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The phase of
the Daubechies filters

Djalil Kateb and Pierre Gilles Lemarié-Rieusset

Abstract. We give the first term of the asymptotic development for
the phase of the N-th (minimum-phased) Daubechies filter as N goes
to +00. We obtain this result through the description of the complex
zeros of the associated polynomial of degree 2N + 1.

0. Introduction.

The Daubechies filters my(€) are defined in the following way [2]:
i) my (&) is a trigonometric polynomial of degree 2N + 1

2N+1

(1) mn(§) = Z an, e "
k=0
with real-valued coefficients an .
ii) vV2my (&) and v/2 e =% iy (E+7) are conjugate quadrature filters

(2) Imy ()? + |my (€ +m)]?=1.
iii) my (&) satisfies at 0 and =

(3) my(0) =1,

oP
(4) 0—87mN(7r):0, forp € {0,1,...,N}.
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246 D. KATEB AND P. G. LEMARIE-RIEUSSET

The importance of those filters is due to the following facts: the asso-
ciated wavelet 1 defined by

ivte) = +) Fn(5).
j=2

generates an orthonormal basis of L2(R) {2//2¢n (272 — k)} ez kez and
satisfies the cancellation properties

[aron@)dz =0, forpe {010 N},

and has a support of minimal length among all orthonormal wavelets
satisfying (6).

Conditions (1) to (4) don’t define my in an unique way. As a
matter of fact, there is exactly 2lV+1/2 solutions my (where [z] is
the integer part of x). Indeed, conditions (1) to (4) determine only the
modulus of my

(7) Imn (€)|> = Qn(cos &),
© =507y (Y

We are going to check easily the following result on the roots of Q.
Proposition 1. The roots of Qn are X = —1 with multiplicity N + 1
and N roots Xy 1, , Xn N with multiplicity 1 such that

i) for 1<k <N,ReXni >0 and Xy nt1-k :m,

ii) for1 <k <[N/2],Im Xy >0,

iii) if N is odd, Xn (n41)2 > 1.

With help of Proposition 1, we may easily describe the solutions
mpy of (1) to (4) Indeed, if XN,k = (ZN,k + l/ZNyk)/2 with |ZN,k| > 1,
then we have

[(N+1)/2] 1+ e—i§>N+1

©) ma(©) = I Swal®)(——
k=1

Y
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where, for 1 < k < [N/2],

(e —zn i) (67 — Zn i)

SN,k(é): |1_sz2
(]-0) ) S (é.) B (1 . ZN,k e—zf) (1 _ EN,k e—i&)
If N is odd,
e”% — 2
Sn,(v+1)/2(8) = N/

1 — 2N, (v41)/2
(11) (N+1)/

I —2zn,Nt1)/2 e~

or S £) =
waren/2©) L= 2N v+1)/2

The case where all the roots of My(z) (the polynomial such that
my (&) = Mn(e%)) are outside the unit disk is the minimum-phased
Daubechies filter

1+ 6_i§>N+1 ﬁ 6_1"E — ZN,k

(12) ma(©) = (—

1-— ZN,k

The aim of this paper is to describe the phase of the Daubechies filters
as N goes to +o00. Indeed, the modulus of my is described by (7) and
(8) and one easily checks that

T

1 if z

: if €] < 5

1 ™

. )L T

(13) y [my (€)] N N
0, ifg<|£|§7r.

The phase of my, on the other hand, is much more delicate to study:
it depends of course on the choice of the factors Sy in (9), but even
for the case of minimum-phased filters we are not aware of any previous
results on the behaviour of the phase.

We are going to give an approximate value of zy; which allows
the determination of the phase of my. More precisely, if Z1,..., Zn are
N complex numbers such that for £ € {1,..., N}, |Zi| # 1 and if

N

M7, Z)©) = [

k=1

e_i'g—Zk
1—-2;,
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we define the phase w(Z1,...,Zn)(§) as the C° real-valued function
such that w(0) = 0 and

6_1:5 — Zk

—iw(Z1,..,ZN)(§) .
1—Z;

(... Z0)(©) = [[ |

e
This function is easily computed as

(14) w(Zl,...,ZN)(ﬁ):Im</§§:ids).

e~ — /
0 k=1 k

Theorem 1. Let Qn(X) be given by (8), Xn1,..., XN N be its roots
which are not equal to —1 ordered by:

o for1 <k < [(N—f— 1)/2], ImXNyk >0 and XN,N+1—k = XN,k;
o [ Xna| <[Xnaol < <|Xnvi1)/2l
and let zn i, be defined by Xy = (2nvgk + 1/2nv k) /2 and |zn k] > 1.

For1 <k < N, we approzimate zny, by Zn where:

i) for 1 < k < [(NY®)/LogN), Znx =i — Jk/VN, where v1,7s,
-\ Vks - are the roots of erfe(z) = 1 — (2//7) [y e=%" ds, such that
Im~g > 0 and ordered by |y1| < |y2] <+ < |wl <...,

ii) for [(N'/?)/Log N] < k < [(N+1)/2], Zn = On gt /0% 5 — 1.

where
(15'3“) ImQN,k >0,

1 .
(15.b) 1-— Q?V’k = (1 + ~¥ Log (21/2N sin SON,k)) e~ 2PNk

and

8k—1

16 _
(16) PNEZ SN+ 6

111) for [(N+ 1)/2] <k <N, ZN,k = 7N,N+1—k-

Then for any choice

vt - (L)

H(ZIE\I},D RS ZISVI\;N)(é)
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of the Daubechies filter my (where e, = £1 and eny1-k = €), the
approrimation

1+e & \N+1 .
—— ) W& 23

(€)= (—

satisfies

(Log N)?

(A7) w(eyp-- - 2NN () = w(ZN - ZNIN) O] = Co— s

for all &£ € R, where Cy doesn’t depend neither on N > 2 nor on £ nor
on the gy ’s.

Thus, due to Theorem 1, we may give the phase of my with an
o (1) precision! Of course, we need the knowledge of the roots of the
complementary error function; these roots are described in [3] and our
results give again the same estimates, as we shall see.

We may greatly simplify the approximating Zy ’s if we accept
to get a greater error. For instance, we may characterize easily the
minimum-phased filters with an O (v/N) error:

Theorem 2. Let

1+ e"f)N‘H

my (€)= (—

O(zn,1,- -5 28,n8) (€)

be the N-th minimum-phased Daubechies filter. Then the phase
w(Zn1,---528,8) (&)

satisfies

(18)  |w(zn1,---r2nN)(€) — Nw(€)| < CoVN for all € € R,

where Cy doesn’t depend on & nor on N and where

1 I (sin )2k +1
(19) (€)= 5 (Li(-sing) - Liosing)) = = 3 SR

o
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The Lis function is the polylogarithm of order 2

1 1
:/ — Log du.
0o U 1—-u

The function (Liz(z) — Liz(—2))/2 is known under the name of Legen-
dre’s x, function.
Theorem 2 will be proved by approximating my by

Sl %

(20) Lip(z) = )

~ ]_ + 6_7/§ N+1 ~ ~
my(§) = (T) m(ZN1, -, ZNN)(§)
with
- : - 16k — 2
7 = \/ —i0N K 1 —iON,k 0 —
N,k e +\/ +e , N,k 7F+8N+67r,

Then w(ZNyl, ceey ZN,N)/N is identified with a Riemann sum for the
integral

1 T 1
—1 L db = .
2m m/_w o8 Vet + /14 e — ¢—i€ “(¢)

This approximating Z N,k is a simplified version of the approximating
Zn i of Theorem 1, obtained by neglecting the term

1
N Log2\/2Nmsin oy i -

We will be also able to give a description of a family of almost linear-
phased Daubechies filters:

Theorem 3. Let

1 +€_Z§>N+1 EN,1 EN,N

ma(§) = (= T 2 ()

be the N -th Daubechies filter with N = 4 q and with the following choice

ofenk: for 1 <p<q, enap-3 =¢enap =1 and engp_2 = €4p_1 =
—1 (so that ey Ny1-k = €nk). Then the phase w(zy; ..., 20 n ) (€)
satisfies:

e e 1
(21) w(zNIYil,...,zNIYI’\I,V)(ﬁ)—ENf <Cy, forall £ € R,
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where Cy doesn’t depend on & nor on N.

We are now going to prove Theorem 1 (and obtain theorems 2 and 3
as corollaries). Of course, it amounts to give a precise description of the
roots Xy of Qn(X). If we neglect the term Log2 /2N7sin oy /N
in Znx, we obtain as a first approximation that the zy are close
to the arc {|z — 1| = v/2, Rez > 0} (which can be parameterized as
{(Ve=i0 +V/1+e=# —1 <0 <7}), or equivalently that the X are
close to the half-lemniscate {|1— X7 | = 1,Re X5 > 0}. This will be
obtained by representing Q) (X) as a Bernstein polynomial on [—1, 1]
approximating the piecewise analytical function y

(0,1]

2N+1 " B o
(22)  Qn(X)= Y (2Nk+1>(1J;X> (1 2X> ¥

k=N+1

(a formula pointed by many authors [1], [6], [L1]). In that form, Qn(X)
corresponds to a Herrmann filter [4] and it is precisely the figure in
Herrmann’s paper representing the zy ;’s for Q21 which lead us to con-
jecture the behaviour of the zpy 1 ’s.

A classical theorem of Kantorovitch [5], [7] on the behaviour of
Bernstein polynomials of piecewise analytical functions ensures that
QN (X) converges to 0 uniformly on any compact subset of the interior
of the half lemniscat {|1 — 22| < 1, Rexz < 0} and to 1 uniformly on
any compact subset of {|1 — z?| < 1, Rex > 0}. We will use similar
tools to study Qn(X) outside of the convergence subsets.

Near the critical point X = 0, the approximation by points on
the lemniscat is no longer precise enough, and we will show that for
the small roots Xy g, —\/NXNJC is to be approximated by a root of
the complementary error function. Such an approximation occurs for
instance in the study of the (spurious) zeros of the Taylor polynomials
of the exponential function [12] and we will use quite similar tools to
get our description. The main difference, however, is maybe that we
are dealing with a divergent family of polynomials.

NoTATIONS. We will define as usually Log z and /z as the reciprocal
functions of

z=Logwe{zeC:|lmz|<7}r—w=e*c{weC:w¢(—o0,0])},

z=yweE{z€C:Rez>0}r—w=2"c{weC:w¢(—oc0,0]}.
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The paper will be organized in the following way:

1. QN as a Bernstein polynomial and other preliminary results.
Small roots of QQy: first estimates.

Big roots of Q: first estimates.

Big roots of Qn: further estimates.

Small roots of Qn: further estimates.

The phase of a general Daubechies filter.

Minimum-phased Daubechies filters.

Almost linear-phased Daubechies filters.

PXAS R ®BDN

1. )y as a Bernstein polynomial and other preliminary re-
sults.

We begin by proving a first localization result:
Result 1. For N >2 and t # —1, if Qn(t) =0 then |1 —t |< 1.

Proor. This will be the only time where we use the Daubechies formula
(8) for QN (X). This formula gives that if Qn(t) =0 and t # —1, then

(23) i%(l\f’jk)(l—t)k:o.

k=0

If we define oy, as a = (N;'k) /2"’, 0 <k < N, then we have obviously
0<ay<a; <--+-<an_i = an, and we may apply a very classical
lemma of Enestrom, Kakeya and Hurwirtz (quoted by G. Pélya and
Szego [10, Exercise 111-22]):

Lemma 1. I[f0<ap<a1 <---<any_1=ayn and ikaN:Oaksk =0
then |s| < 1.

PROOF OF THE LEMMA. If s > 0 then Zszo ars® > 0; if s ¢ [0, +00),
then

N N
‘“0 + > (ar - ak—l)sk‘ <ao+ Y (o= ax-) 8",
k=1 k=1

thus if [s| > 1 (so that |s|* < |s|V*1) and s & [0, +0), we get

N N
‘(1 —5) Zaksk‘ > |s|VFL (aN - Z(ak —ag-1) — a0> =0.
k=0

k=1
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Thus, we have shown that the roots t of )y such that ¢t ## —1 are located
in the open disk of radius 1 and of center 1, and that the associated
values 1 — t2 are located in the interior of a cardioid.

From now until the end, we will use formula (22) instead of formula
(8) to represent (). The main interest in the representation of Qn as
a Bernstein polynomial is that @y is easily differentiated: (22) gives

d C@N+1)1 -
QN (D) = s 5 (1= )N

(24) AN(N1Z 2

This expression can be easily related to the expression of Qn(cos&)
given by Y. Meyer ([8])

cos& N !
Qn(cos§) = /_1 % % (1—tH)N at

_[TeNA DT ang
_/5 Wi(smﬁ) daf .

We will use intensively formula (24) in the following. If ¢ is small, we
approximate Qn(t) by Qn(0) =1/2 and obtain

(25) Qn(t) = %(1 + %/{) (1—sH)N ds) :

while for a bigger ¢ (with Ret > 0) we approximate Qn(t) by Qn (1) =1
and obtain

LN-‘_ Lt /1(1 —sH N ds.

1

Stirling’s formula N! = (N/e)Nv2rN(1+1/(12N) + O (1/N?)) allows
one to simplify formulas (25) and (26)

Thus @Qn () = 0 may be rewritten as

2 [VNt s2\ N VN 4N(N1)? 1
(28) 1+ﬁ/0 <1_N> ds =122 o =0 (5)
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or as

(29) \/N/l(l — )N ds =2 AT (V"

1
2N+ 1) ﬁ+O(N2) '
Formula (28) will be used for the small roots (sections 2 and 5) and
formula (29) for the big roots (sections 3 and 4).
We mention a further application of (24) (which will not be used
in the following): we may compute explicitly the generating series for
Qn(t) when Ret < 0:

Proposition 2. Assume that Ret < 0 and |(1 —t*)u| < 1. Then

“+oo N_l 1—t2
GO 2 O =5 s o e

PrOOF. We differentiate Y12 Qn (t) uV with respect to t. Then (24)
gives

0 /<X N R TEN+D! (1= 2)u)N
&(NZ_OQN(”“ >:N20§ AN N N
a1,

hence

+oo N ¢ . 0
NXZIOQN(t)u :/_15(1_(1_32>u)3/2'

On the other hand, if we differentiate /(1 — u (1 — t2))/2 we get

0 t 1wl -8 —tPu 1—u
&((1—u(1—t2))1/2> T (I —u(1—2)32 T (I—u(l—12)3/2"
Thus we have
S pu = ! 1
NXZ:OQN()“ _2(1—u)<(1—u(1—t2))1/2+ )
1 1—u(l—1t%)—+¢2
T2(1—u) (1—u(l—2N72((1—u(l—t2)/2 —¢)
1 112
2 (1 —u(1=2) (1 —u(1—2) 2 —1)
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As a corollary, we get:
Result 2. Ift € C is such that |1 — t?| > 1, then

limsup |Qn(t)] = +o0.
N—+4o0

ProOOF. If Ret < 0, this is obvious by formula (30); the right-hand
term of equality (30) has 1/|1 — ¢?| as its radius of convergence in u, so
that

limsup [Qn ()] = [1 - #7].
N—+o00

If Ret > 0, then Qn(t) =1 — Qn(—t) so that again

limsup [@n ()] = [1 - #7].
N—+oco

If Ret =0 and t # 0, then
1. [N [ SN
Qn(D)] ~ 32 ?/ (142N dp —s 400,  as N —s +o0.
0

A last (and direct) application of formula (24) is Proposition 1.

Result 3.
i) If t is a root of QN (t) and t # —1, then t has multiplicity 1.
i) If N is even, t = —1 is the unique real root of Qn .

iii) If N is odd, QN has only one other real root TN (N+1)/2 F — L
and TN,(N+1)/2 > 1.

PROOF. By (24), we know that the only roots of dQx/dt are 1 and
—1, so i) is obvious. Moreover, if N is even, dQy/dt is non-negative
on R and thus @y is increasing: —1 is the unique real root of Qn. If
N is odd, then Qn decreases on (—oo, —1], vanishes at —1, increases
between —1 and 1, and decreases again from the value 1 at ¢t = 1 to the
value —oo at ¢ = +00: () has another real root zn (n41)/2 > 1.

Results 1 and 3 imply obviously Proposition 1.
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2. Small roots of (Qn: first estimates.

In this section, we are going to prove the following result:

Result 4. Let ¢g € (0,1/2) and K = [egLog N/(2m)]. Then, if N
is big enough, the number of roots t of Qn(t) such that Imt > 0

and [t| < /2Kw/N is exactly K. Moreover, if we list those roots
S TN1,---, TN,k With |[xn k| < |Tn k41| and fir 1 € (g0,1/2), we have

1 1

VN VN N2’

where 1, ...,vk are the K first roots v of erfc(y) = 0 with Im~y > 0.

(31) 2w+ —=Ti| < Cleo,e1)

PROOF. Assume that |t| < y/a; Log N/N for some fixed a; > 0. Then,
using formulas (25) and (27), we write

axt= (Lom) (teakor 2 [ (1) ),

where 7y, 1y are two constants (depending only on N) which are
O (1/N?). Now, if |u] < /a; Log N, we have

Ju] (Log N)*
N STy oW,
hence one may find Cy > 0 so that for NV big enough (N > Ny where
Ny depends only on «ay)
2\ N
(1-F) -

Hence we get for fixed «; > 0 and for N > Ny(aq)

(Log N)/?

(32) ‘(l+nN)_1QN(t)—erfc(—\/Nt)‘gcl .

2
for [t| < \/a1 Log N/N, where C7 depends only on «;.
Now, assume that @ is such that Qx () = 0 or erfc(—vV/N6) = 0
and that |f| < /a1 Log N/N; in every case we have
(Log N)*2

|eI‘fC(—\/N9)| S CIW .
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We are going to show that for &y small enough, erfc(—v/N 0 + 2) is not
too small on |z| = dg. Indeed we have

2 z
lerfc(—V N 0 + z) — erfc(—V N 0)| = T‘ / e NO VN 05— g
T Jo

1 2 2 1
> = |e MO > ——N™
provided that
1
z<min{2 ay Log N, },
| |_ ! & 802\/a1LogN

where Cy = max|, <1 [(e” —1)/w|.

Thus, if || < y/azLog N/N, where ay < a1 < 1/2, and if N is
big enough so that

Log N 1 Log N
+ <o ———
N 802\/61/1NLOgN N

5]

and

o (Log N)5/2 1 5 Toa IV
TN < S yaeg < 2V les

we obtain that Qx(t) and erfc(—/Nt) have the same number of ze-
ros inside the open disk D(6, C1+/7 (Log N)®/2/N3/2=221) (by Rouché’s
theorem).

In order to conclude, we need some information on the zeros of
erfc(z). A theorem by Fettis, Cuslin and Cramer ([3]) gives a develop-
ment of v

(33) 2mmg<2ﬁw<2ki)n)

Log k)2
n O(( og k) )) _
kv
Thus if My is a fixed number in (—n/4,37/4), the number of roots ~y
of erfc(y) = 0 such that Im~y > 0 and |y| < v/2knw + M, is exactly k
when £ is large enough.
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Now we may prove Result 4. Let g < 1/2 and K =[goLog N/(27)].
For each root t of Qn(s) such that |[Im¢| > 0 and [t| < /2K7/N <

\/eoLog N/N there is a root 6 of erfc(—v/N s) such that

(Log N)5/2

0 -t < Crv/m o

(where ep < €1 < 1/2 and N > Ni(e1)). Then we have

5/2
VNO| < V2K + Clﬁ%

™
<V2Km+ ———
B 16V2Kn

< (2K+é>7r

provided that N > Ny (e1). But we know that there are exactly 2K roots
of erfc(—v/N s) inside the disk D(0, /(2K + 1/4)n/v/N). Conversely,
if 0 is a root of erfc(—v/N s) such that

2K (Log N)5/2 Log N
<4/ = - —= 7 <
o<\ —x ClﬁN3/2—2sl Ve N

there is a root t of Qn(s) such that

(Log N)/?

0 -t < Crv/m

hence |t| < /2K n/N; moreover for N > Ny(e1) we have

(Log N)>/2 ™ 1
V2K — Oy /m 28V 0 o K —7>,/(2K——) ,
TN 16V2K 8)"

so that we have again 2K roots of erfc(—+v/N s) such that

[2K T (Log N )>/?
0] < N Clﬁw :

Finally, we conclude by noticing that (33) shows us that if erfc(—v/N#6;)
=0,i=1,2, 6, # 62 and |0;] < /(2K +1/8)w/N then |01 — 05| >
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Co/VKN and [Im;| > Cyy/K/N for some positive Cy which doesn’t
depend on K nor N; hence the balls

(Log N)5/2>

D (9"’ Civm N3/2—2e,

are disjoint and don’t meet the real axis (for IV large enough). Thus
(31) is proved, if we notice that

(Log N)®/2 1
Ni—2e  © Ni-2e

for 1 <€} < 1/2 and N large enough.

3. Big roots of QQu: first estimates.

In this section, we are going to devote our attention to formula
(26). A straigthforward application of (26) is the following one:

Result 5. For N large enough, ift#—1 and Qn(t) =0, then |[1—t3| > 1.
PROOF. If Qn(t) = 0, then we have VN [['(1—s2)N ds = /7 (1 + 1)

with 7y = O (1/N?). Now, since Ret > 0 (due to Result 1), we may
write

1 N 1—t2 N duw
|- 42 d:/ _
/t( s¥)" ds i w Wi

1
:(1—t2)N+1/ AN )
0

21— A1 —12)

We write Q =1 — 2. If |©2] < 1 then we will prove that

1
inf |[1-XQ>Z[1-9].
A€E[0,1] 2

This is obvious if Re{2 < 0: we have |1 —AQ| > 1 and |1 — Q| < 2.
If ReQ >0, 2 =pe? (0 < p<1, € (—n/2,7/2)), we distinguish
the case p < sing and p > sinp. If p < sin ¢, it is easily checked
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that |1 —AQ| > |1 — Q[ If p > sing, we have [1 — AQ| > siny and
1 —Q| <|1—e*|=2]sin(p/2)|; hence

2
|1—)\Q|Z‘cos%“l—ngﬂ—m.

Thus, we have for Ret > 0 and |1 — 3| < 1

1 _ 42|N+1
‘/(1_52)Nds‘guigi< 1 )
¢ N+1 |t] = V/N\VN |t

If [tV N| > 2/\/7, we get
! 1
‘\/N/ (1—32)Nds‘ SE\/?T,
t

and thus Qn(t) # 0 (for N large enough so that |ny| < 1/2). If
VN |t| < 2/y/7, then t ~ —5/+/N for a root 7 of erfc(z) such that
lv] < 2/y/m; but the roots of erfc(z) satisfy /2 < |Argy| < 37/4 so
that (for N large enough) |Argt| > n/4 and ¢ cannot lie inside the
lemniscate |1 — 2| < 1.

We may now enter the core of our computations. We are going to
give a precise description of [ tl(l — s2)N ds. Integration by parts gives
us

[0t
¢ 2t (N +1) ¢ 282(N+1)
(1 _ t2)N+1 (1 _ t2)N+2 1 )\N+1 d\
I

T 2(NHD) AN NI )i

We then define 7(t) as

£°]

inf [1—-X(1-=¢3)"
Ag&)’l]l ( )l

(34) n(t) =

We have

' 2N (1—2)N+t (1-1%)
(35) /t(l_s) 9= TN +1) <1+2(N+2)t2“N(t))’
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for Ret > 0 with

(36) lun ()] < n(t)3/2.

Of course, (35) is a good formula if py (f) cannot explode. As a matter
of fact, we will show that in the neighbourhood of the roots of Qn(s)
we have |n(t)| < Cy where Cy doesn’t depend on N nor ¢; but we are
still far from being able to prove it! The only obvious estimations on
n are the following ones: if Ret? > 1, we have of course |n(t)| = [t?],
while if Ret? < 1 and |1 — #?| > 1 we have

) 2
0= A (=)

With help of formula (35) and a careful estimate of 7(t) in (36), we are
going to prove:

Result 6. Let oy = (8k — 1) /(8N +6). Then for N large enough,
the roots N 1,..., 2NN of QN such that xn i # —1, ordered by

o for1 <k < [(N—f— 1)/2], Rea:N,k >0 and TN N+1-k = TNk

o lena| <lznpel <o <|onNt1)/2]

satisfy

‘xN,k —/2sinpn g ot (m/4—on 1) /2

¢i3T/4-30x.1/2)
- Log (2 2N7rsin(pN7k)‘

2N \/2sin ok

1 {(1+Logk)2 (1-|—LogN+1—k)2}

SC\/—N max 1372 PN+ 1= k)2

where C' doesn’t depend on k nor N.

(37)

PROOF. Since ¢n N+1—k = T — PNk, it is enough to prove (37), for
1 <k <[(N+1)/2], i.e. for the roots which lie in the upper half-plane.
The proof is decomposed in the following steps: one first proves that
Arg (1 — 2%, ;) cannot be too small, so that we have a first control on
UN (TN E): then one gives through (35) a first estimate on N, and on
the related error; this gives us a more precise information on Arg (1 —
x?v ) and thus we may conclude with our final estimate.
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Step 1. We want to estimate Arg (1 — z3 ;). We fix 6y € (n/4,7/2)
so that the sector {z : 7/2 < |Argz| < m — 6y} contains no zero of
erfc(z) (remember that limg_, 4o Argy, = 37/4). We now distinguish
the cases Argzn i € (0,6 and Argay €6, 7/2[. If Rel — x%\,k <0,
we know that n(zn ) < |zyik|? < 4. [fRel —x%\,yk > 0and Argzn i €
[0, 7/4], then we see that |z k|> < |tan Arg (1 — 23 ;)| (because w =
1 — a3, satisfies Rew € (0,1] and |w| > 1 so that |sin Argw| < |1 —
w| < |tan Argw|); moreover we have |z x|* < 4; thus if | tan (Arg (1 —
2% 1) < 4, then we have

| tan (Arg (1 — 23 )| S 2N 5|

- \/1+tan2(Arg(1 —a%,)) V1T

|sin (Arg (1 — 27y 4))]
and 7(zy k) < V17. On the other hand, if |tan (Arg (1 — z3; ;)| > 4,
then we have [Arg (1 — 23 ;)| € [Argtan4, 7/2] and thus

Exas

4
VT~ V1T

| sin (Arg (1 — x?\,’k))| > sin Argtan4 =

and n(zy k) < V17 again.
If Arg(zn ) € [7/4,60], we have

[ (1 = @iy )| = o gl [sin2 Arg v

so that
Tm (1 — 2% )] > o] sin260)
while
_ I (1 — 23 ,)| _ 1
sin Avg (1= a0l = S 2 (1= ),
N,k
so that 5
<
n(wng) < 'sin2 0o |

The difficult case is when 6y < Argazn i < 7/2 (as a matter of fact, we
will see in step 3 that this case never occurs when N is big enough!).
For the moment, we will show that we have necessarily for such an zy
(and provided N is large enough) the inequality

4 _ |cosby|
= 100 CZ

Nlzn g =€1,
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where C) is given by

0% + Log (1 — 0?) le” — 1]
‘ : , Sup }

Co = {
p = max4 sup > sup o]

lo|<1/2

Indeed, let Ay > 0 be large enough so that for A > Ay, ¢3A? cos (200) /4
(1+ A?/2) < 1/100 (remember that cos26, < 0), 4/(A?|cos20y]) <
1/100 and A A" s (280)/4 < 1/100. If /N &y x| > Ao and N |zyz|* <
€1, we write

Qn(zNg) = (1+O N2 \/7/ (1-s*)Nds

and thus

1
L/~ (1- _
QOn(zN k)] > — 10 ‘/ s2 ds‘ 5

We write
(1- Sz)N _ e—steN(sz—Log(l—SQ)) :

since |s| < y/e1/N /4, we have |s| < 1/2 for N large enough, thus

1
IN (s> — Log (1 — s?)| < Co|N s*| < —

100 °
thus
|6N(32—Log(1—sz)) _ 1| < Cg |NS4| )

Thus, writing Ty x = PNk eieN’k, we get,

1 \/NiEN,k 5

Qn(Tnk)| 2 10 ‘/ e’ dS‘
0
VN
o C_g PNk 6—32 cos 20N i i ds — l
10 J, N 2

v

1 \/NJ’/‘N,k 2
E‘/ e % ds

§ (VNopnw)*
10 N |cos20n x|
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We have now to estimate

VNpPN & 1
—s2cos20p &
: e : S|60829N,k|d8—§
0

1 \/NiEN,k 5
> —‘/ e’ ds‘
101/,

e Ve cos2na (03 (\/NPN,k)4> _ 1
2\/NpN,k 10 | COS290| 2

VINz 2 .
o e ds. We write

= 6i9N’k (Il + Ig) .

We have |Iy] < e Nekwcos@Ov)/4, /N /2. while

Iy =

We have

|:e—s 20Nk ]\/NPN,k /\/ﬁpN,k 6—3262i9N,k

2 S eZieN,k

2

VNPN,k/2 \/NPN,k/z 2826219N’k

2 2i6 2 200N p/4
e New i e ok e~ Non ke Nk

13|

—2V/N pi 1, €205,  _JN PN o €200

—Is.

1
1 3
4(5 \/NPN,k> | cos 20 k|

VNpPN & )
/ e™ CO820Nk9 5 | cos 20 | ds
VNpN,k/2

e—Np?\,,k cos 20 &

— 1 3 .
4(5 mpN,k) |COS290|
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Thus we get
QN (2N k)]
1 e—Np?\,,k cos 20 |k
Z i
10 2V N pw i
. (1 . 263Np?\,,k cos 20N k/4 _ 4
N p3; ;.| cos 20|
02 €1
_ N p2 eszﬁv,k cos20N /4 _ 0
PNk | cos 2 6|

—10 /NkaeNp?\,,k cos29N,k)

>

1 e NP cos26np 2 1 1 110
— (1- — ) >0,
10 2\/NPN,k 100 100 100 100 100
which contradicts Qn(zn k) = 0. Up to now, we have proved that if
argen,r > 6o then either \/N|:1:Nk| < Ag or Nl|zngl* > 1. But
if leng < AO/\/N and N is large enough, Result 4 ensures that
—VNzny is close to a zero of erfc(z). This is not possible for N
large enough since the distance between {z : 7/2 < |Argz| < 7 — 0y}
and {z : erfc(z) = 0} is positive.

Thus we must have N |z x|* > 1. Write again oy, = pn ek
since |znyk — 1] < 1 by Result 1, we have pyjp < 2cosfyy; thus
2cosOn g > (e1/N)Y* and

. ) g1\ /4
|Im:1:?v,k| = |=73?V,k| |sin2 6y | > 311190(N1> |xN7k|2.

We thus have proved

pawg) = AP Rl BNVE
’ Im a3 | = (sinfy)ey/? '

We thus have proved

o if Arngyk < by,

lun(@ne)| < n(zve)®? < Co,
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o if Arngyk > by,

lun(@ne)| < n(zw)®?

S (ClN1/4)3/2
(N |3 )3

= Cf/z (N (|$N,;c|4)3/8
3/2
< C;//S (N|-TN, |2)3/4
€1
In any case, we have
(38) lun (@ )| < C (N |on i)

(Remember that imp_, oo infy N |2y k]? = |71]% > 0).

Step 2. We are now able to give an estimate for x . Let us consider
a root y # —1 of Qn such that Imy > 0. We have

. 2N . o AN(VY)?
/y(l—s) ds—2m,

hence from (35) and (36),

_ . 2\N+1 3/2 p
st (o) = (o).

(where @ = O (e(N,y)) means that |a|/e(NV,y) < C for a positive
constant C' which doesn’t depend neither on N nor on y). Taking the
(N + 1)-th root of the modulus of both terms of equality (39), we get

1 N+1
-2 =14 — Log(2\/N7r |y|>

N+1 N
0B +o(55) +o(Ra)

= 14 o 2Vl + O PEYE) o (MY
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Now, we write 1 — y2 = pe™ (¢ € [0,7], p > 0), so that y =
1 — pe~i. We have found

3/2

11— p|= O(%Log (\/N|y|)> +O((LO§[72V)2> +O(%>

= 0(% Log (\/lel)) :

(since 1/CN < Log (VN |y|)/N < C'Log N/N, while 7(y)*/?/(N?|y|?)

< C/(N(Nly?) <C'/N). Thus 1 —pe ™ =1—e % + (1 —p)e ™

with '
(1—p)e™™
‘ 1—pete

og (VN
:()(L g]s|y1|\gly|)>

and we find

- wl i) (1+ o 2BV )

Nly[?

= /2sin (g) oi(m/4—0/4) (1 + 0(71‘0?\{@|y|>> :

We insert this result in (39) and take the phase

3/2

T Log V'N |y| n(y)**y\ _
(N+1)¢ 4+4+O( IPE )+o( N|y|2)_ ok
or
_ 8k—1 Log V'N |y| n(y)®?
(40) PTUN+3” O( N2[y? ) O(N2|y|2>'

If we assume /N |y| > Ay where Ay is big enough so that
Log Ay 1
(i) o)
NA% NA(I)/Z

is less than 47 /(4N + 3) (Ao being chosen independently from N), we
see that 0 < ¢ < 7 implies 0 < k < [(N + 1)/2]; moreover since

. oe VN
ly| = 2sm(§) (1+0(L§V|7yJ|V2|y|))




268 D. KATEB AND P. G. LEMARIE-RIEUSSET

we must have

20in (£) > 4 4 o(LosvNluly
2) =N R
We take A2 = \/2Kym, where K is big enough; we then see that we
must have k£ > K.

If VN |y| < v2Kor, we know that (provided N is big enough)
y ~ =7 /VN for k € {1,...,Kq}. We have moreover found candidates
yn i for the remaining roots znx, Ko < k < [(N + 1)/2], which are
given by

1 .
(1) 1—yh= (1+ 3 Log2 2Nmsin gy e e

for Ko <k <[(IN+1)/2] and ¢y = (8k — 1)7/(8N + 6).

More precisely, we have shown that if Qn(y) =0, Imy > 0,y # —1
and VN |y| > /2K, then for some k € {Ko+1,...,[(N +1)/2]} we
have

3/2

(LogN)2> O(n(y)

Log V)" N2|y|2>+0(w>,

12) 1-y% = 1=y}, +0(
( ) ) YNk + N2 |y|2

We are going now to prove that, provided that K is fixed large enough
(and provided thereafter that N is large enough), for each yu i there is
exactly one root y satisfying (42). Notice that |y]2\,k - y12v,k+1| > Cy/N
while

o 2 3/2 os VN
o) +o(Rye) o (M)
1 /(Log N)? 1
<on (N )

Indeed, let’s write s =  /y3;, — v where [v] = n9/N, 79 small enough.
We are going to estimate Qn(s). We know that

1 _ g2)N+1 s
/8(1_02)Nd0:%(1+o(1358|>2)),

where 7(s) is bounded independently of s provided that |1 —s| < 1,
11— 8% > 1 and |Args| < 0y (where 0y € (7/4,7/2)). Thus, we are
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going to estimate |1 — s|, |1 — s?| and |Args|. We have obviously from
(41)

- 0(128) - o o 281)

and such an estimate holds as well for s2. (We see also from (41) that

1
1— 8% >1+ NLog2 V2N7msinpn i, — %

1
> 1+ - Log2 \/4m K - %
>1

provided 7y is small enough). Thus we find that
Logk
Args® = g — ON.k +O(%> <26y,

if Ky is large enough (so that O(Log Ky/Kj) < 26y — 7/2) and thus

Logk
k

T 1
ATgSZZ §<PN,k+O< )6(—90790)-

Moreover,

|s| = \/M(1+O(Lolggk>)

and this latter estimate gives |s| < 2cos(Args): if oy > o (where g
is fixed small enough as we shall see below) and Ky and N are large
enough we have

g (1 0(484)) < va (1 +0 L850 < a1+ ).

0 100

while

Log K,
2cos(Args)ZZcos(%—C OIg(O 0)
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On the other hand, if pn 1 < €9 we find

Logk Log K

) g\/ﬁ\/Hc e <OV,

V2singn i (14 0(

while 2 cos (Args) > 2 cosfp; thus if ¢g is small enough to ensure g9 <
4/(3m) — 1/50 and gy < 4cos?6y/C" we find |s| < 2cos (Args). But
this latter inequality is equivalent to |1 — s| < 1. Thus we found

— g2)N+1
Q) =1 (140 ) )y ¥ U (14 0 k)

We have moreover:

v N+1
(1= = (1 =y )N (1 + W)
Nk
Nv
= (=g (14 T O (V??))
L—yxk

v v
N,k

This gives, since |s| has \/k/N as order of magnitude

(1 2 )N+1
Qnts) =1-(1+0(7)) z%ZN,k
2
: (1 + _Ny%k T +0 (N%?) +O(y;v,k)) .
Moreover
a2 [ (1 1050
and

YN = \/2 sin (;]]37:-16 7r> 6i(7r/4—(8k—1)7r/(16N-|—12))(1 n O(% Log k)) 7
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so that
(1_y12V,k)N+1
2\/N—7ryN,k
1 \/ . (8k—1 )N
) <1+NL0g2 2].V7rs;r;(giv+67r> (1+O(%Logk>>
2\/2N7rsm(8N+67r)
= (1+O($ (Logk)z))N<1+O<%Logk))

and finally

Nv v 2
(1+ 5 5 +O(N2v2)+0(4—>>
L—yngk  2Ynk N,k
Now, we write
2 2
v YNk — S
Ry i(s) =N . 5 . 5
~— YNk ~ YNk

Since |v| = n9/N, we have

R s(s)] = o (1+0(Z2))

while

ns) = i) = 0 (L) L 0 (1) 4 0 ).

We choose 79 small enough to ensure that the O (n3) term is smaller
than 79/2 (independently of N and k), and then choose K large enough
to ensure that O ((Logk)2/k)+O (no/k) is smaller than o /4 for k > K.
For this choice of K, we get

Qn(s) — R a()] < 5 mo < |Raci(s)].
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Thus, by Rouché’s theorem, Qn(s) and Ry x(s) have the same number
of roots inside the domain {[y3 ,, — s°| < no/N, Res > 0}.

Step 3. We have thus found a number K so that for N large enough
we may list the roots xn1,..., TN (N4+1)/2) Of QN With zn g # —1,
Imzyg >0, |[xn k| < |Tn k41| in the following way:

o for k < Ky, |vn x| < /2Kon/N and zyx ~ —7,/VN,

o for k > Ko,

_ O(n(-TN,k)3/2> N O(Log(\/]v|x1v,k|)> ’

2 .2
|'TN,k yN,k N2|xN,k|2 N2|xN,k 2

where yn 1 is given by (41).

Moreover, we have seen in step 2 that in that case we must have
Argzy i < 6o, hence n(zy i) is bounded independently of N and k.
Moreover i, is of order of magnituge \/k/N, hence

Logk
|$%Vk - y12Vk = O( ) .

Nk

Thus we find

1 8k —1
1 —szv,k = <1+ NLog2\/2N7rsin (8N+67T> )

. e~ 2im(8k—1)/(8N+6) O(Logk)

(43)

x%Vk _ (1 _ e—2i7r(8k—1)/(8N+6))

o—2im(8k—1)/(8N+6) 8k —1
’ (1 - N(1 — e=2in(8k—1)/(8N+6)) Log?2 \/2N7r - (8N +6 ﬂ)

vo(2)
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which gives

. 8k —1
_ i(r/4—(8k—1)m/(16N+12) [o o ( )
Tk =€ \/ T eNT6”

i(m/2—(8k—1)7 /(8N +6)) \/ . 8k —1
A\t ey e 2Vsin (5 7)
4N sin (

8N +6
Logk
ro(4h))
which gives (37) for k¥ > K. For k < Ky, (37) says only that xn j is

O (1/v/N), which we already known since VN |zy x| < /2K
Thus we have proved Result 6.

(44)

A nice corollary of Result 6 is that we may recover formula (33)
on the roots of erfc(z):

Corollary. The k-th root 7y of erfc(z) such that Im-~y, > 0 is given by

v = €3 /4 <2k — i)w
(45)

. (1— MLog2\/7_r (Zk— i)W—FO((L()]%k)z)).

PRrROOF. It is enough to use formula (37) for z  with N,k — 400 and
k < Log N/8: we have

xN,k:—_—%—i-O(%) and %:O(

LogN)
N ?

thus we find vg. The only thing to check is the exact number of roots
v such that |y| < V2Kym (since we used formula (33) to give it). But
this is an old and classical result of Nevanlinna [9], and thus we may
recover formula (33) from formula (37).
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4. Big roots of (Qn: further estimates.

Though Result 6 is enough for the proof of theorems 1 to 3 (pro-
vided we improve result n° 4 for the smaller roots), we may give even
more precise estimations for the roots x ;. For instance, we may inte-
grate by parts one step further formula (35) and thus get an O ((Log k)3
/Nk?) error instead of O (Logk/Nk) for 1 — a3 ;.

More generally, how far can we compute | tl(l — 52)N ds? We have

1 1 d)\
/(1—32)Nds:(1—t2)N+1/ AN |
t MY e vrpurey

If we write

1—1¢?
12 (1 - /\)) ’

we see that if Ret? > 1/2 (so that |1 — 3| < t?), we may develop

(v/1— A1 —1t2))7! as a Taylor series in (1 — ) and find (for Ret? >

1/2)

1—)\(1—t2):t2(1+

400
1 1 2k! (1—=X)(1—t2)\Fk
— _Z(_1)k R 5 ;
1-A1-12) t& 4% (K1) ( t )
which gives
e 1
for Ret > 0 and Ret? > 37
1
(16) < / (1- )N ds
t
(1 — $2)N+1 % (2k)!  NUKL (1%
272(_1)k k(E1)2 v( 2 )
2t AE(EN2 (N+E+ 1)\ ¢t

\
Unfortunately, we are mostly interested in small ¢’s (remember that
zn k= O (y/k/N)). (46) has to be replaced by an asymptotic formula
(which is obtained by repeatedly integrating by parts)

( for Ret > 0 and M € N,

/tl(l —sHN ds

(1- t2)N+1 M

(47)

(2k)! N!E! (l—tz)k

T k:o(_l)kél’“(k!)? (N+E+DIL 2

\ +RM,N(t) )
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where the remainder

(2M + 2)!
ATFI((M 1 1)1)2
N'(M+1) [ AN+M+1 gy
(N + M +2)! /0 (1= A(1— 2))1/2+M+1

RM,N(t) = (_1)M+1(1 . t2)N+M+2

may be estimated by

(1— )N+t (2M + 2)! (M +1)!N!
B v (B)] < ‘ 2t ‘4M+1((M+1)!)2 (N +M +2)!
(48)
_ 2 M+1
. ‘1 7fzt ‘ (t)1/2+M+1.

M = 0 gave Result 6. M =1 gives the following result:

Result 7. Writing on = (8k — 1)1 /(8N + 6) and

)\k = L0g2 \/2N7TSiIl(,0N,k N

we have more precisely for all k € {1,..., N}

275

1 — 2%, = e 20Nk
1 1 A A2 i e PNk
49 -(1 Rl VI A A _ ,\—1>
(49) TN k+N2+N2+2N2+4N2sm¢N,k(’“ )
+€N,k7

where

1+ (Logk)? 1+Log(N+1—k)3}

] < C x| NKZ 7 NN +1-k)?

and C doesn’t depend neither on N nor on K.

PROOF. We assume k < [(N +1)/2]. We write 1 — a3, =1 —y3 ; +v
and the problem is to estimate v. We already know v = O (Log k/(INk)).

Furthermore, we know that

[ a-spas= 2R 5 (1ho()

N,k
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and

/1 (1—-s*)Nds = (1~ o)™ (1— —E +O< 1 ))
. 2(N+Dane\ 2(N+2)al, \N?zy,/ /-

N,k

Now, write

2 2
L=y, L—yn

2(N+2)a%,  2(N+2)u%, +0() +O(%>

o 1-yky +O<M)

C2(N+2)y% k3
and
1 -y} n T HeNk n <L0gk)
2IN+2)yRy 2N +2) 4k Nk
e~ 2PNk Log k
e ol
2N (1 — e=21n k) * k2
so that
1 — 22 1 i e PNk Log k
1_ N,k2 (274>:1+_7+0(_§>_
2(N+2) TN, N TN, 4N sin o k

We now turn our attention to (1—z3 )V /(2 (N +1) zn k). We have

—_
+

:2<1+N) \/Nﬂ' yNk v
1\ e ~2ioN k Log k
:2(1+N> N« \/1—6_2“ka_ ~ N,k+0( Ngk )
1 .
= 2(1 + N) \/Nﬂ' \/2 sin @N,k 61(77/4_‘PN,I<:/2)

i e VPN K V- +O((Logk)2))

4N sin YN,k k2
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and
v >N+1

(1= 2k )™ = (1= i)V (14—
~ YNk

= (1 -y )N+ (1 n (1]\]_2]21\[): N O((Log k)2>>

_ (1 . yjzv,k)N—f—l (1 + Nv 21PNk + O((Lokgizky>> .

Finally we have
(1- y%v,k)NH
2\/2N7sin pp j e (7/4=¢N.k/2)

1 N
1+ — +
:< TN A
1 1 (Logk)?

14+ -—— A S S st

TNFIYP TN e+t 0(S )
B 1 I (Logk)?
=1 v = gy A+ O(S )

We have thus obtained

(1+3) (1+0())

:(1—$%V,k)N+1 (1_ 1_37%V,k O( 1 ))
2VNT T i 2(N +2) a3y, N2a}

B N 2N "M*  4Nsinpyp

i e YPN .k

)\N,k + Ny 21Nk

N ie_.WN,k O((Log k)3)
4N sin PN,k k2

which gives the value of v with an O ((Logk)?/(Nk?)) error.

As a corollary, we find a further development of 7, which is exactly
the formula given in [3]:
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Corollary. If uy = (2k — 1/4)w, then

3 i 1 1
e=e3 /4\/,uk (1——Log2\/7ruk——2Log2\/7wk+—2
2 pg 4 piy, 4 pi;
1 Logk)3
(50) + 8.2 (Log 2 /mpx)? + O(%)) .
k

PRrROOF. From (31) and (49), we get

¥a _ 1 i
- (1—2 &> (1+— Log2 /7 /pg+ ——— (Log 2 /7 /11, — 1))
N 2N;1,k

N N
(Logk)?’)
+O( Nkz )’
hence
_ i 1 Log k)3
7,3:_wk—Log2\/7wk-|-—Log2\/7ruk——+O(&)
2 pg, 2 pugg k?
and
. i 1
Ve = \/—1 [k (1 — w—Log2 /mur — — Log 2 /mux
2 pug, 4 py,
1 1 (Logk)?
s+ (Log2 /i) + O )
+4N%+8ﬂ]2¢(0g ThE)” + L3

and the corollary is proved.

5. Small roots of ()n: further estimates.

We are now able to give a much better estimate for the small roots
of Qn. Indeed, we used the rough estimate |e_N‘”?Vvk| < eN1#hok] which
is far from being good since xy j accumulates on the line z = y for &
big (and k? = O (N)), so that e~NN.k is much smaller than eNVle~xl’;
indeed if k2 = O(N) we find that

T = —%Log2 7r(2k — i)ﬂ'—i— %(Wﬁ - i)W‘FO(L;ik) ;
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hence
e_Nw?VH _ 6L0g2\/7r(2k—1/4)‘n’ O (Logk/k)
1 L
—o/x (2k _ —)7r (1 +0( ng)) :
4 k
while

oNlznkl? > (2k=1/97 <1 +O<L0kgk>> _

Thus, we may improve Result 4 in an impressive manner: for a much
bigger set of indexes k, —7, /v N provides a very precise approximation
of N,k:

Result 8. There exist ng > 0 and Cy > 0 so that for N large enough
and k < noN'/?/(Log N)?/°> we have

Yk 1 k57
51 ‘ —‘ <C .
(51) xN’k—i_\/N - ON\/N(l-l—Logk)

PrOOF. We write

QN(t):zL\/N éjj\f(fi)Q () = 1+O Nz +2\/7/ 1—s?

Ns?

and approximate (1—s2)" by e~ (provided that Nt* remains bound-

ed: |[Ntt| < Ap)
(1—sH)t=eN Log(1-s*) _ e_st(l + O (Ns?)).

Thus
Qn (t) = erfe(— \/_t)+0( +¢_/ N0 (Nsh) ds .
Let 0 = Argt and assume 6 € (w/4,7/2). Then we have
t , It] ,
‘\/N/ e N0 (Ns?) ds‘ < CN\/N|t|3/ e NATcos20 ) )
0 0
o NV

- 2| cos20
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We have thus proved that for |[Nt*| < Ay and Argt € (7/4,7/2) we
have

_ 2
™™ ]

~ 1
1Qn (t) —erfc(—VN )| < C(ﬁ + VN [t m) :

Now, we write t = xn i + 0, |d] < do/N. Remember that we have

(hence we will look at k < \/AgN/(2m)) and

i e~ "Nk

Argzn = ON K+ Al"g(l +

ol )

Log{ 2V (2]“_1)” Log k)? k
T oty ot

hence if k& > ko where kg is large enough so that

Log (24/2Nm sin @N,k)>

NI
(NN

AN sin @k

+

1

o(“H) +o(y) =o(“E) +o(p)

is smaller than

1 Log2/m (2k— i)w
2 2(2k—i)7r |

we find that Argzy, € (7/4,7/2). (This is also true for k£ < ko, if N
is large enough, since zn  ~ —7,/VN).
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Moreover
cos (2Argan )
Log| 2y/7 (2k—1)7r o k)2
(L) gy
Log|( 2y/m (2k—l)ﬂ' oo k)2
RO

hence cos (2 Argz v i) has order of magnitude Log k/k. Thus we obtain
for dg small enough

Ot:l'N,k(l—f_O(\/%))’
ool wo(2)
° ArthArgfﬁN,k‘i‘O(\/%k) Arngk-i-O(k\/_)

thus we have

()~ exto( V) < (5 + VA () (i)
, K
N Logk

On the other hand we have

lerfc(—V/N t) — erfc(—VN zx )]

‘ / / —Ns dS
N2 N _ a2
_ |€ N$N7k|2 _‘ e 2Nzpn ps—Ns dsl .
T 1Jo

B

N VN’

We notice that

|2N.Z‘N7k s+ N82| <2 |~TN,k| 0o +



282 D. KATEB AND P. G. LEMARIE-RIEUSSET
so that if N is large enough,

2
|e—2NacN,ks—Ns . 1| S
which gives

N 2 1
exfe(—VN 1) = exfe(—VNaw )| 2 24/ = |e™Nve | = 18] = OVNE ]3]
T

Thus
k3
— > —_
lerfc(—VN t)| > C1VN k6 C’zNLng,
(52) ] 3
erfc(—VN t) — t)] < Co ———— .
erfe(—VN ) = Qu(0] < Co s

Now choose
_3Cy, kP2

Sn o —
Nk 0 N3/2Logk
(we have x5 < do/N if k%2 /Logk < 6C1v/N/(3C2)); we obtain that

sup  Jerfe(—VN 1) — Qu(1)] <

[t—z N,k |=0N,k

inf |erfe(—VNt)],

1
2 |t—zn 1 |=0Nnk

hence by Rouché’s theorem we find that Qx and erfc(—v/Nt) have the
same number of roots in the disk [t — zn k| < dn k. Since

| |~ )
TNk — TNk+1| ~ N

VEN oy = O(NLkzgk> - O(N2/5(L(1)gN)7/5> =o(l)

and

(if K < CNY%/(Log N)?/%), we find: for k < noN/°/(Log N)?/> (n,
small enough)

7]6 1 k5/2
— | <C .
|xN’k+\/N|— NV N (Logk)
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Result 8 is proved.

Result 8 is enough for what we want to prove. But, of course, we
may develop a bit further (1 —s2)" and get a better approximation for

TN, k-

Result 9. For k < nON1/5/(L0g N)2/5 we have more precisely

TNk = — \/— Ni/—(l_k-l-g’yk-l-O(\/Logk)).

PROOF. We write Log (1 — s2) = —s? — s*/2 4+ O (s°). Hence we have

5 4
(1— )N = ¢~ Ns (1 - N % +O(Ns®) +0 (N%S)) ,

provided that |s| < Ag/N/4.
Thus we have for |t| < Ag/N'/* and Argt € (w/4,7/2)

Qn (t) — erfe( \/_t+2\/7N/ sds

‘ e~ N
cos (2 Argt)

2
t7e—Nt

gc($+\/ﬁ ‘+N\/N‘m‘>.

Moreover we have

t _Ns2 t
N/ €_N8234 dS — [ﬂ]t + §/ 6_N8232 dS
0 2 0o 2/

—Nt?,3 t
e t _— § d .
2 AN © TNy, ¢ °

Now, we write 7 = 1/1/2N]cos (2 Argt)| (if t ~ zny, we have n ~

V4k/(N Logk) < |t|) and we write

t n It] sds
‘/ e—N32 ds S/ |€_Nt2|ds—i—/ e—st cos (2 Argt)
0 0 n n

e
2N|cos (2 Argt)|n
) |e—Nt2|

N V2N | cos (2 Argt)| |

< ple™N| +
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Finally we get

erfe(—VN zy ) = e~ NNk \/gﬁ\rk + e~ Nonk 4\/3_
4 5
+O(]$2> +O<N2kiogk> +O<%ogk)
~o(F)

and, assuming again k < 179N/®/(Log N)?/°,

erfe(—V Ny g) = e~ Noh.i \/§ x?\’k (1 + O(%))

On the other hand, we have xx 1 = —7,/V N + s with

1 k5/2
ol i)
N+/N Logk
and we want a better estimate for s. We have

VN 57 = O(% Lik) - O(ﬁ)

and thus we may develop
erfe(, — VN s) =e i —/ _27’6“_“2 du
= _T e 7 VN s(1+0 (VN s7,) + O (Ns%)).
i

Hence we find
2 —2 N 2
. —% +/ 3 —Nzx
VA e E

1 3 k3/2
s~ —5 k= 0(3ar)

and therefore
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St 2w (ieo(5) o( )

N 5 _na2 3 N2 (\/Logk)
— /= TN,k TNk + O
A, 7 N A

so that (since e N*VkTTk = 1+ O(VN s7,) = 1 + O (k2/N))

1 4 3 Logk

TT e e TN e T EUNUN
1 7 37 Logk

_ L 4 Tk n O( og )
2 NVN 8NVN NVN

and Result 9 is proved.

6. The phase of a general Daubechies filter.
We have now almost achieved the proof of Theorem 1. Indeed, we

have given estimates for xx y, hence for zy j, which is the solution of
enk = (#nvk + 1/2n)/2 with Rezy g > 0, hence which is given by

ZNgk = TNg + (/T — 1. We thus have proved:

Proposition 3. Let Py be the N-th polynomial of I. Daubechies

o (5 (T

which is related to Qn by

(55) e'CNFTE Py (™) = Qn(cos §)

or equivalently

1 1
(56) Py(z) = 1Qn (5(2+ 2)).
z
Then the roots of Py are precisely given as the following ones:

o 2 = —1 with multiplicity 2N + 2,
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e 2N roots with multiplicity 1 which can be decomposed into

1 1

{ZN,kva,kv R } ’
ZN,k %Nk’ 1<k<[N/2]

(together with {zn,(n+1)/2: 1/2N,(n+1)/2} if N is odd), where Im 2z 5, >
0, Rezng > 0, |zng| > 1, Imang > 0 for k < [(N +1)/2] and

Im zy (v +1)/2 = 0.
Moreover we have, for N large enough:

o if k < noNY®/(Log N)%/5 (where ny is fized independently of N
and is small enough)

(57) ZN,k:i_j—%‘i‘O(%)a

where 7y, is the k-th zero v of erfc(z) with Im~y > 0
e for all k

1+ Logk
(58) ZN,k = YNk T \/y]2\f,k;7_1+ O(ﬁ) ’

YNk = (1 _ o~ 2i(8k—1)m/(8N+6)

1/2
L 2i(8k—1)r/(8N+6) \/ . ( 8k —1 )
N Log2/2Nmsin 8N-|—67r .

PROOF. Just write 2y, = N + /2%, — 1 and apply results 6 and
8.

Of course, we could give better estimates using results 7 and 9, but
we won't need them. We have easy estimates for 1/zxy 5 as well since

_ [ 2
1/ZN,k—l'N,k_ xN,k—l.

We are now going to use proposition 3 in the estimation of the
phase of a Daubechies filter. We want to approximate for § € [—m, 7],
1/(e™* — Ay i) where

1 1
ANE € {ZNk» = ZN,ks = .
2Nk ZN,k
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A direct consequence of Proposition 3 is the following proposition:

Proposition 4. Let§ € [—m, 7] and let zyp, 1 < k < [(N+1)/2] be the
roots of Py described in Proposition 3. Let Anx € {2Nk, 1/2N ks ZN ks
1/ZN,k}- Then

i) for 1 < k < noN/5/(Log N)*® we have, writing 2N = i —
7]@/”?
1 1 k 1

(59) . — | <C - ——————
—i¢ _ . L )
¢ ANK  emi — Ay g N ~t | cos |2

where C doesn’t depend neither on N nor on k nor on & (and where
)\N,k = Zf]\\l',/k Z'f)\N,k = ZN,k; 1/%, Z'f/\Nyk = I/ZN,k and so on )

ii) for k > ko (ko large enough independently of N) we have, writing

ZNJE = YNk + ,/yjzv,k — 1 as in formula (58),

‘ 1 ‘ < Logk 1
e — ANk e~ — Ayl kVNE K | cosf? '
N

(60)

PROOF. Of course, we may assume ¢ € [0,7]. If & € [n/2,7], the
estimation is easy since Ree™* < 0 and Re Ang > 0 (as well Re Ay
and Re Ay x). Thus,

) ) k
le™™ — Ay > Re(—e ™ + Ay i) > Cy/ N | cos ]

and the same for |e™% — );V\k| and |e™% — m| Of course, we must
prove that min {Re )\N,k,Re)\Nyk,Re )\N,k} Z C\/k/N. For Re )‘N,ka it

is obvious, since
— —Revx km
Re A > = A — .
N,k = 2 N

VN |i- Tk

For Re Ay, if & < noNY®/(Log N)?/®, we deduce that ReAny >

C'\/k/N since

— k k
ANg — A < — 2Nk S C = <y C'N72/5,
AN K Nkl <lenvg — 2N | < N=\VnN
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We thus turn our attention to Re );V\k > Rezni/lZnk]® and Re Ay g >

Re 2y 1/|2n x|? for large k’s. We define iy g, = V1 — e~ 2i(8k=1)7/(8N+6)

and éN,k = UN,Ek T 4 /“%V,k — 1. We have

8k —1 :

_ - i(r /4= (8k—1)m/(2(8N +6)))

EN K \/28111 (8N+ 6) e
L ¢i{m /2= (8E=1)m /(8N +6))

— 1+\/§ ei(‘n’/4—(Sk—1)7r/(2(8N-|—6))-{—arcsin V2 sin(n/4—(8k—1)7/2(8N+6)))
and thus we study 1 + /2 eilwtaresinV2sinw) for ) ¢ [0, 7/4]. We have

Re(1 + V2 eilwtarcsin \/Esinw))
= V1 -2sin*w (V1 - 2sin*w+ V2cos?w)

4
= Vcos 2w (\/2cos2w+ I—QSinzw) > —(ﬁ—w) :

8k — 1 2
> /2 >/
Relvre 2\2eN 762V N

k Logk

SN L — < (Cy/—
1ZN gk — Envi] < N &

which gives

Now we have

so that if k is large enough we have

_ | k
RGZN,k ZC/ N .

Moreover
_ k Logk

leve = 2nl < O\ 7 =15

and thus
k
Re ZN,k Z C” N .

Finally, we control |zy x| and |Zy x| by

— k Logk

|ZN,k|+|zN,k|§1+\/§+O( N kg )SC
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Thus we obtain

|k — |k
Re)\N,k Z C N and Re)\N,k Z C N .

We are going to prove that

, k
—i€ > —
e AN & _C(\/N+|Cos£|>
and
L - [k
—i§ > -~
|€ )\N,k _C( N+|COS§|>

holds for £ € [0, 7/2] as well. Notice that if |An x| < 1, we have

1

—i§ -

e_ig — | > —|e —
ANk

Anvgl ¢

IH 1 1

Ang —e %] =
ZNk

(and the same for |e~% — )\/N\k|) so that we may assume Ay | > 1. If
ANk = 2Nk, our equality is obvious: for {x j we have either Im&{n ;, > 1
or Refy ) > 2 and, since Ime™% < 0, we find |e™% — &y | > 1, hence
(for k large), |e™% — 2n | > 1/2 and |e~% — Zy x| > 1/2, while

%Z %(\/%—Hcosﬂ).

Now if An i is the conjugate of zn i or Zy i, we are going to show that

e s [
e §_€N,k|20( N+|COS§|>,

which gives the control over |e =% — Ay 1| for large k’s. Thus we are led
to show that

( for € € [O,g] and w € [0,%],

(61) { |6_i5 —1 - \/5 e—i(w-i—arcsin\/i Sinw)|

20(|cos§|+ %—w).
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We compute easily p(¢, w) = |e7% — 1 — /2 ¢—ilwarcsin V2sinw) 2
(€, w :(cosf V1 — 2sin? w(\/_cosw+\/1—2sm w))
+ (sin£ V2 sinw(x/ﬁ cosw + m))2
=1+ (\/5 cosw + m)z
— 2(\/5 cosw + m)
. (cos&\/ 1—2sin?w +sin&V/2 sinw)
= (\/5 cosw — 1+ m)Q
+ 2(\/5 cosw + m)
- (1 = cos (¢ — arcsin (V2 sinw)))
>1—2sin®w +2(1 — cos (£ — arcsin (V2 sinw))).

We have
. 9 2(m
1—2sin w:cos2w2—(——2w>.
T \2

On the other hand, we have

1
1 — cos (€ — arcsin V2 sinw) = 2sin® (g ~5 arcsin V2 sin w)

2
> € - arcsin v/2 sinw|?.
s

Moreover we have

™ . . . s
5 arcsin v2 sinw = arcsin vcos 2w < 5 Veos2w ,

hence we have (using |a + b|? > a?/3 — b?/2)
9 4 T . N
p(€, w) Zcos2w+—2‘£——+§—arcsm\/§smw‘
s
4 2
Zcos2w+—‘§— ‘ ——‘——arcsm\/_smw‘
32

> L os 2w 4 2¢
_2COS(.U 37[_2COS

> 37Tz(cos &+ ‘——wD
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and thus (61) is proved.
Proposition 4 is then obvious since

‘ 1 B 1 _ |)\N,k - 5‘NJ<>|
e — ANy emi€ — AN K le™% — AN k| le™% — AN ]

and since we control each term due to (61) or to Proposition 3.
We may now obtain Theorem 1 as a corollary of Proposition 4:

Corollary. With the same notation as in Proposition 4, if kg < kny <
noN/®/(Log N)?/® then

/27r
0

[(N+1)/2] T
1€

= et = Ang
(62) o et IR e
— —|d
Z i — )\N k 2 e~ — AN ‘ ¢

kEn+1

gc(’jf_jﬁzfjw).

PROOF. Using Proposition 4, and writing I (&) for

N et BN it [(N+1)/2) e
INO=D =2 e —
kz::l et — )\N,k k2=:1 e~ — /\N,k sz-El e—i€ _ )\N,k
we get
ky [(N+1)/2]
k 1 Logk 1
IN(&) < Z C Nk . +

k=1 N—Hcosﬂ2 kn+1 VN +|cos£|2

Thus we have to estimate

27 arccos \/k/N /2
d d d
[ —— [
0 k+ N| COS€| 0 N cos 5 arccos \/k/N k
4 ¢ ( |k ) n 4 (7r [ k )
= N an | arccos N E\2 arccos N

4 27

< + ,
- VNk Nk
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so that

2 NED/2) 7 os k K2 Logky
/0 e Z\/7 k—> C”(\/NJr kn )

Now Theorem 1 is proved with ky = [N1/5/Log N]. At least, we have
proved it for £ € [0,27]. But w(zy 1,---, 20 n) —W(Z) - LN N) 18
2m-periodical, since w(Z1, ..., Zy)(E+2m) —w(Z1, ..., Zn)(€) = 2inM
where M is the number of Z;’s which lie inside the open disk |Z] < 1.

7. Minimum-phased Daubechies filters.
This section is devoted to the proof of Theorem 2.

Result 10. We have the following inequality

(63) jf (ZN1,...,ZN,N)(£)—;V—7TIH1 _ﬁ %;()dw < CVN ,

where £(w) = Ve 4+ /1 4 e,

PrROOF. We approximate zyy by Zni = Z((8k — 1)n/(8N + 6)),
(1 <k < N) where

Z(w) = V2sinw e (m/4=w/2) 4 oi(m/2-w)

We have shown that for ky < k& < [(IV 4+ 1)/2], (ko large enough) we
have

‘ 1 1 ‘ Logk 1
—i€ _ e — k
e ANE €% —ZNgk VNk K +eos?é
N
and 1 1 Logk 1
. - ‘ <0 2%
e ® —Znk e —Zny

V/ k
Nk N+cos2§

(notice that 2y Ny1-k = Zni and Zn Ny1—k = ZN,k). If £ < ko, we
have to prove similarly

1 1 ‘ 1 1
VN

e~ — 2 e _ g
N,k N,k 00525

ZlH
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and 1 1 1 1
. I S

e —Zng e —Zypl = VN 1
N

+ cos? &

We have of course

<leng|+ 2Nkl <

2Nk — ZN K

3o

so that we only have to check that

|6_i£ — ZN,k

> é(\/%ﬂcosé“l)

(which is an easy consequence of (61)) and that

. 1 1
|e_Z£ — ZNk| > —(— + |cos§|> .

C\VN

If |€ + /2| > 3 |y, |/VN and & € [-27, 0], we find

eI _ oy = 2 emHE/2H /) iy (§ L %) _ e 0(i> ,

2 N

VN

hence

. 1
=tz §+ )| 2ol

s (5+7)
6 |7k0|}_

1
> max{z | cos€|, —

T VN

On the other hand, if |¢ + 7/2| < 3|k, |/V'N, we have

(545~ J+ol3)

hence

>11nf1m’yk e ZC’omaX{

-2 VN VN

|€_i'£ — ZN,k

11
VN 6 [k |

293

|cos£|}.
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Thus we have obtained

d N . —’i§
d_fw(ZNl,'.'7ZN’N z_: ’g—ZNk
N
1+Logk 1
<C Z P
= N + cos? ¢
.1+ Logk
<CVNY ——="
- 21: kVE
Now we look at
- ImZ z.’;" _ ZNk
as at a Riemann sum: we have
s T je "% dw
—— I A ., < .
NN | e

If £ # £n/2, we have a proper Riemann integral; if { = +m/2, the
integrand is unbounded at 0 (§ = —7/2) or m ({ = m/2); but for
¢ = —71/2 we have e™% — Z(w) = ¢™/*\/2w + O (w) near w = 0 and

thus . .
— dw < +00.
/0 i — Z(w)]

It is easy to evaluate the distance between 7wSxn/N and the integral.
We have

7r /(8N +6) 7r /(8N +6)
‘/ dw ‘ < C’/ dw < L
e~ — Z(w) Vw VN’

‘/ ‘<C/ dw
8N—1)n/(8N+6) € 5 - 8N—1)n/(8N+6) VT — W
1
C—,
- VN
1 L <C'— N
8N —1 N’
<ol
8N +6
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and finally for 1 <k < N

(8k+7)7r/(8N+6) 1 . 87 .
e dw—
8k r/@N+6) €% — Z(w) 8N +6 it _ Z( S8k —1 )W
8N +6
8k — 1
(8k+7)7/(8N+6) ‘Z(w) — Z(m>n‘
= C/ SE—1 W
BE-D/ENF6) - |e=i€ — Z(w)] |e~ié - Z(5n 6”)‘
_I_
1
(8k+T7)m /(8N +6)
<’
(8k—1)7/(8N+6) / /
1
< C//
T K2YN
and thus

s T - dw 1
— S -1 e —— | <C—.
w0 5
Thus, Result 10 is proved since writing —e =% = ¢~ gives

/7r ie”% dw
0 e~ — \/2sinw eilr/4—w/2) _ pi(n/2—w)

2 . e~ _ \/e—ia _ \/]_ + e—to

We will easily prove Theorem 2 if we know the value of I(§) =
[T, e do /(e — £(o)):

Result 11. Let £(0) = Ve~ % + 1+ e~ and ¢ € [-7,7]. Then

o do
/ e ’5 i
- £(o)

4 _ § cos§ 1 —siné _ m
(64) 7rtan(2> b 31115 (1+sin§> AN 27
£ cosf 1 —sin& ) T
—7rcotan(§> sm§ (1 -|-sin§> T2 2
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We find that I(£) is continuous, which is obvious since by (61)
e —¢(0)| = CV/n? — 02,

so that we may apply Lebesgue’s dominated convergence theorem.

PROOF. Since (o) = £(—0), we find that

I(—&):—/_T;e_i%i;(a)do=—@,

so that it is enough to compute I(§) for £ € [0, 7].
Writing e™*? = u, we may write

© —1-i0 i€ du
o | o
5 — 1440 \/’l_/, +vV1i+u—e"% u

where u runs clockwise on the circle |u| = 1. The function

e
 2(VZH+ VI F 2 — i)
is analytical on C\(—o0, 0] and may be extended continuously to (—oo,
0] + 40 and (—o00,0] —i0 but at three points: z = 0 (both a pole and

a branching point), z = —1 (a branching point) and if £ € [0,7/2] at
—sin?¢é —i0 = z¢. Thus we may write:

o for & € [r/2, 7]

f(2)

—€ e~ du
I1(¢) = lim — —
(©) e=0) 1 Vu+i0+v1I+u—e"% u
-1 e~ % du
+

e Vu—i0+ /I tu—e€ u

n /_e_io e du
—evio VutV1+u—eT% u

2'/1 & Yin "
=21 — 24T ———
0 cosé—+1—t2 1—e %

w/2
:22'/ &da—ﬂcotan<§)+wi.
o Ccos& —cosa 2
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o if £ € (0,7/2) we have, writing t+ = +/sin®¢ +¢ and tZ =
3
Vsin“ € — ¢

I(¢§) =1lim A. + B + C.
e—0

where

A /—(t?)2 +/—€ e~ d_u
c _1 —(t2)? \/u+20+\/1+u—e_15 u

. /—(t;)2 +/—1 e~ i€ du
e —(tF)2 Vu—i0++V1I+u—e% u

:2i/ +/
NG i+ cosE — V1 —t?

B — /_E_io et du
° —e+i0 \/ﬂ-l-vl-l—u—e—’f U
—i€

. e

= —Wcotan(g) +im+ O (Ve),

. _/—(t;)2 e~ du
© ) wrye VutiO+VItu—e € u

/z5_€ e du
+ .
cete (Wu+VItu—e®)u

= —im2icotan& + O (e)
= 2w cotané + O (¢),
since the residue of
—i¢
1O=
at zg = —sin? € — 40 is equal to
o L 2yE /T

T T Z: e = 2icotan€.

1
—_*__7
VE 2Tz

(NN
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Hence we have

I1(¢) = 7r(2 cotan§ — cotan(%))

+27r+2211m/ /
¢+ cos& — \/1—t2

13 cos a do
:—7rtan<—)+z7r+2zhm ,
2 cos&—cosa

where a7 = arcsint> and af = arcsint.
Thus, for proving Result 11, we just have to estimate for £ € (0, 7),

§#7)2
i / / cos a da
e—0 cos§ — Ccos «

with aZ = arcsin y/sin® ¢ — & and ot = arcsin \/sin? ¢ + . We do the

usual change of variable § = tan («/2). Then

‘35’%/ /ﬁ TR P e =)
We write
(1+ %) cosé — (1 — %) = f*(1 4 cos &) — (1 — cos€)
::2ﬂ2am2<g)——2$n2<§),

2
hence
_ 1-p
o= (:os2 gl_r)%/ / (1+2) ( — tan? (g)) v
B 2 1
_0032 gl_r)%/ / <1+tan g) L+ 62

1—tan2<§) 1

1+ tan2(§> £? — tan2(§> dﬁ)

_|_
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2 2
L K cos & 1tan<g)
e=0 2  sin¢ 1-|-tan(§>
cos & pE — tan <g> cos§ fe — tan (g>
—Sil’lf ﬂ+—|—tan(§>+8in§ Ogﬁ +tan(§>
2 2

Now we have

(o)) 6) -3 (o (5)

§
2 2
1 + tan (g) cos? (g) + 2sin (g) oS (g) + sin? (g)
1 —sin¢
" 1+sing’

while we have for ¢ € (0,7/2)
B;—tan(é) (1+tan (g )a —¢)
(1+ta (g
—€<1+tan (
4sin & cos &

)
)) smf € —siné
¢
2

cos &
)
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and

+€<1 + tan? g))

pe — tan (g> - 4sin€ cos & N—(ﬁ;—tan (g»
Thus

7 cosé 1 —siné

Alg) = 2 + 2siné & 1+siné

and Result 11 is proved.

Now, (63) gives

d NcosfL 1 —siné <oVN.

d—éw(ZNl,...,ZN,N)(é) 27 sin & Og1+sin£ -

Integrating this for & € [—7, 7| we get

e, 2 )(€) — o (Lis(sin€) — Lin(sin))| < OVA

Since both functions are 2m-periodical, this inequality can be extended
to all £ € R and Theorem 2 is proved.

8. Almost linear-phased Daubechies filters.

In this section, we prove Theorem 3. The proof is very easy.

Indeed, we want to estimate for N = 4q, (szNll, . ,szNAf,V)(g) with
enky = 1if k=0mod 4 or k =1 mod 4, and ey = —1 otherwise.
We have (writing wy for w(zfvlf’ll, ce fVNAZ,V) Ky for {keN:1<

kSN, €N7k:l}andKNfOI‘{keN.lngN €Nk:—1})

d
ﬂ_ImZ "f—sz+Z

kGKN keKy ZN,k

(we have used that for k € KN, N+1—k € Ky and ZNJk = ZN,N+1—k)-
Hence we have

dwpn ie % ie" %
— = Im( g _— E 7)
d —i€ _ —t€ _
5 keKn ¢ ZN’k kE.RN ¢ ZN’k

ie” ie
+m<ze; ¥ 1)

1§ _ z .
= Nk _
kER n e & _

ZNk
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But we have

ie' N iem  je® N iZ
e~ — 7 o—ib _ 1 e 7 7 _eti€
7
ieT (e —Z)+iZ (—e " + Z)
- |e—z‘§ _ Z|2
_i(1—-2Ze 7 4+ (Z)?)
N |Z — e %2
Ci(Ze® —Ze %)
=1 + - s
|Z — e %2
hence " e
re” " re”’
Im( . + > =1.
e~ —Z . i
Thus, we have obtained
doy N 1 . 1 1
—— = —+1Im ie_zg( . - —
d§ 2 ,; e~ — 2Nak-3 €7 — ZN k-2

1 1 )
e — znag—1 €% — znag

Now we write, for r € {1, 2,3}

1 1 ZNAk—r — ZN, 4k

- = - +
e — ZNak—r €% —2ZNag

1 ZN Ak—r — ZN,ak
e~ — ZNak (e7% — zN ak)?

(2N, ak—r — ZN,4k)2

—+ - - .
(e7% — zn.ak)%(e7% — 2N ak—r)

We have, writing k = min{k,q+1—k}

(e7% — znak) (€7 — 2N ak—r)

301

1 1 1
2 —— C = - ~
(2N ak—r — ZN k) <C Nk EV Nk

(6_"5 - ZN,4k)2(€_i£ - ZN,4k—r)
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/ﬂ' /arccos VEk/N d¢ AN w/2 i

cos? & * ko /TN
+COS 5 arccos /

E + g ] E
” sin | arccos N ]Ng arcsin N
/N IN
S T )
k

so that
/7r don ——I Z ZN,4k—3 — ZN,4k—2 — ZN,4k—1 T ZN,4k ‘
—r df 2 (6_i‘£ — ZN,4k)2
1
v
<C) 5 =C' < 400
k=1
and
dwN
EET

N
<C'+ CZ \/ T |2N ak—3 — ZN ak—2 — ZN 4k—1 + 2N 4k] -
k=1

When k < ko, we write

|2N ak—r — ZN akt1—r| = 0(

2
=

and obtain

N
Z \/ T |2N ak—3 — 2N ak—2 — ZN,ak—1 + zn,ak] < C Logkg .
E<ko

When k > ko, we may write as in formula (58)

Log k
ZN,dk—r = YN,ak—r T 4/ y12v74k_r -1+ O(i€ f\fl})

k)7

Lo
k

o

= Voman T + Vona +1+0(

2
ol
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where
We = _p—2im(8¢-1)/(8N+6)
— l —2im(8¢—1)/(8N+6) \/ . 8¢ -1
N € Log| 2 2N7rsm(8N+67r) .
We write
/3 p 3 32
PVt v vars Ve waar vaT

Now, we have: wpy, is order of magnitude 1, wy ¢ + 1 is of order of
magnitude min {/¢/N, /(N + 1 —£)/N} and wy ¢+1—wn ¢ is of order
of magnitude 1/N. Thus, we may write

VWN ak—r = \/WN K + O(%)

WN 4k—1r — WN 4k 1
T o = T o + St = (1)
R N e VRV v

o—2im(32k—1)/ (8N +6) (1- 62i8r7r/(8N+6))

2\/1 + WN 4k

(25 4 o(——)

N? i/ Nk

= 1+wnar +

and finally

VN

T |2N ak—3 — ZN ak—2 — ZNak—1 + ZN,ak|

[N (20247 /(BN+6) _ ,2i167/(8N+6) _ ,2i87/(8N+6) 1‘
k 2\/1+ wnax

Fo(MER) o( ) ro( k)
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We thus have proved Theorem 3, since

N

1 VN
Y ———=<C-==C<+x,
T VNEk N

>, Logk

SR e,

N Logk 1
Yy 2 <o VN Log N = o(1).
— NV Nk NV N
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