100 Thomas - Andreamericana, approximante china VOL 13, N. 1, 1997

On the two weights problem for the Hilbert transform

Nets Hawk Katz and Cristina Pereyra

In this paper- we prove sucient conditions on pairs of weights $\mathbf v$ scalar-dimensions or operator valued so that the Hilbert transformation $\mathbf v$

$$
Hf(x) = \text{p.v.} \int \frac{f(y)}{x - y} \, dy \,,
$$

is bounded from $L^-(u)$ to $L^-(v)$. When $u = v$ are scalar, the classical results were given in HMW and CF Earlier-CF Earlier-CF Earlier-CF Earlier-CF Earlier-CF Earlier-CF Earlier-CF E tion of these weights by complex methods which has been generalized by [CS1] and [CS2] to the case of unequal weights. However these complexed the conditions \mathcal{A} is a stated by CS and the state \mathcal{A} , \mathcal{A} , \mathcal{A} , and \mathcal{A} not susceptible of being verified in practice". What follows shall be all in the category of real analysis Matrix results for equal weights have recently been given in TV and v scalar weights-discussed in TV and v scalar weights-discussed in the contract of the cont sufficient condition from ours was given in $[F]$. More general conditions than ours for the scalar case have recently been given by $[TVZ]$ using very different methods which do not seem to generalize to the operator

We shall consider only (u, v) so that u^{-1} , $v \in L_{loc}^{1}$ are positive and u^{-1} and v are doubling. There will be an auxiliary Hilbert space \mathcal{H} . with scalar product denoted by $\langle \cdot, \cdot \rangle_{\mathcal{H}}$. The weights u and v shall be operator valued and we define for $\mathcal H$ valued functions f,

$$
||f||_{L^2(u)}^2 = \int \langle u(x)f(x), f(x) \rangle_{\mathcal{H}} dx.
$$

Then we shall prove the following theorem

Theorem If u- v as above satisfy conditions a- b and c then

$$
H:L^2(u)\longrightarrow L^2(v)\,.
$$

For a full description of conditions a- b and cin the scalar and operator cases see Section 3. We briefly describe the conditions here.

Condition a) will state that for certain Haar multipliers M_u and Mv - the operators

$$
u^{-1/2}M_u^{-1/2}
$$
 and $v^{1/2}M_v^{-1/2}$

are bounded on $L^2(\mathbb{R}, \mathcal{H})$. Operators of this form were first studied in [P1]. They were first used to study boundedness of the Hilbert transform in TV in Section - we describe such a section - we describe such a section - we describe such a section of boundedness in the scalar case The scalar case The weakness of the weakness of the weakness of the weakness of their relation to the classical A_p conditions on weights make condition a) seem reasonable.

Condition b) is a sort of non-local A_2 condition for (v^{-1}, u^{-1}) . Condition c) is the boundedness of two weighted paraproducts. (In the operator case-ipart of compared is also and ciserator substantially slightly slightly stronger assumption and internal that including the scalar case automatically follows and the scalar case automatically We point out that in the setting of TV - this inequality may be replaced by the reverse interesting interest, the inequality to a series in the inequality μ

$$
\left(\frac{1}{|I|}\int_{I}w^{-1}\right)^{1/2}\left(\frac{1}{|I|}\int_{I}w\right)\left(\frac{1}{|I|}\int_{I}w^{-1}\right)^{1/2}\geq C\,,
$$

which in the scalar case simply follows from Hölder's inequality. The inequality is also true in the operator valued case. For information on operator inequalities see $[HP]$ and the references cited therein.)

In the matricial case when u \mathcal{L} and case when u \mathcal{L} equivalent to the classical Muckenhoupt A_2 condition.

Our theorem should be thought of as a sort of $T(1)$ theorem (see D for two weights In particular- condition cshould be seen as the analogue of requiring that $T(T)$ and T -(1) are in BMO. In this way, our proof differs from that of $[TV]$ in the case that the weights are equal. We use only the standard kernel properties of the Hilbert transform H . namely the decay of matrix coefficients H_{IJ} when $3I \cap 3J = \emptyset$ and

the general decay of \mathbf{H} is the prove our bounds using \mathbf{H} is the contract of the c Senechkin Vinogradov test as in TV but rather the two fundamental lemmas of linear algebra

Lemma 0.1 (Cotlar). Let T_i be operators on H, a Hilbert space. Suppose that for any j-that size is now

$$
||T_i T_j^*||_{\mathcal{H}\to\mathcal{H}} \leq a(|i-j|) ,
$$

and

$$
||T_j^* T_i||_{\mathcal{H}\to\mathcal{H}} \leq a(|i-j|) ,
$$

where $\sum_i a(j)^{1/2} \leq C$ then

$$
\Big\| \sum_{j=-N}^{j=N} T_j \Big\|_{\mathcal{H} \to \mathcal{H}} \leq C \,,
$$

with constant independent of N .

For a proof see [D]. Decomposition of an operator T into $\sum_i T_j$ with the T_i 's satisfying the hypotheses of the Lemma is called Cotlarization. The other fundamental lemma of linear algebra in the scalar case-in t

Lemma 0.2 (Schur). Let 1 be an operator on $L^-(\Lambda)$ with Λ a measure space and let Kx- y- its scalarvalued kernel be positive Suppose there are positive functions with \mathbf{r} and \mathbf{r} and \mathbf{r} and \mathbf{r} with \mathbf{r}

$$
\int w_1(x) K(x,y) dx \leq C_1 w_2(y),
$$

and

$$
\int w_2(y) K(x, y) dy \leq C_2 w_1(x).
$$

Then $||T||_{L^2(X)\to L^2(X)} \leq (C_1C_2)^{1/2}$.

A proof may be found in [Da] . We state and prove a version in the operator case- Lemma - which- while it is not deep- we have been unable to locate in the literature in this form

Finally- we remark that the most important problem in the eld of weighted norm inequalities for the Hilbert transform is to find the

necessary and sufficient condition when $u = v$ in the case that H is not finite dimensional. It is conjectured that the condition is A_2 . We do not k now whether all A weights satisfy our such conditionsgeneralization of Gehring's theorem $[G]$ is unclear. Also unclear is the correct definition for Carleson condition. We hope our paper inspires future work

1. Carleson conditions and bounded operators.

We let D denote the set of dyadic intervals in the real line. We say that a sequence of real numbers $\{b_I\}$ indexed by $\mathcal D$ is a Carleson sequence provided that for any $I \in \mathcal{D}$, we have that

$$
\sum_{J\in\mathcal{D}, J\subset I} b_J^2 \leq C |I| \, .
$$

we recall the Carleson Lemma For a proof see M-

Lemma 1.1 (Carleson). Let λ_I be any sequence of real numbers. Define the function

$$
\lambda^*(x) = \sup_{x \in I} |\lambda_I|.
$$

Then

$$
\left|\sum_{I} \lambda_I b_I^2\right| \leq C \int \lambda^*(x) \, dx \, .
$$

For any interval in \mathbf{I}

$$
h_I(x) = \frac{1}{|I|^{1/2}} \left(\chi_{I^l} - \chi_{I^r} \right),
$$

where I and I are the left and right children of I , the function χ , for any interval J is the characteristic function of J , and $|I|$ denotes the length of I. The n_I s form an orthonormal basis of $L^-(\mathbb{R})$. To any sequence binding associate and operator by a structure of \mathcal{D}

$$
\pi_b f = \sum_{I \in \mathcal{D}} b_I \, h_I \, m_I(f) \,,
$$

where \cdots is a function of \cdots in the mass of \cdots $\int_I f/|I|$ is the mean of f on I. (More commonly, π_b is referred to as the paraproduct with or by the BMO function $b =$

 $\sum_{I \in \mathcal{D}} b_I h_I$. However throughout this paper the sequences $\{b_I\}$ occur far more naturally than the function b and we prefer to think of π_b as an operator associated to the sequence rather than asa modied product with the function).

Corollary 1.2. The operator π_b is bounded on $L^-(\mathbb{R})$ if and only if θ is a Carleson sequence

Proof- For one direction- we simply compute that if b is a Carleson sequence,

$$
\|\pi_b f\|_{L^2(\mathbb{R})}^2 = \sum_I b_I^2 (m_I f)^2 \le C \int (\mathcal{M} f)^2 \le C \, ||f||^2_{L^2(\mathbb{R})} \, .
$$

The first inequality follows from Lemma 1.1, where $\mathcal{M}f$ denotes the dyadic maximal function of f . The second inequality follows from the L (K) boundedness of the dyadic maximal function, see $|D|$. On the L other hand, if π_b is bounded then $\|\pi_b \chi_I\|_{L^2(\mathbb{R})}^2 \leq C |I|$. However

$$
\|\pi_b \,\chi_I\,\|^2_{L^2(\mathbb R)} \ge \sum_{J\subset I} b_J^2\;.
$$

Hence b is a Carleson sequence.

the section of the s $L_{\rm loc}^-$ function, and u_I and v_I shall be sequences indexed by intervals (all intervals in the remainder of this paper shall be dyadic). We shall concern ourselves with two kinds of operators

(1.1)
$$
T_{v,u}f = v \sum_{I} \frac{\langle f, h_I \rangle}{u_I} h_I = v M_u^{-1} f
$$

and

(1.2)
$$
S_{v,u,b}f = M_u^{-1}\pi_b(vf).
$$

 \mathcal{H} , with \mathcal{H} and \mathcal{H} are multiplier with coefficients up to \mathcal{H} . and $\langle \cdot, \cdot \rangle$ denotes the scalar product in $L^2(\mathbb{R})$. In this section, follow- \inf $\|I\|$, we shall show that the L boundedness of the operators in and we shall give such that \mathcal{M} is related We shall give such that \mathcal{M}

shall demonstrate their relationship with the now classical Coifman Muckenhoupt conditions on weights (see $[CF]$).

It is clear that a necessary condition for $T_{v,u}$ to be bounded is that $m_I(v^2) \leq C u_I^2$. Let $b_I = \langle v^2, h_I \rangle / m_I(v^2)$. Then we have:

Proposition 1.3. If $m_I(v^2) \leq C u_I^2$ then $T_{v,u}$ is bounded on $L^2(\mathbb{R})$ if and only if $S_{v,u,b}$ is bounded on $L^-(\mathbb{R})$.

PROOF. First observe that since $m_I(v^2) \leq C u_I^2$, we have that

$$
S_{v,u,b}^* \, h_I = \frac{\left< v^2, h_I \right> v \, \chi_I}{u_I \, m_I(v^2) \, |I|}
$$

is a bounded set in L (K). Hence, $g_I = L_{v,u} u_I - S_{v,u,b} u_I$ is a bounded set in $L^-(\mathbb{R})$. If \overline{g}_I is also an orthogonal set in $L^-(\mathbb{R})$, then $I_{v,u}-S_{v,u,b}$ is a bounded operator on $L^2(\mathbb{R})$. Which would prove the proposition.

But in fact g is an orthogonal set To see this observe that for each interval interval is supported and interval interval interval interval interval interval interval interval restricted to each of the state and right halves of I - it is a constant of I - it is a constant of I - it is multiple of v Thus to show that general set-of v Thus to show that general set-of v Thus to suces to such a setshow that $g_I \perp v \chi_I$. But this is easy to verify since

$$
\int g_I \, v \, \chi_I = \frac{1}{u_I} \Big(\int v^2 h_I - \frac{\langle v^2, h_I \rangle}{|I| \, m_I(v^2)} \int_I v^2 \Big) = 0 \,,
$$

which proves the proposition.

 $N = U_1 \cup U_2$

Proposition 1.4. Suppose there exists $\delta > 0$ so that

$$
\Big(\frac{(m_I(v^{2+\delta}))^{1/(2+\delta)}}{u_I}\Big)b_I
$$

is a Carleson sequence. Then the operator $S_{v,u,b}$ is bounded on $L^-(\mathbb{R})$.

$$
||S_{v,u,b}f||_{L^2}^2 = \sum_I \frac{b_I^2}{u_I^2} (m_I(vf))^2.
$$

However by Hölder's inequality,

$$
m_I(vf) \le (m_I(v^{2+\delta}))^{1/(2+\delta)} (m_I(f^{(2+\delta)/(1+\delta)}))^{(1+\delta)/(2+\delta)}.
$$

Now simply applying Carleson's lemma and the boundedness of the dyadic maximal function on L^{\vee} and the proves the proposition.

Corollary 1.5. Suppose $w \in \mathrm{RH}_2$, that is there exists a constant C so that for any dyadic interval $I, m_I(w^2) \leq C(m_I w)^2$. Then $T_{w,m_I(w)}$ is bounded on $L^-(\mathbb{R})$.

PROOF. If $w \in RH_2$ then $w^2 \in A_\infty$. Hence, $\langle w^2, h_I \rangle/m_I(w^2) = b_I$ is a Carleson sequence FKP By Proposition - we need only show that \mathcal{L} is bounded-definition in the fact that follows in the fact that follows in the fact that for \mathcal{L} for some $\delta \geq 0$, we have that $w \in \mathrm{RH}_{2+\delta}$ together with Proposition 1.4.

For other proofs, applications, and L^p versions of Corollary 1.5, see \blacksquare P \blacksquare P \blacksquare P \blacksquare P \blacksquare P \blacksquare P \blacksquare

Corollary 1.6. Suppose that $w \in A_2$. Then the operators $T_{w^{1/2},(m_Iw)^{1/2}}$ and $\mathbf{1}_{|w|^{-1/2}, (m_Iw)^{-1/2}}$ are bounded on $L^-(\mathbb{R})$.

 $P = \{x_1, x_2, ..., x_n\}$ propositions $P = \{x_1, x_2, ..., x_n\}$ and $P = \{x_1, x_2, ..., x_n\}$ ($m \{m\}$) is an bounded for any $w \in A_{\infty}$. This follows from $\langle w, h_I \rangle/m_I(w)$ being a Carleson sequence, which occurs when $w \in A_{\infty}$, as well as the fact that $w \in \mathrm{RH}_{1+\varepsilon}$, for some $\varepsilon > 0$. Now since $w^{-1} \in A_{\infty}$, we have that $T_{w^{-1/2},(m_I(w^{-1}))^{1/2}}$ is bounded. But since $w \in A_2$, it is the case that $1/m_I(w) \geq m_I(w^{-1})$. This together with the boundedness of Haar multipliers with bounded coefficients proves the corollary.

For more information on the classical theory of Muckenhoupt weights-weights-contractive to Department to Department of the property of the reader of the Department of the

We remark that Corollary 1.6 gives a trivial proof of the boundedness of Haar multipliers with bounded coefficients on $L^-(w)$ for any $w \in A_2$. The corollary says that $w^{1/2} M_w$ ⁻¹ and the adjoint of its inverse w⁻¹² M_w are bounded where M_w is the Haar multiplier with coefficients $m_I w$. Let L be a Haar multiplier with bounded coefficients. Then it is bounded on $L^-(w)$ if and only if $w^{-1}Lw^{-1}$ is bounded on $L^-(\mathbb{R})$. By the boundedness of the operators from Corollary 1.0 and their adjoints, this is true if and only if M_w^{-1} LM_w^{-1} is bounded on

 $L^2(\mathbb{R})$. But everything commutes and $M_w^{-1}L M_w^{-1} = L$. Hence L is bounded on $L(w)$.

Similarly-Similarly-Similarly-Similarly-Similar proof that b is a simple proof that b where b is a Carleson of sequence is bounded on $L^2(w)$ when $w \in A_2$. We simply observe that it suffices to show that $M_w^{\gamma^*} \pi_b w^{-1/2}$ is bounded on $L^2(\mathbb{R})$. Now we apply Proposition 1.4 using the fact that $w \in A_2$ implies $w \in A_{2-\delta}$.

The same ideas can be used to give simple sufficient conditions for L and b to satisfy two weight in the same \mathbf{F} in the same \mathbf{F} in the same \mathbf{F} $L^2(u) \longrightarrow L^2(v)$ provided there exist sequences c_1 and c_2 so that $-w$ and c_1 are bounded and condition-to-condition-to-condition-to-condition-to-condition-to-condition-to-condition*i.e.* $1/(c_{1,I}c_{2,I}) \leq C$ for every dyadic I. Similarly, π_b is bounded from $L^-(u)$ to $L^-(v)$ provided $T_{v^{1/2},c_2}$ is bounded and there exists $v > 0$ so that $(m_I(u^{-1-\sigma/2}))^{1/(2+\sigma)} \leq C c_{2,I}$. The argument which proves this is the same as the proof of Proposition 1.4.

These ideas exactly form the basis for our two weights result for the Hilbert transform. Some pieces of the operator we will study will be treated like multipliers while others are treated like paraproducts Fig. (2) the relationship of the boundedness of the boundedness of the boundedness of U^{-1} , C ? $\mathbf{r} = \mathbf{r}$ to $v \in A_{\infty}$.

As mentioned in the proof of Corollary 1.6, for any $w \in A_{\infty}$, we $w^{-\gamma}$, $m_{I}(w_{I})$ + γ = $w \in \mathrm{RH}^{1+\epsilon}$, for some $\varepsilon > 0$. In what follows, define for any $\varepsilon, w_{I,\varepsilon} =$ $(m_I(w^{1/2}, y^{1/2} \cdot k^{1/2} \cdot k \cdot k \cdot k \cdot k \cdot k \cdot k))$ ask when $T_{w^{1/2}, (w_{I,\varepsilon})^{1/2}}$ is bounded. Propositions 1.3 and 1.4 give as a sufficient condition that there exists a $\delta > 0$ so that

$$
b_I = \frac{\langle w, h_I \rangle (w_{I, \delta})^{1/2}}{(m_I(w))(w_{I, \varepsilon})^{1/2}},
$$

is a Carles of α is interested By Holders in the quality of the contract β is contracted by that $c_I = \langle w, h_I \rangle / w_{I,\mu}$ is a Carleson sequence provided that $0 < \mu <$ \mathbb{R}^n and \mathbb{R}^n are such that result when \mathbb{R}^n and \mathbb{R}^n are such that result when \mathbb{R}^n weights not in A_{∞} do not necessarily satisfy a reverse Hölder condition. When c_I is a Carleson sequence we say that $w \in A_{\infty+\mu}$. Certainly, if $w \in A_{\infty}$ then $w \in A_{\infty+\mu}$. A priori, one might believe that any weight in A is in A or that all weights are in a α in a large in α is in α in α in α in α the case. We thank Peter Jones for the following examples.

First consider $w(x) = |(\log x)^{-2}/x|$ on the interval $[0, 1/2]$. We have that $w(x)$ is not in A_{∞} since it is not in L^{-} for any μ . However, on every interval not containing - it saties a reverse Holder inequality

with uniform estimates. Thus we have $w \in A_{\infty}{}_{+}u$ since on those inter- Ω is a containing on the other we simply apply app $\lfloor \texttt{f} \cdot \texttt{f} \rfloor$. In other words, to sum c_I for T s contained in an interval of the form $[0, 2]$, we need only sum it over intervals contained in intervals of the form $z = 7$, $z = 1$ with $\kappa > 1$, apply $|\text{FAF}|$ to each of these and sum the geometric series.

Next- we dene a weight wj with the parameter ^j an integer The $A_{\infty+\mu}$ constant for any $\mu > 0$ will be unbounded as we vary the pa- \mathcal{N} and the function density of \mathcal{N} and the interval on the interva $[0, 1]$ which takes on the value $Z^{\flat} = 0$ on $[0, Z^{-\flat}]$, is constant on the rest of - and has mean \mathcal{A} - and \mathcal{A} $f:U \longrightarrow I$ interval inter

$$
\delta \ll 1/(2^j)^{(2^j)^{2^j}},
$$

so that we may neglect it for what for what for what for what for what for what for Ω It equal $w_{i,0}$ in the interval $[0, 2, 3]$. Now in the interval $|KZ|^2$, $(K + 1)$ $[1] (2^{-j})]$ for $1 \leq k \leq 2^{j-1}$ we let $w_{j,1} = w_{j,0} f_{j,[k2^{-j},(k+1)(2^{-j})]}$. We repeat the procedure 2^j times letting $w_j = w_{j,2^j}$. Now

$$
r_j = 2^j \sum_{[0,2^{-j}] \subset J \subset [0,1]} \frac{\langle f_{j,[0,1]}, h_J \rangle^2}{f_J^2} ,
$$

can readily be seen to be comparable to the $A_{\infty+\varepsilon}$ constant of w_j when

$$
f_J = \left(\frac{1}{|J|} \int_J (f_{j,[0,1]})^{1+\varepsilon} \right)^{1/(1+\varepsilon)}.
$$

But r_j is readily seen to be approximately 2^{j+1-j} .

2. A small section on operators.

The purpose of this section is just to discuss the generalizations of Jensen's inequality and Schur's lemma which we shall be using in the proof of the main theorem

From this point on, \mathcal{H} will be a Hilbert space. We will think of H, the Hilbert transform as acting on $L^2(\mathbb{R}, \mathcal{H})$, the space of square integrable Hilbert space valued functions. This space is the same as $L^2(\mathbb{R}) \otimes \mathcal{H}$. Naturally, we define the action of H by $H(f \otimes v) = (Hf \otimes v)$.

Our weights u and v shall be positive operator valued functions on H . For any two self-adjoint operators A and B, we say that $A \leq B$ when $B - A$ is positive; and for C a constant, $A \leq C$ means that $(C \text{ Id } -A)$ is positive

First- we state and prove the correct version of Schurs Lemma for operator valued kernels

Lemma Schur Let X be a measure space And let \mathcal{L} be a measure space And let \mathcal{L} be a measure space And let $\mathcal{B}(\mathcal{H})$ valued function on $X \times X$. Suppose that $K(x,y) = A(x,y) B(x,y)$ where the multiplication is pointwise composition. Suppose further that

$$
\int A(x,y) A^*(x,y) dy \leq C_1 ,
$$

and that

$$
\int B^*(x,y) B(x,y) dx \leq C_2.
$$

Then $K(x, y)$ gives rise to a bounded operator on $L^2(\mathbb{R}, \mathcal{H})$ with bound C_1 ' C_2 '... $_1$ C_2 \cdot

Proof-boundary proof-boundary proof-boundary proof-boundary proof-boundary proof-boundary proof-boundary proof-

$$
\int \langle f(x), K(x, y) g(y) \rangle_{\mathcal{H}} dx dy.
$$

We observe

$$
\int \langle f(x), A(x, y) B(x, y) g(y) \rangle_{\mathcal{H}} dx dy
$$
\n
$$
\leq \int \langle A^*(x, y) f(x), B(x, y) g(y) \rangle_{\mathcal{H}} dx dy
$$
\n
$$
\leq \Big(\int |A^*(x, y) f(x)|^2 dx dy \Big)^{1/2} \Big(\int |B(x, y) g(y)|^2 dx dy \Big)^{1/2},
$$

here $|\cdot|$ denotes the norm in H, *i.e.* $\|\cdot\|_{\mathcal{H}} = (\langle \cdot \, , \cdot \rangle_{\mathcal{H}})^{1/2}$.

We write the first integral as

$$
\int \langle A(x,y) A^*(x,y) f(x), f(x) \rangle_{\mathcal{H}} dx dy,
$$

and bound it by integrating first in y . We do the analogous thing for the second integral

Further we need to state the operator version of Jensen's inequality.

Lemma 2.2. Let $A(x)$ be a positive operator valued function on a measure space X. Let $d\mu(x)$ be a measure on X with total measure 1. Let $1 \leq p \leq \infty$. Then

$$
\left(\int A(x)^p d\mu(x)\right)^{1/p} \geq \int A(x) d\mu(x).
$$

For $1 \leq p \leq 2$, the only case in which we will use this, the result follows from [HP] and from the monotonicity of the function $f(t) = t^r$ when $0 \le r \le 1$, see |KR, Exercise 4.6.46|. All solutions are provided in K . The course-c inequality

Lemma 2.3. Let $A(x)$ be a positive operator valued function and let f x be a scalar- positive- integrable function Then

$$
\int f(x)A(x) dx \leq \left(\int f(x)\right)^{1/q} \left(\int f(x) A(x)^p dx\right)^{1/p},
$$

whenever $1 < p < \infty$ and $1/p + 1/q = 1$.

Proof- Simply apply Lemma  to the measure

$$
d\mu(x) = \frac{f(x) dx}{\int f(y) dy}.
$$

Many norm estimates will be based on

Lemma 2.4. Let T_1 and T_2 be positive operators with $T_1 \le T_2$. Let S be any fixed operator. Then

$$
||T_1^{1/2}S|| \le ||T_2^{1/2}S||.
$$

Here $\|\cdot\|$ denotes the operator norm.

the contract of the contract of the state of

3. The two weights problem.

In this section we will give a sufficient condition on pairs of doubling weights (u, v) ensuring that the operator $v + \pi u + v$ is bounded where H is the Hilbert transform. Here an operator valued weight v is said to be doubling if there exists a constant C so that for any dyadic interval I , whenever I is no parent, one has

$$
\int_{\tilde I} v \leq C \int_I v ,
$$

with the inequality in the sense of operators.

As always $\mathcal D$ shall denote the set of all dyadic intervals in the real line. The set of dyadic intervals of length $2^{-\kappa}$ shall be \mathcal{D}_k . We shall divide the set of all ordered pairs of dyadic intervals into a union of disjoint sets. Let

$$
Z_1 = \{ (I, J) : |I| > |J|, 3I \cap 3J = \emptyset \},
$$

\n
$$
Z_2 = \{ (I, J) : |I| < |J|, 3I \cap 3J = \emptyset \},
$$

\n
$$
Z_3 = \{ (I, J) : |I| < |J|, 3I \cap 3J \neq \emptyset \},
$$

\n
$$
Z_4 = \{ (I, J) : |I| > |J|, 3I \cap 3J \neq \emptyset \},
$$

and

$$
Z_5 = \{(I,J) \, : \, |I| = |J|\}\,,
$$

which is the product the production on the Haar function on I - and in I - and in I - and I - and I - and I - a denote h_I . In other words, $E_I f = \langle f, h_I \rangle h_I$ for all $f \in L^2(\mathbb{R}, \mathcal{H})$, here $\langle f,h_I\rangle=\int f(x)\,h_I(x)\,dx\in {\mathcal H}.$ We shall break up the Hilbert transform into corresponding pieces

$$
H_{\alpha} = \sum_{(I,J)\in Z_{\alpha}} E_J H E_I .
$$

Here α runs from 1 to 5.

we now state our conditions on the pair pair use \sim 100 mm and derive a few states of the pair of th easy consequences

First define

$$
u_I = \left(\frac{1}{|I|} \int u^{-(1+\varepsilon)}\right)^{1/(1+\varepsilon)}
$$

and

$$
v_I = \left(\frac{1}{|I|} \int v^{1+\varepsilon} \right)^{1/(1+\varepsilon)}.
$$

Here the number shall be xed throughout By Lemma - it is clear that if we denote the matrix \mathbf{r} is the matrix of \mathbf{r} $\int_I u/|I|$ then one has the operator inequalities $m_I(u^{-1}) \leq u_I$ and $m_I(v) \leq v_I$ which we shall use frequently).

We define the operators acting on $L^2(\mathbb{R}, \mathcal{H})$

$$
T_u f = u^{-1/2} M_u^{-1/2} f = \sum_{I \in \mathcal{D}} u^{-1/2} u_I^{-1/2} \langle f, h_I \rangle h_I ,
$$

and

$$
T_v f = v^{1/2} M_v^{-1/2} f = \sum_{I \in \mathcal{D}} v^{1/2} v_I^{-1/2} \langle f, h_I \rangle h_I.
$$

Here M_w^t denotes the Haar multiplier acting on $L^2(\mathbb{R},\mathcal{H})$ with coefficient w_I , for w_I a given sequence of positive selfadjoint operators on $\mathcal H$.

where α is a satisfact under the satisfact that α is also that α is an operator α and α are bounded operators on $L^2(\mathbb{R}, \mathcal{H})$.

We say that use that use that use \mathcal{N} says that use that \mathcal{N}

$$
(3.1) \ \ u_I^{1/2} \Big(\Big(|I| \int_{(3I)^c} \frac{v^{1+\varepsilon}}{(x-y_I)^2} \Big)^{1/(1+\varepsilon)} + v_I + v_{I-|I|} + v_{I+|I|} \Big) u_I^{1/2} \leq C \,,
$$

and that

$$
(3.2) \t v_I^{1/2} \Big(\Big(|I| \int_{(3I)^c} \frac{u^{-(1+\varepsilon)}}{(x-y_I)^2} \Big)^{1/(1+\varepsilon)} + u_I + u_{I-|I|} + u_{I+|I|} \Big) v_I^{1/2} \leq C ,
$$

where y_I denotes the center of I. We observe that for any A and B positive operators, writing $B^{1/2}AB^{1/2} \leq C$ with C a constant is the same as writing $||A^{1/2}B^{1/2}|| \leq C^{1/2}$. We also point out that for any positive operator was determined function was also assumed function was also assumed function was determined function was also been determined function was also been determined function was also been determined function wa

$$
\int_{(3I)^c} \frac{w}{|x - y_I|^n} \le \frac{1}{|I|^{n-2}} \int_{(3I)^c} \frac{w}{|x - y_I|^2}, \quad \text{for } n > 2
$$

This is not really Hölder's inequality but just the statement that on (51) , we have

$$
\frac{1}{|x-y_I|^{n-2}} \le C \, \frac{1}{|I|^{n-2}} \, .
$$

Finally-definition come to come to condition condition condition condition condition condition \mathbf{F} tors in H (not necessarilly selfadjoint this time) indexed by the dyadic intervalse were denoted by the parameter \mathbf{r} . The parameter of the parameter \mathbf{r}

$$
\pi_c f = \sum_I h_I c_I m_I(f).
$$

Let c_I^v be the operator on $\mathcal H$ given by $(m_I(v))^{-1} \langle v, H_3 h_I \rangle$ and c_I^u the analogous thing for u^{-1} , where we define

$$
\langle v, H_3h_I \rangle = \int v(x) \, (H_3h_I)(x) \, dx \, .
$$

Then we say that (u, v) satisfy condition c) provided that M_u $\pi_{c} v v^{1/2}$ and $M_v^{\pi/\pi} \pi_{c^u} u^{-1/2}$ are bounded and that the following inequalities are satisfied for any dyadic $J \subset I$

$$
(m_I(v))^{-1/2} \left(\frac{1}{|I|} \int_{I^c} v H_3 h_J\right) u_J\left(\frac{1}{|I|} \int_{I^c} v H_3 h_J\right) (m_I(v))^{-1/2}
$$

$$
\leq C \left(\frac{|J|^3}{(d_{IJ})^4}\right) v_I^{-1/2} v_J v_I^{-1/2}.
$$

and

(3.4)

$$
(m_I(u^{-1}))^{-1/2} \left(\frac{1}{|I|} \int_{I^c} u^{-1} H_3 h_J\right) v_J
$$

$$
\cdot \left(\frac{1}{|I|} \int_{I^c} u^{-1} H_3 h_J\right) (m_I(u^{-1}))^{-1/2}
$$

$$
\leq C \left(\frac{|J|^3}{(d_{IJ})^4}\right) u_I^{-1/2} u_J u_I^{-1/2}.
$$

Here d_{IJ} denotes the distance from J to the boundary of I and the inequalities are in the sense of operators By contrast- we will dene ρ_{IJ} to be the maximum of $|I|, |J|$, and the distance between I and J).

Let us observe a quick consequence of condition c). Let $h \in \mathcal{H}$ be a fixed vector. We apply the operator $M_u^{\tau^{\prime}} \tau_{c^v} v^{\tau^{\prime} 2}$ to the test function $v + n \chi_I$. From the 1-th summand of this we obtain the size estimate

$$
(3.5) \t\t\t ||u_I^{1/2}c_I^v(m_I(v))^{1/2}||_{\mathcal{H}\to\mathcal{H}} \leq C |I|^{1/2}.
$$

There is of course an analogous inequality when the u 's and v 's are switched In the case in which use in the inequality of the (together with condition b)) implies the inequality (3.3) .

We now give the proof of this implication. In the case where v and u are scalar, the denimion of c_I together with (3.5) implies that

(3.6)
$$
\int v H_3 h_I \leq C \frac{|I|^{1/2} (m_I(v))^{1/2}}{u_I^{1/2}}
$$

Now observe that $H_3 h_I$ is constant on intervals whose length is |I|. Hence, $|H_3 h_I| \leq C/|I|^{1/2}$ everywhere and is constant on I . Thus from $(3.6),$

$$
(3.7) \qquad \int_{I^c} v \, H_3 h_I \le C \Big(|I|^{1/2} m_I(v) + \frac{|I|^{1/2} (m_I(v))^{1/2}}{u_I^{1/2}} \Big) \, .
$$

But from condition b) and the fact that $m_I(v) \leq v_I$, one has that

$$
(m_I(v))^{1/2} \leq C \frac{1}{u_I^{1/2}} (m_I(v)u_I)^{1/2} \leq C \frac{1}{u_I^{1/2}}.
$$

So that (3.7) implies that

$$
\int_{I^c} vH_3h_I \leq C \, \frac{|I|^{1/2} (m_I(v))^{1/2}}{u_I^{1/2}} \, .
$$

Now we observe that on I , the function $H_3 u_I$ is always positive. This is because $H u_I$ is positive on I and $H_3 u_I$ is given by the mean of $H u_I$ on a certain whitney decomposition of I^+ (we will say more about this $\hspace{0.1mm}$ in the proof of 1 heorem 3.1). In fact, we have on I^- that

$$
H_3 h_I(x) \sim \frac{|I|^{3/2}}{\rho_{xI}^2} \ .
$$

Where we define ρ_{xI} to be the maximum of |I| and the distance from I to x . Thus one has

$$
\int_{I^c} vH_3h_J \leq C\,\frac{|J|^{3/2}|I|^{1/2}}{d_{IJ}^2}\int_{I^c} vH_3h_I\;,
$$

which immediately implies (3.3) . In the last estimate we used the following facts.

(i)
$$
\int \frac{dx}{\rho_{xI}^s} \sim \frac{1}{|I|^{s-1}},
$$

for any $1 < s$,

(ii)
$$
\int_{I^c} \frac{dx}{\rho_{xJ}^2} \sim \frac{1}{d_{IJ}},
$$

for $J \subset I$.

This type of integral/series will appear repeatedly. Variations will be introduced as subtler sets/intervals are defined.

Theorem Suppose u- v satisfy conditions a- b and c Then the Hilbert transform H is bounded from $L^-(u)$ to $L^-(v)$.

PROOF. Our goal is to show that the operator v^{-1} - πu - τ - is bounded on $L^2(\mathbb{R}) \otimes \mathcal{H}$. By condition a) which states that operators $v^{1/2} M_v^{-1/2}$ and $u^{-1/2}M_u$ \cdot \cdot are bounded, it would suffice to show that $M_v^{\;\;\nu}$ - $HM_u^{\;\;\nu}$ is bounded. In fact, we will show that $M_v^{-1} (H_1 + H_2 + H_5) M_u^{-1}$, as $\mathbf v$ $\mathbf v$ well as $v^{1/2}H_3M_u^{-1}$ and $M_v^{-1}H_4u^{-1/2}$ are bounded. Then we shall write

$$
v^{1/2}Hu^{-1/2} = T_v M_v^{1/2} (H_1 + H_2 + H_5) M_u^{1/2} T_u^*
$$

+
$$
(v^{1/2}H_3 M_u^{1/2}) T_u^* + T_v (M_v^{1/2}H_4 u^{-1/2}),
$$

thereby proving the theorem

By the symmetry between u and v, proving that M_v^{ν} $H_1 M_u^{\nu}$ and $v^{1/2}H_3M_u{}'$ are bounded is the same as proving that $M_v{}'$ $H_2M_u{}'$ and M_v^{ν} H₄u^{-1/2} are bounded. The proof bounding M_v^{ν} H₅M_u['] is also exactly the same as the proof that $M_v^{-.}$ $H_1 M_u^{-.}$ is bounded once one makes the trivial observation that for *any* two intervals I and J of the same length-party comments and the contract of the contract of the contract of the contract of the contract of

$$
|H_{IJ}| \leq C \, \frac{|I|^{3/2} |J|^{3/2}}{\rho_{IJ}^3} \,,
$$

where ρ_{IJ} is the maximum of $|I|, |J|$, and the distance between I and J and where $H_{IJ} = \langle H h_I, h_J \rangle$.

Thus we shall proceed to prove only that the operators M_v H_1 \cdot $M_u^{1/2}$ and $v^{1/2}H_3M_u^{1/2}$ are bounded on $L^2(\mathcal{H})$.

We begin with M_v^{γ} $H_1 M_u^{\gamma}$. We shall denote its matrix coefficients by K_{IJ} . Each is a linear operator on H . We have that for $|I| > |J|$ with $3I \cap 3J = \varnothing$,

$$
K_{IJ} = u_I^{1/2} H_{IJ} v_J^{1/2}.
$$

For these I-J s- one has the classical estimate see Da-TV -

$$
|H_{IJ}| \leq C \, \frac{|I|^{3/2} |J|^{3/2}}{\rho_{IJ}^3} \, .
$$

Throughout this section whenever A is a real scalar or more generally a self adjoint operator- we shall- by abuse of notation denote by A-- some choice of normal square root for A always using the fact that $A^{1/2}(A^{1/2})^* = |A|$ where |A| denotes the sum of the positive and negative parts of A

We apply Lemma 2.1 to K_{IJ} . We let $A_{IJ} = u_I^{-1} v_J^{-1} H_{IJ}^{-1}$. Hence, we let $B_{IJ} = H_{IJ}^{1/2}$. The desired estimate on $\sum_I B_{IJ}^* B_{IJ}$ is simply the corresponding estimate for the scalar Hilbert transform. We need only bound

$$
\sum_{\substack{J:|J|<|I|\\3J\cap 3I=\varnothing}}u_I^{1/2}v_J|H_{IJ}|u_I^{1/2}\leq Cu_I^{1/2}\Big(\sum_{\substack{J:|J|<|I|\\3J\cap 3I=\varnothing}}\frac{v_J|J|^{3/2}|I|^{3/2}}{\rho_{IJ}^3}\Big)u_I^{1/2}\;,
$$

where the last inequality is in the sense of positive operators. Suppose that $I \in \mathcal{D}_i$. Then we subdivide into a sum over the intervals $J \in \mathcal{D}_k$ and over all $k > j$. Hence,

$$
(3.8) \qquad \sum_{J \in \mathcal{D}_k} A_{IJ} A_{IJ}^* \le C \sum_{k > j} u_I^{1/2} \Big(\sum_{\substack{J : J \in \mathcal{D}_k \\ 3J \cap 3I = \varnothing}} \frac{v_J |J|^{3/2} |I|^{3/2}}{\rho_{IJ}^3} \Big) u_I^{1/2}.
$$

Now we estimate

$$
\sum_{\substack{J: J \in \mathcal{D}_k \\ 3J \cap 3I = \varnothing}} \frac{v_J |J|^{3/2} |I|^{3/2}}{\rho_{IJ}^3} \le \left(\sum_{J \in \mathcal{D}_k} \frac{|I|^{3/2} |J|^{3/2}}{\rho_{IJ}^3} \right)^{\varepsilon/(1+\varepsilon)} \le \left(\sum_{J \in \mathcal{D}_k} \frac{|I|^{3/2} |J|^{3/2} v_J^{1+\varepsilon}}{\rho_{IJ}^3} \right)^{1/(1+\varepsilon)} \le C \left(\frac{|J|^{1/2}}{|I|^{1/2}} \right)^{\varepsilon/(1+\varepsilon)} \left(\sum_{\substack{J \in \mathcal{D}_k \\ 3J \cap 3I = \varnothing}} \frac{|J|^{3/2} |I|^{1/2} v_J^{1+\varepsilon}}{\rho_{IJ}^2} \right)^{1/(1+\varepsilon)} \le C \frac{|J|^{1/2}}{|I|^{1/2}} \left(|I| \int_{(3I)^c} \frac{v^{1+\varepsilon}}{(x - y_I)^2} \right)^{1/(1+\varepsilon)}.
$$

Now plugging (3.9) into (3.8) and using condition b) we conclude

$$
\sum_{J} A_{IJ} A_{IJ}^* \le \sum_{k > j} \frac{|J|^{1/2}}{|I|^{1/2}}.
$$

But this is a geometric sum, so that M_v $H_1 M_u$ is bounded.

For the penultimate inequality in (3.9) we used the fact that

(iii)
$$
\sum_{J \in D_k} \frac{1}{\rho_{IJ}^s} \sim \frac{|I|}{|J| |I|^s} ,
$$

for $1 < s, |J| < |I|$; which we can compare to

(iv)
$$
\sum_{I \in D_j} \frac{1}{\rho_{IJ}^s} \sim \frac{1}{|I|^s} \sim \sum_{I \in D_j} \frac{1}{\rho_{xI}^s} ,
$$

for $1 < s, |J| < |I|$, and $x \in J$.

Now, we write $L = v^{1/2} (H_3 - \pi_{c^v}^*) M_u^{-1/2}$. If we can bound the operator L then we have proven the then we have proven the theorem by condition c We have proven the theorem by condition c We have μ shall apply Cotlar's lemma writing $L = \sum_j L_j$ with $L_j = L\Delta_j$, where $\Delta_j = \sum_{I \in \mathcal{D}_j} E_I$. We must bound $L_k^* L_j$, and it will be enough to consider only $k \leq j$ by symmetry considerations the case $k \geq j$ can be done using the half of hypothesis a-c that are not used in what are not used in what are not used in what α follows. Also we should not worry about bounding L_kL_j because it can be seen that for $k \neq j$ one has $L_k L_j^* = 0$.

We write with $I \in \mathcal{D}_i$, $J \in \mathcal{D}_k$ and $z_1, z_2 \in \mathcal{H}$ that

$$
\langle L(h_I \otimes z_1), L(h_J \otimes z_2) \rangle_{L^2(\mathbb{R},\mathcal{H})} = \sum_{\alpha=1}^6 \langle z_1, L^\alpha_{IJ} z_2 \rangle_{\mathcal{H}} \; .
$$

To define the decomposition L^{α} we now define a set of intervals B_{jk} . An interval J is contained in B_{ik} precisely if $J \in \mathcal{D}_k$ and there exists a $I \in \mathcal{D}_j$ so that the distance between J and ∂I is bounded by $|I|^{1/2}|J|^{1/2}$. Now we define

$$
\langle z_1, L_{IJ}^1 z_2 \rangle_{\mathcal{H}} = \langle v^{1/2} H_3 h_I \, u_I^{1/2} z_1, v^{1/2} H_3 h_J \, u_J^{1/2} z_2 \rangle_{L^2(\mathbb{R}, \mathcal{H})},
$$

when $J \in B_{ik}$ and 0 otherwise,

$$
-\langle z_1, L_{IJ}^2 z_2 \rangle_{\mathcal{H}} = \langle v^{1/2} H_3 h_I \, u_I^{1/2} z_1, v^{1/2} \pi_{c^v}^* M_u^{1/2} (h_J \otimes z_2) \rangle_{L^2(\mathbb{R}, \mathcal{H})},
$$

when $J \in B_{ik}$ and 0 otherwise,

$$
-\langle z_1, L_{IJ}^3 z_2 \rangle_{\mathcal{H}} = \langle v^{1/2} \pi_{c}^* M_u^{1/2} (h_I \otimes z_1), v^{1/2} H_3 h_J u_J^{1/2} z_2 \rangle_{L^2(\mathbb{R}, \mathcal{H})},
$$

when $J \in B_{ik}$ and 0 otherwise,

$$
\langle z_1, L_{IJ}^4 z_2 \rangle_{\mathcal{H}} = \langle v^{1/2} \pi_{c^v}^* M_u^{1/2}(h_I \otimes z_1), v^{1/2} \pi_{c^v}^* M_u^{1/2}(h_J \otimes z_2) \rangle_{L^2(\mathbb{R}, \mathcal{H})},
$$

when $J \in B_{ik}$ and 0 otherwise,

$$
\langle z_1, L_{IJ}^5 z_2 \rangle_{\mathcal{H}} = \langle v^{1/2} H_3 h_I u_I^{1/2} z_1, L(h_J \otimes z_2) \rangle_{L^2(\mathbb{R}, \mathcal{H})},
$$

when $J \notin B_{ik}$ and 0 otherwise and

$$
-\langle z_1, L_{IJ}^6 z_2 \rangle_{\mathcal{H}} = \langle v^{1/2} \pi_{c^v}^* M_u^{1/2} (h_I \otimes z_1), L(h_J \otimes z_2) \rangle_{L^2(\mathbb{R}, \mathcal{H})},
$$

when $J \notin B_{ik}$ and 0 otherwise.

It suffices to bound the operator-valued matrices L^+ with exponential decay in $|j - k|$, and this is what we shall do.

The main point of the argument is as follows. By the definithe H-H-Haar expansion of \mathbf{I} is the sum of all components of all compon

 $\langle Hh_I, h_J\rangle h_J$ for J such that $3I \cap 3J \neq \varnothing$ and $|I| < |J|$, denote that collection of intervals by ZI \sim each I with dyadic intervals \sim each intervals \sim the property $3I \cap 3J = \emptyset$ which have $|I| \geq |J|$ and such that their parents J belong to $\mathcal{L}_3(I)$ form a disjoint covering of (JI) and we may define $J_I(x)$ for any point x in (51) to be the element of this covering containing x. For $x \in 5I$ we define $J_I(x)$ to be the dyadic interval of length $|I|$ containing x.

Then-dimension-dimension-dimension-dimension-dimension-dimension-dimension-dimension-dimension-dimension-dimension-

$$
(H_3h_I)(x) = m_{J_I(x)}(Hh_I).
$$

the Higher Higher while the function while the function \mathbf{u} and \mathbf{u} and \mathbf{u} not In fact-In now on

(3.10)
$$
|H_3 h_I(x)| \leq C \frac{|I|^{3/2}}{\rho_{xI}^2}.
$$

Let us state some facts that will be used often in the proof. We let $S_{jk} = 2(\cup_{J \in B_{jk}} J)$. For $I \in \mathcal{D}_j$, $J \in \mathcal{D}_k$, and $j < k$,

-

(v)
$$
\sum_{J \in B_{j k}} \frac{1}{\rho_{xJ}^2} \le \frac{C}{|J|^2} ,
$$

for $x \in S_{ik}$,

(vi)
$$
\sum_{J \in B_{j k}} \frac{1}{\rho_{xJ}^2} \le \frac{C}{|J| |I|},
$$

for $x \in S_{ik}^c$,

(vii)
$$
\int_{S_{jk}} \frac{1}{\rho_{xI}^2} \leq C \, \frac{|J|^{1/2}}{|I|^{3/2}} \, .
$$

We begin with

$$
L_{IJ}^1 = u_I^{1/2} \Big(\int v(H_3 h_I) (H_3 h_J) \Big) u_J^{1/2} .
$$

where the contract of the contract of the contract of \mathcal{A} , and the contract of the cont

$$
A_{IJ} = u_I^{1/2} \Big(\int v(H_3 h_I) (H_3 h_J) \Big)^{1/2} ,
$$

and

$$
B_{IJ} = \left(\int v(H_3 h_I) (H_3 h_J) \right)^{1/2} u_J^{1/2} .
$$

We let $S_{jk} = 2(\cup_{J \in B_{jk}} J)$ and shall estimate separately the integral on S_{jk} and on S_{jk} . We must estimate

$$
\sum_{J \in B_{jk}} A_{IJ} A_{IJ}^* = \sum_{J \in B_{jk}} u_I^{1/2} \left| \int v(H_3 h_I) (H_3 h_J) \right| u_I^{1/2}
$$
\n
$$
(3.11) \qquad \leq \sum_{J \in B_{jk}} u_I^{1/2} \left(\int_{S_{jk}} \frac{v|I|^{3/2} |J|^{3/2}}{\rho_{xI}^2 \rho_{xJ}^2} + \int_{S_{jk}^c} \frac{v|I|^{3/2} |J|^{3/2}}{\rho_{xI}^2 \rho_{xJ}^2} \right) u_I^{1/2}.
$$

Here again $|\cdot|$ denotes the sum of the positive and negative parts. Now, we estimate the integrals using the trivial bound $|J| \leq \rho_{xJ}$, Hölder, (v) and (vii) ,

$$
\sum_{J \in B_{jk}} \int_{S_{jk}} \frac{v|I|^{3/2}|J|^{3/2}}{\rho_{xI}^{2} \rho_{xJ}^{2}} = \int_{S_{jk}} \frac{v|I|^{3/2}}{\rho_{xI}^{2}} \Big(\sum_{J \in B_{jk}} \frac{|J|^{3/2}}{\rho_{xJ}^{2}}\Big)
$$

\n
$$
\leq \Big(\frac{|I|}{|J|}\Big)^{1/2} \Big(|I|\int_{S_{jk}} \frac{v}{\rho_{xI}^{2}}\Big)
$$

\n
$$
\leq C \Big(\frac{|I|}{|J|}\Big)^{1/2} \Big(|I|\int_{S_{jk}} \frac{v^{1+\epsilon}}{\rho_{xI}^{2}}\Big)^{1/(1+\epsilon)}
$$

\n(3.12)
\n
$$
\cdot \Big(|I|\int_{S_{jk}} \frac{1}{\rho_{xI}^{2}}\Big)^{\epsilon/(1+\epsilon)}
$$

\n
$$
\leq C \Big(\frac{|I|}{|J|}\Big)^{1/2} \Big(\frac{|S_{jk} \cap I|}{|I|}\Big)^{\epsilon/(1+\epsilon)}
$$

\n
$$
\cdot \Big(|I|\int \frac{v^{1+\epsilon}}{\rho_{xI}^{2}}\Big)^{1/(1+\epsilon)}
$$

\n
$$
\leq C \Big(\frac{|I|}{|J|}\Big)^{1/2 - \epsilon/(2+2\epsilon)} \Big(|I|\int \frac{v^{1+\epsilon}}{\rho_{xI}^{2}}\Big)^{1/(1+\epsilon)}.
$$

Here the factor of $(|S_{jk} \cap I|/|I|)$ comes from the fact that ρ_{xI} is almost constant on intervals of length I, also remember that $|S_{jk} \cap I| \sim$ $(|I||J|)^{1/2}$. However for $x \in S_{ik}^c$ we may use that $\rho_{xJ} \geq (|I||J|)^{1/2}$,

 $\ddot{}$

 \mathbf{u} and Holder-January \mathbf{u}

$$
\sum_{J \in B_{jk}} \int_{S_{jk}^{c}} \frac{v|I|^{3/2}|J|^{3/2}}{\rho_{xI}^{2} \rho_{xJ}^{2}} \le \left(\frac{|J|}{|I|}\right)^{1/2} \left(|I| \int_{S_{jk}^{c}} \frac{v}{\rho_{xI}^{2}}\right)
$$

\n
$$
\le C \left(\frac{|J|}{|I|}\right)^{1/2} \left(|I| \int \frac{v}{\rho_{xI}^{2}}\right)
$$

\n
$$
\le C \left(\frac{|J|}{|I|}\right)^{1/2} \left(|I| \int \frac{1}{\rho_{xI}^{2}}\right)^{\varepsilon/(1+\varepsilon)}
$$

\n
$$
\cdot \left(|I| \int \frac{v^{1+\varepsilon}}{\rho_{xI}^{2}}\right)^{1/(1+\varepsilon)}
$$

\n
$$
\le C \left(\frac{|J|}{|I|}\right)^{1/2} \left(|I| \int \frac{v^{1+\varepsilon}}{\rho_{xI}^{2}}\right)^{1/(1+\varepsilon)}
$$

Now we plug (3.12) and (3.13) into (3.11) using condition b) to obtain

$$
\sum_{J\in B_{jk}}A_{IJ}A_{IJ}^*\leq C\left(\left(\frac{|J|}{|I|}\right)^{1/2}+\left(\frac{|I|}{|J|}\right)^{1/2-\varepsilon/(2+2\varepsilon)}\right).
$$

We compute directly

$$
\sum_{I \in \mathcal{D}_j} B^*_{IJ} B_{IJ} \leq \sum_{I \in \mathcal{D}_j} u_J^{1/2} \Big(\int \frac{v|I|^{3/2} |J|^{3/2}}{\rho_{xI}^2 \rho_{xJ}^2} \Big) u_J^{1/2} \leq C \, \frac{|J|^{1/2}}{|I|^{1/2}} \, .
$$

Here the last inequality follows from summing integralthen applying Holder- condition b- i and iv as in  and But this provides the desired estimates on L_{LL} since estimates on $\sum_{J\in\mathcal{D}_k} A_{IJ}A_{IJ}^*$ and on $\sum_{I\in\mathcal{D}_i} B_{IJ}^* B_{IJ}$ decays exponen- train in $\kappa = j$.

We will use repeatedly the estimate deduced by Hölder and b) in (3.13)

$$
u_I^{1/2}\Big(\int\frac{|I|\,v(x)}{\rho_{xI}^2}\Big)u_I^{1/2}\leq C\,.
$$

To bound L_{IJ}^{τ} , naturally, we shall use condition c), recalling the estimate (3.5) namely

$$
(3.5) \t\t\t ||u_I^{1/2}c_I^v(m_I(v))^{1/2}||_{\mathcal{H}\to\mathcal{H}} \leq C |I|^{1/2}.
$$

We abbreviate $D_I = u_I^{\gamma}{}^{\tau} c_I^{\rho} (m_I(v))^{\gamma}$. By definition, we have that for $J \in B_{ik}$, and $x_J \in J$,

$$
L_{IJ}^2 = u_I^{1/2} (H_3 h_I)(x_J) (m_J(v))^{1/2} D_J^*,
$$

remember that

$$
\pi_{c^v}^* M_u^{1/2}(h_J \otimes z) = \frac{\chi_J(x)}{|J|} (c_J^v)^* u_J^{1/2} z.
$$

 \mathcal{L} . The property density is a set of \mathcal{L}

$$
A_{IJ} = u_I^{1/2} (m_J(v))^{1/2} \frac{|I|^{1/2} |J|^{1/2}}{\rho_{IJ}}
$$

and letting

$$
B_{IJ} = \frac{\rho_{IJ}}{|I|^{1/2}|J|^{1/2}} (H_3 h_I)(x_J) D_J^*.
$$

Now we compute

$$
\sum_{J \in B_{jk}} A_{IJ} A_{IJ}^* = u_I^{1/2} |I| \Big(\sum_{J \in B_{jk}} \frac{|J|m_J v}{\rho_{IJ}^2} \Big) u_I^{1/2} \n\leq C u_I^{1/2} \Big(|I| \int_{S_{jk}} \frac{v}{\rho_{xI}^2} \Big) u_I^{1/2} \n\leq C \Big(\frac{|J|}{|I|} \Big)^{\varepsilon/(2+2\varepsilon)} u_I^{1/2} \Big(|I| \int \frac{v^{1+\varepsilon}}{\rho_{xI}^2} \Big)^{1/(1+\varepsilon)} u_I^{1/2} \n\leq C \Big(\frac{|J|}{|I|} \Big)^{\varepsilon/(2+2\varepsilon)}.
$$

 \mathbb{H} is as in the penultimate interval in the same from the sam application of Holder and the nature $\{0,1,2,\ldots\}$ and the nature from $\{0,1,2,\ldots\}$, and the nature $\{0,1,2,\ldots\}$ condition b On the other hand- by - we see that

$$
\sum_I B^*_{IJ} B_{IJ} \le \sum_I \frac{|I|^2}{\rho_{IJ}^2} \le C \, .
$$

mence, we have obtained the desired estimate for L_{IJ} .

ivext, we estimate L_{IJ}^τ . We obtain immediately from the definition that

$$
-L_{IJ}^3 = \frac{1}{|I|} u_I^{1/2} c_I^v \left(\int_I v(H_3 h_J) \right) u_J^{1/2} .
$$

As before-dimensional use that from condition condi \mathcal{L} is a letting \mathcal{L} is a letting \mathcal{L} is a letting \mathcal{L} is a letting \mathcal{L}

(3.14)
$$
A_{IJ} = \frac{|J|^{1/4}}{|I|} u_I^{1/2} c_I^v \left(\int_I v H_3 h_J \right)^{1/2},
$$

and letting

$$
B_{IJ} = |J|^{-1/4} \Big(\int_I v H_3 h_J \Big)^{1/2} u_J^{1/2} \ .
$$

We compute

$$
(3.15) \qquad \sum_{J \in B_{jk}} A_{IJ} A_{IJ}^* \le \sum_{J \in B_{jk}} \frac{1}{|I|^2} u_I^{1/2} c_I^v \Big(\int_I |J|^2 \frac{v}{\rho_{xJ}^2} \Big) (c_I^v)^* u_I^{1/2} \,,
$$

by plugging in (3.14) into the sum and using the size estimates on $H_3 h_J$. \blacksquare . we estimate the interval in the integral in \blacksquare in the interval interval interval interval interval interval in into $I \cap S_{jk}$ and $I \cap S_{ik}^c$ observing, by summing under the integral and using values and virtuous contracts and virtuous contracts and virtuous contracts of the contracts of the contracts

$$
(3.16) \qquad \sum_{J \in B_{jk}} \int_I |J|^2 \frac{v}{\rho_{xJ}^2} \le C \Big(\int_{S_{jk} \cap I} v + \frac{|J|^{1/2}}{|I|^{1/2}} \int_I v \Big) .
$$

The second piece in (3.16) is clearly bounded by $|J|^{1/2}|I|^{1/2}m_I(v)$. As for the first piece, we use doubling observing that $S \cap I$ is contained in the rightmost and leftmost dyadic subintervals of I having measure more that $2|J|^{1/2}I|^{1/2}$. Recall doubling implies that if K is any dyadic $\frac{1}{100}$ and $\frac{1}{100}$ parent then

$$
\int_{\tilde{K}} v \leq C \int_{K} v .
$$

Now let K_b be K's twin sister. Since $\int_K v \geq \int_{\tilde{K}} v/C$ while $\int_{\tilde{K}} v =$ $\int_K v + \int_{K_b} v$, one has that

$$
\int_{K_b} v \le \left(1 - \frac{1}{C}\right) \int_{\tilde{K}} v \, .
$$

. The same holds for K by applying the doubling the doubling condition on the same of the doubling condition on K_b . In fact if K is any descendant of K after ι generations, one has

$$
\int_{K'} v \le \left(1 - \frac{1}{C}\right)^l \int_K v \le \left(\frac{|K'|}{|K|}\right)^{\delta} \int_K v,
$$

where $\delta \geq 0$ depends only on the doubling constant. Now since $S \cap I$ is contained in two descendants of I of length at most $4|J|^{1/2}|I|^{1/2}$, one has that

$$
(3.17) \qquad \qquad \int_{S \cap I} v \le C \Big(\frac{|J|}{|I|}\Big)^{\delta/2} \int_{I} v \, .
$$

Plugging our observations into (3.16) yields that

$$
(3.18) \quad \sum_{J \in B_{jk}} \int_I |J|^2 \frac{v}{\rho_{xJ}^2} \leq C \left(|I|^{1-\delta/2} |J|^{\delta/2} + |I|^{1/2} |J|^{1/2} \right) m_I(v) \, .
$$

Now we plug into - applying and the fact that when $P_1 \leq P_2$ then $TP_1T^* \leq TP_2T^*$ for any P_1, P_2 , and T to obtain that

$$
\sum_{J\in B_{jk}}A_{IJ}A_{IJ}^*\leq C\left(\left(\frac{|J|}{|I|}\right)^{\delta/2}+\left(\frac{|J|}{|I|}\right)^{1/2}\right).
$$

Now,

$$
\sum_{I \in \mathcal{D}_j} B^*_{IJ} B_{IJ} \le \sum_{I \in \mathcal{D}_j} u_J^{1/2} \Big(\int_I \frac{|J| \, v}{\rho_{xJ}^2} \Big) u_J^{1/2} \le u_J^{1/2} \Big(\int \frac{|J| \, v}{\rho_{xJ}^2} \Big) u_J^{1/2} \le C \, .
$$

Here we have used Hölder and condition b) as in (3.12) and (3.13) . I mus, we have obtained the desired estimates on L_{IJ}^* .

We come now to L_{IJ}^* . By definition, when $J \in B_{jk}$ and $J \subset I$,

$$
L_{IJ}^4 = u_I^{1/2} c_I^v \left(\int_J \frac{v}{|I| |J|} \right) (c_J^v)^* u_J^{1/2}
$$

=
$$
\left(\frac{1}{|I|} \right) D_I (m_I(v))^{-1/2} (m_J(v))^{1/2} D_J^*,
$$

when $J \cap I = \emptyset$ then by support considerations $L_{IJ}^* = 0$.

As usual we apply Lemma - though the sum over I will be over a set with only one element. We let

$$
A_{IJ} = \frac{|J|^{1/2}}{|I|} D_I(m_I(v))^{-1/2} (m_J(v))^{1/2},
$$

and

$$
B_{IJ} = \frac{1}{|J|^{1/2}} D_J^*.
$$

We compute

$$
\sum_{\substack{J \in B_{jk} \\ J \subset I}} A_{IJ} A_{IJ}^* = \sum_{\substack{J \in B_{jk} \\ J \subset I}} \left(\frac{1}{|I|}\right) D_I \left(\frac{|J|}{|I|}\right) (m_I(v))^{-1/2} (m_J(v)) (m_I(v))^{-1/2} D_I^*
$$
\n
$$
\leq \left(\frac{1}{|I|}\right)^2 D_I (m_I(v))^{-1/2} \int_{S \cap I} v(m_I(v))^{-1/2} D_I^*
$$
\n
$$
\leq C \left(\frac{1}{|I|}\right) D_I \left(\frac{|J|}{|I|}\right)^{\delta/2} D_I^*
$$
\n
$$
\leq C \left(\frac{|J|}{|I|}\right)^{\delta/2}.
$$

Here the penultimate estimate is by (3.17) and the last one by (3.5) . The bound on $D_{IJ}D_{IJ}$ independent of J is just (5.3). Hence, L_{IJ}^{τ} satisfies the desired estimates.

Next we bound L_{IJ}° . This time $J \notin B_{jk}$. We define

$$
\hat{J}=\Big(\frac{|I|^{1/2}}{|J|^{1/2}}\Big)J
$$

and we have that if $J \subset I$ then $J \subset I$. Now the reason that we are Cotlarizing $L = v^{1/2} (H_3 - \pi_{c}^* v) M_u^{1/2}$ instead of just $v^{1/2} H_3 M_u^{1/2}$ is precisely that it gives us the cancelation

$$
\int v^{1/2} L h_I = 0 \,,
$$

for every interval I. We now simply use the fact that $H_3 h_I$ is constant on \hat{J} while

$$
\int_j v^{1/2} L h_J = - \int_{\hat{J}^c} v^{1/2} L h_J
$$

to write

$$
L_{IJ}^5 = L_{IJ}^{5,1} - L_{IJ}^{5,2}
$$

= $u_I^{1/2} \Big(\int_{(\hat{J})^c} v(H_3 h_I) (H_3 h_J) \Big) u_J^{1/2}$
 $- u_I^{1/2} (H_3 h_I) (x_J) \Big(\int_{(\hat{J})^c} v(H_3 h_J) \Big) u_J^{1/2}$.

First, we bound L_{IJ}^{++} by Lemma 2.1. We let

$$
A_{IJ} = u_I^{1/2} \Big(\int_{(\hat{J})^c} v(H_3 h_I) (H_3 h_J) \Big)^{1/2},
$$

and we let

$$
B_{IJ} = \Big(\int_{(\hat{J})^c} v(H_3 h_I) (H_3 h_J)\Big)^{1/2} u_J^{1/2} \,.
$$

We have

$$
\sum_{J \notin B_{jk}} A_{IJ} A_{IJ}^* \le u_I^{1/2} \Big(\sum_{J \notin B_{jk}} \int_{(\hat{J})^c} \frac{v|I|^{3/2} |J|^{3/2}}{\rho_{xI}^2 \rho_{xJ}^2} \Big) u_I^{1/2}
$$

$$
\le C u_I^{1/2} \Big(\int \frac{v|I|}{\rho_{xI}^2} \Big) u_I^{1/2}
$$

$$
\le C.
$$

Here- the penultimate inequality comes from the simple observation that for each x ,

(viii)
$$
\sum_{J \in \mathcal{D}_k} \frac{1}{\rho_{xJ}^2} \chi_{\hat{J}^c}(x) \leq \frac{C}{|J|^{3/2}|I|^{1/2}}.
$$

The inequality (viii) is obtained by majorizing the sum by

$$
\frac{1}{|J|}\int_{|J|^{1/2}|I|^{1/2}}^{\infty}\frac{dx}{x^2}\ .
$$

Furthermore,

$$
\sum_{I \in \mathcal{D}_j} B^*_{IJ} B_{IJ} \le u_J^{1/2} \Big(\sum_{I \in \mathcal{D}_j} \int_{(\hat{J})^c} \frac{v|I|^{3/2} |J|^{3/2}}{\rho_{xI}^2 \rho_{xJ}^2} \Big) u_J^{1/2} \le C \Big(\frac{|J|^{1/2}}{|I|^{1/2}} \Big) \Big(u_J^{1/2} \int \frac{|J|v}{\rho_{xJ}^2} \Big) u_J^{1/2} \le C \Big(\frac{|J|}{|I|} \Big)^{1/2},
$$

which is the desired estimate for $L_{IJ}^{\tau\tau}$. Redefining A_{IJ} and B_{IJ} , we continue by decomposing $L_{IJ}^{zz} = A_{IJ}B_{IJ}$. First, we let

$$
K_{IJ} = \rho_{IJ}^{1/(1+\varepsilon)}(H_3h_I)(J) ,
$$

and we let

$$
A_{IJ}=|I|^{1/(2(1+\varepsilon))}u_I^{1/2}\rho_{IJ}^{-1/(1+\varepsilon)}K_{IJ}^{1/2}\Big(\int_{(\hat{J})^c}v(H_3h_J)\Big)^{1/2}\,,
$$

and

$$
B_{IJ} = (|I|)^{-1/(2(1+\varepsilon))} K_{IJ}^{1/2} \Big(\int_{(\hat{J})^c} v(H_3 h_J) \Big)^{1/2} u_J^{1/2} .
$$

We estimate

$$
A_{IJ} A_{IJ}^* \leq u_I^{1/2} |K_{IJ}| |J|^{3/2} \Big(|I| \int_{\hat{J}^c} \frac{v^{1+\varepsilon}}{\rho_{xJ}^2 \rho_{IJ}^2} \Big)^{1/(1+\varepsilon)}
$$

$$
\cdot \Big(\int_{\hat{J}^c} \frac{1}{\rho_{xJ}^2} \Big)^{\varepsilon/(1+\varepsilon)} u_I^{1/2}
$$

$$
\leq C |K_{IJ}| |J|^{3/2} u_I^{1/2} \Big(|I| \int_{\hat{J}^c} \frac{v^{1+\varepsilon}}{\rho_{xI}^2} \Big)^{1/(1+\varepsilon)}
$$

$$
\cdot u_I^{1/2} \Big(\frac{1}{|J|^{1/2} |I|^{1/2}} \Big)^{\varepsilon/(1+\varepsilon)} (|I| |J|)^{-1/(1+\varepsilon)}
$$

$$
\leq C \frac{(|I| |J|)^{(1+2\varepsilon)/(2(1+\varepsilon))}}{\rho_{IJ}^{(1+2\varepsilon)/(1+\varepsilon)}}.
$$

Here we have used the fact that on J^c , one has $\rho_{IJ}^2 \rho_{xJ}^2 \geq |I||J|\rho_{xI}^2$. We sum obtaining $V_{I,J} = \frac{V_{I,J} - V_{I,J}}{V_{I,J}}$

$$
\sum_{J \in \mathcal{D}_k} A_{IJ} A_{IJ}^* \le \sum_{J \in \mathcal{D}_k} \frac{|I|^{(1+2\varepsilon)/(2(1+\varepsilon))} |J|^{(1+2\varepsilon)/(2(1+\varepsilon))}}{\rho_{IJ}^{(1+2\varepsilon)/(1+\varepsilon)}}
$$

$$
\le \left(\frac{|I|}{|J|}\right)^{1/(2(1+\varepsilon))}.
$$

while-we computed the computer of the computer

$$
B_{IJ}^* B_{IJ} \le (|I| |J|)^{-(2+\varepsilon)/(2(1+\varepsilon))} |J|^{3/2} |K_{IJ}| u_J^{1/2}
$$

$$
\cdot (|J| \int_{\hat{J}^c} \frac{v^{1+\varepsilon}}{\rho_{xJ}^2} \Big)^{1/(1+\varepsilon)} u_J^{1/2}
$$

$$
\le C \frac{(|I| |J|)^{(1+2\varepsilon)/(2(1+\varepsilon))}}{\rho_{IJ}^{(1+2\varepsilon)/(1+\varepsilon)}}.
$$

We conclude that

$$
\sum_{I \in \mathcal{D}_j} B^*_{IJ} B_{IJ} \leq \sum_{I \in \mathcal{D}_j} \frac{|I|^{(1+2\varepsilon)/(2(1+\varepsilon))} |J|^{(1+2\varepsilon)/(2(1+\varepsilon))}}{\rho_{IJ}^{(1+2\varepsilon)/(1+\varepsilon)}}
$$

$$
\leq \left(\frac{|J|}{|I|}\right)^{(1+2\varepsilon)/(2(1+\varepsilon))}.
$$

which gives the desired estimate on $L_{IJ}^{\gamma\gamma}$.

Finally, we come to L_{IJ}^{γ} . We break up into $L_{IJ}^{\gamma} = L_{IJ} + L_{IJ}$. Here, we let $L_{IJ}^{\gamma,\tau} = L_{IJ}^{\gamma}$ when $J \subset I$ and 0 otherwise. As before, we let $D_I = u_I^{-\tau} c_I^v (m_I(v))^{\tau/2}$. We let

$$
F_{IJ} = (m_I(v))^{-1/2} \Big(\frac{1}{|I|} \int_{I^c} v H_3 h_J\Big) u_J\Big(\frac{1}{|I|} \int_{I^c} v H_3 h_J\Big) (m_I(v))^{-1/2}.
$$

We have $||D_I|| \leq C |I|^{1/2}$ and we have

$$
F_{IJ} \leq \frac{|J|^3}{d_{IJ}^4} u_I^{-1/2} u_J u_I^{-1/2} .
$$

Recall d_{IJ} is the distance from J to the boundary of I . Here we are directly applying (3.3) . Notice this is the only place where we use it. Since all J's we are considering are not in B_{ik} , we have that $d_{IJ} \geq$ $|I|^{1/2}|J|^{1/2}$, but for most J, it is even bigger. We write by definition and cancellation,

$$
-L_{IJ}^{6,1} = u_I^{1/2} c_I^v \Big(\frac{1}{|I|} \int_{I^c} v H_3 h_J \Big) u_J^{1/2} \ .
$$

We let $A_{IJ} = L_{IJ}$ and $B_{IJ} = 1$. Then we have

$$
\sum_{\substack{J: J \in \mathcal{D}_k \\ J \notin B_{j_k}}} A_{IJ} A_{IJ}^* = \sum_J D_I F_{IJ} D_I^*
$$
\n
$$
\leq D_I \Big(\sum_{J \in \mathcal{D}_k} \frac{|J|^3}{d_{IJ}^4} u_I^{-1/2} u_J u_I^{-1/2} \Big) D_I^*
$$
\n
$$
\leq \frac{|J|^{\delta}}{|I|^{1+\delta}} D_I D_I^*
$$
\n
$$
\leq C \Big(\frac{|J|}{|I|} \Big)^{\delta} ,
$$

for some $\delta > 0$ which is the desired estimate on L_{IJ}^{-1} , provided we can show that

$$
\sum_{\substack{J: J \in \mathcal{D}_k \\ J \notin B_{jk}}} \frac{|J|^3}{d_{IJ}^4} u_J \leq \frac{|J|^{\delta}}{|I|^{1+\delta}} u_I ,
$$

where the sum is over *J*'s contained in *I* with $d_{IJ} \geq |I|^{1/2} |J|^{1/2}$. We let \mathcal{Z}_1 be the set of those *J*'s with $d_{IJ} \leq |I|^{3/4} |J|^{1/4}$ and \mathcal{Z}_2 be the set of those J 's with $d_{IJ} \geq |I|^{3/4} |J|^{1/4}$. We estimate for \mathcal{Z}_1 , noticing that card $(\mathcal{Z}_1) \leq (|I|/|J|)^{3/4}$,

$$
\sum_{J \in \mathcal{Z}_1} \frac{|J|^3}{d_{IJ}^4} u_J \le \sum_{J \in \mathcal{Z}_1} \frac{|J|}{|I|^2} u_J
$$
\n
$$
\le \Big(\sum_{J \in \mathcal{Z}_1} \frac{|J|}{|I|^2} u_J^{1+\varepsilon} \Big)^{1/(1+\varepsilon)} \Big(\sum_{J \in \mathcal{Z}_1} \frac{|J|}{|I|^2} \Big)^{\varepsilon/(1+\varepsilon)}
$$
\n
$$
\le \Big(\frac{1}{|I|} \Big) u_I \Big(\frac{|J|}{|I|} \Big)^{\varepsilon/(4(1+\varepsilon))},
$$

while for \mathcal{Z}_2 ,

$$
\sum_{J \in \mathcal{Z}_2} \frac{|J|^3}{d_{IJ}^4} u_J \le \sum_{J \in \mathcal{Z}_2} \frac{|J|^2}{|I|^3} u_J
$$
\n
$$
\le \left(\frac{|J|}{|I|}\right) \left(\sum_{J \in \mathcal{Z}_2} \frac{|J|}{|I|^2} u_J^{1+\varepsilon}\right)^{1/(1+\varepsilon)} \left(\sum_{J \in \mathcal{Z}_2} \frac{|J|}{|I|^2}\right)^{\varepsilon/(1+\varepsilon)}
$$
\n
$$
\le u_I \left(\frac{|J|}{|I|^2}\right).
$$

This leaves us to bound L_{IJ} . By definition, for $I \cap J = \varnothing$,

$$
L_{IJ}^{6,2} = D_I(m_I(v))^{-1/2} \Big(\frac{1}{|I|} \int_I v H_3 h_J\Big) u_J^{1/2} ,
$$

zero otherwise

We break up

$$
A_{IJ} = D_I(m_I(v))^{-1/2} \left(\frac{1}{|I|} \int_I v H_3 h_J\right)^{1/2},
$$

and

$$
B_{IJ} = \left(\frac{1}{|I|} \int_I v H_3 h_J\right)^{1/2} u_J^{1/2},
$$

and now we obtain bounds easily using the fact that $J \cap I = \emptyset$ and $d_{IJ} \geq (|I| |J|)^{1/2}$. We simply compute

$$
\sum_{\substack{J: J \in \mathcal{D}_k \\ J \notin B_{jk}}} A_{IJ} A_{IJ}^* \le \Big(\sup_{x \in I} \sum_{J \in \mathcal{D}_k} \frac{|J|^{3/2}}{\rho_{xJ}^2} \Big) D_I(m_I(v))^{-1/2} \cdot \Big(\frac{1}{|I|} \int_I v \Big) (m_I(v))^{-1/2} D_I^* \le C \frac{1}{|I|^{1/2}} D_I D_I^* \le C |I|^{1/2}.
$$

Here we use the fact that

(ix)
$$
\sum_{\substack{J: J \in \mathcal{D}_k \\ J \notin B_{jk} \\ J \cap I = \varnothing}} \frac{|J|^{3/2}}{\rho_{xJ}^2} \le \frac{C}{|I|^{1/2}}.
$$

 \mathcal{A} that the sum on Imerely extends the sum on Imerely of the integral-temperature \mathcal{M} is a contract of the integral-temperature \mathcal{M}

$$
\sum_{I} B_{IJ}^* B_{IJ} \le \frac{|J|^{1/2}}{|I|} u_J^{1/2} \Big(|J| \int \frac{v}{\rho_{xJ}^2} \Big) u_J^{1/2} \le C \Big(\frac{|J|^{1/2}}{|I|}\Big) .
$$

 \mathcal{M} , and \mathcal{M} these two estimates and obtaining decay-randomly decay-randomly \mathcal{M} and \mathcal{M} 3.1.

It may be worth pointing out that if assumptions (3.3) and (3.4) seem unappealing also obtain the same result by assuming also obtain the same result by assuming and \sim sort of a doubling at infinity condition for v and u^{-1} . Thus it suffices, for example-to-assume there is a ϵ with the is a with the is a with the is a with the is a with the is

$$
\left(\int_{I^c} vH_3h_J\right)(m_J(v))^{-1}\left(\int_{I^c} vH_3h_J\right)
$$

$$
\leq \left(\frac{|J|}{d_{IJ}}\right)^{\delta}\left(\int_{J^c} vH_3h_J\right)(m_J(v))^{-1}\left(\int_{J^c} vH_3h_J\right).
$$

Then we simply use

$$
||F_{IJ}|| = \left||u_J^{1/2}\Big(\int_{I^c} v H_3h_J\Big)(m_J(v))^{-1}\Big(\int_{I^c} v H_3h_J\Big)u_J^{1/2}\right||,
$$

together with the bound on the norm of D_J to obtain the same result. This doubling assumption may seem more natural to the reader than the assumption we make α it is not even as the realizes that it is not even all that it is not even all α that this doubling assumption is true for $\delta = 0$.

References

- [CF] Coifman, R. R., Fefferman, C., Weighted Norm inequalities for maximal functions and singular integrals Studies and the first site are \sim
- CS- Cotlar M Sadosky C On the HelsonSzego theorem and a related class of modied Toeplitz kernels Proc- Symp- Pure Math- -
- [CS2] Cotlar, M., Sadosky, C., Majorized Toeplitz forms and weighted inequalities with general norms. In *Harmonic Analysis*. Lecture Notes in Math. -
- - SpringerVerlag
	- , en dikoetxea dikoetxe dit een dikoetxe die beste van die la Universiteit van die beste een die beste van die Autonoma de Madrid (m. 1982).
 Autonoma de Madrid (m. 1982)
- [Da] David, G., Wavelets and Singular Integrals on Curves and Surfaces. SpringerVerlag
- -
- [FKP] Fefferman, R. A., Kenig, C. E., Pipher, J., The theory of weights and the Dirichlet problem for elliptic equations A and A and A and A and A 65-124.
	- [F] Fujii, N., A condition for a two-weight norm inequality for singular in tegral operators Studia Math- - - --
	- $|\mathbf{G}|$ Gehring, F. W., The L^p integrability of the partial derivatives of a quasiconformal mapping action and many control position of the control of t
- [HMW] Hunt, R., Muckenhoupt, B., Wheeden, R., Weighted norm inequalities for conjugate function and Hilbert transform Trans- Amer- Math- Soc- \blacksquare . The state of the
	- [HP] Hansen, F., Pedersen, G. K., Jensen's inequality for operators and Löwners theorem Math- Ann- -
	 -
	- [HS] Helson, H., Szegö, G., A problem in prediction theory. Annali di Mat. Pura ed Applicata - - - -
	- [KP] Katz, N. H., Pereyra, C., Some new results on resolvents of paraproducts Preprint and the preprint of the preprint and the preprint and the preprint and the preprint of the prepr
- [KR] Kadison, R. V., Ringrose, J. R., Fundamentals of the Theory of Operator Algebras- Vol - Academic Press
-
- [KR2] Kadison, R. V., Ringrose, J. R., Fundamentals of the Theory of Operator Algebras- Vol Birkhauser
- -
	- M Meyer
	Y Ondelettes et operateurs II- Hermann
	-
	- P- Pereyra C Sobolev spaces on Lipschitz curves Paraproducts and Re lated operators- Thesis
	Yale University
	-
	- P Pereyra
	C
	On resolvents of dyadic paraproducts Revista Mat- Ibero americana - Antonio - Antonio
- [TV] Treil, S., Volberg, A., Wavelets and the angle between past and future. J- Funct- Anal- - -
- TVZ Treil
S
Volberg
A
Zheng
D
Hilbert Transform
Toeplitz operators and Hankel Operators Hankel Operators Preprint A weights Prepriet and invariant and invariant and invariant se

 $Recibido: 23$ de octubre de 1.995

Nets Hawk Katz# Department of Mathematics and Statistics University of Edinburgh Edinburgh EH9 3JZ UNITED KINGDOM

and

Cristina Pereyra Department of Mathematics and Statistics University of New Mexico Alburquerque-Maria de la Registration de la Registr U.S.A. mathematic company of the contract of the cont

 \ast The first author was partially supported by the National Science Foundation Postdoctoral Fellowship