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�� Introduction�

In his recent lecture at the International Congress �S�� Stephen
Semmes stated the following conjecture for which we provide a proof�

Theorem ���� Suppose � is a bounded open set in R
n with n � ��

and suppose that B�	� 
� � �� Hn������ � M � �� Then there are

� � 	� L � � �depending on n and M� and a Lipschitz graph  �with
constant L� such that Hn��� � ��� � ��

Here Hk denotes k�dimensional Hausdor� measure and B�	� 
� the
unit ball in Rn � By iterating our proof we obtain a slightly stronger
result which allows us to cover most of the unit sphere Sn���

Theorem ���� Same hypotheses� Given � � 	� there exist �� � � � �N �

N � N���M� n� so that each j is a C���M� n� Lipschitz graph and

Hn��
�
	
� N�
j��

j � ��
�� � 
n � � �

where 	 denotes the radial projection on Sn�� and 
n is the area of

Sn���

���
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We remark that Theorems 
�
 and 
�� are somewhat related to the
results of �J�� David and Semmes have reported to us �DS�� that they
also have proofs of the above theorems� The methods they use are�
however� quite di�erent from those we present� Whereas David and
Semmes work directly on the domain� we prove a theorem that allows
us to stitch together ��dimensional slices �where the result is trivial��
This result� which we call a Checkerboard Theorem� is perhaps the most
interesting result of this paper�

Let �	� 
�n be the unit cube in Rn � and let A�B � R
n be Lebesgue

measurable sets� We say that A is checkerboard connected through B if
for any two points x� y � A� there is a path from x to y which is a �nite
union of line segments� each line segment in one of the �n��coordinate
directions and having both endpoints in B� We de�ne dch�B�x� y�� the
checkerboard distance to be the in�mum over the lengths of such paths�
For example� if A � �	� 
�� is any set and B � �	� 
��� then for x� y �
�x�� x��� �y�� y�� � A we have

dch�B�x� y� � jx� � y�j� jx� � y�j �

On the other hand if A � B � �	� 
���� � ����� 
�� then the points
�	� 	�� �
� 
� � A are not checkerboard connected through B�

Theorem ���� �The Checkerboard Theorem� Given any � � 	 and any

measurable set B � �	� 
�n with jBj � �� there exists a subset A � B
with

jAj � �
� �� �n

and with A checkerboard connected through B� Furthermore� there ex�

ists a constant C � C��� �� n� �� such that for all x� y � A�

dch�B�x� y� � C jx� yj �

If jBj � 
�� with �	 
� we can choose jAj � 
�c � and dch�B�x� y� �p
n jx� yj� for x� y � A�

We remark that the �nal assertion of Theorem 
�� provides an
approach to a version of Almgren�s Tilt Excess Theorem �A�� In that
case one has � 
 
� jBj � 
��� and one obtains a subset A with jAj �

 � C� and a Lipschitz mapping F with Lipschitz constant � C

p
n�

This will be explained more precisely in Section ��
An examination of the constants in Theorem 
�� will allow us to

conclude the following
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Corollary ���� Suppose B � �	� 
�n� jBj � �� and F � B � X �any
metric space� satis�es a Lipschitz condition on any line parallel to the

coordinate axes

�F �x�� � � � � t� � � � � xn�� F �x�� � � � � s� � � � � xn�� � jt� sj �

for any two points on E di�ering only in one of the n coordinates� Then

if � � 	 there exists A � B with

jAj � �
� �� �n �

and such that F is Lipschitz on A�

�F �x�� F �y�� � C��� �n�����n �
p
n n�n����n� jx� yj �

The outline of this paper is as follows� In Section �� we recall
a proof of Theorem 
�
 in R� �this a known result included only for
the sake of completeness� Section � is devoted to the proof of the
Checkerboard Theorem� We then check constants to derive Corollary

��� This allows us to use the results of Section � to derive Theorem 
�
�
In Section � we provide a counter�example for the checkerboard constant
in Theorem 
�� �equivalently for the Lipschitz constant of Corollary

���� showing it must be at least �log �
��������log log �
���������

In Section �� we give another application of our methods by show�
ing how to use two dimensional slices to obtain part of the �Structure
Theorem� of geometric measure theory for sets of codimension 
� In
Section �� we discuss Almgren�s Tilt Excess Theorem and the easy case
of Theorem 
�� �i�e� the case when jBj 
 
��

�� A trivial result in R
� �

Let D� denote the closed unit disk in R
� � By a radial Lipschitz

graph we shall mean a set in R
� given in polar coordinates by the

equation r � f��� where f is a �	�periodic Lipschitz function� We also
de�ne the map 	 � R�n	 � S� to be radial projection� In this section�
we prove

Proposition ���� Let � � S� � R
� be a closed curve in R

�nD� with

degree 
 about 	� Suppose H����S
��� � M � for some M ��� Then for
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any � � 	 there exists  a radial Lipschitz graph over S� with Lipschitz

constant C���M� so that

H��	� � ��S���� � �	 � � �

Proof� The idea of the proof is that �rst we prune ��S�� into a graph
and then we trim it to make it Lipschitz � The �rst observation is that
� � 	��� � S� �� S� is a well de�ned continuous map with degree 
�
We may lift it by the universal cover to

�� � R �� R �

with ���	� � 	 and ����	� � �	� Furthermore� since the length of �
is bounded� we have that ��� is a signed measure on �	� �	� with total
measure �	� De�ne � � ��� � ����	�� This is a signed measure on
�	� �	� with total measure �	 � ����	� � 	� We shall now modify �
into a curve � in such a way that we change only pieces that give rise
to sets of measure 	 under � and replace them by line segments� Let
L � sup j����I�j the sup taken over open intervals I in �	� �	� satisfying
��I� � 	� We de�ne �� � �	� �	� �� R

� to be equal to � except on
an interval I with ��I� � 	 and with j����I�j � L��� Let x and y be
the endpoints of I� Let ���I� be the line segment between ��x� and
��y� parametrized so that 	���� has constant speed� We de�ne ��� as
before� noting that ����I� � 	� If the measure ��� is nonnegative then
�� is a graph� Otherwise� ��� is a signed measure with total measure
strictly less than that of � so that we may proceed recursively� removing
intervals with measure ��j measure 	 having large total measure and
replacing their images with line segments� At last� we obtain �� whose
image is a graph� since associated to it is ��� which is nonnegative�

We de�ne � � ���S
��� The next observation is that � �

	�H���� is a well de�ned positive measure on S
� and that�Z

S�
� �M �

LetM��� be the Hardy�Littlewood maximal function of �� We choose
C so that jfM��� � C��gj � ���� The set fM��� � C��g is open�
hence a union of open intervals and we de�ne the graph  by replacing
the part of � over each of these intervals by a line segment between the
images of the endpoints� The result is the desired graph with Lipschitz
constant C�
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By the results of �J�� one can in fact exhaust the image of � by a
�nite collection of Lipschitz graphs with universal Lipschitz constants
and a garbage set with small Hausdor� content�

�� The checkerboard Theorem�

Proof of Theorem ���� Let Mj be the one dimensional Hardy�
Littlewood maximal operator in the j�th coordinate direction� For
any set A� let �

A
denote its characteristic function and let Ac denote

��
� ��nnA� i�e� the complement of A in the triple of the unit cube�
Choose a small � � 	 and de�ne

B� � fx � B � M���Bc ��x� � 
� � �g �

and recursively for j � n�

Bj � fx � Bj�� � Mj��Bc
j��

��x� � 
� � �g �

By choosing � su�ciently small� we may ensure that

jBnj �
�

� �

�

���n
� �

�This follows easily from the Besicovitch covering Lemma� see �G� p� ����
In fact� we may choose � � C����n�� We shall now divide up Bn into
its checkerboard connected components and choose one that suits our
purposes� We shall do the same at each scale until we arrive at a set
which satis�es a dyadic version of the theorem� A similar treatment as
we have just given B will produce the desired set�

For any point in x � Bn� we de�ne its good set G�x� so that
y � G�x� provided y � B and there exist zj � Bj when 
 � j �
n � 
 so that 	��y� � 	��z�� and so that 	j�zj��� � 	j�zj� whenever
� � j � n � 
� and so that 	n�x� � 	n�zn���� Here the 	j�s are the
�n � 
��dimensional projections into all but the j�th coordinate� In
particular for any y � G�x� we have that dch�B�x� y� � �n� Further�
by the de�nition of Bn� we have that jG�x�j � �n�n� We de�ne the
neighborhod of x to be

N�x� � fy � Bn � G�x� � G�y� �� �g �
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We cover Bn by neighborhoods N�x��� � � � � N�xM� so that for i �� j we
always have xj �� N�xi�� Then we see thatM � 
���n���n��� since the
	��G�xi���s are disjoint and have total measure 
� Thus� in particular�

M � C���

n�n��
�

The checkerboard connected components of Bn through B� call them
C�� � � � � CN with N � M are just unions of disjoint subcollections of
N�x��� � � � � N�xM�� We have that for any x� y � Cj �

dch�B�x� y� � �nM �

We pause for a brief lemma which we will use to estimate the size of
one of the Cj �s�

Lemma ���� Let A � R
n be any measurable set of �nite Lebesgue

measure� then

DA �
jAjn��
nY
j��

j	j�A�j
� 
 �

We refer to DA as the checkerboard density of A� The proof is
simply to apply the 
�dimensional H�older�s inequality� n times toZ

�
���A�

�x�� � � � � xn�����A�
�x�� x�� � � � � xn� � � � ��n�A�

�x�� � � � � xn��� �

It is of some interest to note that the above argument also gives a
proof of the Sobolev imbedding Theorem �cf� �GT� p� 
��� equation
��������� That this link should exist is natural because both the Sobolev
imbedding Theorem and Theorem 
�� concern giving global properties
of functions in terms of their behavior on one dimensional slices�

Now we proceed to estimate the size of a Cj � We observe �rst that

NX
j��

jCj j � jBnj �
�

� �

�

���n
� jQnj �

On the other hand� since the Cj �s are checkerboard disjoint� their �n�

��dimensional projections are disjoint and hence we have for each k �
f
� � � � � ng�

NX
j��

j	k�Cj�j � j	k�Bn�j �
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Applying H�older�s inequality yields

NX
j��

nY
k��

j	k�Cj�j��n �
nY

k��

� NX
j��

j	k�Cj�j
���n

�
nY

k��

j	k�Bn�j��n �

Hence� there is at least one j for which

jCj j
nY

k��

j	k�Cj�j��n
� jBnj

nY
k��

j	k�B�j��n
�

Taking the previous equation to the power n� we arrive at the main
inequality

�z� jCj jDCj
� jBnjDBn

�

Observe that in particular�

jBnjDBn
�
� jBnj
jQnj

�n
jQnj �

�

� �

�

�
�n �

Hence� since DCj
� 
� one has that jCj j � �� ����njQnj� But what is

more� we have a procedure for taking any subset S of Bn in any cube Q
�

and �nding a subset �S � S which is checkerboard connected through
B with checkerboard diameter bounded by �M l�Q��� so that

j �SjD �S � jSjDS �

To see this� just dilate Q� into �	� 
�n and follow the above argument�
We require another lemma�

Lemma ���� Let t�� � � � � tn��� s � �	� 
�� then we have

sn

t�t�    tn�� �
�
� s�n

�
� t���
� t��    �
� tn���
� 
 �

Proof� It is clear that the minimum of

f�s� �
sn

t�t�    tn�� �
�
� s�n

�
� t���
� t��    �
� tn���
�
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lies on the interior of �	� 
�� Setting f ��s� � 	 gives

s �
�t�t�    tn������n���

�t�t�    tn������n��� � ��
� t���
� t��    �
� tn�������n���
�

substituting back into f � gives that for any s�

f�s� �
�




�t�t�    tn������n��� �
� n��Y
j��

�
� tj�
����n���

�n��

�

Now Jensen�s inequality guarantees that f�s� � 
�

Now let A� be the set Cj and de�ne f� to be the constant function
DA�

on A�� Then the inequality �z� may be rewritten asZ
A�

f� � jBnjDBn
�

Then we obtain A� and f� as follows� We divide the cube �	� 
�
n into

its dyadic children Q�� � � � � Q�n and the set A� into A���� � � �A���n with
A��j � A� �Qj � Then Lemma ��� implies that

�
�
�nX
j��

jA��jjDA��j
�
Z
A�

f� �

This is because when we chop a set C into Cl and Cr one the left and
right sides of a hyperplane xj � c then 	k�Cl� is disjoint from 	k�Cr�
for k �� j� We chop A� once in each coordinate direction to obtain �
��

Now for each nonempty A��j we �nd Sj � a checkerboard connected
component of A��j in Qj � As before� it will have the properties that�

jSj jDSj � jA��jjDA��j
�

and for any x� y � Sj �

dch�B�x� y� � �M n l�Qj� �

This last is true since A��j � Bn � Qj and any connected component
of Bn � Qj which intersects A��j is contained in A��j� Now we de�ne
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�Sj � A� � A� and we let f� be the function on A� which is constant
on each Sj and equals DSj � We have shown thatZ

A�

f� �
Z
A�

f� �

We proceed recursively producing Aj from Aj�� by letting the cubes
at generation j � 
 give birth� and letting fj be the function which is
constant on the intersection of Aj and cubes of the j�th generation and
is equal there to the density of that intersection� Thus

Z
Aj

fj �
Z
Aj��

fj�� �

and we have found a decreasing sequence of sets Aj and a sequence of
functions fj supported on Aj and bounded by 
 so that for each j�Z

Aj

fj � jBnjDBn
�

In particular� this implies that

jAjj � jBnjDBn
�

and hence

��� jA�j � jBnjDBn
�
�

� �

�

�
�n �

where A� � �An� We have in addition that for any x� y � A��

��� dch�B�x� y� � �M ndd�x� y� �

where dd�x� y� is the dyadic distance between x and y� i�e� the side�
length of the smallest dyadic cube containing both x and y� The equa�
tions ��� and ��� are almost the statement of the theorem but for the
appearance of dyadic distance instead of Euclidean distance� We must
trim A� a little bit more in order to rectify this di�culty�

Now as we did to B� we de�ne

A��� � fx � A� � M���Ac
�

��x� � 
� � �ng �
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and recursively for j � n�

A��j � fx � A��j�� � Mj��Ac
��j��

��x� � 
� � �ng �

By choosing � su�ciently small� we may arrange that jA��nj �
�����njQnj� Let D be the set of points in Rn one of whose coordinates
is a dyadic rational� The set D has measure 	� We claim that A��nnD
is the desired set A�

We shall refer to a cube�s face of codimension 
 as walls� Every
cube has �n walls which are naturally divided into n pairs of opposite
walls� Each such pair corresponds canonically to a coordinate direction
j� namely the direction for which the coordinate function xj is constant
on both faces in the pair� We say that two dyadic cubes Q� and Q�

with the same sidelength are neighboring provided that the euclidean
distance is 	� If this is the case and Q�� Q� are distinct� then Q� and
Q� share a face F of codimension k where 
 � k � n and k is an
integer� Let j� � j� �    � jk be the coordinate directions whose
coordinate functions are constant on F � Then any two points x � Q�

and y � Q� may be joined by a path which is piecewise linear with
pieces in the coordinate directions j�� j�� � � � � jk in that order and with
corners in cubes �Qr with 
 � r � k � 
 where each �Qr neighbors Q��
The cube �Qr has a face in common with Q� of codimension k�r which
is associated to the directions jr	�� � � � � jk�

For any x and y in A either dd�x� y� � C����n�d�x� y� or there is a
scale l for which there are cubes Q� and Q� with x � Q� and y � Q� of
sidelength ��l � 
	pn����n�jx�yjwhich are neighbors with a common
face F of codimension j associated to the directions and j� �    � jk
of the previous paragraph� These can be chosen so that the distance
dx�Q from x to the boundary of Q� satis�es dx�Q � ���n��l�

By the de�nition of A��n� we may �nd a point x� � A��n�j� � �Q�

which can be connected to x by a line in the direction j�� We may
proceed recursively choosing x�� � � � � xr� y� with xl � �Ql � A��n�jl and
y� � Q� �A�� But then

dch�b�x� y� � �n� �M n� ��l

� C��� �n� �n��n����n���n
��
p
n ��njx� yj

� C��� �n�����n �
p
n n�n��n��� jx� yj �

This proves Theorem 
�� and Corollary 
��
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�� Proof of Theorems ��� and Theorem ����

In this section� we apply the checkerboard Theorem and Proposi�
tion ��
 to obtain a proof of Theorem 
�
� We observe that the proof of
Theorem 
�� is just a recursive iteration of the proof of Theorem 
�
�

Proof of theorem ���� Let en � �	� 	� � � � � 
� be the unit vector in
the n�th coordinate direction and let 	n be the projection of R

n into
the hyperplane perpendicular to en� Let Q be the cube in R

n�� � f	g
which is centered at the origin and which has sidelength 
���

p
n� 
��

We will �nd a Lipschitz graph  having large intersection with S so
that 	n�� � Q�

For v any unit vector in Rn�� let v� denote the �n � ���plane of
vectors perpendicular to v in Rn�� � let Pv denote the ��plane in R

n

spanned by v and en� and for w � v� denote by Pv�w the translate
Pv � w�

Consider S � Pv�w for w � Q� For � � 	� a real number� let

B��v � fw � v� � H��S � Pv�w� � �g �

By the Slice Theorem ��Si� p� 
���� jB��vj � M��� Further for each
w � Q� we have that Pv�w � S separates 	 from � in Pv�w� If we have
further that w �� B��v� then we can apply Proposition ��
 to a subset
of Pv�w � S� This is because any connected recti�able set with �nite
length can be parametrized� �see �DS�� We parametrize a component of
the boundary of the domain containing � in Pv�wnS which separates
	 from �� We apply Proposition ��
 to this subset to obtain a 
�
dimension Lipschitz graph v�w�C where C is the Lipschitz constant in
Proposition ��
� Recall that C depends only on the length of the curve
and the choice of �� which is at our disposal� De�ne

v�C�� �
�

w�QnB�

v�w�C �

By choosing C and � su�ciently large but depending only on n andM �
the measure of S� we may arrange that

j	n�v�C��� �Qj � jQj � � �

for whichever � � 	 we wish�
We need a small Lemma�
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Lemma ���� Let X be a measure space of total measure M � Fix

� � 	 and N � � �M���� � 
� Let A�� � � � � AN be subsets of X of

measure � �� Then there for � su�ciently small there exist j� k with

jAj �Akj � c ���M� where c � 	 is a universal constant�

Proof� Choose N� � N � ��M�����
� where �x� denotes the greatest
integer less than x� Let � � c ���M with c to be speci�ed later� Suppose
the Lemma is false� Then jAjnA� �    �Aj��j � ��� �j � 
���� Now

jXj �M �
X
j

jAjnA� �    � Aj��j � �
N�X
j��

j � c � N�
� �

M�

�
�

But for � su�ciently small� this is a contradiction�

Hence we may �nd v�� � � � � vn�� linearly independent vectors in
R
n�� with uniformly large angle between any pair so that

��	n���	vj �C��
� �Q�� � 


CMn��
�

and so that the smallest covering of Q by parallelpipeds P�� P�� � � � � PK
with edges in the directions vj has K depending only on M and n� For
some k then� we have that with

Ak � 	n��
�	

vj �C��
� � Pk �

then jAkj � 
��
	KMN �� where N � 	 depends only on n� To Ak� we
apply the checkerboard theorem on Pk� This proves Theorem 
�
�

Proof of Theorem ���� Observe that in the proof of Theorem 
�

above� we did not strongly use the fact that for some � � 	 of our
choosing� we have that jv�C��j � 
 � �� If we had simply had that
jv�C��j � ���
	n�� for instance� we would have found a universally
large intersection with universally bounded Lipschitz constant where
these depend only on � and n� Also� we do not have to use the cube
Q but may �nd a collection of �n � 
��cubes Q�� � � � � Q
n� so that the
sectors over them cover the �n�
��sphere� and de�ne v�C�� for v in any
of these cubes� Then we choose � in Proposition ��
 so that each v�C��
has projection onto Qj with measure at least jQjj�
 � ����� Then we
use the proof of Theorem 
�
 to extract � above the cube Q�� We now
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replace the v�C���s by v�C��n� and we may continue recursively until
for every cube Qj there is a v � Qj so that v�C��n� � l has measure
less than ���
	n��� At this point� j	�� �    � l�j � 
n�
� ���

�� Counterexample�

Given two sets E� � E � �	� 
�n� we de�ne the �checkerboard�
connectivity of E� through E�

�E�E
�� � sup

x�y�E�

dch�E�x� y�

d�x� y�
�

where d�x� y� denotes the euclidean distance between x and y�

Theorem ���� For every � � 
�� there is a set E � �	� 
� � �	� 
��
jEj � ���� with the following property� for every c � 	 there is c� � 	�
depending only on c and not on E nor E� so that� if E� � E and

jE�j � c ��� then �E�E
�� � c� �log �
��������log log �
���������

We pick � � 
�N�� N being a natural number� Divide the unit
square into 
�� disjoint subcubes�

Qn�m � �n
p
�� �n� 
�

p
� �� �mp�� �m� 
�p� � �

for n�m � 	� 
� �� � � � � 
�
p
��
� To describe the set E we de�ne E�Qn�m

E �Qn�m ��

������nm�
k��

Qk
n�m �

where

Qk
n�m � �n �

��� � �k � nm� ����� n ���� � �k � nm� 
� �����

� �m���� � k �����m ���� � �k � 
� ����� �

It is easy to see that jEj � ����
Let us denote � � �E�E

��� We can assume that Qi
n�m � E� when�

ever Qi
n�m � E� �� ��
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Lemma ����

a� Assume Qi
n�m� Q

j
n	k�m	l � E�� Then

j � i � n l�O����l� k � 
��� �

b� If � � 
���p��� then  fk � Qk
n�m �E� �� �g � 
 for all n�m�

Proof� The authors would recommend to the reader to sketch a pic�
ture of E�

a� We may restrict our attention only to paths which pass the
centers of small cubes Qk

n�m thus reducing everything to essentially a
problem in graph theory� Every such path is composed of elementary
steps � i�e� vertical or horizontal lines from a large cube Qn�m to one of
its neighbors� An elementary step has length 
 p� and connects Qk

n�m

to one of Qk
n	��m� Q

k
n���m� Q

k	n
n�m��� or Q

k�n
n�m	��

Now� by assumption� Qi
n�m and Q

j
n	k�m	l are connected by a path

composed ofM elementary steps withM � ��l�k�
�� Then the cubes

Qi
n�m and Q

j
n	k�m	l are joined through a sequence Q

a�t�
b�t��c�t� where a� b� c

are integer valued functions and t runs from 
 to M � We always have
n�O���l� k�� � b�t� � n�O���l� k��� Each upwards step increases
a�t� by b�t� while each downwards one decreases it by b�t�� There must
be l more upwards steps than downwards ones and at most M vertical
steps� Thus j � i � a�M�� a�	� � n l� O����l � k � 
����

b� Assume false� Then there are Qi
n�m and Q

j
n�m i �� j joined by a

path of consisting of less than or equal to ji � jj � � elementary steps�
This path must contain the same number of upward steps as downward
steps� Thus by the argument above� one must have

ji� jj � ji� jj����� �

but this is a contradiction since ji� jj � 
���

The following lemma tells us that given any cube Q the set E� has
to skip a considerable part of Q� The iterated application of this lemma
will give us the bound on the measure of E��

Lemma ���� Given any cube Q of sidelength D
p
�� for some D � � ���

there is a subcube Q� � Q with sidelength D
p
���� ��� so that Q��E� �

��
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Proof of the Lemma� Assume false� We divide Q intoM� � �� ����

squares of sidelength D
p
��M � Our assumption means that there is a

point of E� in each of them�
Without loss of generality� we assume that Q � �	� D

p
���� �We can

do this by simply renumbering the cubes�� Denote �Qu�v � �uD
p
��M�

�u�
�D
p
��M �� �v Dp��M� �v�
�D

p
��M � and xu�v � �Qu�v �E�� If

xu�v � Ql
n�m denote also l�xu�v� � l� n�xu�v� � n� m�xu�v� � m�

Then by the �rst part of Lemma ���

jl�x��v�� l�x��v���j � D�

M�
� O

�
��

D�

M�

�
� O

�
��

D�

M�

�
and

l�xu������ l�xu��� � buu
D

M
� O

�
��

D�

M�

�
�

where the sequence bu � m�xu����m�xu����� satis�es j
sP
r
buj � D�M

for all r � s� �The inequality is obvious� since the sum telescopes and
for any u� one has m�xu��� � D�M��

Also�

l�xu���M���� l�xu�M��� � cuu
D

M
� O

�
��

D�

M�

�
�

where j
sP
r
cuj � D�M for all r � s�

From all these inequalities� we can get an estimate of

jl�xM������ l�xM���M���j

using the following

Fact ���� Let fdug be a sequence so that j
sP
r
duj � D�M for all r � s�

Then ��� MX
u��

duu
��� � D �

Proof of Fact ���� One has simply

��� MX
u��

u du

��� � ��� MX
l��

� MX
u�l

du

���� � MX
l��

D

M
� D �
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Now we obtain�

jl�xM������ l�xM���M���j � O
�
��

D�

M

�
�

On the other hand� again by Lemma ���

l�xM���v����l�xM���v� � �m�xM���v����m�xM���v��D�O
�
��

D�

M

�
�

Hence�

l�xM������ l�xM���M��� � D� � O
�
��

D�

M

�
�

Therefore D� � O���D��M�� which is false if we take M � c ��� for a
su�ciently big c�

Remark ���� The argument of Lemma ��� actually proves that if
D � 
� ��� then for every k � f� ��� � �� � 
� � � � � 
� ��g there is a cube
�Qu�v with max�u� v� � k having empty intersection with E�� Thus the
measure of the union of those cubes is jQj���� ����

Now� we are ready to end the computations� Starting with the unit
cube Q� � �	� 
�� �	� 
�� we �nd a set A� which is a union of cubes of
sidelength 
��
� ��� so that E� � A� and jA�j � 
�
��
� ���� We take
a grid of cubes of sidelength 
��
� ���� Applying the remark again to
each of them� we �nd A� � A�� so that� E

� � A�� A� is a union of cubes
of sidelength 
��
� ���� and jA�j � �
� 
��
� ������ By induction� for
any m so that 
��
� ���m � p

�� we �nd a subset E� � Am union of
cubes of sidelength 
��
� ���m with measure jAmj � �
� 
��
� ����m�

Moreover� the second part of Lemma ��� implies that jE�j � ��jAmj
for all such m� Hence�

jE�j � ��
�

� 



� ��

�log ������ log �
� ��e�d�log ������ log �����

� � c �� �

when �� log � � c� log �
����

	� The Structure Theorem�

The checkerboard theorem also provides a new approach to part of
the �structure theorem� for n�dimensional �n � N� sets� To state that
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theorem in its �projection version� we need a de�nition� Here G�m�n��
m � n� denotes the Grassmannian manifold of all n�dimensional linear
subspaces of Rm � with its usual invariant measure�

Definition� For every plane P � G�m�n� denote by 	P the orthog�
onal projection onto P � Given a set E � R

m we de�ne the n�integral
geometric measure of E as

Un�E� �
Z
G�m�n�

Hn�	P �E�� dP �

Theorem 	�� �The Structure Theorem�� Let E � R
m � Hn�E� � ��

E has a decomposition into an n�recti�able set A and an n�unrecti�able
set EnA and Un�EnA� � 	�

The following theorem is the special case of the structure theorem
which we will show�

Theorem 	��� Let E � R
n	� � 	 � Hn�E� � �� so that Un�E� � 	�

Then there is P � G�m�n� and a Lipschitz graph LP onto P �i�e�� there
is a Lipschitz function fP � P � R

m�n whose graph is LP � such that

Hn�E � LP � � 	�

Along with the density theorems� Theorem ��
 is one of the central
theorems in geometric measure theory� It was proven by Besicovitch
�B� when m � �� n � 
 and generalized by Federer �F�� The proof of
Besicovitch�s result can be found in any manual on that subject �see
�Fa��� The checkerboard Theorem allows us to deduce the theorem for
higher dimensions� when m � n� 
� from that case�

We will make use repeatedly of the following well known �and easy�
fact

Remark ���� Let E be a n�recti�able set in Rn	k � Then for almost
every P � G�n � k� n� there is a Lipschitz graph LP onto P so that
Hn�E � LP � � 	�

Proof of Theorem 	��� The proof will be by induction on n� The
case n � 
 is assumed to be known�

We will identify G�l�
� l� and Sl in the standard way� P � G�l�

� l� is identi�ed with its orthogonal vector v � Sl�We will write P � Pv
and 	Pv � 	v�
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Assume that E is a compact subset of Rn	� � Hn�E� � � and
Un�E� � 	� Given 
 � Sn we de�ne the family of planes orthogonal
to 
� P��t � P� � t 
� Denote E��t � E � P��t � Given any vector �
orthogonal to 
� �or� in other words 
 � P�� we haveZ

R

Hn���	��E��t�� dt � Hn�	��E�� �

Consider the equator of the unit sphere

Sn�� � fx � �x�� x�� � � � � xn	�� � Sn � xn	� � 	g �

Given � � Sn�� we de�ne the meridian through � as

M	 � fx � Sn � 	�x� � t �� t � 	g �

where 	 denotes the orthogonal projection onto the plane fxn � 	g�
The assumption on the integral geometric measure of E implies

that� for any � � Sn���Z
M�

Z
R

Un���E��t� dt d


�

Z
M�

Z
R

Z
����

Hn���	��E��t�� dHn����� dt d
 � 	 �

We now apply the �n � 
��dimensional theorem to E��t whenever its
integral geometric measure is positive� We obtain a set C	 � M	�
H��C	� � 	� such that� for all 
 � C	 there is B�
� � fP � G�n �

� n�� 
 � Pg � fv � Sn � v is orthogonal to 
g� with Hn���B�
�� �
	� and for every P � B�
� there is a graph LP�� over P� Lipschitz in
the direction of 
� Hn�	P �E � LP���� � 	� In fact� for all 
 � C	�
Hn���G�n� 
� n� � f
 � Pg nB�
�� � 	�

Let us denote

�B��� �
�
fB�
� � 
 � M	g �

Then Hn� �B���� � 	� Therefore� using Fubini�s theorem�Z
G�n	��n�

Z
Sn��

�
�B�	�
�P � dHn����� dHn�P �

�

Z
Sn��

Z
G�n	��n�

�
�B�	�
�P � dHn�P � dHn����� � 	 �
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Hence� there is a plane P such that Hn���f� � P � �B���g� � 	� By
the de�nition of �B��� this is equivalent to Hn���f
 � P � B�
�g� � 	�
�Notice that P � Sn 
 Sn����

Let us denote D�P � � f
 � P � P � B�
�g� and E� � E � LP���

 � D�P �� Since Hn���D�P �� � 	� Hn�E� �� and Hn�	P �E��� � 	�
for all 
 � D�P �� then� we can �nd 
�� 
�� � � � � 
n � D�P � linearly inde�
pendent so that� Hn�	P ��E�k�� � 	� Now� we apply the checkerboard
theorem and conclude that there is �E � �E�k of positive n�dimensional
measure and contained in a Lipschitz graph LP over P �


� The tilt�excess Theorem�

In this section� we discuss a special case of the checkerboard The�
orem which immediately implies a version of the Almgren tilt�excess
Theorem� For our purposes� the tilt�excess Theorem �cf� �A�� is the
following�

Theorem 
��� Let � be an open set and suppose the unit ball B�	� 
� �
�� Suppose further that

Hn������ � �
 � ��Hn���Sn��� �

Then there exists a C�n� ���� Lipschitz graph  over Sn�� such that

Hn������� � ���� �

where � denotes symmetric di�erence�

Theorem ��
 will follow from the following simple version of the
checkerboard theorem�

Lemma 
��� Let A � Qn the unit cube in Rn with jAj � 
� �� Then
for su�ciently small � �with small depending on n�� there exists B � A
with jBj � 
 � Cn� �with C a universal constant� so that B is

p
n

checkerboard connected through A�

Proof of Lemma 	��� We de�ne as in Section �

A� �
n
x � A � M���Bc ��x� �




�

o
�
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and recursively for j � n�

Aj �
n
x � Bj�� � Mj��Bc

j��

��x� �



�

o
�

Then we have by induction jAnj � 
 � Cn�� We claim that An is the
desired set B�

Let x � ��x� xn� and y � ��y� yn�� Consider the sets in �	� 
��

S� � ft � �	� 
� � ��y� xn � t�yn � xn�� � An��g �

and

S� � ft � �	� 
� � ��x� xn � t�yn � xn�� � An��g �
Then by the de�nition of An we have that jS�j� jS�j � ���� Hence�
jS� � S�j � 
��� Thus there exists s � S� � S�� Thus letting x

n�� �
��x� s� and yn�� � ��y� s�� we have xn��� yn�� � An��� Analogously we
de�ne xn�� and yn�� by replacing x and y by �x and �y� We proceed
recursively� always having xj � yj � Aj � Then the path from x to y
through xn��� � � � � xj� � � � � yj� � � � � yn�� has length at most

p
n jx � yj�

and the lemma is proven�

Proof of Theorem 	��� By Lemma ��� and the argument used to
prove Theorem 
�
� there exists � a

p
n Lipschitz graph over Sn��

such that

Hn�������� � C�n� � �

Now let � � 	��Hn��j��� where 	 is radial projection� Thus with d�
de�ned as surface measure on Sn� we have that

d� � �
 � g� d� �

with jjgjjL��Sn��� � C�n� �� �Notice that if � � f��� n���F����� � � �
Sn��g where n��� is the unit normal vector to Sn�� at �� then we have
that g is on the order of jrF j��� Let M be the maximal operator on
the sphere and let

B � fMg � C�n� ����g �
so that Hn���Sn�� � A� � ����� Then we can replace � by  where�
letting

 � f��� n���F ���� � � � Sn��g �
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we have made F di�er from F� only on B� The reader may easily verify
that one way of doing this is by observing that B is open� and de�ning

F �x� � ��d�x� � F�� �

for x in B� Here d�x� is the distance from x to the boundary of B� We
have �xed some positive bump function � supported in the unit ball�
and �d�x� is a version of it scaled to have support in the ball of radius
d�x�� Thus the theorem is proved�

The reader may �nd it an amusing exercise to verify that the ex�
ponent 
�� is sharp�
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