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On the two weights problem
for the Hilbert transform
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0. Introduction.

In this paper, we prove sufficient conditions on pairs of weights
(u,v) (scalar, matrix or operator valued) so that the Hilbert transform

-y

is bounded from L2(u) to L2( ). When u = v are scalar, the classical
results were given in [HMW] and [CF|. Earlier, [HS] gave a characteriza-
tion of these weights by complex methods which has been generalized
by [CS1] and [CS2] to the case of unequal weights. However these
complex-analytic results give conditions which as stated by [CS2] “are
not susceptible of being verified in practice”. What follows shall be
all in the category of real analysis. Matrix results for equal weights
have recently been given in [TV]. For u and v scalar weights, a different
sufficient condition from ours was given in [F]. More general conditions
than ours for the scalar case have recently been given by [TVZ] using
very different methods which do not seem to generalize to the operator
valued case.

We shall consider only (u, v) so that u™%, v € L;t¢ are positive and
v~ ! and v are doubling. There will be an auxﬂlary Hilbert space H,
with scalar product denoted by (-,-)s. The weights v and v shall be
operator valued and we define for H valued functions f,

112200 = / (@) (), (@)
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Then we shall prove the following theorem:

Theorem. If (u,v) as above satisfy conditions a), b) and c¢) then

H:L*(u) — L*(v).

For a full description of conditions a), b) and ¢) in the scalar and
operator cases see Section 3. We briefly describe the conditions here.

Condition a) will state that for certain Haar multipliers M, and
M,, the operators

u—1/2Mu—1/2 and Ul/sz—l/z

are bounded on L%(R,H). Operators of this form were first studied in
[P1]. They were first used to study boundedness of the Hilbert trans-
form in [TV]. In Section 1, we describe sufficient conditions for their
boundedness in the scalar case. The weakness of these conditions, and
their relation to the classical A, conditions on weights make condition
a) seem reasonable.

Condition b) is a sort of non-local Ay condition for (v'*e, u=(1+9),
Condition ¢) is the boundedness of two weighted paraproducts. (In the
operator case, part of condition ¢) is also a seemingly slightly stronger
assumption -an inequality that in the scalar case automatically follows.
We point out that in the setting of [TV], this inequality may be replaced
by the reverse inequality to As, i.e. the inequality

(i [ (o) (g o) 2 e

which in the scalar case simply follows from Holder’s inequality. The
inequality is also true in the operator valued case. For information on
operator inequalities see [HP] and the references cited therein.)

In the matricial case when u = v, conditions a), b) and c) are
equivalent to the classical Muckenhoupt As condition.

Our theorem should be thought of as a sort of T'(1) theorem (see
[D]) for two weights. In particular, condition c) should be seen as the
analogue of requiring that 7'(1) and 7*(1) are in BMO. In this way, our
proof differs from that of [TV] in the case that the weights are equal.
We use only the standard kernel properties of the Hilbert transform H,
namely the decay of matrix coefficients Hy; when 31 N3J = @ and
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the general decay of Hhy. Further, we prove our bounds using not the
Senechkin-Vinogradov test (as in [TV]) but rather the two fundamental
lemmas of linear algebra:

Lemma 0.1 (Cotlar). Let T; be operators on 'H, a Hilbert space. Sup-
pose that for any 3, k, one has

1T 15 [[—sw < a(li — j1),

and
|75 Tl < a(li —3l),

where a(§)Y/? < C then

j=N
| 3 5l s
N H—H

with constant independent of N.

For a proof see [D]. Decomposition of an operator T into ;T with
the T}’s satisfying the hypotheses of the Lemma is called Cotlarization.
The other fundamental lemma of linear algebra (in the scalar case), is

Lemma 0.2 (Schur). Let T be an operator on L*(X) with X a measure
space and let K (x,y), its scalar-valued kernel be positive. Suppose there
are positive functions wi(xz) and we(x) with

/ wn () K () dz < Cyws(y) |

and

f ws(y) K (2, y) dy < Cywn (x).
Then ||T||L2(X)—>L2(X) < (0102)1/2_

A proof may be found in [Da]. We state and prove a version in the
operator case, (Lemma 3.1), which, while it is not deep, we have been
unable to locate in the literature in this form.

Finally, we remark that the most important problem in the field
of weighted norm inequalities for the Hilbert transform is to find the
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necessary and sufficient condition when v = v in the case that H is not
finite dimensional. It is conjectured that the condition is A3. We do not
know whether all Ay weights satisfy our sufficient conditions, since the
generalization of Gehring’s theorem [G] is unclear. Also unclear is the
correct definition for Carleson condition. We hope our paper inspires
future work.

1. Carleson conditions and bounded operators.

We let D denote the set of dyadic intervals in the real line. We
say that a sequence of real numbers {br} indexed by D is a Carleson
sequence provided that for any I € D, we have that

Yo vi<coll.

JED,JCI

We recall the Carleson Lemma. (For a proof see [M, p. 261]).

Lemma 1.1 (Carleson). Let A\; be any sequence of real numbers. Define
the function

A*(z) = sup [Af].
zel

‘Zmﬁ‘ gc/A*(a;)da;.
I

For any interval I, we define h; to be the Haar function of I,

Then

1
h/_[(x) = —|I|1/2 (XII _XIT)7

where I' and I” are the left and right children of I, the function x J
for any interval J is the characteristic function of J, and |I| denotes
the length of I. The h;’s form an orthonormal basis of L?(R). To any
sequence by, we associate an operator 7y, its paraproduct by

mf =Y brhrmy(f),

IeD

where m(f) = [; f/|I] is the mean of f on I. (More commonly,
is referred to as the paraproduct with or by the BMO function b =
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> 1ep brhr. However throughout this paper the sequences {bs} occur
far more naturally than the function b and we prefer to think of 7, as an
operator associated to the sequence rather than as a modified product
with the function).

Corollary 1.2. The operator m, is bounded on L*(R) if and only if b
is a Carleson sequence.

PROOF. For one direction, we simply compute that if b is a Carleson
sequence,

Imofl3age) = S0 (mr)* < € [ (MD? < Ol
I

The first inequality follows from Lemma 1.1, where M f denotes the
dyadic maximal function of f. The second inequality follows from the
L?(R) boundedness of the dyadic maximal function, see [D]. On the
other hand, if m, is bounded then ||m, x;[|72 ) < C'|I|. However

176 X, 172 ) > 263 :
jcI

Hence b is a Carleson sequence.

Throughout this section, v shall be a weight -that is- a nonnegative
LllOC function, and u; and b; shall be sequences indexed by intervals
(all intervals in the remainder of this paper shall be dyadic). We shall
concern ourselves with two kinds of operators

(1.1) Tuyuf:sz: <f;}1”> hr =vM,'f
and
(12) Sv,u,bf = Mu_lﬂ'b(vf) :

Here, obviously, M, denotes the Haar multiplier with coefficients wuy,
and (-,-) denotes the scalar product in L?(R). In this section, follow-
ing [TV], we shall show that the L? boundedness of the operators in
(1.1) and (1.2) is related. We shall give sufficient conditions, and we
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shall demonstrate their relationship with the now classical Coifman-
Muckenhoupt conditions on weights (see [CF]).

It is clear that a necessary condition for 77, ,, to be bounded is that
my(v?) < Cu?. Let by = (v?, hr)/mr(v?). Then we have:

Proposition 1.3. If m;(v?) < Cu? then T, ,, is bounded on L*(R) if
and only if Syup is bounded on L?*(R).

PROOF. First observe that since my(v?) < C u?, we have that

* <Uzth>UXI

b M T (02) |1

is a bounded set in L?(R). Hence, g, = Ty uhs — S , ;i1 is a bounded

v,u,b
set in L*(R). If g, is also an orthogonal set in L*(R), then T, , — S},
is a bounded operator on L?(R). Which would prove the proposition.
But in fact g, is an orthogonal set. To see this observe that for
each interval I, the function g, is supported on the interval I and that
restricted to each of the left and right halves of I, it is a constant
multiple of v. Thus to show that g, is an orthogonal set, it suffices to

show that g, L vx,. But this is easy to verify since

_ h N s —

which proves the proposition.
Next, we give a sufficient condition for S, . to be bounded.

Proposition 1.4. Suppose there exists 6 > 0 so that

< (my(v?+9))1/(2+9) ) b

ur

is a Carleson sequence. Then the operator S, p is bounded on L%(R).

Proor. We have that

2
IS0l = 32 & (mrwf)”

I I
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However by Holder’s inequality,
mr(vf) < (mI(v2+5))1/(2+5)(mI(f(2+5)/(1+5)))(1+5)/(2+5)_

Now simply applying Carleson’s lemma and the boundedness of the
dyadic maximal function on L(2+20)/(24+9) proves the proposition.

Corollary 1.5. Suppose w € RHs, that is there exists a constant C so
that for any dyadic interval I, my(w?) < C(mpw)?. Then Ty ) (w) i
bounded on L*(R).

PROOF. If w € RHy then w? € Ay. Hence, (w?, hy)/mi(w?) = by is a
Carleson sequence [FKP]. By Proposition 1.3, we need only show that
Sw,myw,p 15 bounded, but this follows immediately from the fact that
for some 0 > 0, we have that w € RHa, 5 together with Proposition 1.4.

For other proofs, applications, and LP versions of Corollary 1.5, see
[P1], [P2], [KP].

Corollary 1.6. Suppose that w € As. Then the operators Tr/r2 (myw)r/2
and Tyy-1/2 (m,,0)-1/2 are bounded on L*(R).

PROOF. By propositions 1.3 and 1.4, the operator Tyi/z ()72 18
bounded for any w € A,,. This follows from (w,hr)/m;(w) being a
Carleson sequence, which occurs when w € A.,, as well as the fact
that w € RHy ., for some € > 0. Now since w™! € A, we have that
T,wfl/zy(mI(,wfl))l/2 is bounded. But since w € As, it is the case that
1/my(w) > my(w™!). This together with the boundedness of Haar
multipliers with bounded coefficients proves the corollary.

For more information on the classical theory of Muckenhoupt
weights, we refer the reader to [D].

We remark that Corollary 1.6 gives a trivial proof of the bound-
edness of Haar multipliers with bounded coefficients on L?(w) for any
w € As. The corollary says that w'/2M, />
inverse w1/ QMJ,/ 2 are bounded where M,, is the Haar multiplier with
coefficients myw. Let L be a Haar multiplier with bounded coefficients.
Then it is bounded on L?(w) if and only if w'/2Lw=1/2 is bounded on
L?(R). By the boundedness of the operators from Corollary 1.6 and

their adjoints, this is true if and only if M,},/zLMJl/2 is bounded on

and the adjoint of its
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L?(R). But everything commutes and My/>LMy""* = L. Hence L is
bounded on L?(w).

Similarly, one has a simple proof that m, where b is a Carleson
sequence is bounded on L?(w) when w € Ay. We simply observe that

it suffices to show that M/ >myw=2/2 is bounded on L2(R). Now we
apply Proposition 1.4 using the fact that w € Ay implies w € Ay_s.

The same ideas can be used to give simple sufficient conditions
for L and m, to satisfy two weight inequalities. For example, L takes
L?(u) —» L?(v) provided there exist sequences c; and cy so that
Ty-1/2 c, and Tp1/2 ., are bounded and (cy, cp) satisfy an Ay condition,
i.e. 1/(cy,rea,1) < C for every dyadic I. Similarly, 7, is bounded from
L*(u) to L?(v) provided T,1/2 ., is bounded and there exists 6 > 0 so
that (my(u=17%/2))Y/(2+9) < Ccy ;. The argument which proves this is
the same as the proof of Proposition 1.4.

These ideas exactly form the basis for our two weights result for
the Hilbert transform. Some pieces of the operator we will study will
be treated like multipliers while others are treated like paraproducts.
First, however, we discuss the relationship of the boundedness of T;,1/2 .,
tov € Ay,

As mentioned in the proof of Corollary 1.6, for any w € Ay, we
have that T',1/2 (s, (w))1/2 18 bounded. This followed from the fact that
w € RH'*¢, for some £ > 0. In what follows, define for any e, wr . =
(myr(w'te))/0+€) Fixing ¢ > 0, we may ask when Toprr2 (w12 18
bounded. Propositions 1.3 and 1.4 give as a sufficient condition that
there exists a 0 > 0 so that

(w, hp)(wy 5)'/?
(my(w))(wr )2’

by =

is a Carleson sequence. By Holder’s inequality, it is certainly sufficient
that ¢; = (w, hy)/wr,, is a Carleson sequence provided that 0 < p <
e/(2+4¢). We do not necessarily get the result when p = ¢/(2+¢) since
weights not in 4., do not necessarily satisfy a reverse Holder condition.
When ¢y is a Carleson sequence we say that w € Ay4,. Certainly, if
w € Ay then w € Ayy,. A priori, one might believe that any weight
in Aoy is in A or that all weights are in A4 ,. In fact, neither is
the case. We thank Peter Jones for the following examples.

First consider w(x) = |(logz)™%/xz| on the interval [0,1/2]. We
have that w(x) is not in Ay, since it is not in L ™# for any pu. However,
on every interval not containing 0, it satifies a reverse Holder inequality
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with uniform estimates. Thus we have w € A4, since on those inter-
vals I containing 0, we have ¢; = 0 while on the others we simply apply
[FKP]. In other words, to sum ¢ for I’s contained in an interval of the
form [0,277], we need only sum it over intervals contained in intervals
of the form [27%=1 27F] with k£ > j, apply [FKP] to each of these and
sum the geometric series.

Next, we define a weight w; with the parameter j an integer. The
Acotp constant for any p > 0 will be unbounded as we vary the pa-
rameter j. We define f; o,1) to be the function defined on the interval
[0, 1] which takes on the value 27 —§ on [0,277], is constant on the rest
of [0,1] and has mean 1. For any interval I, we let f;; be the same
function rescaled to the interval I. Let w;o = f;0,1) We choose

6 <1/(@)
so that we may neglect it for what follows. Now we define w; 1 by letting
it equal w; o in the interval [0,277]. Now in the interval [k277, (k +

E)] for 1 < k < 2771 we let wji = wjofjme— gty We
repeat the procedure 27 times letting w; = w; 2. Now

. ot h)?
B 3 (fi0,17 hr) ,

2
[0,2-7]CJC[0,1] I

can readily be seen to be comparable to the A, ;. constant of w; when

fr= (|17|[](fj,[0,1])1+6

But r; is readily seen to be approximately 27/(1+2),

)1/(1-1-6) .

2. A small section on operators.

The purpose of this section is just to discuss the generalizations of
Jensen’s inequality and Schur’s lemma which we shall be using in the
proof of the main theorem.

From this point on, H will be a Hilbert space. We will think of
H, the Hilbert transform as acting on L?(R,#), the space of square
integrable Hilbert space valued functions. This space is the same as
L?*(R)®@H. Naturally, we define the action of H by H(f®v) = (H f®wv).
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Our weights u and v shall be positive operator valued functions on .
For any two self-adjoint operators A and B, we say that A < B when
B — A is positive; and for C' a constant, A < C' means that (C'Id — A)
is positive.

First, we state and prove the correct version of Schur’s Lemma for
operator valued kernels.
Lemma 2.1 (Schur). Let X be a measure space. And let K(x,y) be a

B(H) valued function on X x X . Suppose that K (z,y) = A(z,y) B(x,y)
where the multiplication is pointwise composition. Suppose further that

/A(fr,y) A*(z,y)dy < Oy,

and that
/B*(x,y) B(z,y)dz < Cy .

Then K (x,y) gives rise to a bounded operator on L?(R, H) with bound
L2012
1 b2

PROOF. We need only to bound
[ (@)Kl gtw)ndedy.
We observe
[ (@) A v) Blow) go))do dy
< [ @) f<x>,B<x,y>g<y>>de dy
< (/IA*(x,y) (z) Idedy /IB z,y) g Idedy>1/2,

here | - | denotes the norm in H, i.e. ||« ||lx = ({-, %)/

We write the first integral as

/ (A(z,y) A*(2,y) f(2), () da dy.

and bound it by integrating first in y. We do the analogous thing for
the second integral.
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Further we need to state the operator version of Jensen’s inequality.
Lemma 2.2. Let A(x) be a positive operator valued function on a

measure space X . Let du(x) be a measure on X with total measure 1.
Let 1 < p < oo. Then

(/mmwmmf”z/A@mmm.

For 1 < p < 2, the only case in which we will use this, the result
follows from [HP] and from the monotonicity of the function f(t) = ¢"
when 0 < r <1, see [KR, Exercise 4.6.46]. All solutions are provided in
[KR2]. Of course, we get immediately by scaling a version of Holder’s
inequality:

Lemma 2.3. Let A(z) be a positive operator valued function and let
f(x) be a scalar, positive, integrable function. Then

[r@awaes ([ r@)"( [ s a@ra) ",

whenever 1 <p < oo and 1/p+1/qg=1.

ProOOF. Simply apply Lemma 2.2 to the measure
f(x)dx
du() = L@ dw
[ rway
Many norm estimates will be based on

Lemma 2.4. Let Ty and T be positive operators with Ty < Ty. Let S
be any fixed operator. Then

7728 < 17 "2s]1.
Here || - || denotes the operator norm.

This is [KR, exercise 4.6.1].
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3. The two weights problem.

In this section we will give a sufficient condition on pairs of doubling
weights (u,v) ensuring that the operator v*/2Hu~'/? is bounded where
H is the Hilbert transform. Here an operator valued weight v is said to
be doubling if there exists a constant C' so that for any dyadic interval
I, whenever I is its parent, one has

/ng/v,
I I

with the inequality in the sense of operators.

As always D shall denote the set of all dyadic intervals in the real
line. The set of dyadic intervals of length 2=% shall be Dy. We shall
divide the set of all ordered pairs of dyadic intervals into a union of 5
disjoint sets. Let

{L,J) : [I| > |J|, 3In3J =2},
={(,J) : |I| < |J|, 3IN3J =g},
{I,J) : [I| < |J|, 3IN3J # &},
{I,J) : |I| > |J|, 3In3J # &},
and
Zs ={(,J) : [I| =|Jl},

We let E; denote the projection onto the Haar function on I, which we
denote hr. In other words, Erf = (f, hr)hy for all f € L3(R,H), here
(f,hr) = [ f(z) hi(z) de € H. We shall break up the Hilbert transform
into corresponding pieces

H, = Z E;HE; .
(I,J)EZa

Here « runs from 1 to 5.
We now state our conditions on the pair (u,v) and derive a few

easy consequences.
1 1 1/(1+e)
ur = (—/u_( +€))
1|

First define
and 1 1/(1+e)
v = (_ /Ul—f—e) )

1]
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Here the number € > 0 shall be fixed throughout. (By Lemma 2.2, it
is clear that if we define the mean my(u) = [, u/|I| then one has the
operator inequalities my(u™1) < uy and my(v) < vy which we shall use
frequently).

We define the operators acting on L?(R,H)

Tof = Y2M7 2 f =" wur Y2 by b
IeD

and
T,f =o' 2M; V2 =N o 2o P f o) By
I1eD

Here M} denotes the Haar multiplier acting on L?(R, H) with coeffi-
cient wt, for wy a given sequence of positive selfadjoint operators on
H.

We say that (u,v) satisfies condition a), provided that T, and T,
are bounded operators on L%(R, H).

We say that (u,v) satisfy condition b) provided that

plte  \1/(1+e)
a0 w((1 ] 7 ) oot Jul? < ©.
3I)¢

r— y1)2
and that

—(14e) | 1/(1+€)
1/2 v 1/2
(3.2) v ((|I| (31)¢ (z — y1)2> t+ur +ur—p + uI—|—|I|>UI
<C,

where y; denotes the center of I. We observe that for any A and B
positive operators, writing BY/2ABY2 < C with C' a constant is the
same as writing [|A'/2B/2|| < C'/2. We also point out that for any
positive operator-valued function w, we have that

/ w < 1 / w : 59
< — or n )
@ane [T —yr|™ = [I|""2 Jiane [v —yr|?

This is not really Holder’s inequality but just the statement that on
(31)¢, we have

1 1
o —yi=? =TI
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Finally, we come to condition ¢). If ¢; is a sequence of bounded opera-

tors in A (not necessarilly selfadjoint this time) indexed by the dyadic
intervals, we define the paraproduct

mef =Y hrermi(f).
I

Let ¢Y be the operator on H given by (my(v))~ (v, Hshr) and c¥ the
analogous thing for u~!, where we define

(v, Hshy) = / o(z) (Hahy) (@) dz

Then we say that (u,v) satisfy condition ¢) provided that MY r0l/?
and M/ 2.t ? are bounded and that the following inequalities are
satisfied for any dyadic J C I

(mI(U))_1/2(|17| /C ’UthJ)'U;J(ﬁ /C UthJ> (mI(v))_l/2

TPy .
(3.3) < C( !lIl)4>UI Y2y 072

~~

(mi(w) 72 (1 [ iy )

(3:4) . <|17| /C U_1H3hj) (mj(u_l))—l/Z

TP\ —12 12
< .
- C( (dIJ)4>uI it

Here dj; denotes the distance from J to the boundary of I and the
inequalities are in the sense of operators. (By contrast, we will define
pry to be the maximum of |I|, |J|, and the distance between I and .J).
Let us observe a quick consequence of condition ¢). Let h € H be
a fixed vector. We apply the operator Mi/ 27ch’U1/ 2 to the test function
vl/2h X;- From the I-th summand of this we obtain the size estimate

(3.5) uy2ey (mp ()2 |pmm < C [1]V2.
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There is of course an analogous inequality when the w’s and v’s are
switched. In the case in which u and v are scalars, the inequality (3.5)
(together with condition b)) implies the inequality (3.3).

We now give the proof of this implication. In the case where v and
u are scalar, the definition of ¢y together with (3.5) implies that

112(my(v))/?
1/2 '
Uy

(3.6) /nghI <C

Now observe that Hshy is constant on intervals whose length is |1].
Hence, |[Hzh;| < C/|I|*/? everywhere and is constant on I. Thus from
(3.6),

I1Y2(my(v))Y/?
(3.7) / vHshy < C<|[|1/2m1(v) + 1| (UJZE ) ) :
1

But from condition b) and the fact that mj(v) < vy, one has that

1 1
(mr(v))/? < CW (mr(v)ur)'’? < C 72
I Uy

So that (3.7) implies that

112(my(v)/?
1/2 .
Uy

/ Uth] S C

Now we observe that on ¢, the function Hshy is always positive. This
is because Hhy is positive on I¢ and Hzhy is given by the mean of Hh;
on a certain Whitney decomposition of I¢ (we will say more about this
in the proof of Theorem 3.1). In fact, we have on I° that

|I|3/2

2

thxw
’ () Pz1

Where we define p,; to be the maximum of || and the distance from
I to x. Thus one has

J 3/2 I 1/2
[ oty <CUEUEE [y
c IJ c
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which immediately implies (3.3). In the last estimate we used the fol-
lowing facts,

) dx 1
i il :
Y /i~

for any 1 < s,

.. dx 1
(i) PO R
Ic PgJ IJ
for J C I.
This type of integral/series will appear repeatedly. Variations will
be introduced as subtler sets/intervals are defined.

Theorem 3.1. Suppose (u,v) satisfy conditions a), b) and c¢). Then
the Hilbert transform H is bounded from L*(u) to L?(v).

PROOF. Our goal is to show that the operator v'/2Hu~1/? is bounded
on L?(R) ® H. By condition a) which states that operators w22
and u= 1205 Y2 are bounded, it would suffice to show that M2 HML?
is bounded. In fact, we will show that MJ/2(H1 + Hy + H5)M&/2, as
well as U1/2H3M5/2 and Mq}/2H4u,_1/2 are bounded. Then we shall

write

v'2Hu"V? = T,My/?(Hy + Hy + Hs)M,/*T;;
+ (WY 2HsMY T + T, (MY ?Hyu™?),

thereby proving the theorem.

By the symmetry between u and v, proving that Mi/zﬂlMi/z and
01/2H3M1}/2 are bounded is the same as proving that M5/2H2M5/2 and
M5/2H4u_1/2 are bounded. The proof bounding M5/2H5M5/2 is also
exactly the same as the proof that M5/2H1M&/2 1s bounded once one
makes the trivial observation that for any two intervals I and J of the
same length, one has

|I|3/2|J|3/2
3

|Hrs| < C
P1s

Y
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where prj is the maximum of |I|, |J|, and the distance between I and
J and where HIJ = <Hh[, hJ>

Thus we shall proceed to prove only that the operators My / 2H1
. Mi/z and ,01/2H3M5/2 are bounded on L?(H).

We begin with Mi/zHlM&/z. We shall denote its matrix coef-

ficients by Kjry. Each is a linear operator on H. We have that for
|I| > |J| with 3l N 3J = &,

1/2 1/2
KIJ:’U,I H]J’UJ

For these (I,J)’s, one has the classical estimate see [Da,TV],

|I|3/2|J|3/2
—s -

P1s

|Hrs| < C

Throughout this section whenever A is a real scalar or more gener-
ally a self-adjoint operator, we shall, by abuse of notation denote by
A2 some choice of normal square root for A always using the fact
that A'/2(A'/2)* = |A| where |A| denotes the sum of the positive and

negative parts of A.

We apply Lemma 2.1 to K;;. We let A;; = u}/zv}/zHIlf. Hence,

we let Bry = H}f The desired estimate on ), B ;B is simply the
corresponding estimate for the scalar Hilbert transform. We need only
bound

3/2|713/2
1/2 H 1/2 <C 1/2 UJ|J| / |I| / 1/2
E : ur “vg|Hrglup™ < Cup E: P ur
IJ
J:|J|<|T| J:|J|<|T|
3JN3I=2 3JN3I=2

where the last inequality is in the sense of positive operators. Suppose
that I € D;. Then we subdivide into a sum over the intervals J € Dy
and over all £ > j. Hence,

(3.8) > ApAj, < CZ“}”( > M)U}/z :

P
JEDy, k>j J:JEDy 1J
3JN31=2



228 N. H. Katz AND C. PEREYRA

Now we estimate

Z ’UJ|J|3/2|I|3/2

P
J:JED, 1J
3JN3I=2
< ( |I|3/2|J|3/2>€/(1+e)
= 3
JEDy, Prs
|113/2|J |3/ 20 e \ 1/ (+e)
(3.9) (X )
JeD, P1J
3JN3[=0
C | J|1/2 e/ (1+e) Z T3/ I|1 /201 Fe | 1/(1+e)
TN Pis
JEDy,
3JN3I=2
| J|1/2 vite 1/(1+e)
<Cum(n), e
1] @3¢ \& — Y1

Now plugging (3.9) into (3.8) and using condition b) we conclude

3 <Y [J]'/?
J k>j

But this is a geometric sum, so that MJ/2H1M&/2 is bounded.
For the penultimate inequality in (3.9) we used the fact that

3 1 1]
(111) s s’
JeDy pIJ |J| |I|

for 1 < s, |J| < |I]; which we can compare to

. 1 1 1
(iv) Zp%NWNZ )

pS
IED; Iep; "=l

for 1 <s, |[J| < |I], and = € J.

Now, we write I = v'/2(Hjz — Ter)Mu_l/z. If we can bound the
operator L then we have proven the theorem by condition c¢). We
shall apply Cotlar’s lemma writing L = Zj L; with Lj = LA, where
Aj = ZIeDj Er. We must bound L;Lj;, and it will be enough to



ON THE TWO WEIGHTS PROBLEM FOR THE HILBERT TRANSFORM 229

consider only k£ < j by symmetry considerations the case £ > j can be
done using the half of hypothesis a), b), ¢) that are not used in what
follows. Also we should not worry about bounding L L} because it can
be seen that for k # j one has LiyL7 = 0.

We write with I € D;, J € Dy, and 21, 29 € H that

6
<L(h[ ® Zl), L(hj 03y Z2)>L2(R,’H) = Z<z17 L?JZ2>'H :

a=1
To define the decomposition L* we now define a set of intervals Bjy.
An interval J is contained in Bjj, precisely if J € Dy, and there exists a
I € D; so that the distance between .J and 91 is bounded by |I|1/2[J|1/2.
Now we define
(21, L}y 290) % = (/2 Hshy U}/Q»Zla v'/2H3zh U§/222>L2(R,H) )
when J € Bj; and 0 otherwise,
—<Zl, L%J Z2>’H = <Ul/2H3hI u / 21, Ul/z * Ml/z(hj (29 Z2)>L2(R,’H) s
when J € Bj; and 0 otherwise,
—(21, L}y 22)p = (01210 My 2 (hy ® 20), 0" 2 Hahy uY *20) 2 2.0
when J € Bj; and 0 otherwise,
(21, Ly 20)n = (0P My (hy @ 21), 0" P My (hy © 22)) 12,3 »
when J € Bj; and 0 otherwise,
(21, L} 22)3 = (v /2H3hIUI/ 21, L(hy ® 22)) 2 %) »
when J ¢ Bj, and 0 otherwise and
(21, LYy z0)p = (023 My (hy @ 21), L(hy @ 22)) 122 30) »
when J ¢ Bji and 0 otherwise.
It suffices to bound the operator-valued matrices L® with expo-
nential decay in |j — k|, and this is what we shall do.

The main point of the argument is as follows. By the defini-
tion of Hs, the Haar expansion of Hzh; is the sum of all components
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(Hhy,hj)hy for J such that 31 N 3.J # @ and |I| < |J|, denote that
collection of intervals by Z3(I), for each I. The dyadic intervals J with
the property 31 N 3J = @ which have |I| > |J| and such that their
parents J belong to Z3(I) form a disjoint covering of (5I)¢ and we may
define Jy(x) for any point x in (51)¢ to be the element of this covering
containing x. For z € 5I we define Jr(z) to be the dyadic interval of
length |I| containing x.
Then, by definition, we have that

(H3hr)(z) = m g, () (Hhy) .

Thus while Hh; has logarithmic singularities, the function H3h; does
not. In fact, we have the precise size estimates which we shall use from
Nnow on

|I|3/2

2 .

(3.10) |Hshi(2)] < C
Pz1

Let us state some facts that will be used often in the proof. We let
Sjk = 2(UJ€Bij). For I € Dj, J € Dy, and j < k,

1 C
(v) Z —— =< W )
JEB, p:BJ
for x € Sjk,
1 C
(vi) — < —
for v € S5,
. 1 |J|1/2
(vii) / —— < C .
Sin P 1]3/2

We begin with

L = u}”(/v(ﬂsm) (Hyh))u?

We apply Lemma 2.1, letting

1/2
Ay = u}/z(/“(H:%hI) (HshJ)> ;
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and

Bry = (/U(Hshf) (thj))1/2u3/2.

We let S, = 2(Ue Bij ) and shall estimate separately the integral on
Sk and on S;k. We must estimate

Z ArsAry = Z 1/2‘/ H3h1)(H3hJ)‘u1/

JEBJ'k JEBJk
13/2J3/2 I3/2J3/2
(3.11) <Z 1/2 / ol I[P/2 ]2 +/ v |2 |2| )u}/z'
JEB,} prpwJ ik P Py

Here again | - | denotes the sum of the positive and negative parts. Now,
we estimate the integrals using the trivial bound |J| < p, s, Holder, (v)
and (vii),

I13/2|J13/2 7|13/2 J|3/2
> [ AP s
i

JEBjy, p:vIp:nJ p:vI JEBj p:vJ
1] v
= <|J|> (' | T)
Sk Par
1/2 1+e | 1/(1+4€)
§C<ﬂ> 1] Uz )
1 e/(14¢€)
(3.12) -(|1|/ =)
Sjk Pzl
SC(H)U (|SJ]|¢IF|W I|)5/(1+6)

5"
1/2—e/(242¢) 1+e | 1/(1+4¢)
§C<H> : <|I|/Up2 ) ’ :

zl

Here the factor of (|Sj; N I|/|I]) comes from the fact that pgr is al-
most constant on intervals of length I, also remember that |[S;; N 1| ~
(|I]|7))*/2. However for = € S5, we may use that pyy > (|/| |J|)/2,
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thus obtaining, using (vi), and Holder,

3 / s (2 L)
JEB;i pr pwJ N |I| SC, pa29I
|J| /2
<C | |
|I| wI
(3.13) () (i / )/
- |I| p:nI
1/<1+e>
|J| 1/(1+e)
|I|

Now we plug (3.12) and (3.13) into (3.11) using condition b) to obtain

> andi=o((i) "+ () )

JEBJk

We compute directly

. 2 [olP21I2N 1 |J|1/?
S mubus Sl [ H e =) <0

IED; IED; Par Pag

Here the last inequality follows from summing inside the integral, and
then applying Holder, condition b), (i) and (iv) as in (3.12) and (3.13).
But this provides the desired estimates on L} since the product of the
estimates on ZJED ArgAjy and on 32 cp Bi;Biy decays exponen-
tially in k& — j.

We will use repeatedly the estimate deduced by Hdélder and b) in

(3.13)
(g e

To bound L?;, naturally, we shall use condition c), recalling the esti-
mate (3.5) namely

(3.5) uy ey (mp ()2 |pom < C [1]V2.
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We abbreviate Dy = u}/zcy (my(v))Y/2. By definition, we have that for
JEBjk, and zy € J,

L2, = uy/*(Hshy)(a)(m(v)Y2D%

remember that

Wz”M&/z(h’J ® Z) = |J| (CJ) Uy z.

We apply Lemma 3.1, letting

I 1/2 J 1/2
Apy = u}/Q(mJ(,U))l/Z ][]
P1J
and letting
BIJ = [)Iij (th[)(xt])D:; .

|I|1/2|J|1/2

Now we compute

* 1/2 |J|mJ’U 1/2
Z ArgAry = “1/ 1] Z 2 )“1/
JEBjk JEB-k pIJ

1] / )l
Jk piI

(
(||=;||>6/(2+26) 1/2
e/(2+2¢)
||=;||> -

<Ou}/2

1/(1+5) 1/2

<¢(

Here Sjy, is as in (3.12), the penultimate inequality comes from the same
application of Holder as in (3.12), and the final inequality comes from
condition b). On the other hand, by (3.5), we see that

ZBUBU <Z| <C.
Pls

Hence, we have obtained the desired estimate for L?;.
Next, we estimate L? ;. We obtain immediately from the definition

that .
—L§J |I| u}/zcg(/v(thJ))u‘l/z )
I
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As before, we shall use that from condition ¢), we have (3.5). We apply
Lemma 3.1, letting

JIL/4 1/2
(3.14) AIJ = | ||I| ’LL}/2 U(/UHShJ) ’
I

and letting

1/2
J= |J|_1/4(/UH3hJ> uy/? .
I

We compute

1
(3.15) Z Apg AL, < Z I_ 1/2 v /|J|2 cv)* 1/27
IBJ

JEBj €Bjy

by plugging in (3.14) into the sum and using the size estimates on Hzh .
Now, we estimate the integral in (3.15) by breaking up the interval I
into N S and I'N.S7, observing, by summing under the integral and
using (v) and (vi), that

J 1/2
(3.16) /|J|2— <c(/ vt '1/2 /v)
JEBj p:nJ SNl |I| I

The second piece in (3.16) is clearly bounded by |J|*/2I|Y/?m;(v). As
for the first piece, we use doubling observing that S N I is contained
in the rightmost and leftmost dyadic subintervals of I having measure
more that 2 |J|*/2|I|}/2. Recall doubling implies that if K is any dyadic

interval and K its parent then

/ng/v
K K

Now let K, be K's twin sister. Since [, v > [zv/C while [zv =
Jrev+ fK,, v, one has that

/Kbvg(l—%)/f{u.

Naturally, the same holds for K by applying the doubling condition on
K. In fact if K’ is any descendant of K after [ generations, one has

/,“S (1_é)l/K“§ (||II((/||)5/KU’
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where 0 > 0 depends only on the doubling constant. Now since SN 1 is
contained in two descendants of I of length at most 4|.J|/2|I|*/2, one
has that

(3.17) /S . <c(||j||)‘”2 /I v

Plugging our observations into (3.16) yields that

v
B18) Y0 [ 1IP— <CQIO R R o).
JEB,j, xJ

Now we plug (3.18) into (3.15), applying (3.5) and the fact that when
Py < Py then TP, T* < TP,T* for any Py, P>, and T to obtain that

S AAj <C((||=;||>6/2+ (%)1/2>-

JEBJk
Now,
J J
Z Bi;Bry < Z 1/2 / W1y |’U 1/2 §/2(/| 2|_v>u§/2 <C.
IeD; IED; pwJ Pz

Here we have used Holder and condition b) as in (3.12) and (3.13).
Thus, we have obtained the desired estimates on L7 .
We come now to L‘}J. By definition, when J € Bj; and J C I,

4 1/2 o v vk, 1/2
LI = Uy CI(/J |I||J|>(C)u‘]

= () D ma ()72 m(w))2D5

when J NI = @ then by support considerations L% 7 =0.
As usual we apply Lemma 2.1, though the sum over I will be over
a set with only one element. We let

|J|1/2

—1/2 my (v 1/2,
T D) m )

Ary =

and )
BIJ - |J|—1/2 D; .
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We compute

D AAL =) <|17|)D1<%) (mr(v)) 12 (mg(0))(mr(v)) " /2Dy

JEBj JEBj
JCI JCI
1\2
< (1) Datma@) ™ [ omilo)) 2D
1| snr
1 ||\ 9/2
<C(=)Dr(=) " Df
_C(|I|> I(|I|> I
|J| 6/2
< =z
<<(jp)

Here the penultimate estimate is by (3.17) and the last one by (3.5).
The bound on Bj;By; independent of J is just (3.5). Hence, L},
satisfies the desired estimates.

Next we bound L3 ;. This time J ¢ Bji. We define

A 1/2
/= (||§||1/2>J

and we have that if J C I then J C I. Now the reason that we are
Cotlarizing L = v/2(Hs — %) Ma'? instead of just vY/2HsM.'* is

C‘U
precisely that it gives us the cancelation

/UWLhI =0,

for every interval I. We now simply use the fact that Hszhy is constant

on J while
/UWLhJ = —/ v2Lh,
J J

5 _ 45,1 5,2
Ly, =Ly; — Lyj;

= u}/z(/A v(Hshr) (Hzhy) )uj/®
(9

to write

WM (Hahy) () ( /( N v(thJ))uyz .
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First, we bound L‘;’Jl by Lemma 2.1. We let

1/2
Ary = uI/2</A v(Hshy) (thj)) :
(Jye

and we let 1
By = (/ o(Hshr) (Hshy)) " uy?.
(J)e

We have

13/2J3/2
S iy <Y [

J¢B;y, 7¢B;, 7 ())° Pat Py
1
<Cu 1&(/#)“}/2
Pz
<C.

237

Here, the penultimate inequality comes from the simple observation

that for each z,
1 C
(viii) X (@) €
J;;k Pay 7 | J[372 1]/
The inequality (viii) is obtained by majorizing the sum by

1 [ dx
|J| |J|1/2|I|1/2 372

Furthermore,
ZB;JBIJSqu Z/ U|I|3/2|J|3/2>u3/2
TeD; rep; )" Par Pas
(i) (47 [ )
[J1\ /2
sc(m) ,

which is the desired estimate for L‘;’} Redefining A;; and Brjy, we

continue by decomposing LIJ = A;jByy. First, we let

Kry = p " (Hshp) (),
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and we let
1/(2(1+4¢)),, 1/2 —1/(14e) p-1/2 1/2
Ay = I ur Pry K} ( o ’U(HshJ)> ,
and
1/2
By = (|I|)_1/(2(1+€))K%2(/(J) U(HshJ)> “’bﬂ .

We estimate

plte \ 1/(1+e)
AIJA;JSu}/2|KIJ||J|3/2(|I| e D2 0 )
¢ Py Py

1 \e/(+e)
( . T) Uy
Je pmJ
’U1+€>1/(1+6)

< Kl 1Py (111 | =
Je pm[

2 1 \E/UHe) —1/(1+e)

(1] ]J])(+22)/ 2(14€))
PLFEI/(1Fe)

<C

Here we have used the fact that on .J¢, one has p2, p2; > |I||J|p?;.
We sum obtaining

Z ArgAry; <

JEDy JEDy
1]\ 1/2(0+2))
< |+— .
<(i71)

(1+26)/(2(1+6))|J|(1+26)/(2(1+6))
(142¢)/(1+e¢)
Pry

(]

Meanwhile, we compute

BjyBry < ([I|| 7)) G+ COEN TP K |u)f
pITEN1/(14e) |/
(1 ST e
Je Pzg
(1+2€)/(2(1+¢))
P AED
- p§1J+26)/(1+6)
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We conclude that

. |[|(1+2€)/(2(1+€)) |J|(1+2€)/(2(1+€))
Z BryBry < Z (1+2¢)/(1+e)
J

IED; IeD; Pr
< ||\ (1+2e)/(2(1+e))
< (77) .

which gives the desired estimate on L‘;’Jz

Finally, we come to L%;. We break up into L%, = L?’Jl + L?f.
Here, we let L?j} = L%, when J C I and 0 otherwise. As before, we let
Dy = u}?c¢¥(my(v))/2. We let

Fry = (mI(v))—l/z(%'/C vﬂghj)uj(ﬁ / vHyhy ) (my(0) 2.

We have || D|| < C|I|*/? and we have

B -7
FIJS—d4 Uy /uJuI /2

1J
Recall dj; is the distance from J to the boundary of I. Here we are
directly applying (3.3). Notice this is the only place where we use it.
Since all J’s we are considering are not in Bj;, we have that d;; >
|I11/2|.J|1/2, but for most .J, it is even bigger. We write by definition
and cancellation,

1
—L?Z]l = u}ﬂcy(m/ UthJ) u‘l/z
We let Ary = L?i]l and Bry = 1. Then we have

> ApAj; =) DiF,D;

J:J€Dy J
JEBj
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for some 6 > 0 which is the desired estimate on L?’Jl, provided we can
show that
3 Bl wy < 7| s
— ?
di; I+

JZJEDk
J¢Bj

where the sum is over J’s contained in I with dry > |I|Y/2|J|}/2. We
let Z; be the set of those J’s with dr; < |I|3/4|J|1/4 and Z5 be the set
of those J’s with dy; > |I|>/4|.J|'/%. We estimate for Z;, noticing that

card (21) < (|1]/]J))**,

Jez, Jez,
< < Z % )1/(1+€)< Z IL)E/(H-E)
JEZ, €z,
e/ (4(1+¢))
S(m)“ (||i||> -
while for Z,,
J1° 712
1/(1+¢) e/(14€)
(D )™ (3 )
cu(ls).

This leaves us to bound L?:]z.
By definition, for I NJ = @,

1
L?’Jz = DI(mI(U))_1/2<m/IUH3hJ> U1J/2 ,

zero otherwise.
We break up

1 1/2
Ary = Dy(mp(v))~/? (m /IUHShJ> ’
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and y
1 1/2
Brr = (|I| /UH3”J> uy”,

and now we obtain bounds easily using the fact that J NI = @ and
dry > (|I]J])Y2. We simply compute

Z ArgA7; < (sup Z

I
J:JEDy, *€l JeDy Pas

JEBjk
- (|17| / ) (mr(0))™/2D;

1
< C——=D;D; < C|I"?.

|J|3/2

) Di(my (v)) 712

|I|1/2

Here we use the fact that

(ix) I C

ix .

2 = |I|1/2

J:JED, p:nJ | |
JEBjk
JNI=g

At the same time, seeing that the sum on I merely extends the support
of the integral, we obtain

1/2 ulf? < |J|1/2
ZBIJBIJ_ |I| |J|/ ( ] )

Multiplying these two estimates and obtaining decay, we prove Theorem
3.1

It may be worth pointing out that if assumptions (3.3) and (3.4)
seem unappealing, we can also obtain the same result by assuming a
sort of “doubling at infinity” condition for v and u~!. Thus it suffices,
for example, to assume there is a § > 0 with

([ otans) sy ( [ ottan,)
< (%)6(/6nghJ)(mJ(v))_l(/chth),
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Then we simply use

Y

1F2s] = H“=1’/2(/Ic vHyh; ) (mJ(v))_l(/C vHghy )u}?

together with the bound on the norm of D to obtain the same result.
This doubling assumption may seem more natural to the reader than
the assumption we make, until he realizes that it is not even automatic
that this doubling assumption is true for § = 0.
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