� � �� This is bounded by K
� � j�j�m���jxj������ 
 o 
���
The �rst assertion of the Lemma is now clear� The homogeneity prop�
erty of the limit function is classical� And the last inequalities are
deduced from

c j�jm � �
z� �� � Cj�jm � if j�j � R �
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which are part of our hypothesis�

���� Local scaling for processes�

We de�ne the scaling operators R��� when � � �� L� when � 
 �
by

R���
f� 

f
x� � � ��� f�
x��

��
�

L�
f� 

�p

log 
�	��

f
x� � � ��� f�
x��

�
�

We suppose here that the symbol � full�lls hypotheses HA 
m� 
�� H��
We consider A 
 op 
�� and X the gaussian process associated with�
According to Proposition ��� we can write

Xx 

X
�	�

�� !�
x� �

with �� i�i�d� standard gaussian� We complete the family with ���
j� � � keeping the i�i�d� property valid�

We say that the symbol � satis�es hypothesis H
x�� when

lim
����

�x�� 
�� �� 
 �
�� � for almost every � � Rd �

In this case we set
Yx 


X
�	�

�� g
�
�
x� �

We can now state convergence in law 

d��lim� and equality in law 

�d�

 �

for the locally scaled processes�

Lemma ���� We suppose that the symbol � of the E�G�P� X full�lls

HA 
m� 
�� H
x�� and HAS 
m� 
�� If � � ��


���� 
d�� lim
����

R���X 
 Y �

and for all � � ��


���� R���Y
�d�

 Y �
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If � 
 �� there exists a gaussian vector G on R
d such that


��"� 
d�� lim
����

L�X 
 
d�� lim
����

L�Y 
 
G jx� �

Proof� Case � � �� Let us give �rst the idea of the proof� We
approximate

R���X 
 ���
X
j���
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But as far as the laws are concerned we know from 
���� that the
renormalization of the above process is equivalent to a shift on the
scales� We obtain
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As lim���� log� � 
 �� and the symbol �x�� converges to � 
by hy�
pothesis� we get 
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Now let us give the technical justi�cations for the three steps just de�
scribed� For the �rst step we use the approximation of wavelets given
by the Theorem ���� so that
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uniformly on every bounded set� P almost surely�
In the second step we apply directly 
���� so that

X
j���

�
g�

x�

� 
x ��p�� g�
x�

� 
��
	
��

�d�



X
j���p

�
g
�x�	
� 
x�� g

�x�	
� 
��

	
�� �




� A� Benassi� S� Jaffard and D� Roux

For the last step we use the convergence of symbols given by hypothesis
H
x�� and also Lemma "��� Then
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This gives the �rst result of the Lemma� The second one is another
direct application of the scaling result 
�����

Case � 
 �� The canonical basis of Rd is denoted by 
e�� � � � � ed�� We
know from our construction that 
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Then� if �� ��� using the proof that led to the uniform modulus result
in the critical case � 
 �� we get
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where �j
x� i� is de�ned by �j
x� i� 
 
j� k� l� if and only if l 
 �
 � � i�
and x belong to a dyadic cube qj�k� The end of the proof is now an
application of the Central Limit Theorem�

As an immediate consequence we can now prove Theorem ���� ��"�

��	� Local scalings for XA�

We �rst prove Theorems ��� and ��"�
Lemma "�� gives ii� implies i� for both Theorem ��� and Theorem

��"� As i� implies iii� is clear� we have only to prove iii� implies ii��
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and recall that they satisfy 
���� 
see Lemma "����
In the case � � �� we deduce from the result 
��� and the hypoth�

esis of convergence
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This leads to the almost everywhere equality
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and then to existence of the limit stated in ii��
In the case � 
 � the proof is the same� except that we use 
���

instead of 
����

We now prove Proposition ����
The fact that � 
 ��f satis�es HA 
m� 
� and that Proposition ���

can be applied is easy to check�
As we know that
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see 
���� and also that the function f is bounded we obtain the exis�
tence of
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Then� with the same arguments as in the proof of Lemma "��� case
� � �� we see that the process XA belongs to the weak L�A�S�S� class�

Moreover the process XA belongs to the L�A�S�S� class if and only
if
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exists and this� within our hypotheses� is equivalent to the existence of
lim��� f
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