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1. Introduction.

In his recent lecture at the International Congress [S], Stephen
Semmes stated the following conjecture for which we provide a proof.

Theorem 1.1. Suppose €2 is a bounded open set in R* with n > 2,
and suppose that B(0,1) C 2, H" 1(0Q) = M < oo. Then there are
e >0, L < oo (depending on n and M) and a Lipschitz graph T' (with
constant L) such that H"~1(I' N OQ) > .

Here H* denotes k-dimensional Hausdorff measure and B(0,1) the
unit ball in R™. By iterating our proof we obtain a slightly stronger
result which allows us to cover most of the unit sphere S~ 1.

Theorem 1.2. Same hypotheses. Given § > 0, there exist 'y, ..., 'y,
N = N(6,M,n) so that each I'j is a C(6, M,n) Lipschitz graph and

H (o L]j [jUd9Q)) > wa -4,
j=1

where T denotes the radial projection on S™~! and w, is the area of
Sn—t,
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We remark that Theorems 1.1 and 1.2 are somewhat related to the
results of [J]. David and Semmes have reported to us [DS2] that they
also have proofs of the above theorems. The methods they use are,
however, quite different from those we present. Whereas David and
Semmes work directly on the domain, we prove a theorem that allows
us to stitch together 2-dimensional slices (where the result is trivial).
This result, which we call a Checkerboard Theorem, is perhaps the most
interesting result of this paper.

Let [0, 1]™ be the unit cube in R”, and let A, B C R” be Lebesgue
measurable sets. We say that A is checkerboard connected through B if
for any two points =,y € A, there is a path from x to y which is a finite
union of line segments, each line segment in one of the (n)-coordinate
directions and having both endpoints in B. We define d.p p(z,y), the
checkerboard distance to be the infimum over the lengths of such paths.
For example, if A C [0,1]? is any set and B = [0, 1]?, then for z,y =
(1, 22), (y1,y2) € A we have

den,B(T,y) = |21 — y1| + |22 — Y2 -

On the other hand if A = B = [0,1/3]> U [2/3,1]? then the points
(0,0),(1,1) € A are not checkerboard connected through B.

Theorem 1.3. (The Checkerboard Theorem) Given any 6 > 0 and any
measurable set B C [0,1|™ with |B| = €, there exists a subset A C B
with

Al = (1 —=d)e"

and with A checkerboard connected through B. Furthermore, there ex-
ists a constant C = C(d,e,n) < oo such that for all x,y € A,

dch,B(xvy) S C |$ - y| .

If |B| = 1—a with a < 1, we can choose |A| > 1—ca and dep, p(x,y) <
Vilz — yl, for 2,y € A.

We remark that the final assertion of Theorem 1.3 provides an
approach to a version of Almgren’s Tilt Excess Theorem [A]. In that
case one has ¢ ~ 1, |B| = 1 — «, and one obtains a subset A with |A| >
1 — Ca and a Lipschitz mapping F' with Lipschitz constant < Cy/n.
This will be explained more precisely in Section 7.

An examination of the constants in Theorem 1.3 will allow us to
conclude the following



CHECKERBOARDS, LIPSCHITZ FUNCTIONS AND UNIFORM RECTIFIABILITY 191

Corollary 1.4. Suppose B C [0,1]", |B| =€, and F : B — X (any
metric space) satisfies a Lipschitz condition on any line parallel to the
coordinate axes

p(F(x1,...,t ..., xp), F(T1,...,8,...,2p)) < |t — 5],

for any two points on E differing only in one of the n coordinates. Then
if 0 > 0 there exists A C B with

A > (1 —=9)e™,
and such that F' is Lipschitz on A,

p(F(2), F(y)) < C(0) (%™ + Vnn'e' =) [z —y].

The outline of this paper is as follows. In Section 2, we recall
a proof of Theorem 1.1 in R? -this a known result included only for
the sake of completeness. Section 3 is devoted to the proof of the
Checkerboard Theorem. We then check constants to derive Corollary
1.4. This allows us to use the results of Section 2 to derive Theorem 1.1.
In Section 4 we provide a counter-example for the checkerboard constant
in Theorem 1.3 (equivalently for the Lipschitz constant of Corollary
1.4), showing it must be at least (log (1/¢))*/?(loglog (1/¢))~*/2.

In Section 5, we give another application of our methods by show-
ing how to use two dimensional slices to obtain part of the “Structure
Theorem” of geometric measure theory for sets of codimension 1. In
Section 6, we discuss Almgren’s Tilt Excess Theorem and the easy case
of Theorem 1.3 (i.e. the case when |B| ~ 1).

2. A trivial result in R2.

Let D; denote the closed unit disk in R?. By a radial Lipschitz
graph we shall mean a set in R? given in polar coordinates by the
equation 7 = f(f) where f is a 2m-periodic Lipschitz function. We also
define the map 7 : R®\0 — S! to be radial projection. In this section,
we prove

Proposition 2.1. Let o : S* — R? be a closed curve in R2\Dy with
degree 1 about 0. Suppose Hi(a(S)) < M, for some M < oo. Then for
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any € > 0 there exists I' a radial Lipschitz graph over S* with Lipschitz
constant C(e, M) so that

Hi(r(T N a(SH))) > 27 —¢.

PROOF. The idea of the proof is that first we prune a(S?!) into a graph
and then we trim it to make it Lipschitz . The first observation is that
v=rmn(a): St — St is a well defined continuous map with degree 1.
We may lift it by the universal cover to

v:R— R,

with 7(0) = 0 and 7(27) = 2n. Furthermore, since the length of «
is bounded, we have that 7/ is a signed measure on [0, 27] with total
measure 2m. Define p. = v — ¢/(4m). This is a signed measure on
[0, 27] with total measure 2r — ¢/(4w) > 0. We shall now modify «
into a curve ( in such a way that we change only pieces that give rise
to sets of measure 0 under p. and replace them by line segments. Let
L = sup |#/(I)| the sup taken over open intervals I in [0, 27| satisfying
pe(I) = 0. We define 1 : [0,27] — R? to be equal to « except on
an interval I with p.(I) = 0 and with |7/(I)| > L/2. Let x and y be
the endpoints of I. Let (31(I) be the line segment between «a(x) and
a(y) parametrized so that 7(f;) has constant speed. We define p. ; as
before, noting that p. 1(1) = 0. If the measure p. ; is nonnegative then
1 is a graph. Otherwise, p. 1 is a signed measure with total measure
strictly less than that of p. so that we may proceed recursively, removing
intervals with measure p, ; measure 0 having large total measure and
replacing their images with line segments. At last, we obtain 3., whose
image is a graph, since associated to it is pe o, Which is nonnegative.

We define I'y = [.(S!). The next observation is that p =
m.H1(Lp) is a well defined positive measure on S* and that,

/ p <M.
Sl

Let M(u) be the Hardy-Littlewood maximal function of p. We choose
C so that [{M(p) > C/2}| < €/2. The set {M(p) > C/2} is open,
hence a union of open intervals and we define the graph I' by replacing
the part of I'y over each of these intervals by a line segment between the
images of the endpoints. The result is the desired graph with Lipschitz
constant C.
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By the results of [J], one can in fact exhaust the image of a by a
finite collection of Lipschitz graphs with universal Lipschitz constants
and a garbage set with small Hausdorff content.

3. The checkerboard Theorem.

PROOF OF THEOREM 1.3. Let M; be the one dimensional Hardy-
Littlewood maximal operator in the j-th coordinate direction. For
any set A, let x , denote its characteristic function and let A° denote
[—1,2]"\A4, i.e. the complement of A in the triple of the unit cube.
Choose a small o > 0 and define

Bi={z€B : Mi(xp)(z) <1-ac},
and recursively for j < n,
Bj={reBj_; : Mj(xB;_l)(x) <1l—ac}.
By choosing « sufficiently small, we may ensure that

[Bal > (1- g)l/"s.

(This follows easily from the Besicovitch covering Lemma, see |G, p. 39])
In fact, we may choose o > C(8)/n?. We shall now divide up B, into
its checkerboard connected components and choose one that suits our
purposes. We shall do the same at each scale until we arrive at a set
which satisfies a dyadic version of the theorem. A similar treatment as
we have just given B will produce the desired set.

For any point in x € B, we define its good set G(z) so that
y € G(x) provided y € B and there exist z; € B; when 1 < j <
n — 1 so that 71 (y) = 71(21) and so that m;(z;_1) = m;(2;) whenever
2 <j <n-—1, and so that m,(x) = m,(2,—1). Here the m;’s are the
(n — 1)-dimensional projections into all but the j-th coordinate. In
particular for any y € G(z) we have that d.p g(z,y) < 2n. Further,
by the definition of B,, we have that |G(z)| > a™e™. We define the
neighborhod of x to be

N(z)={ye B, : G(x)NG(y) # 7} .
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We cover B,, by neighborhoods N(z1),..., N(xpr) so that for i # j we
always have z; ¢ N (z;). Then we see that M < 1/(a"~1e"~1) since the
71(G(x;))’s are disjoint and have total measure 1. Thus, in particular,

v < €0

— p2n—1 :

The checkerboard connected components of B,, through B, call them
Cq,...,Cy with N < M are just unions of disjoint subcollections of
N(z1),...,N(zp). We have that for any z,y € Cj,

dch,B(a:,y) <4n M.

We pause for a brief lemma which we will use to estimate the size of
one of the C}’s.

Lemma 3.2. Let A C R"™ be any measurable set of finite Lebesgue

measure, then

|A|n—1

Dy = <1.

[Tl

We refer to D4 as the checkerboard density of A. The proof is
simply to apply the 1-dimensional Holder’s inequality, n times to

/Xm(A)(xz"'"xn)XwQ(A)(xl’x?’"""73”)"'Xwn(A)(xl""’x"—l)'

It is of some interest to note that the above argument also gives a
proof of the Sobolev imbedding Theorem (¢f. [GT, p. 156, equation
(7.27)]). That this link should exist is natural because both the Sobolev
imbedding Theorem and Theorem 1.3 concern giving global properties
of functions in terms of their behavior on one dimensional slices.

Now we proceed to estimate the size of a C';. We observe first that

N 6 1/n

il = n| = - = 9 .
Sl =1Ba = (1-3)  elQ
j=1

On the other hand, since the C;’s are checkerboard disjoint, their (n —
1)-dimensional projections are disjoint and hence we have for each k €

{1,...,n}, N
> ()l = Im(Ba)].
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Applying Holder’s inequality yields

> T imeenr < T1 (

j=1k=1

N 1/n n Y
m(C)l) < T Ime(Ba) ™
1

= k=1
Hence, there is at least one j for which
Gl o B

[T 1m@pir™ T im(B)M"
k=1 k=1

Taking the previous equation to the power n, we arrive at the main
inequality

(%) |Cj| Do; > |Bn| D,

Observe that in particular,

B D, = (jom) 1071 = (1 5)"

Hence, since Dg; < 1, one has that |C;| > (3¢/4)"|Q™|. But what is
more, we have a procedure for taking any subset S of B,, in any cube @’

and finding a subset S C S which is checkerboard connected through
B with checkerboard diameter bounded by 8 M [(Q’), so that

S| Dz > |S| Ds .

To see this, just dilate @’ into [0,1]™ and follow the above argument.
We require another lemma.

Lemma 3.3. Let ty,...,tn—1,s € (0,1), then we have

s (I —s)"
+ >1.
tits b1 (L—t1)(1—ta) - (1 —tn_1)

PROOF. It is clear that the minimum of

s (1—s)"

f(s) = tity b, 1 + (1—t1)(1—ta) (L —tp_1)’
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lies on the interior of (0,1). Setting f'(s) = 0 gives

B (titg - tp_1)Y/ (=)
T (tite -ty )Y D) £ (L= t) (L —t2) - (L — ty_q)) /=D

substituting back into f, gives that for any s,

n—1
f(s) > ( ! — 1/(n_1)> .
(trta -+ ty1) /(= 1>+(H t))

Now Jensen’s inequality guarantees that f(s) > 1.

Now let Ay be the set C; and define fy to be the constant function
D4, on Apy. Then the inequality ("X) may be rewritten as

fo>1|Bn| DB,
Ap

Then we obtain A; and f; as follows: We divide the cube [0,1]™ into
its dyadic children @1, ..., Q2 and the set Ay into Ag1,...Ag 2~ with
Apj = AoNQ; . Then Lemma 3.3 implies that

2n
1) > 1ol Da, > [ fo.
i=1 Ao

This is because when we chop a set C' into C} and C,. one the left and
right sides of a hyperplane z; = ¢ then 7(C;) is disjoint from 74 (C;)
for k£ # j. We chop Ap once in each coordinate direction to obtain (1).
Now for each nonempty Ay ; we find S;, a checkerboard connected
component of Ay ; in Q;. As before, it will have the properties that,

1Sj| Ds; = |Ao,j| Da,;
and for any z,y € Sj,
den,(,y) <8 Mnl(Qj) .

This last is true since Ay ; C B, N Q; and any connected component
of B, N (Q; which intersects Ay ; is contained in Ag ;. Now we define
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US; = A1 C Ap and we let f; be the function on A; which is constant
on each S; and equals Dg;. We have shown that

/Alf12 Aofo-

We proceed recursively producing A; from A;_; by letting the cubes
at generation j — 1 give birth, and letting f; be the function which is
constant on the intersection of A; and cubes of the j-th generation and
is equal there to the density of that intersection. Thus

/Ajij/Aj_lfj—lv

and we have found a decreasing sequence of sets A; and a sequence of
functions f; supported on A; and bounded by 1 so that for each j,

/ 7, > |Bo| Dp, .
Aj

In particular, this implies that

44| = |Bn| Dp

n

and hence
6 n
(2) [Ascl 2 [Ba| Dp, = (1= 5)e".
where A, = NA,. We have in addition that for any x,y € A,

(3) dch,B('Tvy) < 8Mndd(x7y) )

where dg(z,y) is the dyadic distance between z and y, i.e. the side-
length of the smallest dyadic cube containing both  and y. The equa-
tions (2) and (3) are almost the statement of the theorem but for the
appearance of dyadic distance instead of Euclidean distance. We must
trim A, a little bit more in order to rectify this difficulty.

Now as we did to B, we define

Acop={r € A + Mi(x, )(@) <1—ae"},
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and recursively for j < n,

Ay = {2 € Ayt + Mylx,e )@) <1—ae"}.

By choosing « sufficiently small, we may arrange that |[A.,| >
(/2)™|Q™]|. Let D be the set of points in R” one of whose coordinates
is a dyadic rational. The set D has measure 0. We claim that A ,\D
is the desired set A.

We shall refer to a cube’s face of codimension 1 as walls. Every
cube has 2n walls which are naturally divided into n pairs of opposite
walls. Each such pair corresponds canonically to a coordinate direction
J, namely the direction for which the coordinate function x; is constant
on both faces in the pair. We say that two dyadic cubes @1 and Q)2
with the same sidelength are neighboring provided that the euclidean
distance is 0. If this is the case and @)1, Q)2 are distinct, then )1 and
()2 share a face F' of codimension k£ where 1 < k < mn and k is an
integer. Let j; > j2 > .-+ > ji be the coordinate directions whose
coordinate functions are constant on F'. Then any two points x € Q4
and y € Q2 may be joined by a path which is piecewise linear with
pieces in the coordinate directions ji, jo, ..., jx in that order and with
corners in cubes @, with 1 < r < k — 1 where each Q, neighbors @),.
The cube @, has a face in common with Q5 of codimension k —r which
is associated to the directions j,41,..., Jk-

For any x and y in A either dg(z,y) < C/(ae™)d(z,y) or there is a
scale [ for which there are cubes Q1 and Q)2 with z € Q1 and y € Q5 of
sidelength 27! < 10y/n/(ce™)|z—y| which are neighbors with a common
face F' of codimension j associated to the directions and j; > --- > jg
of the previous paragraph. These can be chosen so that the distance
dy @ from z to the boundary of @, satisfies d, g > 2 ae"27t

By the definition of Ay ,,, we may find a point z; € Ay p—j, N Ql
which can be connected to x by a line in the direction j;. We may
proceed recursively choosing xs, ..., x,,y; with x; € QN Acon—j, and
y1 € Q2 N A. But then

denp(T,y) < (n+8Mn)2~!
< C(6) (n 4 8n2=Ven=1) /2 /n ez — y|
< C(0) (n® %™ + /n e |z — gy

This proves Theorem 1.3 and Corollary 1.4
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4. Proof of Theorems 1.1 and Theorem 1.2.

In this section, we apply the checkerboard Theorem and Proposi-
tion 2.1 to obtain a proof of Theorem 1.1. We observe that the proof of
Theorem 1.2 is just a recursive iteration of the proof of Theorem 1.1.

PROOF OF THEOREM 1.1. Let e, = (0,0,...,1) be the unit vector in
the n-th coordinate direction and let 7, be the projection of R" into
the hyperplane perpendicular to e,. Let Q be the cube in R*~1 x {0}
which is centered at the origin and which has sidelength 1/(2v/n —1).
We will find a Lipschitz graph I' having large intersection with S so
that =, (') C Q.

For v any unit vector in R*~! let vt denote the (n — 2)-plane of
vectors perpendicular to v in R*~!, let P, denote the 2-plane in R"
spanned by v and e,, and for w € vt denote by P, ., the translate
P, + w.

Consider SN P, 4, for w € Q). For A > 0, a real number, let

By, ={wevt: HY(SNP,,) > A},

By the Slice Theorem ([Si, p. 156]) |Bx| < M/A. Further for each
w € @, we have that P, ,, NS separates 0 from oo in P, ,,. If we have
further that w ¢ B, ,, then we can apply Proposition 2.1 to a subset
of P, NS. This is because any connected rectifiable set with finite
length can be parametrized. (see [DS]) We parametrize a component of
the boundary of the domain containing oo in P, ,,\S which separates
0 from oco. We apply Proposition 2.1 to this subset to obtain a 1-
dimension Lipschitz graph I', ,, ¢ where C' is the Lipschitz constant in
Proposition 2.1. Recall that C' depends only on the length of the curve
and the choice of ¢, which is at our disposal. Define

FU,C,)\ - U Fv,w,C .
wEQ\Bx

By choosing C' and A sufficiently large but depending only on n and M,
the measure of S, we may arrange that

|7Tn(r11,C,)\) N Q| 2 |Q| — &,

for whichever € > 0 we wish.
We need a small Lemma.
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Lemma 4.1. Let X be a measure space of total measure M. Fix
e >0and N > 2(M/e)? +1. Let Ay,...,An be subsets of X of
measure > €. Then there for € sufficiently small there exist j, k with
|Aj N Ag| > ce®/M? where ¢ > 0 is a universal constant.

PROOF. Choose Ng < N = [(M/e)?+ 1] where [z] denotes the greatest
integer less than z. Let § = ce?/M with ¢ to be specified later. Suppose
the Lemma is false. Then |A;\A; U---UA;_1|> (¢ —(j —1))d. Now

No 9
M
IX|=M > |ANAL U UA; 1| 20> §>cdNG > —.
9
J Jj=1

But for € sufficiently small, this is a contradiction.

Hence we may find vq,...,v,_1 linearly independent vectors in
R*~! with uniformly large angle between any pair so that

1

‘ﬂ'n—l(ﬂl—"l}j,c,)\) nQ| > O’

and so that the smallest covering of () by parallelpipeds Py, P, ..., Pk
with edges in the directions v; has K depending only on M and n. For
some k then, we have that with

Ay = Wn—l(ﬂrvj,C,A) NP,

then |Agx| > 1/(10 K M), where N > 0 depends only on n. To Ay, we
apply the checkerboard theorem on Pj. This proves Theorem 1.1.

PrROOF OF THEOREM 1.2. Observe that in the proof of Theorem 1.1
above, we did not strongly use the fact that for some ¢ > 0 of our
choosing, we have that |I', ¢ x| > 1 —e. If we had simply had that
Ty cal > 6/(107n?) for instance, we would have found a universally
large intersection with universally bounded Lipschitz constant where
these depend only on 0 and n. Also, we do not have to use the cube
() but may find a collection of (n — 1)-cubes Q1,..., Q5,2 so that the
sectors over them cover the (n—1)-sphere, and define I', ¢ 5 for v in any
of these cubes. Then we choose € in Proposition 2.1 so that each I', ¢ x
has projection onto (); with measure at least |Q;|(1 — 6/2). Then we
use the proof of Theorem 1.1 to extract I'; above the cube Q1. We now
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replace the I'y ¢ A’s by I'y, ¢ A\I'1 and we may continue recursively until
for every cube Q; there is a v € @; so that I', ¢ A\I'1 UI"; has measure
less than §/(107n?). At this point, |7(['y U---ULY)| > w,(1 —4).

5. Counterexample.

Given two sets £/ C E C [0,1]", we define the (checkerboard)
connectivity of E’ through F,

dch E('Tv y)
ve(E') = sup ———=r
( ) T, yeLE’ d(.Z‘,y)

where d(z,y) denotes the euclidean distance between z and y.

Theorem 5.1. For every € < 1/2 there is a set E C [0,1] x [0,1],
|E| > €/2, with the following property: for every ¢ > 0 there is ¢/ > 0,
depending only on ¢ and not on E nor E' so that, if E' C E and
|[B'| > ce?, then y5(E') > ¢’ (log (1/¢))"/?(loglog (1/€)) /2.

We pick ¢ = 1/N%, N being a natural number. Divide the unit
square into 1/e disjoint subcubes,

Qnm = [nVe, (n+1)Ve] x [m Ve, (m+1) Vel,
forn,m =0,1,2,...,1/\/e—1. To describe the set £ we define ENQy, 1,

1/e—1—nm

En Qn,m = U Qﬁ,m ’
k=0

where

nom = e+ (k+nm) 2 net? + (k+nm+1) ]
X [m€1/2+k€3/2,m€1/2+ (k+ 1)€3/2].
It is easy to see that |E| > /2.

Let us denote v = yg(E’). We can assume that Q?, ,, C E' when-
ever Q) . NE' # @.
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Lemma 5.2.
a) Assume QF, ., Qi+k,m+l C E'. Then

j—i=nl+O0R*(I+k+1)%.
b) If v < 1/(2y/), then #{k : QF ,, NE" # @} <1 for all n,m.

ProOOF. The authors would recommend to the reader to sketch a pic-
ture of F.

a) We may restrict our attention only to paths which pass the
centers of small cubes ﬁ,m thus reducing everything to essentially a
problem in graph theory. Every such path is composed of elementary
steps - i.e. vertical or horizontal lines from a large cube @, ,, to one of
its neighbors. An elementary step has length ~ /¢ and connects Q¥

n,m

to one of be+1’m, Qﬁ_lym, Q’;:';g_l, or Z;:Z_H.
Now, by assumption, Qﬁl,m and be+k,m+l are connected by a path
composed of M elementary steps with M < v(l+k+1). Then the cubes
Z,m and Q‘ZL-I—k,m-I—l are joined through a sequence QZ((:){C“) where a, b, c
are integer valued functions and ¢ runs from 1 to M. We always have
n—OFW(Il+k)) <b(t) <n+O(y(l+k)). Each upwards step increases
a(t) by b(t) while each downwards one decreases it by b(¢). There must
be [ more upwards steps than downwards ones and at most M vertical

steps. Thus j —i = a(M) —a(0) =nl+ O3l + k+1)%).

b) Assume false. Then there are Qf%m and Q%ym t # 7 joined by a
path of consisting of less than or equal to |i — j|ye elementary steps.
This path must contain the same number of upward steps as downward
steps. Thus by the argument above, one must have

|7’_J| < |i_j|272€27
but this is a contradiction since |i — j| < 1/e.

The following lemma tells us that given any cube () the set E’ has
to skip a considerable part of (). The iterated application of this lemma,
will give us the bound on the measure of E’.

Lemma 5.3. Given any cube Q of sidelength D\/e, for some D > 9~2,
there is a subcube Q' C Q with sidelength D\/g/(97?) so that Q' NE' =
.
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PROOF OF THE LEMMA. Assume false. We divide @ into M? = (9+2)?
squares of sidelength Dy/e/M. Our assumption means that there is a
point of E’ in each of them.

Without loss of generality, we assume that @ = [0, D/2]?. (We can

do this by simply renumbering the cubes.) Denote Q. , = [u D+y/e/M,
(u+1) Dy/e/M] x [v D\/e/M, (v+1) D\/g/M] and 2y € Qu, N E'. If
Tuw € Qh , denote also [(zy ) =1, n(2yw) =1, M(Ty,) = m.

Then by the first part of Lemma 5.2

U(z0,0) — U(zo0-1)| < AZ_Z +O(72J\Z_22> _ 0(729_2>
and

Hxy—1,0) — U(zy0) = byu i +O0(vy

D , D?
(" 32)
where the sequence b, = m(x, 0) — m(xy—1,0) satisfies | Y b,| < D/M

.
for all » < s. (The inequality is obvious, since the sum telescopes and
for any w, one has m(x, ) < D/M).

Also,

D , D?

S
where | > ¢,| < D/M for all r < s.
T
From all these inequalities, we can get an estimate of
(@ r-1,0) = Uwnr—1,m-1)]

using the following

Fact 5.4. Let {d,} be a sequence so that |>_ d,| < D/M for allr < s.
Then

<D.
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Now we obtain,

2D_2>

fwar—10) = Uwar1a0-1) < O(72 =

On the other hand, again by Lemma 5.2

lop-10-1) =l @m-1,0) = [m(fEM—l,v—l)—m(xM_l,U)]D—f—O('yz %) .

Hence,
2

D
l(xM—l,O) — l(xM_l,M_l) = D%+ O<72 ﬁ) .

Therefore D? < O(y2D?/M), which is false if we take M = c~?, for a
sufficiently big c.

REMARK 5.5. The argument of Lemma 5.3 actually proves that if
D > 1842, then for every k € {99%,99% +1,...,182} there is a cube
Qu,v with max(u,v) = k having empty intersection with E’. Thus the
measure of the union of those cubes is |Q]/(36 v?).

Now, we are ready to end the computations. Starting with the unit
cube Qp = [0, 1] x [0,1], we find a set A; which is a union of cubes of
sidelength 1/(18v?) so that E’ C A; and |A;| < 1—1/(18+2). We take
a grid of cubes of sidelength 1/(18?2). Applying the remark again to
each of them, we find As C Ay, so that, £’ C As, As is a union of cubes
of sidelength 1/(1892)? and |A2| < (1 — 1/(18+2))2. By induction, for
any m so that 1/(18 %)™ > /e, we find a subset E' C A,, union of
cubes of sidelength 1/(18y?)™ with measure |A,,| < (1 —1/(18~%))™.

Moreover, the second part of Lemma 5.2 implies that |E'| < £2|A,,|
for all such m. Hence,

1 )10g(1/€)/10g7

E'| < 52(1
when v2logvy < ¢’ log (1/¢).

6. The Structure Theorem.

The checkerboard theorem also provides a new approach to part of
the “structure theorem” for n-dimensional (n € N) sets. To state that
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theorem in its “projection version” we need a definition. Here G(m,n),
m > n, denotes the Grassmannian manifold of all n-dimensional linear
subspaces of R™, with its usual invariant measure.

DEFINITION. For every plane P € G(m,n) denote by 7p the orthog-
onal projection onto P. Given a set £ C R"™ we define the n-integral
geometric measure of F as

Uy (E) = /G W mpE)ap.

Theorem 6.1 (The Structure Theorem). Let E C R™, H"(E) < oco.
E has a decomposition into an n-rectifiable set A and an n-unrectifiable

set E\A and U, (E\A) = 0.

The following theorem is the special case of the structure theorem
which we will show.

Theorem 6.2. Let E C R*" 0 < H"(E) < oo, so that U, (E) > 0.
Then there is P € G(m,n) and a Lipschitz graph Lp onto P (i.e., there
is a Lipschitz function fp : P — R™™™ whose graph is Lp) such that
H™ (E N Ep) > 0.

Along with the density theorems, Theorem 6.1 is one of the central
theorems in geometric measure theory. It was proven by Besicovitch
[B] when m = 2, n = 1 and generalized by Federer [F]. The proof of
Besicovitch’s result can be found in any manual on that subject (see
[Fa]). The checkerboard Theorem allows us to deduce the theorem for
higher dimensions, when m = n + 1, from that case.

We will make use repeatedly of the following well known (and easy)
fact

REMARK 6.3. Let E be a n-rectifiable set in R**t*. Then for almost
every P € G(n + k,n) there is a Lipschitz graph Lp onto P so that
H™ (E N Ep) > 0.

Proof of Theorem 6.2. The proof will be by induction on n. The
case n = 1 is assumed to be known.

We will identify G(I +1,1) and S in the standard way: P € G(I +
1,1) is identified with its orthogonal vector v € S'. We will write P = P,
and mp, = m,.
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Assume that F is a compact subset of R*"™ H"(E) < oo and
U,(E) > 0. Given w € S™ we define the family of planes orthogonal
tow, P, = P, +tw. Denote E,; = EN P, . Given any vector v
orthogonal to w, (or, in other words w € P,) we have

[ () dt = 9 ()
Consider the equator of the unit sphere
S ={n = (x1,22,...,Zn41) €S™ : Ty =0},
Given § € S"~! we define the meridian through 0 as
Mo={xeS" : n(x)=10,t> 0},

where 7 denotes the orthogonal projection onto the plane {x,, = 0}.
The assumption on the integral geometric measure of E implies
that, for any § € S™~1,

/ /un_l(Ew,t)dtdw
Mg JR

:/ // H Ny (Eyy)) dH" H(v) dt dw > 0.
My JR Jyewt

We now apply the (n — 1)-dimensional theorem to FE,, ; whenever its
integral geometric measure is positive. We obtain a set Cy C My,
H(Cy) > 0, such that, for all w € Cy there is B(w) C {P C G(n +
1,n),w € P} ~ {v € S" : v is orthogonal to w}, with H"!(B(w)) >
0, and for every P € B(w) there is a graph Lp, over P, Lipschitz in
the direction of w, H"(mp(E N Lp,)) > 0. In fact, for all w € Cp,
H' Y G(n+1,n)N{w e P}\ B(w)) = 0.
Let us denote

= J{Bw) : we My}

Then H"(B(0)) > 0. Therefore, using Fubini’s theorem,

/G(n—f—l n) /S” 1

dH"H(0) dH™(P)

./ / ) B(e)( ) dH™(P)dH"1(0) > 0.

G(n+1,n
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Hence, there is a plane P such that H*1({6 : P € B(6)}) > 0. By
the definition of B(#) this is equivalent to H* '({w: P € B(w)}) > 0.
(Notice that P N S™ ~ S"~1).

Let us denote D(P) ={w € P: P € B(w)}, and E, = ENLp,,,
w € D(P). Since H™ 1 (D(P)) > 0, H"(E) < oo and H"(mp(E,)) > 0,
for all w € D(P), then, we can find wy,ws,...,w, € D(P) linearly inde-
pendent so that, H"(rp(NE,,)) > 0. Now, we apply the checkerboard
theorem and conclude that there is E C NE,, of positive n-dimensional
measure and contained in a Lipschitz graph Lp over P.

7. The tilt-excess Theorem.

In this section, we discuss a special case of the checkerboard The-
orem which immediately implies a version of the Almgren tilt-excess
Theorem. For our purposes, the tilt-excess Theorem (cf. [A]) is the

following.

Theorem 7.1. Let ) be an open set and suppose the unit ball B(0,1) C
Q. Suppose further that

HHON) < (1 +e)H (S ).
Then there exists a C(n) el/3 Lipschitz graph T' over S™1 such that
HPHTAOQ) < /3,
where /\ denotes symmetric difference.

Theorem 7.1 will follow from the following simple version of the
checkerboard theorem.

Lemma 7.2. Let A C Q" the unit cube in R” with [A] =1 —¢. Then
for sufficiently small ¢ (with small depending on n), there exists B C A
with |B| > 1 — C"e (with C' a universal constant) so that B is /n
checkerboard connected through A.

PROOF OF LEMMA 7.2. We define as in Section 3

A = {x €A Mi(xg)(z) < 1},
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and recursively for j < n,

1
Aj:{l'EBj—l : MJ(XB571)($)< Z}

Then we have by induction |A,| > 1 — C"e. We claim that A,, is the

desired set B.
Let © = (Z,zy,) and y = (9, yn). Consider the sets in [0, 1],

Sy ={tel0,1] : (§,xn+t(yn —zpn)) € An_1},

and
Sy={te€[0,1] : (T,zp +t(yn —xn)) € Ap_1}.

Then by the definition of A,, we have that |Si|,|S2| > 3/4. Hence,
|S1 N Sa| > 1/2. Thus there exists s € S; N Sy. Thus letting 2"~ =
(z,5) and y"~! = (g,5), we have 2"~ y"~1 € A,,_;. Analogously we
define 2”72 and "2 by replacing  and y by Z and §. We proceed
recursively, always having z7,y/ € Aj. Then the path from z to y
through ==Y, ... 27, ... y/,..., 4" ! has length at most \/n |z — y|,
and the lemma is proven.

PrROOF OF THEOREM 7.1. By Lemma 7.2 and the argument used to
prove Theorem 1.1, there exists I'g a y/n Lipschitz graph over S"~1
such that

H" YT AON) < C(n)e.

Now let p = m*(H" |r,) where 7 is radial projection. Thus with do
defined as surface measure on S™, we have that

dp=(1+g)do,

with ||g||z1(sn-1y < C(n)e. (Notice that if I'o = {(0,n(0)Fo(0)) : 0 €
S™=11 where n(6) is the unit normal vector to S™~1 at 6, then we have
that g is on the order of |[VF|?). Let M be the maximal operator on
the sphere and let

B ={Mg>C(n)e*?},

so that H"~1(S"~t N A) < €'/3. Then we can replace I'g by I' where,
letting

I'={(0,nO)F®)) : S},
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we have made F' differ from Fjy only on B. The reader may easily verify
that one way of doing this is by observing that B is open, and defining

F(z) = (dq(a) * Fo),

for x in B. Here d(x) is the distance from z to the boundary of B. We
have fixed some positive bump function ¢ supported in the unit ball,
and ¢4, is a version of it scaled to have support in the ball of radius
d(x). Thus the theorem is proved.

The reader may find it an amusing exercise to verify that the ex-
ponent 1/3 is sharp.
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