Revista Matematica - Iberoamericana VOL 13, N^{o} 2, 1997

The phase of

Djalil Kateb and Pierre Gilles Lemari-eRieusset

Abstract We give the -rst term of theasymptotic development for the phase of the Nth minimumphased Daubechies -lter as N goes to $+\infty$. We obtain this result through the description of the complex zeros of the associated polynomial of degree $2N + 1$.

0. Introduction.

 \mathcal{U} are defined in the following way of \mathcal{U} are defined in the following way of \mathcal{U} i matrix and the set of degree α and degree α and degree α

(1)
$$
m_N(\xi) = \sum_{k=0}^{2N+1} a_{N,k} e^{-ik\xi}
$$

kwatha realisation and the coefficients and the coeffi

ii) $\sqrt{2} \, m_N(\xi)$ and $\sqrt{2} \, e^{-i\xi} \, \overline{m}_N(\xi{+}\pi)$ are *conjugate quadrature filters*

(2)
$$
|m_N(\xi)|^2 + |m_N(\xi + \pi)|^2 = 1.
$$

 $\mathcal{L} = \{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \ldots, \mathbf{v}_{n-1}, \mathbf{v}_n, \mathbf{v}_n, \ldots, \mathbf{v}_{n-1}, \mathbf{v}_n, \mathbf{v}_n, \ldots, \mathbf{v}_{n-1}, \mathbf{v}_n, \mathbf{v}_n, \ldots, \mathbf{v}_{n-1}, \mathbf{v}_n, \ldots, \mathbf{v}_{n-1}, \ldots, \mathbf{v}_{n-1}, \ldots, \mathbf{v}_{n-1}, \ldots, \mathbf{v}_{n-1}, \ldots, \mathbf{v}_{n-1}, \ldots, \$

$$
(3) \t mN(0) = 1,
$$

(4)
$$
\frac{\partial^p}{\partial \xi^p} m_N(\pi) = 0, \quad \text{for } p \in \{0, 1, ..., N\}.
$$

e Dinning and P G Deminische Kaneelen

The importance of the importance of the following facts is due to the following facts of Λ ciated wavelet ned by the circumstance of \mathcal{N}

$$
\hat{\psi}_N(\xi) = e^{-i\xi/2} \overline{m}_N\left(\frac{\xi}{2} + \pi\right) \prod_{j=2}^{+\infty} m_N\left(\frac{\xi}{2^j}\right),
$$

generates an orthonormal basis of $L^2(\mathbb{R}) \{2^{j/2} \psi_N(2^j x - k)\}_{j \in \mathbb{Z}, k \in \mathbb{Z}}$ and satisfaction properties that the cancellation properties of the can

$$
\int x^p \psi_N(x) dx = 0, \quad \text{for } p \in \{0, 1, \cdots, N\},
$$

and has a support of minimal length among all orthonormal wavelets satisfying (6) .

re do an unique way as a major dematter of fact, there is exactly $Z^{(s)} \to S$ solutions m_N (where $|x|$ is the integer part of x). Indeed, conditions (1) to (4) determine only the modulus of m_N

$$
(7) \t\t\t |m_N(\xi)|^2 = Q_N(\cos \xi) ,
$$

(8)
$$
Q_N(X) = \left(\frac{1+X}{2}\right)^{N+1} \sum_{k=0}^{N} {N+k \choose k} \left(\frac{1-X}{2}\right)^k.
$$

We are going to check easily the following result on the roots of Q_N .

Proposition 1. The roots of Q_N are $X = -1$ with multiplicity $N + 1$ and ivertoons $X_{N,1}, \cdots, X_{N,N}$ with multiplicity **1** such that

- i) for $1 \leq k \leq N$, Re $X_{N,k} > 0$ and $X_{N,N+1-k} = X_{N,k}$,
- ii) for $1 \leq k \leq |N/2|$, $\operatorname{Im} X_{N,k} > 0$,
- ii is odd XN-iiii if N_1 iif $\pm 1/2$

With help of Proposition 1, we may easily describe the solutions m_N of (1) to (4). Indeed, if $X_{N,k} = (z_{N,k} + 1/z_{N,k})/2$ with $|z_{N,k}| > 1$, then we have

(9)
$$
m_N(\xi) = \prod_{k=1}^{\left[(N+1)/2\right]} S_{N,k}(\xi) \left(\frac{1+e^{-i\xi}}{2}\right)^{N+1},
$$

 $-i\zeta$

where, for $1 \leq k \leq |N/2|$,

(10)
\n
$$
S_{N,k}(\xi) = \frac{(e^{-i\xi} - z_{N,k})(e^{-i\xi} - \overline{z}_{N,k})}{|1 - z_{N,k}|^2}
$$
\nor\n
$$
S_{N,k}(\xi) = \frac{(1 - z_{N,k}e^{-i\xi})(1 - \overline{z}_{N,k}e^{-i\xi})}{|1 - z_{N,k}|^2}.
$$

If N is odd,

(11)
$$
S_{N,(N+1)/2}(\xi) = \frac{e^{-i\xi} - z_{N,(N+1)/2}}{1 - z_{N,(N+1)/2}}
$$

$$
1 - z_{N,(N+1)/2}e^{-\frac{1}{2}(1 - \frac{1}{2}z_{N,(N+1)/2})}
$$

or
$$
S_{N,(N+1)/2}(\xi) = \frac{1 - z_{N,(N+1)/2} e^{-\xi}}{1 - z_{N,(N+1)/2}}
$$
.

The case where all the roots of $M_N(z)$ (the polynomial such that $m_N(\zeta) \equiv m_N(e \to)$ are outside the unit disk is the minimum-phased daubechies - lterature - l

(12)
$$
m_N(\xi) = \left(\frac{1+e^{-i\xi}}{2}\right)^{N+1} \prod_{k=1}^N \frac{e^{-i\xi} - z_{N,k}}{1 - z_{N,k}}.
$$

The aim of this paper is to describe the phase of the Daubechies -lters as N goes to $+\infty$. Indeed, the modulus of m_N is described by (7) and (8) and one easily checks that

(13)
$$
\lim_{N \to +\infty} |m_N(\xi)| = \begin{cases} 1, & \text{if } |\xi| < \frac{\pi}{2}, \\ \frac{1}{\sqrt{2}}, & \text{if } |\xi| = \frac{\pi}{2}, \\ 0, & \text{if } \frac{\pi}{2} < |\xi| \le \pi. \end{cases}
$$

The phase of m_N , on the other hand, is much more delicate to study: it depends of course on the choice of the factors α is $N\cdot N$ in α for the case of minimumphased -lters we are not aware of any previous results on the behaviour of the phase

which are going to give an approximate value of \mathcal{W}, \mathcal{W} which allows of all of \mathcal{W}, \mathcal{W} the determination of the phase of m_N . More precisely, if Z_1, \ldots, Z_N are N complex numbers such that for $k \in \{1, \ldots, N\}, |Z_k| \neq 1$ and if

$$
\Pi(Z_1,\ldots,Z_N)(\xi) = \prod_{k=1}^N \frac{e^{-i\xi} - Z_k}{1 - Z_k},
$$

e Difficulture is difficulture and cooler

we define the phase $\omega(\mathbf{Z}_1,\ldots,\mathbf{Z}_N)(\zeta)$ as the $\mathbf{C}-$ real-valued function such that $\omega(0) = 0$ and

$$
\Pi(Z_1,\ldots,Z_N)(\xi) = \prod_{k=1}^N \left| \frac{e^{-i\xi} - Z_k}{1 - Z_k} \right| e^{-i\omega(Z_1,\ldots,Z_N)(\xi)}.
$$

This function is easily computed as

(14)
$$
\omega(Z_1,\ldots,Z_N)(\xi) = \mathrm{Im}\left(\int_0^{\xi} \sum_{k=1}^N \frac{i e^{-is}}{e^{-is} - Z_k} ds\right).
$$

 T be its roots which are not equal to -1 ordered by:

- for $1 \leq k \leq [(N+1)/2]$, $\text{Im } X_{N,k} \geq 0$ and $X_{N,N+1-k} = X_{N,k}$,
- \bullet $|X_{N,1}| < |X_{N,2}| < \cdots < |X_{N,\lceil (N+1)/2 \rceil}$ \blacksquare

and let $z_{N,k}$ be defined by $X_{N,k} = (z_{N,k} + 1/z_{N,k})/2$ and $|z_{N,k}| > 1$.

For $1 \leq k \leq N$, we approximate $z_{N,k}$ by $Z_{N,k}$ where:

i) for $1 \leq k \leq [(N^{1/5})/ \text{Log } N], Z_{N,k} = i - \overline{\gamma_k}/\sqrt{N},$ where γ_1 , \ldots, γ_k, \ldots are the roots of $\text{erfc}(z) = 1 - (2/\sqrt{\pi}) \int_0^z e^{-s^2} ds$, such that $\lim_{k \to \infty} \gamma_k > 0$ and ordered by $|\gamma_1| < |\gamma_2| < \cdots < |\gamma_k| < \ldots$

ii) for $[(N^{1/5})/Log N] < k \leq [(N+1)/2]$, $Z_{N,k} = \theta_{N,k} + \sqrt{\theta_{N,k}^2 - 1}$, where

$$
(15.\mathrm{a}) \qquad \qquad \mathrm{Im}\,\theta_{N,k} > 0\,,
$$

(15.b)
$$
1 - \theta_{N,k}^2 = \left(1 + \frac{1}{N} \log(2\sqrt{2N\pi \sin \varphi_{N,k}})\right) e^{-2i\varphi_{N,k}},
$$

and

(16)
$$
\varphi_{N,k} = \frac{8 k - 1}{8N + 6} \pi ,
$$

iii) for $|(N+1)/2| < k \le N$, $Z_{N,k} = Z_{N,N+1-k}$. N-Then for any choice

$$
m_N(\xi) = \left(\frac{1+e^{-i\xi}}{2}\right)^{N+1} \Pi(z_{N,1}^{\varepsilon_1}, \dots, z_{N,N}^{\varepsilon_N})(\xi)
$$

of the Daubechies filter m_N (where $\varepsilon_k = \pm 1$ and $\varepsilon_{N+1-k} = \varepsilon_k$), the approximation

$$
\tilde{m}_N(\xi) = \left(\frac{1+e^{-i\xi}}{2}\right)^{N+1} \Pi(Z_{N,1}^{\varepsilon_1}, \dots, Z_{N,N}^{\varepsilon_N})(\xi)
$$

satis-es

$$
(17) \quad |\omega(z_{N,1}^{\varepsilon_1},\ldots,z_{N,N}^{\varepsilon_N})(\xi)-\omega(Z_{N,1}^{\varepsilon_1},\ldots,Z_{N,N}^{\varepsilon_N})(\xi)| \leq C_0 \frac{(\operatorname{Log} N)^2}{N^{1/5}} \ ,
$$

for all $\xi \in \mathbb{R}$, where C_0 doesn't depend neither on $N \geq 2$ nor on ξ nor on the ε_k 's.

Thus, due to Theorem 1, we may give the phase of m_N with an $o(1)$ precision! Of course, we need the knowledge of the roots of the complementary error functions are described in the described in \mathcal{A} results give again the same estimates, as we shall see.

we may greatly simplify the approximation α if α is a contract of α if α to get a greater error. For instance, we may characterize easily the minimum-phased filters with an $O\left(\sqrt{N}\right)$ error:

Theorem 2. Let

$$
m_N(\xi)=\Big(\frac{1+e^{-i\xi}}{2}\Big)^{N+1}\Pi(z_{N,1},\ldots,z_{N,N})(\xi)
$$

be the Nth minimumphased Daubechies -lter Then the phase

$$
\omega(z_{\boldsymbol{N},1},\ldots,z_{\boldsymbol{N},\boldsymbol{N}})(\xi)
$$

satis-es

(18)
$$
|\omega(z_{N,1},\ldots,z_{N,N})(\xi)-N\omega(\xi)|\leq C_0\sqrt{N}, \quad \text{for all } \xi\in\mathbb{R},
$$

where C doesnt depend on - nor on N and where

(19)
$$
\omega(\xi) = \frac{1}{2\pi} \left(\text{Li}_2(-\sin \xi) - \text{Li}_2(\sin \xi) \right) = \frac{-1}{\pi} \sum_{k=0}^{+\infty} \frac{(\sin \xi)^{2k+1}}{(2k+1)^2}.
$$

ess primiting mup in Streammann Innopoli

The $Li₂$ function is the polylogarithm of order 2

(20)
$$
\operatorname{Li}_2(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^2} = \int_0^z \frac{1}{u} \operatorname{Log} \frac{1}{1-u} du.
$$

The function $(\text{Li}_2(z) - \text{Li}_2(-z))/2$ is known under the name of Legendres and the contract of the c

The proved by a proved by approximation Ω

$$
\tilde{m}_N(\xi) = \left(\frac{1+e^{-i\xi}}{2}\right)^{N+1} \pi(\tilde{Z}_{N,1},\ldots,\tilde{Z}_{N,N})(\xi)
$$

with

$$
\tilde Z_{N,k} = \sqrt{e^{-i\theta_{N,k}}} + \sqrt{1 + e^{-i\theta_{N,k}}}\,, \qquad \theta_{N,k} = -\pi + \frac{16k - 2}{8N + 6}\,\pi\,,
$$

Then $\omega(\mathbf{Z}_N,1,\ldots,\mathbf{Z}_N,N)/N$ is identified with a Riemann sum for the integral

$$
\frac{1}{2\pi} \operatorname{Im} \int_{-\pi}^{\pi} \operatorname{Log} \frac{1}{\sqrt{e^{-i\theta}} + \sqrt{1 + e^{-i\theta}} - e^{-i\xi}} \, d\theta = \omega(\xi) \, .
$$

This approximating $Z_{N,k}$ is a simplified version of the approximating \mathcal{L} and the term is neglecting the term in the term is neglecting to the term in the term in the term is neglecting to \mathcal{L}

$$
\frac{1}{N}\log 2\sqrt{2N\pi\sin\varphi_{N,k}}\;.
$$

We will be also able to give a description of a family of almost linear phased Daubechies - lters - lt

Theorem 3. Let

$$
m_N(\xi) = \left(\frac{1+e^{-i\xi}}{2}\right)^{N+1} \pi(z_{N,1}^{\varepsilon_{N,1}},\ldots,z_{N,N}^{\varepsilon_{N,N}})(\xi)
$$

be the Nth Daubechies - lter with Nth Daubechies - lter with Nth Daubechies - lter with Nth Daubechies - lter w of $\varepsilon_{N,k}$: for $1 \leq p \leq q$, $\varepsilon_{N,4p-3} = \varepsilon_{N,4p} = 1$ and $\varepsilon_{N,4p-2} = \varepsilon_{4p-1} =$ -1 (so that $\varepsilon_{N,N+1-k} = \varepsilon_{N,k}$). Then the phase $\omega(z_{N,1}^{N,1}, \ldots, z_{N,k})$ $\sum_{N,1}^{N,1},\ldots,\sum_{N,N}^{N,N}(\xi)$ $N, N \times S$ satis-es

$$
(21) \qquad \left| \omega(z_{N,1}^{\varepsilon_{N,1}},\ldots,z_{N,N}^{\varepsilon_{N,N}})(\xi)-\frac{1}{2}\,N\xi \right|\leq C_0\,\,,\qquad \textit{for all $\xi\in\mathbb{R}$}\,,
$$

and the contract of the contra

where C doesnt depend on - nor on N

We are now going to prove Theorem 1 (and obtain theorems 2 and 3) as corollaries). Of course, it amounts to give a precise description of the roots $X_{N,k}$ of $Q_N(X)$. If we neglect the term $\text{Log } 2 \sqrt{2N\pi \sin \varphi_{N,k}}/N$ in $\mathcal{N}_i(\mathcal{N}_i)$ as a -matrix as a -matrix as a -matrix and $\mathcal{N}_i(\mathcal{N}_i)$ to the arc $\{ |z - 1| = \sqrt{2}, \text{Re } z \ge 0 \}$ (which can be parameterized as $\{\sqrt{e^{-i\theta}} + \sqrt{1+e^{-i\theta}}, \ -\pi \leq \theta \leq \pi\}$), or equivalently that the $X_{N,k}$ are close to the half-lemniscate $\{ |1 - X_{N,k}^2| = 1, \text{Re } X_{N,k} \ge 0 \}.$ This will be Nobtained by representing $Q_N(X)$ as a Bernstein porynomial on $[-1,1]$ approximating the piecewise analytical function $\chi_{[0,1]}$

(22)
$$
Q_N(X) = \sum_{k=N+1}^{2N+1} {2N+1 \choose k} \left(\frac{1+X}{2}\right)^k \left(\frac{1-X}{2}\right)^{2N+1-k}
$$

 \mathbf{N} for \mathbf{N} , and \mathbf{N} are the formula point of \mathbf{N} and \mathbf{N} corresponds to a Herrifice in the - and itis precisely the - and -Herrmanns paper representing the zN-k s for Q which lead us to con jecture the behaviour of the state \mathcal{L} is $\mathcal{N}\subset\mathcal{N}$

A classical theorem of Kantorovitch on the behaviour of Bernstein polynomials of piecewise analytical functions ensures that $Q_N(X)$ converges to 0 uniformly on any compact subset of the interior of the half lemniscat $\{|1-x^2| < 1, \text{ Re } x < 0\}$ and to 1 uniformly on any compact subset of $\{|1 - x^2| < 1, \text{ Re } x > 0\}$. We will use similar tools to study $Q_N(X)$ *outside* of the convergence subsets.

Near the critical point $X = 0$, the approximation by points on the lemniscat is no longer precise enough, and we will show that for the small roots $X_{N,k}$, $-\sqrt{N}X_{N,k}$ is to be approximated by a root of the complementary error function Such an approximation occurs for instance in the study of the (spurious) zeros of the Taylor polynomials of the exponential function \mathbf{f} get our description. The main difference, however, is maybe that we are dealing with a divergent family of polynomials

NOTATIONS. We will define as usually $\text{Log } z$ and \sqrt{z} as the reciprocal functions of

$$
z = \text{Log } w \in \{z \in \mathbb{C} : |\text{Im } z| < \pi\} \longmapsto w = e^z \in \{w \in \mathbb{C} : w \notin (-\infty, 0])\},
$$
\n
$$
z = \sqrt{w} \in \{z \in \mathbb{C} : \text{Re } z > 0\} \longmapsto w = z^2 \in \{w \in \mathbb{C} : w \notin (-\infty, 0]\}.
$$

eve D. Inibut als de Bomina Participal

The paper will be organized in the following way:

- 1. Q_N as a Bernstein polynomial and other preliminary results.
- \sim . We construct that the strong $\mathcal{L}_{\mathbf{M}}$ is the construction of $\mathcal{L}_{\mathbf{M}}$
- \mathbf{C} roots of \mathbf{C} and \mathbf{C} and \mathbf{C} estimates of \mathbf{C} and \mathbf{C} estimates of \mathbf{C}
- 4. Big roots of Q_N : further estimates.
- S . Represented the state of \mathcal{L}_{M} , the state construction of \mathcal{L}_{M}
- The phase of a general Daubechies -lter
- Minimumphased Daubechies -lters
- Almost linearphased Daubechies -lters

1. Q_N as a Bernstein polynomial and other preliminary results

We begin by proving a -rst localization result

Result 1. For $N \geq 2$ and $t \neq -1$, if $Q_N(t) = 0$ then $|1-t| < 1$.

. This will be the only time will be the only time where the Daubechies formula formula formula formula formula (8) for $Q_N(X)$. This formula gives that if $Q_N(t) = 0$ and $t \neq -1$, then

(23)
$$
\sum_{k=0}^{N} \frac{1}{2^k} {N+k \choose k} (1-t)^k = 0.
$$

If we define α_k as $\alpha_k = \binom{N+k}{k} \frac{2^k}{2^k}$, 0 $(k \mid k$ $(k \leq N$, then we have obviously $0 \leq \alpha_0 \leq \alpha_1 \leq \cdots \leq \alpha_{N-1} = \alpha_N$, and we may apply a very classical lemma of Eneström, Kakeya and Hurwirtz (quoted by G. Pólya and $S = S$. $S = S$. The $S = S$ is $S = S$. The $S = S$

Lemma 1. If $0 < a_0 < a_1 < \cdots < a_{N-1} = a_N$ and if $\sum_{k=0}^{N} a_k s^k = 0$ then $|s| < 1$.

PROOF OF THE LEMMA. If $s \geq 0$ then $\sum_{k=0}^{N} a_k s^k > 0$; if $s \notin [0, +\infty)$, then

$$
\left| a_0 + \sum_{k=1}^N (a_k - a_{k-1}) s^k \right| < a_0 + \sum_{k=1}^N (a_k - a_{k-1}) |s|^k \,,
$$

thus if $|s| \geq 1$ (so that $|s|^k \leq |s|^{N+1}$) and $s \notin [0, +\infty)$, we get

$$
\left| (1-s) \sum_{k=0}^{N} a_k s^k \right| > |s|^{N+1} \Big(a_N - \sum_{k=1}^{N} (a_k - a_{k-1}) - a_0 \Big) = 0.
$$

Thus, we have shown that the roots t of Q_N such that $t \neq -1$ are located in the open disk of radius 1 and of center 1 , and that the associated values $1 - t^2$ are located in the interior of a cardioid.

From now until the end, we will use formula (22) instead of formula (8) to represent Q_N . The main interest in the representation of Q_N as a Bernstein polynomial is that Q_N is easily differentiated: (22) gives

(24)
$$
\frac{d}{dt}Q_N(t) = \frac{(2N+1)!}{4^N(N!)^2} \frac{1}{2} (1-t^2)^N.
$$

This expression can be easily relation to the expression of \mathbb{R}^d \mathcal{L} y \mathcal{L} and $\$

$$
Q_N(\cos \xi) = \int_{-1}^{\cos \xi} \frac{(2N+1)!}{4^N (N!)^2} \frac{1}{2} (1-t^2)^N dt
$$

=
$$
\int_{\xi}^{\pi} \frac{(2N+1)!}{4^N (N!)^2} \frac{1}{2} (\sin \theta)^{2N+1} d\theta.
$$

We will use intensively formula (24) in the following. If t is small, we approximate $Q_N(t)$ by $Q_N(0) = 1/2$ and obtain

(25)
$$
Q_N(t) = \frac{1}{2} \left(1 + \frac{(2N+1)!}{4^N (N!)^2} \int_0^t (1-s^2)^N ds \right),
$$

while for a bigger t (with Re $t > 0$) we approximate $Q_N(t)$ by $Q_N(1) = 1$ and obtain

(26)
$$
Q_N(t) = 1 - \frac{1}{2} \frac{(2N+1)!}{4^N (N!)^2} \int_t^1 (1-s^2)^N ds.
$$

Stirling's formula $N! = (N/e)^N \sqrt{2\pi N}(1 + 1/(12N) + O(1/N^2))$ allows one to simplify formulas (25) and (26)

(27)
$$
\frac{(2N+1)!}{4^N(N!)^2} = 2\sqrt{\frac{N}{\pi}}\left(1+O\left(\frac{1}{N^2}\right)\right).
$$

Thus $Q_N(t) = 0$ may be rewritten as

$$
(28)\ \ 1 + \frac{2}{\sqrt{\pi}} \int_0^{\sqrt{N}t} \left(1 - \frac{s^2}{N}\right)^N ds = 1 - 2\frac{\sqrt{N}}{\sqrt{\pi}} \frac{4^N (N!)^2}{(2N+1)!} = O\left(\frac{1}{N^2}\right)
$$

254 p Kateb and I G Beminup Kupopel

or as

(29)
$$
\sqrt{N} \int_{t}^{1} (1 - s^2)^N ds = 2 \frac{4^N (N!)^2}{(2N + 1)!} = \sqrt{\pi} + O\left(\frac{1}{N^2}\right).
$$

Formula (28) will be used for the small roots (sections 2 and 5) and formula (29) for the big roots (sections 3 and 4).

We mention a further application of (24) (which will not be used in the following): we may compute explicitly the generating series for QN t when Re ^t

Proposition 2. Assume that $\text{Re } t < 0$ and $|(1 - t^2) u| < 1$. Then

(30)
$$
\sum_{N=0}^{+\infty} Q_N(t) u^N = \frac{1}{2} \frac{1 - t^2}{\sqrt{1 - u(1 - t^2)} \left(-t + \sqrt{1 - u(1 - t^2)} \right)}.
$$

PROOF. We differentiate $\sum_{N=0}^{+\infty} Q_N(t) u^N$ with respect to t. Then (24) gives

$$
\frac{\partial}{\partial t} \left(\sum_{N=0}^{+\infty} Q_N(t) u^N \right) = \sum_{N=0}^{+\infty} \frac{1}{2} \frac{(2N+1)!}{4^N N!} \frac{((1-t^2) u)^N}{N!}
$$

$$
= \frac{1}{2} (1 - u (1-t^2))^{-3/2},
$$

hence

$$
\sum_{N=0}^{+\infty} Q_N(t) u^N = \int_{-1}^t \frac{1}{2} \frac{ds}{(1 - (1 - s^2) u)^{3/2}}.
$$

On the other hand, if we differentiate $t/(1-u(1-t))$ $\leq t$, we get

$$
\frac{\partial}{\partial t}\Big(\frac{t}{(1-u(1-t^2))^{1/2}}\Big) = \frac{1-u(1-t^2)-t^2u}{(1-u(1-t^2))^{3/2}} = \frac{1-u}{(1-u(1-t^2))^{3/2}}.
$$

Thus we have

$$
\sum_{N=0}^{+\infty} Q_N(t) u^N = \frac{1}{2(1-u)} \left(\frac{t}{(1-u(1-t^2))^{1/2}} + 1 \right)
$$

=
$$
\frac{1}{2(1-u)} \frac{1 - u(1-t^2) - t^2}{(1 - u(1-t^2))^{1/2}((1 - u(1-t^2))^{1/2} - t)}
$$

=
$$
\frac{1}{2} \frac{1 - t^2}{(1 - u(1-t^2))^{1/2}((1 - u(1-t^2))^{1/2} - t)}.
$$

As a corollary, we get:

Result 2. If $t \in \mathbb{C}$ is such that $|1-t^2| > 1$, then

$$
\limsup_{N \to +\infty} |Q_N(t)| = +\infty \, .
$$

ers is the this is obvious by formula in the right of the r term of equality (30) has $1/|1-t^2|$ as its radius of convergence in u, so that

$$
\limsup_{N \to +\infty} |Q_N(t)|^{1/N} = |1 - t^2|.
$$

If Re $t > 0$, then $Q_N(t) = 1 - Q_N(-t)$ so that again

$$
\limsup_{N \to +\infty} |Q_N(t)|^{1/N} = |1 - t^2|.
$$

If $\text{Re } t = 0$ and $t \neq 0$, then

$$
|Q_N(t)| \sim \frac{1}{2} \, 2 \, \sqrt{\frac{N}{\pi}} \int_0^{|t|} (1+\rho^2)^N \, d\rho \longrightarrow +\infty \,, \quad \text{ as } N \longrightarrow +\infty \,.
$$

A last (and direct) application of formula (24) is Proposition 1.

Result

- i) If t is a root of $Q_N(t)$ and $t \neq -1$, then t has multiplicity 1.
- ii) If N is even, $t = -1$ is the unique real root of Q_N .

iii) If N is odd, Q_N has only one other real root $x_{N,(N+1)/2} \neq -1$, $\mathbf{N} \cdot \mathbf{N} + \mathbf{N}$

 \mathcal{P} is a finite of the only roots of decay that the only roots of \mathcal{P} \mathcal{P} are \mathcal{P} and \mathcal{P} -1 , so i) is obvious. Moreover, if N is even, dQ_N/dt is non-negative on R and thus Q_N is increasing: -1 is the unique real root of Q_N . If N is odd, then Q_N decreases on $(-\infty, -1]$, vanishes at -1 , increases between -1 and 1, and decreases again from the value 1 at $t = 1$ to the value $-\infty$ at $t = +\infty$: Q_N has another real root $x_{N,(N+1)/2} > 1$.

Results 1 and 3 imply obviously Proposition 1.

ess primiting mup in Streammann Innopoli

2. Small roots of Q_N : first estimates.

In this section, we are going to prove the following result:

Result 4. Let $\varepsilon_0 \in (0, 1/2)$ and $K = |\varepsilon_0 \log N/(2\pi)|$. Then, if N is big enough, the number of roots t of $Q_N(t)$ such that $\text{Im } t \geq 0$ and $|t| \leq \sqrt{2K\pi/N}$ is exactly K. Moreover, if we list those roots as $x_{N,1}, \ldots, x_{N,K}$ with $|x_{N,k}| < |x_{N,k+1}|$ and fix $\varepsilon_1 \in (\varepsilon_0, 1/2)$, we have

(31)
$$
\left| x_{N,k} + \frac{1}{\sqrt{N}} \overline{\gamma}_k \right| \leq C(\varepsilon_0, \varepsilon_1) \frac{1}{\sqrt{N} N^{1-2\varepsilon_1}},
$$

where $\gamma_1, \ldots, \gamma_K$ are the K first roots γ of $\text{erfc}(\gamma) = 0$ with $\text{Im } \gamma \geq 0$.

PROOF. Assume that $|t| \leq \sqrt{\alpha_1 \mathop{\rm Log} N/N}$ for some fixed $\alpha_1 > 0$. Then, using formulas (25) and (27) , we write

$$
Q_N(t) = \left(\frac{1}{2} + \eta_N\right) \left(1 + \eta'_N + \frac{2}{\sqrt{\pi}} \int_0^{\sqrt{N}t} \left(1 - \frac{s^2}{N}\right)^N ds\right),
$$

where η_N , η_N are two constants (depending only on N) which are $O(1/N^2)$. Now, if $|u| \leq \sqrt{\alpha_1 \log N}$, we have

$$
\frac{|u^4|}{N}\leq \alpha_1^2\,\frac{(\mathrm{Log}\,N)^2}{N}=o\,(1)\,,
$$

hence one may find $C_0 \geq 0$ so that for N big enough $(N \geq N_0$ where N_0 depends only on α_1)

$$
\left| \left(1 - \frac{u^2}{N} \right)^N - e^{-u^2} \right| \le C_0 \left| e^{-u^2} \frac{u^4}{N} \right| \le C_0 \alpha_1^2 \frac{(\log N)^2}{N^{1-\alpha_1}}.
$$

Hence we get for fixed $\alpha_1 > 0$ and for $N \geq N_0(\alpha_1)$

(32)
$$
\left| \left(\frac{1}{2} + \eta_N \right)^{-1} Q_N(t) - \text{erfc}(-\sqrt{N} t) \right| \le C_1 \frac{(\log N)^{5/2}}{N^{1-\alpha_1}},
$$

for $|t| \leq \sqrt{\alpha_1 \mathop{\rm Log} N/N},$ where C_1 depends only on $\alpha_1.$

Now, assume that θ is such that $Q_N(\theta) = 0$ or $\text{erfc}(-\sqrt{N}\theta) = 0$ and that $|\theta| \leq \sqrt{\alpha_1 \log N/N}$; in every case we have

$$
|\text{erfc}(-\sqrt{N}\theta)| \leq C_1 \frac{(\text{Log } N)^{5/2}}{N^{1-\alpha_1}}.
$$

We are going to show that for δ_0 small enough, $\text{erfc}(-\sqrt{N}\theta + z)$ is not too small on $|z| = \delta_0$. Indeed we have

$$
|\text{erfc}(-\sqrt{N}\theta + z) - \text{erfc}(-\sqrt{N}\theta)| = \frac{2}{\sqrt{\pi}} \Big| \int_0^z e^{-N\theta^2} e^{2\sqrt{N}\theta s} e^{-s^2} ds \Big|
$$

$$
\geq \frac{1}{2} \frac{2}{\sqrt{\pi}} |e^{-N\theta^2}| |z| \geq \frac{1}{\sqrt{\pi}} N^{-\alpha_1} |z|,
$$

provided that

$$
|z| \le \min\left\{2\,\sqrt{\alpha_1\,{\rm Log}\,N}, \frac{1}{8\,C_2\sqrt{\alpha_1\,{\rm Log}\,N}}\right\},
$$

where $C_2 = \max_{|w| \leq 1} |(e^w - 1)/w|.$

Thus, if $|\theta| \leq \sqrt{\alpha_2 \log N/N}$, where $\alpha_2 < \alpha_1 < 1/2$, and if N is big enough so that

$$
\sqrt{\alpha_2 \, \frac{\log N}{N}} + \frac{1}{8 \, C_2 \sqrt{\alpha_1 N \log N}} < \sqrt{\alpha_1 \, \frac{\log N}{N}}
$$

and

$$
C_1 \sqrt{\pi} \, \frac{(\log N)^{5/2}}{N^{1-2\alpha_1}} < \frac{1}{8 \, C_2 \sqrt{\alpha_1 \text{Log} N}} < 2 \sqrt{\alpha_1 \text{Log} N} \;,
$$

we obtain that $Q_N(t)$ and erfc $(-\sqrt{N}t)$ have the same number of zeros inside the open disk $D(\theta, C_1\sqrt{\pi}\,(\mathrm{Log}\,N)^{5/2}/N^{3/2-2\alpha_1})$ (by Rouché's theorem

In order to conclude, we need some information on the zeros of erfcz A theorem by Fettis Cuslin and Cramer and C ment of γ_k

(33)
\n
$$
\gamma_k = e^{3i\pi/4} \left(\sqrt{\left(2k - \frac{1}{4}\right)\pi} - \frac{i}{2\sqrt{\left(2k - \frac{1}{4}\right)\pi}} \operatorname{Log}\left(2\sqrt{\pi}\sqrt{\left(2k - \frac{1}{4}\right)\pi}\right) + O\left(\frac{(\operatorname{Log} k)^2}{k\sqrt{k}}\right) \right).
$$

Thus if M₀ is a fixed number in $(-\pi/4, 3\pi/4)$, the number of roots γ of erfc(γ) = 0 such that Im $\gamma \geq 0$ and $|\gamma| \leq \sqrt{2k\pi + M_0}$ is exactly k when k is large enough.

ess D. Iniberties I. S. Bearings Informed Le

For each root t of $Q_N(s)$ such that $|\text{Im } t| \geq 0$ and $|t| \leq \sqrt{2K\pi/N} \leq$ $\sqrt{\varepsilon_0 \text{Log } N/N}$ there is a root θ of erfc $(-\sqrt{N} s)$ such that

$$
|\theta - t| \leq C_1 \sqrt{\pi} \, \frac{(\text{Log } N)^{5/2}}{N^{3/2 - 2\varepsilon_1}} \;,
$$

(where $\varepsilon_0 < \varepsilon_1 < 1/2$ and $N \geq N_1(\varepsilon_1)$). Then we have

$$
\begin{aligned} |\sqrt{N}\,\theta| &\leq \sqrt{2K\pi} + C_1 \sqrt{\pi} \, \frac{(\text{Log}\,N)^{5/2}}{N^{1-2\varepsilon_1}} \\ &\leq \sqrt{2K\pi} + \frac{\pi}{16\sqrt{2K\pi}} \\ &\leq \sqrt{\left(2K + \frac{1}{8}\right)\pi} \end{aligned}
$$

provided that $N \geq N_2(\varepsilon_1)$. But we know that there are exactly $2K$ roots of erfc $(-\sqrt{N}s)$ inside the disk $D(0, \sqrt{(2K+1/4)\pi}/\sqrt{N})$. Conversely, if θ is a root of erfc $(-\sqrt{N}s)$ such that

$$
|\theta| \leq \sqrt{\frac{2K\pi}{N}} - C_1 \sqrt{\pi} \, \frac{(\log N)^{5/2}}{N^{3/2} - 2\,\varepsilon_1} \leq \sqrt{\varepsilon_0 \, \frac{\log N}{N}} \ ,
$$

there is a root t of $Q_N(s)$ such that

$$
|\theta - t| \leq C_1 \sqrt{\pi} \frac{(\text{Log } N)^{5/2}}{N^{3/2 - 2\varepsilon_1}},
$$

hence $|t| \leq \sqrt{2K\pi/N}$; moreover for $N \geq N_2(\varepsilon_1)$ we have

$$
\sqrt{2K\pi} - C_1 \sqrt{\pi} \frac{(\text{Log } N)^{5/2}}{N^{1-2\varepsilon_1}} > \sqrt{2K\pi} - \frac{\pi}{16\sqrt{2K\pi}} > \sqrt{\left(2K - \frac{1}{8}\right)\pi} ,
$$

so that we have again 2K roots of erfc($-\sqrt{N} s$) such that

$$
|\theta| \leq \sqrt{\frac{2K\pi}{N}} - C_1 \sqrt{\pi} \, \frac{(\text{Log } N)^{5/2}}{N^{1-2\varepsilon_1}} \; .
$$

Finally, we conclude by noticing that (33) shows us that if $erfc(-\sqrt{N}\theta_i)$ $= 0, i = 1, 2, \theta_1 \neq \theta_2 \text{ and } |\theta_i| \leq \sqrt{(2K+1/8)\pi/N} \text{ then } |\theta_1 - \theta_2| \geq$

 C_0/\sqrt{KN} and $|{\rm Im}\,\theta_i|\geq C_0\sqrt{K/N}$ for some positive C_0 which doesn't depend on K nor N ; hence the balls

$$
D\Big(\theta_i, C_1\sqrt{\pi}\,\frac{(\log N)^{5/2}}{N^{3/2-2\varepsilon_1}}\Big)
$$

are disjoint and don't meet the real axis (for N large enough). Thus (31) is proved, if we notice that

$$
\frac{(\text{Log}\,N)^{5/2}}{N^{1-2\varepsilon_1}}<\frac{1}{N^{1-2\varepsilon_1'}}
$$

for $\varepsilon_1 < \varepsilon_1 < 1/2$ and *I*v large enough.

3. Big roots of Q_N : first estimates.

In this section, we are going to devote our attention to formula (26) . A straigthforward application of (26) is the following one:

Result 5. For N large enough, if $t \neq -1$ and $Q_N(t) = 0$, then $|1-t^2| > 1$.

PROOF. If $Q_N(t) = 0$, then we have $\sqrt{N} \int_t^1 (1 - s^2)^N dt$ $\int_t^1 (1-s^2)^N ds = \sqrt{\pi} (1 + \eta_N)$ with $\eta_N = O(1/N)$. Now, since $\text{Re } \iota > 0$ (due to Result 1), we may write

$$
\int_{t}^{1} (1 - s^{2})^{N} ds = \int_{0}^{1 - t^{2}} \omega^{N} \frac{d\omega}{2\sqrt{1 - \omega}}
$$

= $(1 - t^{2})^{N+1} \int_{0}^{1} \lambda^{N} \frac{d\lambda}{2\sqrt{1 - \lambda(1 - t^{2})}}.$

We write $\Omega = 1 - t^2$. If $|\Omega| \le 1$ then we will prove that

$$
\inf_{\lambda \in [0,1]} |1 - \lambda \Omega| \ge \frac{1}{2} |1 - \Omega|.
$$

This is obvious if $\text{Re }\Omega \leq 0$: we have $|1 - \lambda \Omega| \geq 1$ and $|1 - \Omega| \leq 2$. If $\text{Re } \Omega > 0$, $\Omega = \rho e^{i\varphi}$ $(0 < \rho \leq 1, \varphi \in (-\pi/2, \pi/2))$, we distinguish the case $\rho \leq \sin \varphi$ and $\rho > \sin \varphi$. If $\rho \leq \sin \varphi$, it is easily checked

evollen in die Berg van die School en die Groot van die G

that $|1 - \lambda \Omega| \ge |1 - \Omega|$. If $\rho > \sin \varphi$, we have $|1 - \lambda \Omega| \ge \sin \varphi$ and $|1-\Omega|\leq |1-e^{i\varphi}|=2\,|\sin{(\varphi/2)}|;$ hence

$$
|1 - \lambda \Omega| \ge \left| \cos \frac{\varphi}{2} \right| |1 - \Omega| \ge \frac{\sqrt{2}}{2} |1 - \Omega|.
$$

Thus, we have for $\mathrm{Re}\,t>0$ and $|1-t^2|\leq 1$

$$
\Big|\int_t^1 (1-s^2)^N \, ds \Big| \le \frac{|1-t^2|^{N+1}}{N+1} \, \frac{1}{|t|} \le \frac{1}{\sqrt{N}} \Big(\frac{1}{\sqrt{N} \, |t|} \Big) \, .
$$

If $|t\sqrt{N}| \geq 2/\sqrt{\pi}$, we get

$$
\left|\sqrt{N}\int_t^1 (1-s^2)^N ds\right| \leq \frac{1}{2}\sqrt{\pi} ,
$$

and thus $Q_N(t) \neq 0$ (for N large enough so that $|\eta_N| < 1/2$). If $\sqrt{N}\,|t| \,\leq\, 2/\sqrt{\pi}, \,\,\text{then}\,\,\, t \,\sim\, -\overline{\gamma}/\sqrt{N}$ for a root γ of erfc(z) such that $|\gamma| \leq 2/\sqrt{\pi};$ but the roots of erfc(z) satisfy $\pi/2 < |\text{Arg}\,\gamma| < 3\pi/4$ so that (for N large enough) $|Arg t| > \pi/4$ and t cannot lie inside the lemniscate $|1-t^2| \leq 1$.

We may now enter the core of our computations. We are going to give a precise description of $\int_t^1 (1 - s^2)^N ds$. Integration by parts gives us

$$
\int_{t}^{1} (1 - s^{2})^{N} ds = \frac{(1 - t^{2})^{N+1}}{2 t (N + 1)} - \int_{t}^{1} \frac{(1 - s^{2})^{N+1}}{2 s^{2} (N + 1)} ds
$$

=
$$
\frac{(1 - t^{2})^{N+1}}{2 t (N + 1)} - \frac{(1 - t^{2})^{N+2}}{4 (N + 1)} \int_{0}^{1} \frac{\lambda^{N+1} d\lambda}{(1 - \lambda (1 - t^{2}))^{3/2}}.
$$

We then de-ne t as

(34)
$$
\eta(t) = \frac{|t^2|}{\inf_{\lambda \in [0,1]} |1 - \lambda (1 - t^2)|}.
$$

We have

(35)
$$
\int_{t}^{1} (1 - s^{2})^{N} ds = \frac{(1 - t^{2})^{N+1}}{2 t (N+1)} \left(1 + \frac{(1 - t^{2})}{2 (N+2) t^{2}} \mu_{N}(t) \right),
$$

for $\text{Re } t > 0$ with

(36)
$$
|\mu_N(t)| \leq \eta(t)^{3/2}.
$$

Of course, (35) is a good formula if $\mu_N(t)$ cannot explode. As a matter of fact, we will show that in the neighbourhood of the roots of $Q_N(s)$ we have $|\eta(t)| \leq C_0$ where C_0 doesn't depend on N nor t; but we are still far from being able to prove it! The only obvious estimations on η are the following ones: if Re $t^2 \geq 1$, we have of course $|\eta(t)| = |t^2|$, while if $\text{Re } t^2 < 1$ and $|1-t^2| > 1$ we have

$$
|\eta(t)| = \frac{|t^2|}{|\sin(\text{Arg}(1 - t^2))|}.
$$

With help of formula (35) and a careful estimate of $\eta(t)$ in (36), we are going to prove

Result 0. Let $\varphi_{N,k} = (\infty - 1)N/(\infty N + 0)$. Then for IN targe enough, the roots $x_{N,1},...,x_{N,N}$ of Q_N such that $x_{N,k} \neq -1$, ordered by

• for $1 \leq k \leq (N+1)/2$, $\text{Re } x_{N,k} \geq 0$ and $x_{N,N+1-k} = \overline{x_{N,k}}$ \bullet

$$
\bullet \ |x_{N,1}| < |x_{N,2}| < \cdots < |x_{N,[(N+1)/2]}|
$$

satisfy

N-

$$
\left| x_{N,k} - \sqrt{2 \sin \varphi_{N,k}} e^{i(\pi/4 - \varphi_{N,k})/2} \right|
$$

-
$$
\frac{e^{i(3\pi/4 - 3\varphi_{N,k}/2)}}{2N\sqrt{2 \sin \varphi_{N,k}}} \operatorname{Log} (2\sqrt{2N\pi \sin \varphi_{N,k}}) \right|
$$

(37)

$$
\leq C \frac{1}{\sqrt{N}} \max \left\{ \frac{(1 + \log k)^2}{k^{3/2}}, \frac{(1 + \log N + 1 - k)^2}{(N + 1 - k)^{3/2}} \right\},
$$

where C doesn't depend on k nor N .

I KOOP. SHILL $\varphi_{N,N+1-k} = \pi - \varphi_{N,k}$, it is enough to prove (31), for $1 \leq k \leq (N+1)/2$, *i.e.* for the roots which lie in the upper half-plane. The proof is decomposed in the following steps one -rst proves that $\arg (1-x_{N,k})$ cannot be too small, so that we have a first control on $-$ N xN-k then one gives through ^a -rst estimate on xN-k and on the related error; this gives us a more precise information on $Arg(1$ $x_{N,k}$ and thus we may conclude with our linal estimate.

eve D. Inibution I. C. Bomining Indonesia

Step 1. We want to estimate $Arg(1-x_{N,k}^*)$. We fix $\theta_0 \in (\pi/4, \pi/2)$ so that the sector $\{z : \pi/2 \leq |\text{Arg } z| \leq \pi - \theta_0\}$ contains no zero of erfcz remember that limk-- Arg k We now distinguish the cases $\text{Arg } x_{N,k} \in [0, \theta_0]$ and $\text{Arg } x_{N,k} \in]\theta_0, \pi/2[$. If $\text{Re } 1 - x_{N,k}^2 \leq 0$, we know that $\eta(x_{N,k}) \leq |x_{N,k}|^2 \leq 4$. If Re $1-x_{N,k}^2 > 0$ and $\text{Arg } x_{N,k} \in$ $[0, \pi/4]$, then we see that $|x_{N,k}|^2 \leq |\tan \text{Arg} (1 - x_{N,k}^2)|$ (because $\omega =$ $1-x_{N,k}^2$ satisfies Re $\omega \in (0,1]$ and $|\omega| > 1$ so that $|\sin \text{Arg} \,\omega| \leq |1 - \omega|$ $|\omega| \leq |\tan \text{Arg }\omega|$); moreover we have $|x_{N,k}|^2 \leq 4$; thus if $|\tan (\text{Arg }(1-\theta))|$ $|x_{N,k}^2\rangle| \leq 4$, then we have

$$
|\sin\left(\text{Arg}\left(1 - x_{N,k}^2\right)\right)| = \frac{|\tan\left(\text{Arg}\left(1 - x_{N,k}^2\right)\right)|}{\sqrt{1 + \tan^2\left(\text{Arg}\left(1 - x_{N,k}^2\right)\right)}} \ge \frac{|x_{N,k}|^2}{\sqrt{17}}
$$

and $\eta(x_{N,k}) \leq \sqrt{17}$. On the other hand, if $|\tan(\text{Arg} (1 - x_{N,k}^2))| \geq 4$, then we have $|\text{Arg} (1 - x_{N,k}^2)| \in [\text{Arg} \tan 4, \pi/2]$ and thus $-$

$$
|\sin(\text{Arg}(1 - x_{N,k}^2))| \ge \sin \text{Arg} \tan 4 = \frac{4}{\sqrt{17}} \ge \frac{|x_{N,k}|^2}{\sqrt{17}}
$$

and $\eta(x_{N,k}) \leq \sqrt{17}$ again. If $\text{Arg}(x_{N,k}) \in [\pi/4, \theta_0],$ we have

$$
|{\rm Im}\, (1-x_{N,k}^2)| = |x_{N,k}^2|\, |\sin 2\, {\rm Arg}\, x_{N,k}|
$$

so that

$$
|{\rm Im}\, (1-x_{N,k}^2)| \ge |x_{N,k}|^2 \, |\sin 2 \, \theta_0|\ ,
$$

while

$$
|\sin \mathrm{Arg}\,(1-x_{N,k}^2)|=\frac{|{\rm Im}\,(1-x_{N,k}^2)|}{|1-x_{N,k}^2|}\geq \frac{1}{3}\left|{\rm Im}\,(1-x_{N,k}^2)\right|,
$$

so that

$$
\eta(x_{N,k}) \leq \frac{3}{|\sin 2\,\theta_0|} \; .
$$

The difficult case is when $\theta_0 \leq \text{Arg } x_{N,k} \leq \pi/2$ (as a matter of fact, we will see in step 3 that this case never occurs when N is big enough!). For the moment, we will show that we have necessarily for such an $x_{N,k}$ (and provided N is large enough) the inequality

$$
N |x_{N,k}|^4 \ge \frac{|\cos \theta_0|}{100 C_0^2} = \varepsilon_1 ,
$$

where C_0 is given by

$$
C_0 = \max \left\{ \sup_{|\sigma| \le 1/2} \left| \frac{\sigma^2 + \text{Log} (1 - \sigma^2)}{\sigma^4} \right|, \sup_{|\sigma| \le 1} \frac{|e^{\sigma} - 1|}{|\sigma|} \right\}.
$$

Indeed, let $A_0 > 0$ be large enough so that for $A \geq A_0$, $e^{3A-\cos{(2\theta_0)}/4}$ $(1 + A^2/2) < 1/100$ (remember that $\cos 2\theta_0 < 0$), $4/(A^2 |\cos 2\theta_0|) <$ $1/100$ and $A e^{A^2 \cos{(2\theta_0)/4}} < 1/100$. If $\sqrt{N} |x_{N,k}| \geq A_0$ and $N |x_{N,k}|^4 \leq$ ε_1 , we write

$$
Q_N(x_{N,k}) = \frac{1}{2} + \left(1 + O\left(\frac{1}{N^2}\right)\right) \sqrt{\frac{N}{\pi}} \int_0^{x_{N,k}} (1 - s^2)^N ds
$$

and thus

$$
|Q_N(x_{N,k})| \ge \frac{1}{10} \sqrt{N} \left| \int_0^{x_{N,k}} (1-s^2)^N ds \right| - \frac{1}{2} .
$$

We write

$$
(1 - s2)N = e-Ns2 eN(s2-Log(1 - s2)),
$$

since $|s| \leq \sqrt{\varepsilon_1/N}/4$, we have $|s| \leq 1/2$ for N large enough, thus

$$
|N (s2 - Log (1 - s2)| \leq C_0 |N s4| \leq \frac{1}{100},
$$

thus

$$
|e^{N(s^2 - \text{Log}(1 - s^2))} - 1| \leq C_0^2 |N s^4|.
$$

Thus, writing $x_{N,k} = \rho_{N,k} e^{-\alpha N/k}$, we get

$$
|Q_N(x_{N,k})| \ge \frac{1}{10} \left| \int_0^{\sqrt{N}x_{N,k}} e^{-s^2} ds \right|
$$

$$
- \frac{C_0^2}{10} \int_0^{\sqrt{N} \rho_{N,k}} e^{-s^2 \cos 2\theta_{N,k}} \frac{s^4}{N} ds - \frac{1}{2}
$$

$$
\ge \frac{1}{10} \left| \int_0^{\sqrt{N}x_{N,k}} e^{-s^2} ds \right|
$$

$$
- \frac{C_0^2}{10} \frac{(\sqrt{N} \rho_{N,k})^3}{N |\cos 2\theta_{N,k}|}
$$

264 p. Inibut and Prominced Indonesia

$$
\int_0^{\sqrt{N} \rho_{N,k}} e^{-s^2 \cos 2\theta_{N,k}} s |\cos 2\theta_{N,k}| ds - \frac{1}{2}
$$

\n
$$
\geq \frac{1}{10} \Big| \int_0^{\sqrt{N}x_{N,k}} e^{-s^2} ds \Big|
$$

\n
$$
- \frac{e^{-N\rho_{N,k}^2 \cos 2\theta_{N,k}}}{2\sqrt{N} \rho_{N,k}} \Big(\frac{C_0^2 (\sqrt{N} \rho_{N,k})^4}{10 |\cos 2\theta_0|} \Big) - \frac{1}{2} .
$$

We have now to estimate $\int_0^{\sqrt{N}x_{N,k}} e^{-s^2} ds$. We write

$$
\int_0^{\sqrt{N}x_{N,k}} e^{-s^2} ds
$$

= $e^{i\theta_{N,k}} \Big(\int_0^{\sqrt{N} \rho_{N,k}/2} e^{-s^2 e^{2i\theta_{N,k}}} ds + \int_{\sqrt{N} \rho_{N,k}/2}^{\sqrt{N} \rho_{N,k}} e^{-s^2 e^{2i\theta_{N,k}}} ds \Big)$
= $e^{i\theta_{N,k}} (I_1 + I_2).$

We have $|I_1| \leq e^{-N \rho_{N,k}^2 \cos{(2\theta_{N,k})/4}} \rho_{N,k} \sqrt{N}/2$, while

$$
I_2 = \left[\frac{e^{-s^2 e^{2i\theta_{N,k}}}}{-2 s e^{2i\theta_{N,k}}} \right] \frac{\sqrt{N} \rho_{N,k}}{\sqrt{N} \rho_{N,k}/2} - \int \frac{\sqrt{N} \rho_{N,k}}{\sqrt{N} \rho_{N,k}/2} \frac{e^{-s^2 e^{2i\theta_{N,k}}}}{2 s^2 e^{2i\theta_{N,k}}} ds
$$

=
$$
\frac{e^{-N \rho_{N,k}^2 e^{2i\theta_{N,k}}}}{-2\sqrt{N} \rho_{N,k} e^{2i\theta_{N,k}}} - \frac{e^{-N \rho_{N,k}^2 e^{2i\theta_{N,k}/4}}}{-\sqrt{N} \rho_{N,k} e^{2i\theta_{N,k}}} - I_3.
$$

We have

$$
|I_3| \leq \frac{1}{4\left(\frac{1}{2}\sqrt{N}\rho_{N,k}\right)^3 |\cos 2\theta_{N,k}|}
$$

$$
\cdot \int_{\sqrt{N}\rho_{N,k}/2}^{\sqrt{N}\rho_{N,k}} e^{-s^2 \cos 2\theta_{N,k}} 2 s |\cos 2\theta_{N,k}| ds
$$

$$
\leq \frac{e^{-N\rho_{N,k}^2 \cos 2\theta_{N,k}}}{4\left(\frac{1}{2}\sqrt{N}\rho_{N,k}\right)^3 |\cos 2\theta_0|}.
$$

Thus we get

$$
|Q_{N}(x_{N,k})|
$$
\n
$$
\geq \frac{1}{10} \frac{e^{-N\rho_{N,k}^{2}\cos 2\theta_{N,k}}}{2\sqrt{N}\rho_{N,k}}
$$
\n
$$
\cdot \left(1 - 2 e^{3N\rho_{N,k}^{2}\cos 2\theta_{N,k}/4} - \frac{4}{N\rho_{N,k}^{2}|\cos 2\theta_{0}|}\right)
$$
\n
$$
- N\rho_{N,k}^{2} e^{3N\rho_{N,k}^{2}\cos 2\theta_{N,k}/4} - \frac{C_{0}^{2}\varepsilon_{1}}{|\cos 2\theta_{0}|}
$$
\n
$$
- 10 \sqrt{N}\rho_{N,k} e^{N\rho_{N,k}^{2}\cos 2\theta_{N,k}}\right)
$$
\n
$$
\geq \frac{1}{10} \frac{e^{-N\rho_{N,k}^{2}\cos 2\theta_{N,k}}}{2\sqrt{N}\rho_{N,k}} \left(1 - \frac{2}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{10}{100}\right) > 0,
$$

which contradicts \mathbf{V} and \mathbf{V} are proved that if the interaction of \mathbf{V} $\arg x_{N,k} > \theta_0$ then either $\sqrt{N} |x_{N,k}| \leq A_0$ or $N \, |x_{N,k}|^4 \geq \varepsilon_1$. But if $|x_{N,k}| \leq A_0/\sqrt{N}$ and N is large enough, Result 4 ensures that $-\sqrt{N} x_{N,k}$ is close to a zero of erfc(*z*). This is not possible for N large enough since the distance between $\{z : \pi/2 \leq |\text{Arg } z| \leq \pi - \theta_0\}$ and $\{z : \text{erfc}(z) = 0\}$ is positive.

Thus we must have $N |x_{N,k}|^4 \geq \varepsilon_1$. Write again $x_{N,k} = \rho_{N,k} e^{i \theta_{N,k}}$; since $|x_{N,k} - 1| \leq 1$ by Result 1, we have $\rho_{N,k} \leq 2\cos\theta_{N,k}$; thus $2 \cos \theta_{N,k} \geq (\varepsilon_1/N)^{1/4}$ and

$$
|{\rm Im} \, x_{N,k}^2|=|x_{N,k}^2|\, |\sin 2\, \theta_{N,k}|\geq \sin\theta_0 \Big(\frac{\varepsilon_1}{N}\Big)^{1/4} |x_{N,k}|^2\,.
$$

We thus have proved

$$
\eta(x_{N,k}) = \frac{|x_{N,k}|^2|1 - x_{N,k}^2|}{|\text{Im } x_{N,k}^2|} \le \frac{3 N^{1/4}}{(\sin \theta_0) \varepsilon_1^{1/4}} = C_1^{N^{1/4}}.
$$

We thus have proved

• if $\text{Arg } x_{N,k} < b_0$,

$$
|\mu_N(x_{N,k})| \le \eta(x_{N,k})^{3/2} \le C_2 ,
$$

evy D. Iniburg and P. C. Duminium Indonesia

• If $\text{Arg } x_{N,k} > v_0$,

$$
|\mu_N(x_{N,k})| \le \eta(x_{N,k})^{3/2}
$$

\n
$$
\le (C_1 N^{1/4})^{3/2}
$$

\n
$$
= C_1^{3/2} \frac{(N |x_{N,k}^2)^{3/4}}{(N (|x_{N,k}|^4)^{3/8})}
$$

\n
$$
\le \frac{C_1^{3/2}}{\varepsilon_1^{3/8}} (N |x_{N,k}|^2)^{3/4}.
$$

In any case, we have

(38)
$$
|\mu_N(x_{N,k})| \le C (N |x_{N,k}|^2)^{3/4}.
$$

(Remember that $\lim_{N\to+\infty} \inf_k N |x_{N,k}|^2 = |\gamma_1|^2 > 0$).

 S , we are not able to all α and the subsequence of α $N_{\rm t}$, we consider the subsequent of α a root $y \neq -1$ of Q_N such that $\text{Im } y \geq 0$. We have

$$
\int_{y}^{1} (1 - s^2)^N ds = 2 \frac{4^N (N!)^2}{(2N + 1)!},
$$

hence from (35) and (36) ,

(39)
$$
\frac{(1-y^2)^{N+1}}{2(N+1)\sqrt{\pi}y}\left(1+O\left(\frac{\eta(y)^{3/2}}{N|y|^2}\right)\right)=\sqrt{\frac{\pi}{N}}\left(1+O\left(\frac{1}{N^2}\right)\right),
$$

(where $\alpha = O(\varepsilon(N, y))$ means that $|\alpha|/\varepsilon(N, y) \leq C$ for a positive constant C which doesn't depend neither on N nor on y). Taking the $(N + 1)$ -th root of the modulus of both terms of equality (39), we get

$$
|1 - y^2| = 1 + \frac{1}{N+1} \text{Log}\left(2\sqrt{N\pi} \frac{N+1}{N} |y|\right)
$$

+ $O\left(\frac{(\text{Log } N)^2}{N^2}\right) + O\left(\frac{1}{N^3}\right) + O\left(\frac{\eta(y)^{3/2}}{N^2|y|^2}\right)$
= $1 + \frac{1}{N} \text{Log}\left(2\sqrt{N\pi} |y|\right) + O\left(\frac{(\text{Log } N)^2}{N^2}\right) + O\left(\frac{\eta(y)^{3/2}}{N^2|y|^2}\right).$

Now, we write $1 - y^2 = \rho e^{-\epsilon \varphi}$ ($\varphi \in [0, \pi], \rho > 0$), so that $y =$ $1 - \rho e^{-i\varphi}$. We have found

$$
|1 - \rho| = O\left(\frac{1}{N} \log\left(\sqrt{N} |y|\right)\right) + O\left(\frac{(\log N)^2}{N^2}\right) + O\left(\frac{\eta(y)^{3/2}}{N^2 |y|^2}\right)
$$

=
$$
O\left(\frac{1}{N} \log\left(\sqrt{N} |y|\right)\right),
$$

 $\text{(since } 1/CN \leq \text{Log } (\sqrt{N} |y|)/N \leq C \text{Log } N/N, \text{ while } \eta(y)^{3/2}/(N^2|y|^2) \leq C/(N(N|y|^2)) \leq C'/N. \text{ Thus } 1 - \rho e^{-i\varphi} = 1 - e^{-i\varphi} + (1 - \rho) e^{-i\varphi}$ with

$$
\left|\frac{(1-\rho)\,e^{-i\varphi}}{1-\rho\,e^{-i\varphi}}\right| = O\Big(\frac{\text{Log}\,(\sqrt{N}\,|y|)}{N|y|^2}\Big)
$$

$$
y = \sqrt{(1 - e^{-i\varphi}) \left(1 + O\left(\frac{\log \sqrt{N} |y|}{N |y|^2}\right)\right)}
$$

=
$$
\sqrt{2 \sin \left(\frac{\varphi}{2}\right)} e^{i(\pi/4 - \varphi/4)} \left(1 + O\left(\frac{\log \sqrt{N} |y|}{N |y|^2}\right)\right).
$$

We insert this result in (39) and take the phase

$$
-(N+1)\,\varphi-\frac{\pi}{4}+\frac{\varphi}{4}+O\Big(\frac{\text{Log}\,\sqrt{N}\,|y|}{N|y|^2}\Big)+O\Big(\frac{\eta(y)^{3/2}}{N|y|^2}\Big)=-2k\pi
$$

or

(40)
$$
\varphi = \frac{8k-1}{4N+3} \pi + O\left(\frac{\log \sqrt{N} |y|}{N^2 |y|^2}\right) + O\left(\frac{\eta(y)^{3/2}}{N^2 |y|^2}\right).
$$

If we assume $\sqrt{N} |y| \ge A_0$ where A_0 is big enough so that

$$
O\Big(\frac{\text{Log}\,A_0}{NA_0^2}\Big) + O\Big(\frac{1}{NA_0^{1/2}}\Big)
$$

is less than $4\pi/(4N+3)$ (A_0 being chosen independently from N), we see that $0 \le \varphi \le \pi$ implies $0 \le k \le (N+1)/2$; moreover since

$$
\leq \pi \text{ implies } 0 \leq k \leq [(N+1)/2]; \text{ moreover since}
$$

$$
|y| = \sqrt{2 \sin\left(\frac{\varphi}{2}\right)} \left(1 + O\left(\frac{\log \sqrt{N} |y|}{N |y|^2}\right)\right)
$$

evollen in die Berg van die School en die Groot van die G

we must have

$$
2\sin\left(\frac{\varphi}{2}\right) \ge \frac{A_0^2}{N} + O\Big(\frac{\text{Log }\sqrt{N}\,|y|}{N^2 |y|^2}\Big) \,.
$$

We take $A_0^2 = \sqrt{2K_0\pi}$, where K_0 is big enough; we then see that we

If $\sqrt{N} |y| \leq \sqrt{2K_0\pi}$, we know that (provided N is big enough)
 $y \sim -\overline{\gamma}_k/\sqrt{N}$ for $k \in \{1, \ldots, K_0\}$. We have moreover found candidates $y_{N,k}$ for the remaining roots $x_{N,k}$, $K_0 < k \leq (N+1)/2$, which are given by

(41)
$$
1 - y_{N,k}^2 = \left(1 + \frac{1}{N} \log 2 \sqrt{2N\pi \sin \varphi_{N,k}}\right) e^{-2i\varphi_{N,k}},
$$

for $K_0 < k \leq (N+1)/2$ and $\varphi_{N,k} = (8k-1)\pi/(8N+6)$.

More precisely, we have shown that if $Q_N(y) = 0$, Im $y \ge 0$, $y \ne -1$ and $\sqrt{N}\,|y|\geq \sqrt{2K_0\pi},$ then for some $k\in\{K_0+1,\ldots,[(N+1)/2]\}$ we have

(42)
$$
1-y^2 = 1-y_{N,k}^2 + O\left(\frac{(\log N)^2}{N^2}\right) + O\left(\frac{\eta(y)^{3/2}}{N^2|y|^2}\right) + O\left(\frac{\log \sqrt{N} |y|}{N^2|y|^2}\right).
$$

we are going now to provide that provided that the group α is - α - α - α and provided thereafter the Ω is Ω is large enough for Ω is Ω is Ω exactly one root y satisfying (42). Notice that $|y_{N,k}^2 - y_{N,k+1}^2| \ge C_0/N$ while

$$
O\left(\frac{(\log N)^2}{N^2}\right) + O\left(\frac{\eta(y)^{3/2}}{N^2|y|^2}\right) + O\left(\frac{\log \sqrt{N} |y|}{N^2|y|^2}\right) \leq C \frac{1}{N} \left(\frac{(\log N)^2}{N} + \frac{1}{(\sqrt{N} |y|)^{1/2}}\right).
$$

Indeed, let's write $s = \sqrt{y_{N,k}^2 - v}$ where $|v| = \eta_0/N$, η_0 small enough. We are going to estimate $Q_N(s)$. We know that

$$
\int_{s}^{1} (1 - \sigma^{2})^{N} d\sigma = \frac{(1 - s^{2})^{N+1}}{2 s (N+1)} \left(1 + O\left(\frac{\eta(s)}{N|s|^{2}}\right) \right),
$$

where $\eta(s)$ is bounded independently of s provided that $|1-s| < 1$, $|1-s^2| > 1$ and $|\text{Arg } s| < \theta_0$ (where $\theta_0 \in (\pi/4, \pi/2)$). Thus, we are

going to estimate $|1 - s|$, $|1 - s^2|$ and $|Arg s|$. We have obviously from (41)

$$
y_{N,k}^2 = 1 - e^{-2i\varphi_{N,k}} + O\left(\frac{\log k}{N}\right) = (1 - e^{-2i\varphi_{N,k}})\left(1 + O\left(\frac{\log k}{k}\right)\right)
$$

and such an estimate holds as well for s . (We see also from (41) that

$$
|1 - s^2| \ge 1 + \frac{1}{N} \operatorname{Log} 2 \sqrt{2N\pi \sin \varphi_{N,k}} - \frac{\eta_0}{N}
$$

$$
\ge 1 + \frac{1}{N} \operatorname{Log} 2 \sqrt{4\pi K_0} - \frac{\eta_0}{N}
$$

$$
> 1
$$

provided the small end that is small enough Thus we include the small enough that is small enough that is not t

$$
\operatorname{Arg} s^2 = \frac{\pi}{2} - \varphi_{N,k} + O\Big(\frac{\operatorname{Log} k}{k}\Big) < 2\,\theta_0,
$$

If K_0 is large enough (so that $O(\log K_0/K_0) \leq 2\nu_0 = \kappa/2$) and thus

$$
Arg s = \frac{\pi}{4} - \frac{1}{2} \varphi_{N,k} + O\left(\frac{\log k}{k}\right) \in (-\theta_0, \theta_0).
$$

Moreover

$$
|s| = \sqrt{2 \sin \varphi_{N,k}} \Bigl(1 + O \Bigl(\frac{\log k}{k} \Bigr) \Bigr)
$$

and this latter estimate gives $|s| < 2 \cos(\text{Arg } s)$: if $\varphi_{N,k} > \varepsilon_0$ (where ε_0 is - and α - and α are shall see below as we shall see α and α and α and α and α are large α enough we have

$$
\sqrt{2\sin\varphi_{N,k}}\left(1+O\left(\frac{\log k}{k}\right)\right)\leq \sqrt{2}\left(1+C\,\frac{\log K_0}{K_0}\right)\leq \sqrt{2}\left(1+\frac{\varepsilon_0}{100}\right),
$$

while

$$
2 \cos \left(\text{Arg } s \right) \ge 2 \cos \left(\frac{\pi}{4} - C \frac{\text{Log } K_0}{K_0} \right)
$$

$$
\ge 2 \cos \left(\frac{\pi}{4} - \frac{\varepsilon_0}{3} \right)
$$

$$
\ge \sqrt{2} \left(1 + \frac{2 \varepsilon_0}{3\pi} - \frac{\varepsilon_0^2}{2} \right).
$$

ete Diskulpp hubst en bommung kupeppil

 \mathbf{r} if \mathbf{w} if \mathbf{v}

$$
\sqrt{2\sin\varphi_{N,k}}\Big(1+O\Big(\frac{\log k}{k}\Big)\Big)\leq \sqrt{2\,\varepsilon_0}\,\sqrt{1+C\,\frac{\log K_0}{K_0}}\leq C'\sqrt{\varepsilon_0}\;,
$$

while $2\cos(\text{Arg} s) \geq 2\cos\theta_0$; thus if ε_0 is small enough to ensure ε_0 < $4/(3\pi) - 1/50$ and $\varepsilon_0 < 4\cos^2\theta_0/C'^2$ we find $|s| < 2\cos(\text{Arg }s)$. But this latter inequality is equivalent to $|1 - s| < 1$. Thus we found

$$
Q_N(s) = 1 - \left(1 + O\left(\frac{1}{N^2}\right)\right) \sqrt{\frac{N}{\pi}} \, \frac{(1 - s^2)^{N+1}}{2 \, s \, (N+1)} \Big(1 + O\left(\frac{1}{|Ns^2|}\right)\Big) \, .
$$

We have moreover

$$
(1 - s^2)^{N+1} = (1 - y_{N,k}^2)^{N+1} \left(1 + \frac{v}{1 - y_{N,k}^2} \right)^{N+1}
$$

$$
= (1 - y_{N,k}^2)^{N+1} \left(1 + \frac{Nv}{1 - y_{N,k}^2} + O(N^2v^2) \right)
$$

$$
s = \sqrt{y_{N,k}^2 - v} = y_{N,k} \left(1 - \frac{v}{2y_{N,k}^2} + O\left(\frac{v^2}{y_{N,k}^4}\right) \right).
$$

This gives, since $|s|$ has $\sqrt{k/N}$ as order of magnitude

$$
Q_N(s) = 1 - \left(1 + O\left(\frac{1}{k}\right)\right) \frac{\left(1 - y_{N,k}^2\right)^{N+1}}{2\sqrt{N\pi} y_{N,k}} \cdot \left(1 + \frac{Nv}{1 - y_{N,k}^2} + \frac{v}{2 y_{N,k}^2} + O\left(N^2 v^2\right) + O\left(\frac{v^2}{y_{N,k}^4}\right)\right).
$$

Moreover

$$
|y_{N,k}| \ge 2\sqrt{\frac{8k-1}{8N+6}}\left(1 + O\left(\frac{1}{k}\log k\right)\right)
$$

and

$$
y_{N,k} = \sqrt{2\sin\left(\frac{8k-1}{8N+6}\pi\right)}\,e^{i(\pi/4-(8k-1)\pi/(16N+12))}\left(1+O\left(\frac{1}{k}\log k\right)\right),
$$

so that

$$
\frac{(1 - y_{N,k}^2)^{N+1}}{2\sqrt{N\pi} y_{N,k}}
$$
\n
$$
= \frac{\left(1 + \frac{1}{N} \log 2\sqrt{2N\pi \sin\left(\frac{8k-1}{8N+6}\pi\right)}\right)^N}{2\sqrt{2N\pi \sin\left(\frac{8k-1}{8N+6}\pi\right)}} \left(1 + O\left(\frac{1}{k} \log k\right)\right)
$$
\n
$$
= \left(1 + O\left(\frac{1}{N^2} \left(\log k\right)^2\right)\right)^N \left(1 + O\left(\frac{1}{k} \log k\right)\right)
$$

and - nally because the control of the control of

$$
Q_N(s) = 1 - \left(1 + O\left(\frac{1}{k} (\log k)^2\right)\right)
$$

$$
\cdot \left(1 + \frac{Nv}{1 - y_{N,k}^2} + \frac{v}{2y_{N,k}^2} + O\left(N^2v^2\right) + O\left(\frac{v^2}{y_{N,k}^4}\right)\right).
$$

Now, we write

$$
R_{N,k}(s) = N \frac{v}{1 - y_{N,k}^2} = N \frac{y_{N,k}^2 - s^2}{1 - y_{N,k}^2}.
$$

Since $|v| = \eta_0/N$, we have

$$
|R_{N,k}(s)| = \eta_0 \Big(1 + O\Big(\frac{\log k}{N}\Big)\Big) ,
$$

while

$$
|Q_N(s) - R_{N,k}(s)| = O\left(\frac{(\log k)^2}{k}\right) + O\left(\frac{\eta_0}{k}\right) + O\left(\eta_0^2\right).
$$

we choose η_0 small enough to ensure that the $O(\eta_0)$ term is smaller than $\eta_0/2$ (independently of N and k), and then choose K_0 large enough to ensure that $\tilde{O}((\log k)^2/k)+O(\eta_0/k)$ is smaller than $\eta_0/4$ for $k>K_0$. For this choice of K_0 , we get

$$
|Q_N(s) - R_{N,k}(s)| < \frac{3}{4} \eta_0 < |R_{N,k}(s)| \, .
$$

ete planing mip it of Bommun functions

 $\mathcal{L} = \mathcal{L} = \mathcal$ of roots inside the domain $\{|y_{N,k}^2 - s^2| \leq \eta_0/N, \text{ Re } s > 0\}.$

Step 3. We have thus found a number K_0 so that for N large enough we may list the roots $x_{N,1},...,x_{N,[(N+1)/2]}$ of Q_N with $x_{N,k} \neq -1$, $\text{Im }x_{N,k}\geq 0, |x_{N,k}|<|x_{N,k+1}|$ in the following way:

- for $k \leq K_0$, $|x_{N,k}| < \sqrt{2K_0\pi/N}$ and $x_{N,k} \sim -\overline{\gamma}_k/\sqrt{N}$,
- for $k \geq K_0$,

$$
|x_{N,k}^2 - y_{N,k}^2| = O\left(\frac{\eta(x_{N,k})^{3/2}}{N^2 |x_{N,k}|^2}\right) + O\left(\frac{\text{Log}\left(\sqrt{N} |x_{N,k}|\right)}{N^2 |x_{N,k}|^2}\right),
$$

where α is given by α is given by α

Moreover, we have seen in step 2 that in that case we must have arg xn-k is bounded independent independent to the Secretary of Andrew Control of New York (1986). The secreta Moreover $x_{N,k}$ is of order of magnituge $\sqrt{k/N}$, hence

$$
|x_{N,k}^2 - y_{N,k}^2| = O\left(\frac{\log k}{Nk}\right).
$$

(43)
$$
1 - x_{N,k}^2 = \left(1 + \frac{1}{N} \log 2 \sqrt{2N\pi \sin\left(\frac{8k-1}{8N+6}\pi\right)}\right)
$$

$$
e^{-2i\pi(8k-1)/(8N+6)} + O\left(\frac{\log k}{Nk}\right)
$$

and thus

$$
x_{N,k}^{2} = \left(1 - e^{-2i\pi(8k-1)/(8N+6)}\right)
$$

$$
\cdot \left(1 - \frac{e^{-2i\pi(8k-1)/(8N+6)}}{N(1 - e^{-2i\pi(8k-1)/(8N+6)})} \log 2\sqrt{2N\pi \sin\left(\frac{8k-1}{8N+6}\pi\right)} + O\left(\frac{\log k}{k^{2}}\right)\right)
$$

which gives

$$
x_{N,k} = e^{i(\pi/4 - (8k-1)\pi/(16N+12)} \sqrt{2 \sin\left(\frac{8k-1}{8N+6}\pi\right)}
$$

(44)

$$
\cdot \left(1 + \frac{e^{i(\pi/2 - (8k-1)\pi/(8N+6))}}{4N \sin\left(\frac{8k-1}{8N+6}\pi\right)} \log 2 \sqrt{2N\pi \sin\left(\frac{8k-1}{8N+6}\pi\right)}
$$

$$
+ O\left(\frac{\log k}{k^2}\right)\right),
$$

which gives (37) for $k > K_0$. For $k \le K_0$, (37) says only that $x_{N,k}$ is $O\left(1/\sqrt{N}\right)$, which we already known since $\sqrt{N} |x_{N,k}| \leq \sqrt{2K_0\pi}$.

Thus we have proved Result 6.

A nice corollary of Result 6 is that we may recover formula (33) on the roots of $erfc(z)$:

Corollary. The k-th root γ_k of erfc(z) such that $\text{Im } \gamma_k > 0$ is given by

$$
\gamma_k = e^{3i\pi/4} \sqrt{\left(2k - \frac{1}{4}\right)\pi}
$$

(45)

$$
\cdot \left(1 - \frac{i}{2\left(2k - \frac{1}{4}\right)\pi} \operatorname{Log} 2\sqrt{\pi} \sqrt{\left(2k - \frac{1}{4}\right)\pi} + O\left(\frac{(\operatorname{Log} k)^2}{k^2}\right)\right).
$$

PROOF. It is enough to use formula (37) for $x_{N,k}$ with $N, k \to +\infty$ and k is a log \mathcal{L} in the set of \mathcal{L} is a log \mathcal{L} we have the set of \mathcal{L}

$$
x_{N,k} = -\frac{-\overline{\gamma}_k}{\sqrt{N}} + O\left(\frac{1}{N}\right)
$$
 and $\frac{k}{N} = O\left(\frac{\text{Log } N}{N}\right)$,

thus we also the state is the only the only the check is the only the check is the check is the check is the c γ such that $|\gamma| \leq \sqrt{2K_0\pi}$ (since we used formula (33) to give it). But this is an old and classical result of Nevanlinna and thus we may recover formula (33) from formula (37) .

274 p. Inibut and Prominced Indonesia

4. Big roots of Q_N : further estimates.

Though Result 6 is enough for the proof of theorems 1 to 3 (provided we improve result n° 4 for the smaller roots), we may give even more precise estimations for the roots $\mathbf{N} \cdot \mathbf{N}$ intervals are may interval intervals we may interval interval grate by parts one step further formula (35) and thus get an $O((\text{Log } k)^3)$ /IV k) error instead of O (Log κ /IV k) for $1-x_{N,k}$.

More generally, how far can we compute $\int_{t}^{1}(1-s^2)^N ds$? We have

$$
\int_{t}^{1} (1 - s^{2})^{N} ds = (1 - t^{2})^{N+1} \int_{0}^{1} \lambda^{N} \frac{d\lambda}{2\sqrt{1 - \lambda(1 - t^{2})}}.
$$

If we write

$$
1 - \lambda(1 - t^2) = t^2 \left(1 + \frac{1 - t^2}{t^2} (1 - \lambda) \right),
$$

we see that if $\text{Re } t^2 > 1/2$ (so that $|1 - t^2| < t^2$), we may develop $(\sqrt{1 - \lambda(1 - t^2)})^{-1}$ as a Taylor series in $(1 - \lambda)$ and find (for $\text{Re } t^2 >$ $1/2)$

$$
\frac{1}{\sqrt{1-\lambda(1-t^2)}} = \frac{1}{t} \sum_{k=0}^{+\infty} (-1)^k \frac{2k!}{4^k(k!)^2} \left(\frac{(1-\lambda)(1-t^2)}{t^2}\right)^k,
$$

which gives

(46)
$$
\begin{cases} \text{for } \text{Re } t > 0 \text{ and } \text{Re } t^2 > \frac{1}{2}, \\ \int_t^1 (1 - s^2)^N ds \\ = \frac{(1 - t^2)^{N+1}}{2t} \sum_{k=0}^{+\infty} (-1)^k \frac{(2k)!}{4^k (k!)^2} \frac{N! k!}{(N + k + 1)!} \left(\frac{1 - t^2}{t^2}\right)^k. \end{cases}
$$

Unfortunately, we are mostly interested in small t 's (remember that $x_{N,k} = O\left(\sqrt{k/N}\right)$. (46) has to be replaced by an asymptotic formula which is obtained by repeatedly integrating by parts

(47)
$$
\begin{cases} \text{for } \text{Re } t > 0 \text{ and } M \in \mathbb{N}, \\ & \int_{t}^{1} (1 - s^{2})^{N} ds \\ & = \frac{(1 - t^{2})^{N+1}}{2 t} \sum_{k=0}^{M} (-1)^{k} \frac{(2k)!}{4^{k}(k!)^{2}} \frac{N! k!}{(N + k + 1)!} \left(\frac{1 - t^{2}}{t^{2}}\right)^{k} \\ & \quad + R_{M,N}(t), \end{cases}
$$

where the remainder

$$
R_{M,N}(t) = (-1)^{M+1} (1-t^2)^{N+M+2} \frac{(2M+2)!}{4^{M+1}((M+1)!)^2}
$$

$$
\cdot \frac{N!(M+1)!}{(N+M+2)!} \int_0^1 \frac{\lambda^{N+M+1} d\lambda}{(1-\lambda(1-t^2))^{1/2+M+1}}
$$

may be estimated by

(48)
$$
|R_{M,N}(t)| \le \left| \frac{(1-t^2)^{N+1}}{2t} \right| \frac{(2M+2)!}{4^{M+1}((M+1)!)^2} \frac{(M+1)! \, N!}{(N+M+2)!} \cdot \left| \frac{1-t^2}{t^2} \right|^{M+1} \eta(t)^{1/2+M+1}.
$$

 $M = 0$ gave Result 6. $M = 1$ gives the following result:

ILESUIL 1. Writing $\varphi_{N,k} = (\sigma_N - 1)N/(\sigma_N + \sigma)$ and

$$
\lambda_k = \text{Log } 2 \sqrt{2N\pi \sin \varphi_{N,k}} ,
$$

we have more precisely for all $k \in \{1, \ldots, N\}$

$$
(49) \qquad \qquad (1 + \frac{1}{N} \lambda_k + \frac{1}{N^2} + \frac{\lambda_k}{N^2} + \frac{\lambda_k^2}{2N^2} + \frac{i e^{-i\varphi_{N,k}}}{4N^2 \sin \varphi_{N,k}} (\lambda_k - 1)) + \varepsilon_{N,k} ,
$$

where

$$
|\varepsilon_{N,k}| \le C \max\left\{ \frac{1 + (\log k)^3}{Nk^2}, \frac{1 + \log(N + 1 - k)^3}{N(N + 1 - k)^2} \right\}
$$

and C doesn't depend neither on N nor on K .

PROOF. We assume $k \leq \lfloor (N+1)/2 \rfloor$. We write $1-x_{N,k}^2=1-y_{N,k}^2+v$ and the problem is to estimate variable variables when we are the problem in the contract of the contract of t Furthermore, we know that

$$
\int_{x_{N,k}}^{1} (1 - s^2)^N ds = \frac{2 \cdot 4^N (N!)^2}{(2N + 1)!} = \sqrt{\frac{\pi}{N}} \left(1 + O\left(\frac{1}{N^2}\right) \right)
$$

and

$$
\int_{x_{N,k}}^1 (1-s^2)^N ds = \frac{(1-x_{N,k}^2)^{N+1}}{2(N+1)x_{N,k}} \left(1 - \frac{1-x_{N,k}^2}{2(N+2)x_{N,k}^2} + O\left(\frac{1}{N^2 x_{N,k}^4}\right)\right).
$$

Now, write

$$
\frac{1 - x_{N,k}^2}{2 (N+2) x_{N,k}^2} = \frac{1 - y_{N,k}^2}{2 (N+2) y_{N,k}^2} + O\left(\frac{v}{k}\right) + O\left(\frac{Nv}{k^2}\right)
$$

$$
= \frac{1 - y_{N,k}^2}{2 (N+2) y_{N,k}^2} + O\left(\frac{\log k}{k^3}\right)
$$

and

$$
\frac{1 - y_{N,k}^2}{2 (N+2) y_{N,k}^2} = \frac{e^{-2i\varphi_{N,k}}}{2 (N+2) y_{N,k}^2} + O\left(\frac{\log k}{Nk}\right)
$$

$$
= \frac{e^{-2i\varphi_{N,k}}}{2N(1 - e^{-2i\varphi_{N,k}})} + O\left(\frac{\log k}{k^2}\right),
$$

so that

$$
1 - \frac{1 - x_{N,k}^2}{2 (N+2) x_{N,k}^2} + O\Big(\frac{1}{N^2 x_{N,k}^4}\Big) = 1 + \frac{i e^{-i\varphi_{N,k}}}{4N \sin \varphi_{N,k}} + O\Big(\frac{\log k}{k^2}\Big).
$$

We now turn our attention to $(1-x_{N,k})^{1+\gamma/2}$ (2 (N + 1) $x_{N,k}$). We have

$$
2 (N + 1) x_{N,k} \sqrt{\frac{\pi}{N}}
$$

= $2\left(1 + \frac{1}{N}\right) \sqrt{N\pi} \sqrt{y_{N,k}^2 - v}$
= $2\left(1 + \frac{1}{N}\right) \sqrt{N\pi} \sqrt{1 - e^{-2i\varphi_{N,k}} - \frac{e^{-2i\varphi_{N,k}}}{N} \lambda_{N,k} + O\left(\frac{\log k}{Nk}\right)}$
= $2\left(1 + \frac{1}{N}\right) \sqrt{N\pi} \sqrt{2\sin \varphi_{N,k}} e^{i(\pi/4 - \varphi_{N,k}/2)}$
 $\cdot \left(1 + \frac{ie^{-i\varphi_{N,k}}}{4N \sin \varphi_{N,k}} \lambda_{N,k} + O\left(\frac{(\log k)^2}{k^2}\right)\right)$

$$
\quad \text{ and } \quad
$$

$$
(1 - x_{N,k}^2)^{N+1} = (1 - y_{N,k}^2)^{N+1} \left(1 + \frac{v}{1 - y_{N,k}^2} \right)^{N+1}
$$

= $(1 - y_{N,k}^2)^{N+1} \left(1 + \frac{(N+1)v}{1 - y_{N,k}^2} + O\left(\frac{(\log k)^2}{k^2}\right) \right)$
= $(1 - y_{N,k}^2)^{N+1} \left(1 + Nv e^{2i\varphi_{N,k}} + O\left(\frac{(\log k)^2}{k^2}\right) \right).$

Finally we have

$$
\frac{(1 - y_{N,k}^2)^{N+1}}{2\sqrt{2N\pi \sin \varphi_{N,k}} e^{i(\pi/4 - \varphi_{N,k}/2)}}
$$
\n
$$
= \left(\frac{1 + \frac{1}{N}\lambda_{N,k}}{1 + \frac{1}{N+1}\lambda_{N,k} + \frac{1}{2(N+1)^2}\lambda_{N,k}^2 + O\left(\frac{(\log k)^3}{N^3}\right)}\right)^{N+1}
$$
\n
$$
= 1 - \frac{1}{N}\lambda_{N,k} - \frac{1}{2N}\lambda_{N,k}^2 + O\left(\frac{(\log k)^3}{N^2}\right).
$$

We have thus obtained

$$
\left(1+\frac{1}{N}\right)\left(1+O\left(\frac{1}{N^2}\right)\right)
$$
\n
$$
=\frac{(1-x_{N,k}^2)^{N+1}}{2\sqrt{N\pi}}\left(1-\frac{1-x_{N,k}^2}{2\left(N+2\right)x_{N,k}^2}+O\left(\frac{1}{N^2x_{N,k}^4}\right)\right)
$$
\n
$$
=1-\frac{\lambda_{N,k}}{N}-\frac{1}{2N}\lambda_{N,k}^2-\frac{ie^{-i\varphi_{N,k}}}{4N\sin\varphi_{N,k}}\lambda_{N,k}+Nve^{2i\varphi_{N,k}}
$$
\n
$$
+\frac{ie^{-i\varphi_{N,k}}}{4N\sin\varphi_{N,k}}+O\left(\frac{(\log k)^3}{k^2}\right)
$$

which gives the value of v with an $\mathcal{O}((\log k)/(Nk))$ error.

As a further development of the further of the second properties $\{N_i\}$ is exactly the second $\{N_i\}$ the formula given in f is a set of f and f and

ete planing mid it ei bommung kuberrit

Corollary. If $\mu_k = (2k - 1/4)\pi$, then

$$
\gamma_k = e^{-3i\pi/4} \sqrt{\mu_k} \left(1 - \frac{i}{2\,\mu_k} \log 2 \sqrt{\pi \mu_k} - \frac{1}{4\,\mu_k^2} \log 2 \sqrt{\pi \mu_k} + \frac{1}{4\,\mu_k^2} + \frac{1}{8\,\mu_k^2} \left(\log 2 \sqrt{\pi \mu_k} \right)^2 + O\left(\frac{(\log k)^3}{k^3} \right) \right).
$$
\n(50)

 \mathbf{P} and \mathbf{P} and

$$
1 - \frac{\overline{\gamma}_k^2}{N} = \left(1 - i\,\frac{\mu_k}{N}\right)\left(1 + \frac{1}{N}\,\text{Log}\,2\,\sqrt{\pi}\,\sqrt{\mu_k} + \frac{i}{2N\mu_k}\,\left(\text{Log}\,2\,\sqrt{\pi}\,\sqrt{\mu_k} - 1\right)\right) + O\left(\frac{(\text{Log}\,k)^3}{Nk^2}\right),
$$

hence

$$
\gamma_k^2 = -i \,\mu_k - \text{Log } 2\sqrt{\pi \mu_k} + \frac{i}{2 \,\mu_k} \text{Log } 2\sqrt{\pi \mu_k} - \frac{i}{2 \,\mu_k} + O\left(\frac{(\text{Log } k)^3}{k^2}\right)
$$

and

$$
\gamma_k = \sqrt{-i \,\mu_k} \left(1 - \frac{i}{2 \,\mu_k} \text{Log} \, 2 \sqrt{\pi \mu_k} - \frac{1}{4 \,\mu_k^2} \text{Log} \, 2 \sqrt{\pi \mu_k} + \frac{1}{4 \,\mu_k^2} + \frac{1}{8 \,\mu_k^2} \left(\text{Log} \, 2 \sqrt{\pi \mu_k} \right)^2 + O\left(\frac{(\text{Log} \, k)^3}{k^3} \right) \right)
$$

and the corollary is proved

Simple roots of \mathcal{L} and \mathcal{L} are estimated to \mathcal{L} . The substitution of \mathcal{L}

of Q_N . Indeed, we used the rough estimate $|e^{-Nx_{N,k}^2}| \leq e^{N|x_{N,k}^2|}$ which is far from being \mathcal{N} and the line \mathcal{N} from the line \mathcal{N} big (and $k^2 = O(N)$), so that $e^{-Nx_{N,k}}$ is much smaller than $e^{N|x_{N,k}|}$: indeed if $\kappa^{\perp} = O(N)$ we find that

$$
x_{N,k}^2 = -\frac{1}{N} \log 2\sqrt{\pi \left(2k - \frac{1}{4}\right)} \pi + \frac{i}{N} \left(2k - \frac{1}{4}\right) \pi + O\left(\frac{\log k}{Nk}\right),\,
$$

hence

$$
|e^{-Nx_{N,k}^2}| = e^{\text{Log }2\sqrt{\pi(2k-1/4)\pi}} e^{O(\text{Log }k/k)}
$$

= $2\sqrt{\pi} \sqrt{2k - \frac{1}{4}\pi} \left(1 + O\left(\frac{\text{Log }k}{k}\right)\right),$

while

$$
e^{N|x_{N,k}|^2} \ge e^{(2k-1/4)\pi} \left(1 + O\left(\frac{\log k}{k}\right)\right).
$$

Thus, we may improve Result 4 in an impressive manner: for a much bigger set of indexes $k, -\overline{\gamma}_k/\sqrt{N}$ provides a very precise approximation of xN-k 

and $k \le \eta_0 N^{1/5} / (\log N)^{2/5}$ we have

(51)
$$
\left| x_{N,k} + \frac{\overline{\gamma}_k}{\sqrt{N}} \right| \leq C_0 \frac{1}{N\sqrt{N}} \left(\frac{k^{5/2}}{1 + \log k} \right).
$$

$$
\tilde{Q}_N(t) = 4\sqrt{\frac{N}{\pi}} \frac{4^N (N!)^2}{(2N+1)!} Q_N(t) = 1 + O\left(\frac{1}{N^2}\right) + 2\sqrt{\frac{N}{\pi}} \int_0^t (1 - s^2)^N ds
$$

and approximate $(1-s^2)^N$ by e^{-Ns} (provided that Nt^4 remains bounded: $|Nt^4| \leq A_0$)

$$
(1 - s2)4 = eN Log(1 - s2) = e-Ns2 (1 + O(Ns4)).
$$

Thus

$$
\tilde{Q}_N(t) = \text{erfc}(-\sqrt{N}t) + O\left(\frac{1}{N^2}\right) + \sqrt{N} \int_0^t e^{-Ns^2} O\left(Ns^4\right) ds.
$$

Let $\theta = \text{Arg } t$ and assume $\theta \in (\pi/4, \pi/2)$. Then we have

$$
\left| \sqrt{N} \int_0^t e^{-Ns^2} O\left(N s^4\right) ds \right| \le C N \sqrt{N} |t|^3 \int_0^{|t|} e^{-N\lambda^2 \cos 2\theta} \lambda d\lambda
$$

$$
\le C \frac{|e^{-Nt^2}|\sqrt{N} |t|^3}{2 |\cos 2\theta|}.
$$

egy – Di Inibertiin I van Beminister Informatie

We have thus proved that for $|Nt^4| \leq A_0$ and $\text{Arg } t \in (\pi/4, \pi/2)$ we have

$$
|\tilde{Q}_N(t) - \text{erfc}(-\sqrt{N}t)| \le C\left(\frac{1}{N^2} + \sqrt{N}|t|^3 \frac{|e^{-Nt^2}|}{2|\cos 2 \operatorname{Arg} t|}\right).
$$

Now, we write $t = x_{N,k} + \delta$, $|\delta| \leq \delta_0/N$. Remember that we have

$$
|x_{N,k}| \approx \sqrt{\frac{\left(2k-\frac{1}{4}\right)\pi}{N}}
$$

(hence we will look at $k \leq \sqrt{A_0 N/(2\pi)}$) and

$$
\begin{split} \operatorname{Arg} x_{N,k} &= \frac{\pi}{4} - \frac{1}{2} \varphi_{N,k} + \operatorname{Arg} \Big(1 + \frac{i \, e^{-i \varphi_{N,k}}}{4N \sin \varphi_{N,k}} \operatorname{Log} \big(2 \sqrt{2N \pi \sin \varphi_{N,k}} \big) \Big) \\ &+ O\Big(\frac{(\operatorname{Log} k)}{k^2} \Big) \\ &= \frac{\pi}{4} + \frac{\operatorname{Log} \Big(2\sqrt{\pi} \, \sqrt{\Big(2k - \frac{1}{4} \Big) \pi} \Big)}{2 \Big(2k - \frac{1}{4} \Big) \pi} + O\Big(\frac{(\operatorname{Log} k)^2}{k^2} \Big) + O\Big(\frac{k}{N} \Big) \,, \end{split}
$$

hence if $k \geq k_0$ where k_0 is large enough so that

$$
O\Big(\frac{(\log k)^2}{k^2}\Big) + O\Big(\frac{k}{N}\Big) = O\Big(\frac{(\log k)^2}{k^2}\Big) + O\Big(\frac{1}{k}\Big)
$$

is smaller than

$$
\frac{1}{2}\frac{\log 2\sqrt{\pi}\sqrt{\left(2k-\frac{1}{4}\right)\pi}}{2\left(2k-\frac{1}{4}\right)\pi},
$$

we find that $\text{Arg } x_{N,k} \in (\pi/4, \pi/2)$. (This is also true for $k \leq k_0$, if N is large enough, since $x_{N,k} \sim - \overline{\gamma}_k/\sqrt{N}$).

Moreover

 \mathcal{N} cose \mathcal{N} and \mathcal{N}

$$
= -\sin\left(\frac{\text{Log}\left(2\sqrt{\pi}\sqrt{\left(2k-\frac{1}{4}\right)\pi}\right)}{\left(2k-\frac{1}{4}\right)\pi} + O\left(\frac{(\text{Log }k)^2}{k^2}\right) + O\left(\frac{k}{N}\right)\right)
$$

$$
= -\frac{\text{Log}\left(2\sqrt{\pi}\sqrt{\left(2k-\frac{1}{4}\right)\pi}\right)}{\left(2k-\frac{1}{4}\right)\pi} + O\left(\frac{(\text{Log }k)^2}{k^2}\right) + O\left(\frac{k}{N}\right),
$$

hence cose $\lambda = \lambda - \lambda$, $\lambda \cdot \nu$, we obtain the magnitude Log kordinal cose of magnitude λ for δ_0 small enough

•
$$
t = x_{N,k} \left(1 + O\left(\frac{1}{\sqrt{Nk}}\right) \right),
$$

\n• $e^{-Nt^2} = e^{-Nx_{N,k}^2} \left(1 + O\left(\sqrt{\frac{k}{N}}\right) + O\left(\frac{1}{N}\right) \right),$
\n• $\text{Arg } t = \text{Arg } x_{N,k} + O\left(\frac{1}{\sqrt{Nk}}\right) = \text{Arg } x_{N,k} + O\left(\frac{1}{k\sqrt{k}}\right),$

thus we have

$$
|\tilde{Q}_N(t) - \text{erfc}(-\sqrt{N}t)| \le C\left(\frac{1}{N^2} + \sqrt{N}\left(\frac{k}{N}\right)^{3/2}\frac{\sqrt{k}}{(\log k)/k}\right)
$$

$$
\le C'\frac{k^3}{N\log k}.
$$

On the other hand we have

$$
| \text{erfc}(-\sqrt{N} t) - \text{erfc}(-\sqrt{N} x_{N,k}) |
$$

=
$$
| 2\sqrt{\frac{N}{\pi}} \int_{x_{N,k}}^{t} e^{-Ns^2} ds |
$$

=
$$
| e^{-Nx_{N,k}^2} | 2\sqrt{\frac{N}{\pi}} | \int_{0}^{\delta} e^{-2Nx_{N,k}s -Ns^2} ds |.
$$

We notice that

$$
|2Nx_{N,k} s + Ns^2| \leq 2|x_{N,k}| \delta_0 + \frac{\delta_0^2}{N} \leq C \frac{\delta_0}{\sqrt{N}},
$$

eve D. Inibution I. C. Bomining Indonesia

so that if N is large enough,

$$
|e^{-2Nx_{N,k}s - Ns^2} - 1| \leq \frac{1}{2} ,
$$

which gives

$$
\left|\text{erfc}\left(-\sqrt{N}\,t\right)-\text{erfc}\left(-\sqrt{N}\,x_{N,k}\right)\right|\geq 2\sqrt{\frac{N}{\pi}}\left|e^{-Nx_{N,k}^2}\right|\frac{1}{2}\left|\delta\right|\geq C\sqrt{Nk}\,\left|\delta\right|.
$$

Thus

(52)
$$
\begin{cases} |\text{erfc}(-\sqrt{N}t)| \geq C_1 \sqrt{N} k \delta - C_2 \frac{k^3}{N \log k}, \\ |\text{erfc}(-\sqrt{N}t) - \tilde{Q}_N(t)| \leq C_2 \frac{k^3}{\sqrt{N} \log k}. \end{cases}
$$

Now choose

$$
\delta_{N,k} = \frac{3\,C_2}{C_1}\,\frac{k^{5/2}}{N^{3/2}{\rm Log}\,k}
$$

(we have $\delta_{N,k} < \delta_0/N$ if $k^{5/2}/\text{Log } k < \delta_0 C_1 \sqrt{N}/(3C_2)$); we obtain that

$$
\sup_{|t-x_{N,k}|=\delta_{N,k}} |\text{erfc}(-\sqrt{N}t) - \tilde{Q}_N(t)| \leq \frac{1}{2} \inf_{|t-x_{N,k}|=\delta_{N,k}} |\text{erfc}(-\sqrt{N}t)|,
$$

hence by Rouché's theorem we find that \tilde{Q}_N and $\text{erfc}(-\sqrt{N}t)$ have the same number of roots in the disk $|t - x_{N,k}| < \delta_{N,k}$. Since

$$
|x_{N,k}-x_{N,k+1}|\approx \sqrt{\frac{\pi}{2kN}}
$$

and

$$
\sqrt{kN}\,\delta_{N,k} = O\Big(\frac{k^3}{N\,{\rm Log}\,k}\Big) = O\Big(\frac{1}{N^{2/5}({\rm Log}\,N)^{7/5}}\Big) = o\,(1)
$$

(if $k \leq CN^{1/3}/(\log N)^{2/3}$), we find: for $k \leq \eta_0 N^{1/3}/(\log N)^{2/3}$ (η_0 small enough

$$
|x_{N,k} + \frac{\overline{\gamma}_k}{\sqrt{N}}| \leq C \frac{1}{N\sqrt{N}} \left(\frac{k^{5/2}}{\log k}\right).
$$

Result 8 is proved.

Result is enough for what we want to prove But of course we \max develop a bit further $(1 - s)$ and get a better approximation for k kata kacamatan ing kacam

Result 9. For $k \leq \eta_0 N^{1/5} / (\log N)^{2/5}$ we have more precisely

$$
x_{N,k} = -\frac{\overline{\gamma}_k}{\sqrt{N}} + \frac{1}{N\sqrt{N}} \left(\frac{1}{2}\overline{\gamma}_k^3 + \frac{3}{8}\overline{\gamma}_k + O\left(\sqrt{\log k}\right)\right).
$$

FROOF. We write $\log (1 - s^{-}) = -s^{-} - s^{-}/2 + O(s^{-})$. Hence we have

$$
(1 - s2)N = e-Ns2 (1 - N \frac{s4}{2} + O(Ns6) + O(N2s8)),
$$

provided that $|s| \leq A_0/N^{1/4}$.
Thus we have for $|t| \leq A_0/N^{1/4}$ and $\text{Arg } t \in (\pi/4, \pi/2)$

$$
\left| \tilde{Q}_N(t) - \text{erfc}(-\sqrt{N}t) + 2\sqrt{\frac{N}{\pi}} N \int_0^t e^{-Ns^2} s^4 ds \right|
$$

$$
\leq C \left(\frac{1}{N^2} + \sqrt{N} \left| \frac{t^5 e^{-Nt^2}}{\cos(2 \text{ Arg } t)} \right| + N\sqrt{N} \left| \frac{t^7 e^{-Nt^2}}{\cos(2 \text{ Arg } t)} \right| \right).
$$

Moreover we have

$$
N \int_0^t e^{-Ns^2} s^4 ds = \left[\frac{-e^{-Ns^2} s^3}{2} \right]_0^t + \frac{3}{2} \int_0^t e^{-Ns^2} s^2 ds
$$

=
$$
\frac{-e^{-Nt^2} t^3}{2} - \frac{3}{4N} e^{-Nt^2} t + \frac{3}{4N} \int_0^t e^{-Ns^2} ds.
$$

Now, we write $\eta = 1/\sqrt{2N |\cos(2 \operatorname{Arg} t)|}$ (if $t \approx x_{N,k}$, we have $\eta \approx$ $4k/(N\log k) < |t|$ and we write

$$
\left| \int_0^t e^{-Ns^2} ds \right| \leq \int_0^{\eta} |e^{-Nt^2}| ds + \int_{\eta}^{|t|} e^{-Ns^2 \cos(2 \operatorname{Arg} t)} \frac{s ds}{\eta}
$$

$$
\leq \eta |e^{-Nt^2}| + \frac{|e^{-Nt^2}|}{2N|\cos(2 \operatorname{Arg} t)|\eta}
$$

$$
= \frac{2 |e^{-Nt^2}|}{\sqrt{2N|\cos(2 \operatorname{Arg} t)|}}.
$$

284 p. Inibut and Prominced Indonesia

Finally we get

$$
erfc(-\sqrt{N} x_{N,k}) = e^{-Nx_{N,k}^2} \sqrt{\frac{N}{\pi}} x_{N,k}^3 + e^{-Nx_{N,k}^2} \frac{3}{4\sqrt{N\pi}} x_{N,k} + O\left(\frac{1}{N^2}\right) + O\left(\frac{k^4}{N^2 \log k}\right) + O\left(\frac{k^5}{N^2 \log k}\right) + O\left(\frac{\sqrt{\log k}}{N}\right)
$$

and, assuming again $\kappa < \eta_0$ iv ((Log iv) (),

$$
\text{erfc}(-\sqrt{N}\,x_{N,k})=e^{-Nx^2_{N,k}}\sqrt{\frac{N}{\pi}}\;x^3_{N,k}\Big(1+O\Big(\frac{1}{k}\Big)\Big)
$$

On the other hand, we have $x_{N,k} = -\overline{\gamma}_k/\sqrt{N} + s$ with

$$
s = O\left(\frac{1}{N\sqrt{N}}\frac{k^{5/2}}{\log k}\right)
$$

and we want a better estimate for s . We have

$$
\sqrt{N} s \overline{\gamma}_k = O\Big(\frac{1}{N} \frac{k^3}{\log k}\Big) = O\Big(\frac{1}{N^{2/5}}\Big)
$$

and thus we may develop

$$
\begin{split} \operatorname{erfc}(\overline{\gamma}_k - \sqrt{N} s) &= e^{-\overline{\gamma}_k^2} \frac{2}{\sqrt{\pi}} \int_0^{-\sqrt{N} s} e^{-2\overline{\gamma}_k u - u^2} \, du \\ &= -\frac{2}{\sqrt{\pi}} \, e^{-\overline{\gamma}_k^2} \sqrt{N} \, s \left(1 + O\left(\sqrt{N} \, s \, \overline{\gamma}_k\right) + O\left(N s^2\right) \right). \end{split}
$$

$$
-\frac{2}{\sqrt{\pi}} e^{-\overline{\gamma}_k^2} \sqrt{N} s \sim \sqrt{\frac{N}{\pi}} x_{N,k}^3 e^{-Nx_{N,k}^2}
$$

and therefore

$$
s \sim -\frac{1}{2} x_{N,k}^3 = O\left(\frac{k^{3/2}}{N^{3/2}}\right)
$$
,

so that

$$
-e^{-\overline{\gamma}_k^2} \frac{2}{\sqrt{\pi}} \sqrt{N} s \left(1 + O\left(\frac{k^2}{N}\right) + O\left(\frac{k^3}{N^2}\right) \right)
$$

= $\sqrt{\frac{N}{\pi}} x_{N,k}^3 e^{-Nx_{N,k}^2} + \frac{3}{4\sqrt{N\pi}} x_{N,k} e^{-Nx_{N,k}^2} + O\left(\frac{\sqrt{\log k}}{N}\right),$

so that (since $e^{-Nx_{N,k}^2 + \overline{\gamma}_k^2} = 1 + O(\sqrt{N}s\,\overline{\gamma}_k) = 1 + O(k^2/N)$)

$$
s = -\frac{1}{2} x_{N,k}^3 - \frac{3}{8N} x_{N,k} + O\left(\frac{\sqrt{\log k}}{N\sqrt{N}}\right)
$$

$$
= \frac{1}{2} \frac{\overline{\gamma}_k^3}{N\sqrt{N}} + \frac{3\,\overline{\gamma}_k}{8N\sqrt{N}} + O\left(\frac{\sqrt{\log k}}{N\sqrt{N}}\right)
$$

and Result 9 is proved.

6. The phase of a general Daubechies filter.

We have now almost achieved the proof of Theorem Indeed we have for $\mathbf{N} \cdot \mathbf{N}$ is the solution of $\mathbf{N} \cdot \mathbf{N}$ is the solution $x \in \mathbb{R}$, $x \in \mathbb{R}$ $z_{N,k} = x_{N,k} + \sqrt{x_{N,k}^2 - 1}$. We thus have proved:

Proposition 3. Let P_N be the N-th polynomial of I. Daubechies

(54)
$$
P_N(z) = \left(\frac{1+z}{2}\right)^{2N+2} \sum_{k=0}^{N} (-1)^k {N+k \choose k} \left(\frac{1-z}{2}\right)^{2k}
$$

which is related to Q_N by

(55)
$$
e^{i(2N+1)\xi}P_N(e^{-i\xi}) = Q_N(\cos\xi)
$$

or equivalently

(56)
$$
P_N(z) = z^{2N+1} Q_N\left(\frac{1}{2}\left(z + \frac{1}{z}\right)\right).
$$

Then the roots of P_N are precisely given as the following ones:

 \bullet $z = -1$ with multiplicity $2N + 2$,

ess D. Miller ind I. G. Beminister websiter

 \bullet 21N roots with multiplicity 1 which can be decomposed into

$$
\left\{z_{N,k},\overline{z_{N,k}},\frac{1}{z_{N,k}},\frac{1}{\overline{z}_{N,k}}\right\}_{1\leq k\leq [N/2]},
$$

 $(together~with~{z_{N,(N+1)/2},1/z_{N,(N+1)/2}}~if~N~is~odd),~where~{\rm Im}\,z_{N,k}\geq 0.$ $0, \ \mathrm{Re} \, z_{N,k} \ \geq \ 0, \ \vert z_{N,k} \vert \ > \ 1, \ \mathrm{Im} \, z_{N,k} \ > \ 0 \ \textit{for} \ \ k \ < \ [(N+1)/2] \ \textit{and}$ IV , $(IV + 1)/2$

Moreover we have, for N large enough:

• if $k \leq \eta_0 N^{1/5} / (\log N)^{2/5}$ (where η_0 is fixed independently of N and is small enough

(57)
$$
z_{N,k} = i - \frac{\overline{\gamma}_k}{\sqrt{N}} + O\left(\frac{k}{N}\right),
$$

where γ_k is the k-th zero γ of erfc(z) with $\text{Im } \gamma > 0$

 \bullet for all κ

(58)
$$
z_{N,k} = y_{N,k} + \sqrt{y_{N,k}^2 - 1} + O\left(\frac{1 + \log k}{k\sqrt{Nk}}\right),
$$

where

$$
y_{N,k} = \left(1 - e^{-2i(8k-1)\pi/(8N+6)} - \frac{1}{N} e^{-2i(8k-1)\pi/(8N+6)} \log 2 \sqrt{2N\pi \sin\left(\frac{8k-1}{8N+6}\pi\right)}\right)^{1/2}.
$$

PROOF. Just write $z_{N,k} = x_{N,k} + \sqrt{x_{N,k}^2 - 1}$ and apply results 6 and 8.

Of course, we could give better estimates using results 7 and 9, but we have easy estimates for \mathcal{U} as well since \mathcal{U} as \mathcal{U} as well since \mathcal{U} $1/z_{N,k} = x_{N,k} - \sqrt{x_{N,k}^2 - 1}.$

We are now going to use proposition 3 in the estimation of the phase of a Daubechies filter. We want to approximate for $\xi \in [-\pi, \pi]$, $1/(e^{-s} - \lambda N_k)$ where

$$
\lambda_{N,k}\in\left\{z_{N,k},\frac{1}{z_{N,k}},\overline{z}_{N,k},\frac{1}{\overline{z}_{N,k}}\right\}.
$$

A direct consequence of Proposition 3 is the following proposition:

Proposition 4. Let $\xi \in [-\pi, \pi]$ and let $z_{N,k}$, $1 \leq k \leq [(N+1)/2]$ be the roots of P_N described in Proposition 3. Let $\lambda_{N,k} \in \{z_{N,k}, 1/z_{N,k}, \overline{z}_{N,k}, \overline{z}_{N,k$ $1/\overline{z}_{N,k}$. Then

i) for $1 \leq k \leq \eta_0 N^{1/5} / (\log N)^{2/5}$ we have, writing $z_{N,k} = i \overline{\gamma}_k/\sqrt{N}$,

(59)
$$
\left| \frac{1}{e^{-i\xi} - \lambda_{N,k}} - \frac{1}{e^{-i\xi} - \widetilde{\lambda_{N,k}}} \right| \leq C \frac{k}{N} \frac{1}{\frac{k}{N} + |\cos \xi|^2},
$$

where C doesnt depend neither on N nor on \mathcal{A} $\lambda_{N,k} = z_{N,k}$ if $\lambda_{N,k} = z_{N,k}$, $1/z_{N,k}$, if $\lambda_{N,k} = 1/z_{N,k}$ and so on ...).

ii) for $k \geq k_0$ (k_0 large enough independently of N) we have, writing $\widehat{z_{N,k}} = y_{N,k} + \sqrt{y_{N,k}^2 - 1}$ as in formula (58),

(60)
$$
\left|\frac{1}{e^{-i\xi}-\lambda_{N,k}}-\frac{1}{e^{-i\xi}-\widehat{\lambda_{N,k}}}\right|\leq C\,\frac{\mathrm{Log}\,k}{k\sqrt{Nk}}\,\frac{1}{\frac{k}{N}+|\cos\xi|^2}\,.
$$

PROOF. Of course, we may assume $\xi \in [0, \pi]$. If $\xi \in [\pi/2, \pi]$, the estimation is easy since $\text{Re }e^{-i\xi} < 0$ and $\text{Re }\lambda_{N,k} > 0$ (as well $\text{Re }\lambda_{N,k}$ and Re $\lambda_{N,k}$). Thus,

$$
|e^{-i\xi} - \lambda_{N,k}| \ge \text{Re}\left(-e^{-i\xi} + \lambda_{N,k}\right) \ge C\sqrt{\frac{k}{N}} + |\cos\xi|
$$

and the same for $|e^{-i\xi} - \lambda_{N,k}|$ and $|e^{-i\xi} - \lambda_{N,k}|$. Of course, we must prove that $\min \{ \text{Re } \lambda_{N,k}, \text{Re } \widehat{\lambda_{N,k}}, \text{Re } \widetilde{\lambda_{N,k}} \} \geq C \sqrt{k/N}$. For $\text{Re } \widetilde{\lambda_{N,k}},$ it is obvious, since

$$
\operatorname{Re} \widetilde{\lambda_{N,k}} \geq \frac{-\operatorname{Re}\gamma_k}{\sqrt{N} \left| i - \frac{\overline{\gamma}_k}{\sqrt{N}} \right|^2} \approx \sqrt{\frac{k\pi}{N}}.
$$

For Re $\lambda_{N,k}$, if $k < \eta_0 N^{1/3} / (\log N)^{2/3}$, we deduce that $\text{Re }\lambda_{N,k} \geq$ $C\sqrt{k/N}$ since

$$
|\lambda_{N,k}-\widetilde{\lambda_{N,k}}|\leq |z_{N,k}-\widetilde{z_{N,k}}|\leq C\,\frac{k}{N}\leq \sqrt{\frac{k}{N}}\;C'\,N^{-2/5}\;.
$$

ess D. Inibertie I. S. Beminister Information

We thus turn our attention to $\text{Re }\lambda_{N,k} \geq \text{Re }\widehat{z_{N,k}}/|\widehat{z_{N,k}}|^2$ and $\text{Re }\lambda_{N,k} \geq 0$ $\text{Re } z_{N,k}/|z_{N,k}|^2 \text{ for large } k \text{'s. We define } \mu_{N,k} = \sqrt{1-e^{-2i(8k-1)\pi/(8N+6)}}$ and $\xi_{N,k} = \mu_{N,k} + \sqrt{\mu_{N,k}^2 - 1}$. We have

$$
\xi_{N,k} = \sqrt{2\sin\left(\frac{8k-1}{8N+6}\right)} e^{i(\pi/4 - (8k-1)\pi/(2(8N+6)))}
$$

+ $e^{i(\pi/2 - (8k-1)\pi/(8N+6))}$
= $1 + \sqrt{2} e^{i(\pi/4 - (8k-1)\pi/(2(8N+6)) + \arcsin\sqrt{2}\sin(\pi/4 - (8k-1)\pi/2(8N+6)))}$

and thus we study $1 + \sqrt{2} e^{i(\omega + \arcsin \sqrt{2} \sin \omega)}$ for $\omega \in [0, \pi/4]$. We have

$$
\operatorname{Re}\left(1+\sqrt{2} e^{i(\omega+\arcsin\sqrt{2}\sin\omega)}\right)
$$

= $\sqrt{1-2\sin^2\omega} \left(\sqrt{1-2\sin^2\omega} + \sqrt{2\cos^2\omega}\right)$
= $\sqrt{\cos 2\omega} \left(\sqrt{2\cos^2\omega} + \sqrt{1-2\sin^2\omega}\right) \ge \sqrt{\frac{4}{\pi} \left(\frac{\pi}{4} - \omega\right)}$,

which gives

$$
\operatorname{Re}\xi_{N,k}\geq \sqrt{2\,\frac{8k-1}{8N+6}}\geq \sqrt{\frac{k}{N}}\;.
$$

Now we have

$$
|\widehat{z_{N,k}} - \xi_{N,k}| \leq C\sqrt{\frac{k}{N}}\,\frac{\log k}{k} \;,
$$

so that if k is large enough we have

$$
\operatorname{Re} \widehat{z_{N,k}} \ge C' \sqrt{\frac{k}{N}}.
$$

Moreover

$$
|z_{N,k} - \widehat{z_{N,k}}| \leq C\sqrt{\frac{k}{N}}\ \frac{\log k}{k^2}
$$

and thus

$$
\mathrm{Re}\, z_{N,k} \geq C'' \sqrt{\frac{k}{N}} \; .
$$

Finally, we control $|z_{N,k}|$ and $|\widehat{z_{N,k}}|$ by

$$
|z_{N,k}|+|\widehat{z_{N,k}}| \leq 1+\sqrt{2}+O\Big(\sqrt{\frac{k}{N}}\,\frac{\operatorname{Log} k}{k}\Big)\leq C\;.
$$

Thus we obtain

$$
\operatorname{Re}\lambda_{N,k}\geq C\sqrt{\frac{k}{N}}\qquad\text{and}\qquad \operatorname{Re}\widehat{\lambda_{N,k}}\geq C\sqrt{\frac{k}{N}}\;.
$$

We are going to prove that

$$
|e^{-i\xi}-\lambda_{N,k}|\ge C\Big(\sqrt{\frac k N}+\vert \cos \xi\vert\Big)
$$

and

$$
|e^{-i\xi}-\widehat{\lambda_{N,k}}|\ge C\Big(\sqrt{\frac{k}{N}}+|\cos\xi|\Big)
$$

holds for $\xi \in [0, \pi/2]$ as well. Notice that if $|\lambda_{N,k}| < 1$, we have

$$
|\lambda_{N,k}-e^{-i\xi}|=\Big|\frac{1}{z_{N,k}}\Big|\,\Big|e^{-i\xi}-\frac{1}{\overline{\lambda_{N,k}}}\Big|\geq \frac{1}{C'}\Big|e^{-i\xi}-\frac{1}{\overline{\lambda_{N,k}}}\Big|
$$

(and the same for $|e^{-i\xi} - \lambda_{N,k}|$) so that we may assume $|\lambda_{N,k}| > 1$. If $\lambda_{N,k} = z_{N,k}$, our equality is obvious: for $\xi_{N,k}$ we have either $\text{Im} \xi_{N,k} \geq 1$ or Re $\xi_{N,k} \geq 2$ and, since Im $e^{-i\xi} < 0$, we find $|e^{-i\xi} - \xi_{N,k}| \geq 1$, hence (for k large), $|e^{-i\xi} - z_{N,k}| \geq 1/2$ and $|e^{-i\xi} - \widehat{z_{N,k}}| \geq 1/2$, while

$$
\frac{1}{2} \geq \frac{1}{4} \Big(\sqrt{\frac{k}{N}} + |\cos \xi| \Big) \, .
$$

Now if $N_{N,k}$ is the conjugate of $z_{N,k}$ or $z_{N,k}$, we are going to show that

$$
|e^{-i\xi}-\overline{\xi}_{N,k}|\geq C\Big(\sqrt{\frac{k}{N}}+|\cos\xi|\Big)\,,
$$

which gives the control over $|e^{-i\xi} - \lambda_{N,k}|$ for large k's. Thus we are led to show that

(61)
$$
\begin{cases} \text{for } \xi \in \left[0, \frac{\pi}{2}\right] \text{ and } \omega \in \left[0, \frac{\pi}{4}\right], \\ \left|e^{-i\xi} - 1 - \sqrt{2} e^{-i(\omega + \arcsin \sqrt{2} \sin \omega)}\right| \\ \geq C\left(|\cos \xi| + \sqrt{\frac{\pi}{4} - \omega}\right). \end{cases}
$$

evollen in die Berg van die School en die Groot van die G

We compute easily $\mu(\xi, \omega) = |e^{-i\xi} - 1 - \sqrt{2} e^{-i(\omega + \arcsin \sqrt{2} \sin \omega)}|^2$

$$
\mu(\xi, \omega) = \left(\cos \xi - \sqrt{1 - 2 \sin^2 \omega} \left(\sqrt{2} \cos \omega + \sqrt{1 - 2 \sin^2 \omega}\right)\right)^2
$$

+
$$
\left(\sin \xi - \sqrt{2} \sin \omega \left(\sqrt{2} \cos \omega + \sqrt{1 - 2 \sin^2 \omega}\right)\right)^2
$$

=
$$
1 + \left(\sqrt{2} \cos \omega + \sqrt{1 - 2 \sin^2 \omega}\right)^2
$$

$$
- 2\left(\sqrt{2} \cos \omega + \sqrt{1 - 2 \sin^2 \omega}\right)
$$

$$
\cdot \left(\cos \xi \sqrt{1 - 2 \sin^2 \omega} + \sin \xi \sqrt{2} \sin \omega\right)
$$

=
$$
\left(\sqrt{2} \cos \omega - 1 + \sqrt{1 - 2 \sin^2 \omega}\right)^2
$$

+
$$
2\left(\sqrt{2} \cos \omega + \sqrt{1 - 2 \sin^2 \omega}\right)
$$

$$
\cdot \left(1 - \cos \left(\xi - \arcsin \left(\sqrt{2} \sin \omega\right)\right)\right)
$$

$$
\geq 1 - 2 \sin^2 \omega + 2 \left(1 - \cos \left(\xi - \arcsin \left(\sqrt{2} \sin \omega\right)\right)\right).
$$

We have

$$
1 - 2\sin^2 \omega = \cos 2\omega \ge \frac{2}{\pi} \left(\frac{\pi}{2} - 2\omega\right).
$$

On the other hand, we have

$$
1 - \cos\left(\xi - \arcsin\sqrt{2}\sin\omega\right) = 2\sin^2\left(\frac{\xi}{2} - \frac{1}{2}\arcsin\sqrt{2}\sin\omega\right)
$$

$$
\geq \frac{2}{\pi^2}|\xi - \arcsin\sqrt{2}\sin\omega|^2.
$$

Moreover we have

$$
\frac{\pi}{2} - \arcsin \sqrt{2} \sin \omega = \arcsin \sqrt{\cos 2\omega} \le \frac{\pi}{2} \sqrt{\cos 2\omega},
$$

hence we have (using $|a + b|^2 \ge a^2/3 - b^2/2$)

$$
\mu(\xi, \omega)^2 \ge \cos 2\omega + \frac{4}{\pi^2} \left| \xi - \frac{\pi}{2} + \frac{\pi}{2} - \arcsin \sqrt{2} \sin \omega \right|^2
$$

$$
\ge \cos 2\omega + \frac{4}{3\pi^2} \left| \xi - \frac{\pi}{2} \right|^2 - \frac{2}{\pi^2} \left| \frac{\pi}{2} - \arcsin \sqrt{2} \sin \omega \right|^2
$$

$$
\ge \frac{1}{2} \cos 2\omega + \frac{4}{3\pi^2} \cos^2 \xi
$$

$$
\ge \frac{4}{3\pi^2} \left(\cos^2 \xi + \left| \frac{\pi}{4} - \omega \right| \right)
$$

and thus (61) is proved.

Proposition 4 is then obvious since

$$
\Big|\frac{1}{e^{-i\xi}-\lambda_{N,k}}-\frac{1}{e^{-i\xi}-\tilde{\lambda}_{N,k}}\Big|=\frac{|\lambda_{N,k}-\tilde{\lambda}_{N,k}|}{|e^{-i\xi}-\lambda_{N,k}|\,|e^{-i\xi}-\tilde{\lambda}_{N,k}|}
$$

and since we control each term due to (61) or to Proposition 3.

We may now obtain Theorem 1 as a corollary of Proposition 4:

Corollary. With the same notation as in Proposition 4, if $k_0 \leq k_N \leq$ η_0 iv ' /(Log iv) ' then

(62)
$$
\int_0^{2\pi} \Big| \sum_{k=1}^{[(N+1)/2]} \frac{i e^{-i\xi}}{e^{-i\xi} - \lambda_{N,k}} - \sum_{k=1}^{[N+1]/2]} \frac{i e^{-i\xi}}{e^{-i\xi} - \tilde{\lambda}_{N,k}} - \sum_{k=1}^{[(N+1)/2]} \frac{i e^{-i\xi}}{e^{-i\xi} - \tilde{\lambda}_{N,k}} \Big| d\xi \leq C \Big(\frac{k_N^{3/2}}{\sqrt{N}} + \frac{\log k_N}{k_N} \Big).
$$

Proof- Using Proposition and writing IN - for

$$
I_N(\xi) = \sum_{k=1}^N \frac{i\,e^{-i\xi}}{e^{-i\xi} - \lambda_{N,k}} - \sum_{k=1}^{k_N} \frac{i\,e^{-i\xi}}{e^{-i\xi} - \tilde{\lambda}_{N,k}} - \sum_{k_N+1}^{[(N+1)/2]} \frac{i\,e^{-i\xi}}{e^{-i\xi} - \tilde{\lambda}_{N,k}} \;,
$$

we get

$$
I_N(\xi) \leq \sum_{k=1}^{k_N} C \frac{k}{N} \frac{1}{\frac{k}{N} + |\cos \xi|^2} + \sum_{k_N+1}^{[(N+1)/2]} C \frac{\log k}{k \sqrt{Nk}} \frac{1}{\frac{k}{N} + |\cos \xi|^2}.
$$

Thus we have to estimate

$$
\int_0^{2\pi} \frac{d\xi}{k+N|\cos\xi|^2} \le 4 \int_0^{\arccos\sqrt{k/N}} \frac{d\xi}{N\cos^2\xi} + 4 \int_{\arccos\sqrt{k/N}}^{\pi/2} \frac{d\xi}{k}
$$

$$
= \frac{4}{N} \tan\left(\arccos\sqrt{\frac{k}{N}}\right) + \frac{4}{k}\left(\frac{\pi}{2} - \arccos\sqrt{\frac{k}{N}}\right)
$$

$$
\le \frac{4}{\sqrt{Nk}} + \frac{2\pi}{\sqrt{Nk}},
$$

eve D. Inibution I. C. Bomining Indonesia

so that

$$
\int_0^{2\pi} I_N(\xi) d\xi \le C' \Big(\sum_{k=1}^{k_N} \sqrt{\frac{k}{N}} + \sum_{k_N+1}^{\left[(N+1)/2 \right]} \frac{\log k}{k^2} \Big) \le C'' \Big(\frac{k_N^{3/2}}{\sqrt{N}} + \frac{\log k_N}{k_N} \Big) .
$$

Now Theorem I is proved with $\kappa_N = |N| / |\text{Log}(N)|$. At least, we have proved it for $\xi \in [0, 2\pi]$. But $\omega(z_{N,1}^{\vee}, \ldots, z_{N,N}^{\vee}) - \omega(Z_{N,1}^{\vee}, \ldots, Z_{N,N}^{\vee})$ is $\mathcal{L}N$ -periodical, since $\mathcal{L}(Z_1,\ldots,Z_N)(\zeta \pm 2N) = \mathcal{L}(Z_1,\ldots,Z_N)(\zeta) = 2\ell N M$ where M is the number of Z_k 's which lie inside the open disk $|Z| < 1$.

7. Minimum-phased Daubechies filters.

This section is devoted to the proof of Theorem 2.

Result 10. We have the following inequality

(63)
$$
\left| \frac{d}{d\xi} \omega(z_{N,1}, \dots, z_{N,N})(\xi) - \frac{N}{2\pi} \operatorname{Im} \int_{-\pi}^{\pi} \frac{i e^{-i\xi}}{e^{-i\xi} - \xi(\omega)} d\omega \right| \le C\sqrt{N},
$$

where $\xi(\omega) = \sqrt{e^{-i\omega}} + \sqrt{1 + e^{-i\omega}}.$

I ROOF. We approximate $\langle \nabla y | k \rangle = \nabla (\partial \phi - 1) \eta / (\partial I \mathbf{v} + 0)$, $(1 \leq k \leq N)$ where

$$
Z(\omega) = \sqrt{2 \sin \omega} e^{i(\pi/4 - \omega/2)} + e^{i(\pi/2 - \omega)}.
$$

We have shown that for $k_0 \leq k \leq \lfloor (N+1)/2 \rfloor$, $(k_0$ large enough) we have

$$
\left|\frac{1}{e^{-i\xi} - z_{N,k}} - \frac{1}{e^{-i\xi} - Z_{N,k}}\right| \le C \frac{\log k}{\sqrt{Nk}} \frac{1}{\frac{k}{N} + \cos^2 \xi}
$$

and

$$
\left|\frac{1}{e^{-i\xi} - \overline{z}_{N,k}} - \frac{1}{e^{-i\xi} - \overline{Z}_{N,k}}\right| \le C \frac{\log k}{\sqrt{Nk}} \frac{1}{\frac{k}{N} + \cos^2 \xi}
$$

 \mathcal{N}_1 if \mathcal{N}_2 if \mathcal{N}_3 if \mathcal{N}_4 if \mathcal{N}_5 if \mathcal{N}_6 if \mathcal{N}_7 if \mathcal{N}_8 if \mathcal{N}_9 if have to prove similarly

$$
\Big| \frac{1}{e^{-i\xi} - z_{N,k}} - \frac{1}{e^{-i\xi} - Z_{N,k}} \Big| \leq C \, \frac{1}{\sqrt{N}} \, \frac{1}{\frac{1}{N} + \cos^2 \xi}
$$

and

$$
\left|\frac{1}{e^{-i\xi} - \overline{z}_{N,k}} - \frac{1}{e^{-i\xi} - \overline{Z}_{N,k}}\right| \leq C \frac{1}{\sqrt{N}} \frac{1}{\frac{1}{N} + \cos^2 \xi}.
$$

We have of course

$$
|z_{N,k} - Z_{N,k}| \leq |z_{N,k}| + |Z_{N,k}| \leq \frac{C}{\sqrt{N}},
$$

so that we only have to check that

$$
|e^{-i\xi}-Z_{N,k}|\geq \frac{1}{C}\Big(\frac{1}{\sqrt{N}}+|\cos\xi|\Big)
$$

(which is an easy consequence of (61)) and that

$$
|e^{-i\xi} - z_{N,k}| \ge \frac{1}{C} \Big(\frac{1}{\sqrt{N}} + |\cos \xi| \Big) .
$$

If $|\xi + \pi/2| \geq 3 |\gamma_{k_0}|/\sqrt{N}$ and $\xi \in [-2\pi, 0]$, we find

$$
e^{-i\xi} - z_{N,k} = 2 e^{-i(\xi/2 + \pi/4)} \sin\left(\frac{\xi}{2} + \frac{\pi}{4}\right) - \frac{\overline{\gamma}_k}{\sqrt{N}} + O\left(\frac{1}{N}\right),
$$

hence

$$
|e^{-i\xi} - z_{N,k}| \ge \left| \sin\left(\frac{\xi}{2} + \frac{\pi}{4}\right) \right| - \frac{|\gamma_{k_0}|}{\sqrt{N}} + O\left(\frac{1}{N}\right)
$$

$$
\ge \frac{1}{2} \left| \sin\left(\frac{\xi}{2} + \frac{\pi}{4}\right) \right|
$$

$$
\ge \max\left\{ \frac{1}{4} \left| \cos \xi \right|, \frac{6}{\pi} \frac{|\gamma_{k_0}|}{\sqrt{N}} \right\}.
$$

On the other hand, if $|\xi + \pi/2| \leq 3 |\gamma_{k_0}|/\sqrt{N}$, we have

$$
e^{-i\xi} - z_{N,k} = -\left(\frac{\xi}{2} + \frac{\pi}{4}\right) - \frac{\overline{\gamma}_k}{\sqrt{N}} + O\left(\frac{1}{N}\right),
$$

hence

$$
|e^{-i\xi} - z_{N,k}| \ge \frac{1}{2} \frac{\inf \operatorname{Im} \gamma_k}{\sqrt{N}} = \frac{c_0}{\sqrt{N}} \ge C_0 \max \left\{ \frac{1}{\sqrt{N}}, \frac{1}{6 |\gamma_{k_0}|} |\cos \xi| \right\}.
$$

294 p. Inibut and Prominced Indonesia

Thus we have obtained

$$
\left| \frac{d}{d\xi} \omega(z_{N,1}, \dots, z_{N,N})(\xi) - \sum_{k=1}^N \operatorname{Im} \frac{i e^{-i\xi}}{e^{-i\xi} - Z_{N,k}} \right|
$$

$$
\leq C \sum_{k=1}^N \frac{(1 + \log k)}{\sqrt{Nk}} \frac{1}{\frac{k}{N} + \cos^2 \xi}
$$

$$
\leq C \sqrt{N} \sum_{1}^{\infty} \frac{1 + \log k}{k \sqrt{k}}.
$$

Now we look at

$$
S_N(\xi) = \mathrm{Im} \sum_{k=1}^N \frac{i e^{-i\xi}}{e^{-i\xi} - Z_{N,k}}
$$

as at a Riemann sum we have

$$
\frac{\pi}{N} S_N(\xi) \underset{N \to \infty}{\longrightarrow} \operatorname{Im} \int_0^{\pi} \frac{i e^{-i\xi} d\omega}{e^{-i\xi} - Z(\omega)}.
$$

If $\xi \neq \pm \pi/2$, we have a proper Riemann integral; if $\xi = \pm \pi/2$, the integrand is unbounded at $0 \leq -\frac{m}{2}$ or $\pi \leq -\frac{n}{2}$, but for $\xi = -\pi/2$ we have $e^{-i\xi} - Z(\omega) = e^{i\pi/4}\sqrt{2\omega} + O(\omega)$ near $\omega = 0$ and thus

$$
\int_0^\pi \frac{1}{|i - Z(\omega)|} \, d\omega < +\infty \, .
$$

It is easy to evaluate the distance between $\pi S_N/N$ and the integral. We have

$$
\left| \int_0^{7\pi/(8N+6)} \frac{d\omega}{e^{-i\xi} - Z(\omega)} \right| \le C \int_0^{7\pi/(8N+6)} \frac{d\omega}{\sqrt{\omega}} \le C' \frac{1}{\sqrt{N}},
$$

$$
\left| \int_{(8N-1)\pi/(8N+6)}^{\pi} \frac{d\omega}{e^{-i\xi} - Z(\omega)} \right| \le C \int_{(8N-1)\pi/(8N+6)}^{\pi} \frac{d\omega}{\sqrt{\pi - \omega}}
$$

$$
\le C' \frac{1}{\sqrt{N}},
$$

$$
\frac{1}{N} \left| \frac{1}{e^{-i\xi} - Z\left(\frac{8N-1}{8N+6}\pi\right)} \right| \le C' \frac{\sqrt{N}}{N},
$$

and finally for $1 \leq k < N$

$$
\left| \int_{(8k-1)\pi/(8N+6)}^{(8k+7)\pi/(8N+6)} \frac{1}{e^{-i\xi} - Z(\omega)} d\omega - \frac{8\pi}{8N+6} \frac{1}{e^{-i\xi} - Z\left(\frac{8k-1}{8N+6}\right)\pi} \right|
$$

\n
$$
\leq C \int_{(8k-1)/(8N+6)}^{(8k+7)\pi/(8N+6)} \frac{\left| Z(\omega) - Z\left(\frac{8k-1}{8N+6}\right)\pi \right|}{\left| e^{-i\xi} - Z(\omega) \right| \left| e^{-i\xi} - Z\left(\frac{8k-1}{8N+6}\pi\right) \right|} d\omega
$$

\n
$$
\leq C' \int_{(8k-1)\pi/(8N+6)}^{(8k+7)\pi/(8N+6)} \frac{1}{\sqrt{\frac{N}{N}} \sqrt{\frac{k}{N}}} d\omega
$$

\n
$$
\leq C'' \frac{1}{k^{3/2}\sqrt{N}}
$$

and thus

$$
\left|\frac{\pi}{N} S_N(\xi) - \operatorname{Im} \int_0^{\pi} i e^{-i\xi} \frac{d\omega}{e^{-i\xi} - Z(\omega)}\right| \leq C \frac{1}{\sqrt{N}}.
$$

Thus, Result 10 is proved since writing $-e^{-2i\omega} = e^{-i\sigma}$ gives

$$
\int_0^\pi i e^{-i\xi} \frac{d\omega}{e^{-i\xi} - \sqrt{2\sin\omega} e^{i(\pi/4 - \omega/2)} - e^{i(\pi/2 - \omega)}}
$$

=
$$
\frac{1}{2} \int_{-\pi}^\pi i e^{-i\xi} \frac{d\sigma}{e^{-i\xi} - \sqrt{e^{-i\sigma}} - \sqrt{1 + e^{-i\sigma}}}
$$
.

 \int_{0}^{π} $\frac{1}{2}$ \int_{0}^{π} $\frac{1}{2}$ \int_{0}^{π} \int_{0}^{π} $\frac{1}{2}$ \int_{0}^{π} \int_{0}^{π} $\alpha_{-\pi}$ i e α o α i e $(e \rightarrow -\zeta(0))$:

Result 11. Let $\xi(\sigma) = \sqrt{e^{-i\xi}} + \sqrt{1 + e^{-i\sigma}}$ and $\xi \in [-\pi, \pi]$. Then

$$
\int_{-\pi}^{\pi} i e^{-i\xi} \frac{d\sigma}{e^{-i\xi} - \xi(\sigma)}
$$
\n(64)\n
$$
= \begin{cases}\n-\pi \tan\left(\frac{\xi}{2}\right) + i \frac{\cos\xi}{\sin\xi} \log\left(\frac{1 - \sin\xi}{1 + \sin\xi}\right), & \text{if } |\xi| \le \frac{\pi}{2}, \\
-\pi \cot \left(\frac{\xi}{2}\right) + i \frac{\cos\xi}{\sin\xi} \log\left(\frac{1 - \sin\xi}{1 + \sin\xi}\right), & \text{if } |\xi| \ge \frac{\pi}{2}.\n\end{cases}
$$

evollen in die Berg van die School en die Groot van die G

we are not that I - is continuous which is obvious which is obvious since by a state by a state by a state by a

$$
|e^{-i\xi} - \xi(\sigma)| \ge C\sqrt{\pi^2 - \sigma^2},
$$

so that we may apply Lebesgue's dominated convergence theorem.

I ROOF. SHICE $\zeta(\theta) = \zeta(-\theta)$, we find that

$$
I(-\xi) = -\overline{\int_{-\pi}^{\pi} \frac{i e^{-i\xi}}{e^{-i\xi} - \overline{\xi}(\sigma)} d\sigma} = -\overline{I(\xi)},
$$

so that it is enough to compute $I(\xi)$ for $\xi \in [0, \pi]$. Writing $e^{-i\sigma} = u$, we may write

$$
I(\xi) = \int_{-1+i0}^{-1-i0} \frac{e^{-i\xi}}{\sqrt{u} + \sqrt{1+u} - e^{-i\xi}} \frac{du}{u},
$$

where u runs clockwise on the circle $|u|=1$. The function

$$
f(z) = \frac{e^{-i\xi}}{z(\sqrt{z} + \sqrt{1+z} - e^{-i\xi})}
$$

is analytical on $\mathbb{C} \setminus (-\infty, 0]$ and may be extended continuously to $(-\infty, 0]$ $[0] + i[0]$ and $(-\infty, 0] - i[0]$ but at three points: $z = 0$ (both a pole and a branching point), $z = -1$ (a branching point) and if $\xi \in [0, \pi/2]$ at $-\sin^2\zeta - i \, \mathsf{U} = z_\xi$. Thus we may write:

 \bullet for $\xi \in [\pi/2, \pi]$

$$
I(\xi) = \lim_{\epsilon \to 0} \int_{-1}^{-\epsilon} \frac{e^{-i\xi}}{\sqrt{u + i 0} + \sqrt{1 + u} - e^{-i\xi}} \frac{du}{u}
$$

+
$$
\int_{-\epsilon}^{-1} \frac{e^{-i\xi}}{\sqrt{u - i 0} + \sqrt{1 + u} - e^{-i\xi}} \frac{du}{u}
$$

+
$$
\int_{-\epsilon + i0}^{-\epsilon - i0} \frac{e^{-i\xi}}{\sqrt{u} + \sqrt{1 + u} - e^{-i\xi}} \frac{du}{u}
$$

=
$$
2i \int_{0}^{1} \frac{dt}{\cos \xi - \sqrt{1 - t^2}} - 2i \pi \frac{e^{-i\xi}}{1 - e^{-i\xi}}
$$

=
$$
2i \int_{0}^{\pi/2} \frac{\cos \alpha}{\cos \xi - \cos \alpha} d\alpha - \pi \cot \left(\frac{\xi}{2}\right) + \pi i.
$$

• if
$$
\xi \in (0, \pi/2)
$$
 we have, writing $t_{\varepsilon}^{+} = \sqrt{\sin^{2} \xi + \varepsilon}$ and $t_{\varepsilon}^{-} = I(\xi) = \lim_{\varepsilon \to 0} A_{\varepsilon} + B_{\varepsilon} + C_{\varepsilon}$,

where

$$
A_{\varepsilon} = \int_{-1}^{-(t_{\varepsilon}^{+})^{2}} + \int_{-(t_{\varepsilon}^{-})^{2}}^{-\varepsilon} \frac{e^{-i\xi}}{\sqrt{u + i 0} + \sqrt{1 + u} - e^{-i\xi}} \frac{du}{u}
$$

+
$$
\int_{-\varepsilon}^{-(t_{\varepsilon}^{-})^{2}} + \int_{-(t_{\varepsilon}^{+})^{2}}^{-1} \frac{e^{-i\xi}}{\sqrt{u - i 0} + \sqrt{1 + u} - e^{-i\xi}} \frac{du}{u}
$$

=
$$
2i \int_{\sqrt{\varepsilon}}^{t_{\varepsilon}^{-}} + \int_{t_{\varepsilon}^{+}}^{1} \frac{dt}{\cos \xi - \sqrt{1 - t^{2}}}
$$

$$
B_{\varepsilon} = \int_{-\varepsilon + i 0}^{-\varepsilon - i 0} \frac{e^{-i\xi}}{\sqrt{u} + \sqrt{1 + u} - e^{-i\xi}} \frac{du}{u}
$$

=
$$
-2i \pi \frac{e^{-i\xi}}{1 - e^{-i\xi}} + O(\sqrt{\varepsilon})
$$

=
$$
-\pi \cot \left(\frac{\xi}{2}\right) + i \pi + O(\sqrt{\varepsilon}),
$$

$$
C_{\varepsilon} = \int_{-(t_{\varepsilon}^{+})^{2}}^{-\frac{1}{\varepsilon}} \frac{e^{-i\xi}}{\sqrt{u + i 0} + \sqrt{1 + u} - e^{-i\xi}} \frac{du}{u}
$$

+
$$
\int_{z_{\xi} + \varepsilon}^{z_{\xi} - \varepsilon} \frac{e^{-i\xi} du}{(\sqrt{u} + \sqrt{1 + u} - e^{-i\xi}) u}
$$

=
$$
-i \pi 2i \cot \frac{\xi}{2} + O(\varepsilon)
$$

=
$$
2\pi \cot \frac{\xi}{2} + O(\varepsilon)
$$

since the residue of

$$
f(\xi) = \frac{e^{-i\xi}}{\sqrt{u} + \sqrt{1 + u} - e^{-i\xi}} \frac{1}{u}
$$

at $z_{\xi} = -\sin \xi - i \upsilon$ is equal to

$$
\frac{e^{-i\xi}}{\frac{1}{2\sqrt{z_{\xi}}} + \frac{1}{2\sqrt{1+z_{\xi}}}} \frac{1}{z_{\xi}} = \frac{2\sqrt{z_{\xi}}\sqrt{1+z_{\xi}}}{z_{\xi}} = 2 i \cot \frac{\xi}{z}.
$$

evollen in die Berg van die Autonomie

Hence we have

$$
I(\xi) = \pi \left(2 \cot \xi - \cot \frac{\xi}{2} \right)
$$

+ $i \pi + 2 i \lim_{\varepsilon \to 0} \int_0^{t_{\varepsilon}^-} + \int_{t_{\varepsilon}^+}^1 \frac{dt}{\cos \xi - \sqrt{1 - t^2}}$
= $-\pi \tan \left(\frac{\xi}{2} \right) + i \pi + 2 i \lim_{\varepsilon \to 0} \int_0^{\alpha_{\varepsilon}^-} + \int_{\alpha_{\varepsilon}^+}^{\pi/2} \frac{\cos \alpha \, d\alpha}{\cos \xi - \cos \alpha},$

where $\alpha_{\varepsilon} = \arcsin \iota_{\varepsilon}$ and $\alpha_{\varepsilon} = \arcsin \iota_{\varepsilon}$.

Thus, for proving Result 11, we just have to estimate for $\xi \in (0, \pi)$, $\xi \neq \pi/2$

$$
A(\xi) = \lim_{\varepsilon \to 0} \int_0^{\alpha_{\varepsilon}^-} + \int_{\alpha_{\varepsilon}^+}^{\pi/2} \frac{\cos \alpha \, d\alpha}{\cos \xi - \cos \alpha}
$$

with α_{ε}^- = arcsin $\sqrt{\sin^2 \xi - \varepsilon}$ and α_{ε}^+ = arcsin $\sqrt{\sin^2 \xi + \varepsilon}$. We do the \mathbf{u} and \mathbf{u} and

$$
A(\xi) = \lim_{\varepsilon \to 0} \int_0^{\beta_{\varepsilon}^-} + \int_{\beta_{\varepsilon}^+}^1 \frac{2(1-\beta^2)}{(1+\beta^2)(1+\beta^2)\cos\xi - (1-\beta^2))} d\beta.
$$

We write

$$
(1 + \beta^2) \cos \xi - (1 - \beta^2) = \beta^2 (1 + \cos \xi) - (1 - \cos \xi)
$$

= $2 \beta^2 \cos^2 \left(\frac{\xi}{2}\right) - 2 \sin^2 \left(\frac{\xi}{2}\right)$,

hence

$$
A(\xi) = \frac{1}{\cos^2\left(\frac{\xi}{2}\right)} \lim_{\epsilon \to 0} \int_0^{\beta_{\epsilon}^-} + \int_{\beta_{\epsilon}^+}^1 \frac{1 - \beta^2}{\left(1 + \beta^2\right)\left(\beta^2 - \tan^2\left(\frac{\xi}{2}\right)\right)} d\beta
$$

=
$$
\frac{1}{\cos^2\left(\frac{\xi}{2}\right)} \lim_{\epsilon \to 0} \int_0^{\beta_{\epsilon}^-} + \int_{\beta_{\epsilon}^+}^1 \left(\frac{-2}{1 + \tan^2\left(\frac{\xi}{2}\right)} \frac{1}{1 + \beta^2} + \frac{1 - \tan^2\left(\frac{\xi}{2}\right)}{1 + \tan^2\left(\frac{\xi}{2}\right)} \frac{1}{\beta^2 - \tan^2\left(\frac{\xi}{2}\right)} d\beta\right)
$$

$$
= \lim_{\varepsilon \to 0} \int_{0}^{\beta_{\varepsilon}^{2}} + \int_{\beta_{\varepsilon}^{+}}^{1} \left(\frac{-2}{1 + \beta^{2}} + \frac{\cos \xi}{\sin \xi} \left(\frac{1}{\beta - \tan \left(\frac{\xi}{2} \right)} - \frac{1}{\beta + \tan \left(\frac{\xi}{2} \right)} \right) \right) d\beta
$$

\n
$$
= \lim_{\varepsilon \to 0} -\frac{\pi}{2} + \frac{\cos \xi}{\sin \xi} \operatorname{Log} \left| \frac{1 - \tan \left(\frac{\xi}{2} \right)}{1 + \tan \left(\frac{\xi}{2} \right)} \right|
$$

\n
$$
- \frac{\cos \xi}{\sin \xi} \operatorname{Log} \left| \frac{\beta_{\varepsilon}^{+} - \tan \left(\frac{\xi}{2} \right)}{\beta_{\varepsilon}^{+} + \tan \left(\frac{\xi}{2} \right)} \right| + \frac{\cos \xi}{\sin \xi} \operatorname{Log} \left| \frac{\beta_{\varepsilon}^{-} - \tan \left(\frac{\xi}{2} \right)}{\beta_{\varepsilon}^{-} + \tan \left(\frac{\xi}{2} \right)} \right|
$$

\n
$$
= -\frac{\pi}{2} + \frac{\cos \xi}{2 \sin \xi} \operatorname{Log} \left(\frac{1 - \tan \left(\frac{\xi}{2} \right)}{1 + \tan \left(\frac{\xi}{2} \right)} \right)^{2}
$$

\n
$$
+ \frac{\cos \xi}{\sin \xi} \lim_{\varepsilon \to 0} \operatorname{Log} \left| \frac{\beta_{\varepsilon}^{-} - \tan \left(\frac{\xi}{2} \right)}{\beta_{\varepsilon}^{+} - \tan \left(\frac{\xi}{2} \right)} \right|.
$$

Now we have

$$
\left(\frac{1-\tan\left(\frac{\xi}{2}\right)}{1+\tan\left(\frac{\xi}{2}\right)}\right)^2 = \frac{\cos^2\left(\frac{\xi}{2}\right) - 2\sin\left(\frac{\xi}{2}\right)\cos\left(\frac{\xi}{2}\right) + \sin^2\left(\frac{\xi}{2}\right)}{\cos^2\left(\frac{\xi}{2}\right) + 2\sin\left(\frac{\xi}{2}\right)\cos\left(\frac{\xi}{2}\right) + \sin^2\left(\frac{\xi}{2}\right)}
$$

$$
= \frac{1-\sin\xi}{1+\sin\xi},
$$

while we have for $\xi \in (0, \pi/2)$

$$
\beta_{\varepsilon}^{-} - \tan\left(\frac{\xi}{2}\right) \sim \frac{1}{2} \left(1 + \tan^{2}\left(\frac{\xi}{2}\right)\right) (\alpha_{\varepsilon}^{-} - \xi)
$$

$$
\sim \frac{1}{2} \left(1 + \tan^{2}\left(\frac{\xi}{2}\right)\right) \frac{\sqrt{\sin^{2}\xi - \varepsilon} - \sin\xi}{\cos\xi}
$$

$$
\sim \frac{-\varepsilon \left(1 + \tan^{2}\left(\frac{\xi}{2}\right)\right)}{4 \sin\xi \cos\xi}
$$

300 volle is in the proposition of the probability of the control of the con

and

$$
\beta_{\varepsilon}^{+} - \tan\left(\frac{\xi}{2}\right) \sim \frac{+\varepsilon \left(1 + \tan^{2} \frac{\xi}{2}\right)\right)}{4 \sin \xi \cos \xi} \sim -\left(\beta_{\varepsilon}^{-} - \tan\left(\frac{\xi}{2}\right)\right).
$$

Thus

$$
A(\xi) = -\frac{\pi}{2} + \frac{\cos \xi}{2 \sin \xi} \operatorname{Log} \frac{1 - \sin \xi}{1 + \sin \xi}
$$

and Result 11 is proved.

Now, (63) gives

$$
\left|\frac{d}{d\xi}\,\omega(z_{N,1},\ldots,z_{N,N})(\xi)-\frac{N}{2\pi}\,\frac{\cos\xi}{\sin\xi}\,\mathrm{Log}\frac{1-\sin\xi}{1+\sin\xi}\right|\leq C\sqrt{N}\;.
$$

Integrating this for $\xi \in [-\pi, \pi]$ we get

$$
\left|\omega(z_{N,1},\ldots,z_{N,N})(\xi)-\frac{N}{2\pi}\left(\operatorname{Li}_2(-\sin\xi)-\operatorname{Li}_2(\sin\xi)\right)\right|\leq C\sqrt{N}.
$$

Since both functions are 2π -periodical, this inequality can be extended to all $\xi \in \mathbb{R}$ and Theorem 2 is proved.

8. Almost linear-phased Daubechies filters.

In this section we prove Theorem The proof is very easy Indeed, we want to estimate for $N = 4q$, $\omega(z_{N_1}^{N_1}, \ldots, z_{N_r}^{N_r})$ $(z_1, \ldots, z_{N,N}^{N,N})(\xi)$ with $N,N \vee S$ $\varepsilon N_k - 1$ if $\kappa = 0$ mod 4 or $\kappa = 1$ mod 4, and $\varepsilon N_k = -1$ otherwise.

We have (writing ω_N for $\omega(z_{N-1}^{n+1}, \ldots, z_{N-1}^{n})$ $X_{N,1}^{N,1}, \ldots, Z_{N,N}^{N,N}$, K_N to $\binom{\varepsilon_{N,N}}{N,N}$, K_N for $\{k \in \mathbb{N} : 1 \leq$ $k \leq N, \varepsilon_{N,k} = 1$ and K_N for $\{k \in \mathbb{N} : 1 \leq k \leq N, \varepsilon_{N,k} = -1\}$

$$
\frac{d\omega_N}{d\xi} = {\rm Im} \sum_{k \in K_N} \frac{i\,e^{-i\xi}}{e^{-i\xi} - z_{N,k}} + \sum_{k \in \tilde K_N} \frac{i\,e^{-i\xi}}{e^{-i\xi} - \frac{1}{\overline{z}_{N,k}}}
$$

(we have used that for $k \in K_N$, $N+1-k \in K_N$ and $z_{N,k} = \overline{z}_{N,N+1-k}$). Hence we have

$$
\frac{d\omega_N}{d\xi} = \text{Im}\Big(\sum_{k \in K_N} \frac{i e^{-i\xi}}{e^{-i\xi} - z_{N,k}} - \sum_{k \in \tilde{K}_N} \frac{i e^{-i\xi}}{e^{-i\xi} - z_{N,k}}\Big) \n+ \text{Im}\Big(\sum_{k \in \tilde{K}_N} \frac{i e^{-i\xi}}{e^{-i\xi} - z_{N,k}} + \frac{i e^{-i\xi}}{e^{-i\xi} - \frac{1}{\overline{z}_{N,k}}}\Big).
$$

But we have

$$
\frac{ie^{-i\xi}}{e^{-i\xi} - Z} + \frac{ie^{-i\xi}}{e^{-i\xi} - \frac{1}{Z}} = \frac{ie^{-i\xi}}{e^{-i\xi} - Z} + \frac{i\overline{Z}}{\overline{Z} - e^{+i\xi}}
$$

$$
= \frac{ie^{-i\xi}(e^{i\xi} - \overline{Z}) + i\overline{Z}(-e^{-i\xi} + Z)}{|e^{-i\xi} - Z|^2}
$$

$$
= \frac{i(1 - 2\overline{Z}e^{-i\xi} + |Z|^2)}{|Z - e^{-i\xi}|^2}
$$

$$
= i + \frac{i(Z e^{i\xi} - \overline{Z}e^{-i\xi})}{|Z - e^{-i\xi}|^2},
$$

hence

$$
\operatorname{Im}\left(\frac{i\,e^{-i\xi}}{e^{-i\xi}-Z}+\frac{i\,e^{-i\xi}}{e^{-i\xi}-\frac{1}{Z}}\right)=1\,.
$$

Thus, we have obtained

$$
\frac{d\omega_N}{d\xi} = \frac{N}{2} + \text{Im}\sum_{k=1}^q i e^{-i\xi} \left(\frac{1}{e^{-i\xi} - z_{N,4k-3}} - \frac{1}{e^{-i\xi} - z_{N,4k-2}} - \frac{1}{e^{-i\xi} - z_{N,4k-1}} + \frac{1}{e^{-i\xi} - z_{N,4k}} \right).
$$

Now we write, for $r \in \{1, 2, 3\}$

$$
\frac{1}{e^{-i\xi} - z_{N,4k-r}} = \frac{1}{e^{-i\xi} - z_{N,4k}} + \frac{z_{N,4k-r} - z_{N,4k}}{(e^{-i\xi} - z_{N,4k})(e^{-i\xi} - z_{N,4k-r})}
$$
\n
$$
= \frac{1}{e^{-i\xi} - z_{N,4k}} + \frac{z_{N,4k-r} - z_{N,4k}}{(e^{-i\xi} - z_{N,4k})^2}
$$
\n
$$
+ \frac{(z_{N,4k-r} - z_{N,4k})^2}{(e^{-i\xi} - z_{N,4k})^2(e^{-i\xi} - z_{N,4k-r})}.
$$

We have, writing $\tilde{k} = \min\{k, q + 1 - k\}$

$$
\Big| \frac{(z_{N,4k-r}-z_{N,4k})^2}{(e^{-i\xi}-z_{N,4k})^2(e^{-i\xi}-z_{N,4k-r})} \Big| \leq C \, \frac{\displaystyle \frac{1}{N\tilde{k}}}{\Big(\frac{\tilde{k}}{N}+\cos^2\xi\Big)^{3/2}} \leq \frac{C\,\frac{1}{\tilde{k}}\sqrt{\frac{1}{N\tilde{k}}}}{\frac{\tilde{k}}{N}+\cos^2\xi}
$$

and

$$
\int_{-\pi}^{\pi} \frac{d\xi}{\frac{\tilde{k}}{N} + \cos^2 \xi} \le 4 \int_{0}^{\arccos \sqrt{\tilde{k}/N}} \frac{d\xi}{\cos^2 \xi} + \frac{4N}{\tilde{k}} \int_{\arccos \sqrt{\tilde{k}/N}}^{\pi/2} d\xi
$$

$$
= 4 \sqrt{\frac{N}{\tilde{k}}} \sin \left(\arccos \sqrt{\frac{\tilde{k}}{N}} \right) + \frac{4N}{\tilde{k}} \arcsin \sqrt{\frac{\tilde{k}}{N}}
$$

$$
\le 4 \sqrt{\frac{N}{\tilde{k}}} + 2\pi \sqrt{\frac{N}{\tilde{k}}},
$$

so that

$$
\int_{-\pi}^{\pi} \left| \frac{d\omega_N}{d\xi} - \frac{N}{2} - \text{Im} \sum_{k=1}^{q} \frac{z_{N, 4k-3} - z_{N, 4k-2} - z_{N, 4k-1} + z_{N, 4k}}{(e^{-i\xi} - z_{N, 4k})^2} \right|
$$

$$
\leq C \sum_{k=1}^{\infty} \frac{1}{k^2} = C' < +\infty
$$

and

$$
\int_{-\pi}^{\pi} \left| \frac{d\omega_N}{d\xi} - \frac{N}{2} \right| d\xi
$$

$$
\leq C' + C \sum_{k=1}^{q} \sqrt{\frac{N}{\tilde{k}}} \left| z_{N,4k-3} - z_{N,4k-2} - z_{N,4k-1} + z_{N,4k} \right|.
$$

When $\tilde{k} \leq k_0$, we write

$$
|z_{N,4k-r}-z_{N,4k+1-r}|=O\Big(\frac{1}{\sqrt{N\tilde{k}}}\Big)
$$

and obtain

$$
\sum_{\tilde{k}\leq k_0}\sqrt{\frac{N}{\tilde{k}}}\ |z_{N,4k-3}-z_{N,4k-2}-z_{N,4k-1}+z_{N,4k}|\leq C\log k_0\ .
$$

When $\tilde{k} \ge k_0$, we may write as in formula (58)

$$
z_{N,4k-r} = y_{N,4k-r} + \sqrt{y_{N,4k-r}^2 - 1} + O\left(\frac{\text{Log}\,\tilde{k}}{\tilde{k}\sqrt{N\tilde{k}}}\right)
$$

= $\sqrt{\omega_{N,4k-r}} + \sqrt{\omega_{N,4k-r} + 1} + O\left(\frac{\text{Log}\,\tilde{k}}{\tilde{k}\sqrt{N\tilde{k}}}\right)$,

where

$$
\omega_{N,\ell} = -e^{-2i\pi(8\ell-1)/(8N+6)} - \frac{1}{N} e^{-2i\pi(8\ell-1)/(8N+6)} \log\left(2\sqrt{2N\pi \sin\left(\frac{8\ell-1}{8N+6}\pi\right)}\right).
$$

We write

$$
\sqrt{\alpha + \beta} = \sqrt{\alpha} + \frac{\beta}{\sqrt{\alpha} + \sqrt{\alpha + \beta}} = \sqrt{\alpha} + \frac{\beta}{2\sqrt{\alpha}} - \frac{\beta^2}{2\sqrt{\alpha}(\sqrt{\alpha} + \sqrt{\alpha + \beta})^2}.
$$

magnitude $\min \{\sqrt{\ell/N}, \sqrt{(N+1-\ell)/N}\}\$ and $\omega_{N,\ell+1} - \omega_{N,\ell}$ is of order of magnitude \mathcal{N} may write \mathcal{N} . Thus we may write \mathcal{N} write \mathcal{N}

$$
\sqrt{\omega_{N,4k-r}} = \sqrt{\omega_{N,4k}} + O\left(\frac{1}{N}\right)
$$

$$
\sqrt{1 + \omega_{N,4k-r}} = \sqrt{1 + \omega_{N,4k}} + \frac{\omega_{N,4k-r} - \omega_{N,4k}}{2\sqrt{1 + \omega_{N,4k}}} + O\left(\frac{1}{\tilde{k}\sqrt{N\tilde{k}}}\right)
$$

$$
= \sqrt{1 + \omega_{N,4k}} + \frac{e^{-2i\pi(32k-1)/(8N+6)}(1 - e^{2i8r\pi/(8N+6)})}{2\sqrt{1 + \omega_{N,4k}}}
$$

$$
+ O\left(\frac{\log \tilde{k}}{N^2}\right) + O\left(\frac{1}{\tilde{k}\sqrt{N\tilde{k}}}\right)
$$

and - nally be a set of the set o

$$
\frac{\sqrt{N}}{\tilde{k}} |z_{N,4k-3} - z_{N,4k-2} - z_{N,4k-1} + z_{N,4k}|
$$
\n
$$
= \sqrt{\frac{N}{\tilde{k}}} \left| \frac{e^{2i24\pi/(8N+6)} - e^{2i16\pi/(8N+6)} - e^{2i8\pi/(8N+6)} + 1}{2\sqrt{1 + \omega_{N,4k}}} \right|
$$
\n
$$
+ O\left(\frac{\log \tilde{k}}{\tilde{k}^2}\right) + O\left(\frac{1}{\sqrt{N\tilde{k}}}\right) + O\left(\frac{\log \tilde{k}}{N\sqrt{N\tilde{k}}}\right)
$$
\n
$$
= O\left(\frac{1}{N\tilde{k}}\right) + O\left(\frac{\log \tilde{k}}{\tilde{k}^2}\right) + O\left(\frac{1}{\sqrt{N\tilde{k}}}\right) + O\left(\frac{\log \tilde{k}}{N\sqrt{N\tilde{k}}}\right).
$$

304 p. Internation I G Lemand Information

We thus have proved Theorem 3, since

$$
\sum_{1}^{N} \frac{1}{N\tilde{k}} \le C \frac{\text{Log } N}{N} = o(1),
$$
\n
$$
\sum_{1}^{N} \frac{1}{\sqrt{N\tilde{k}}} \le C \frac{\sqrt{N}}{\sqrt{N}} = C < +\infty,
$$
\n
$$
\sum_{1}^{\infty} \frac{\text{Log } \tilde{k}}{\tilde{k}^2} < +\infty,
$$
\n
$$
\sum_{1}^{N} \frac{\text{Log } \tilde{k}}{N\sqrt{N\tilde{k}}} \le C \frac{1}{N\sqrt{N}} \sqrt{N} \text{ Log } N = o(1).
$$

References

- [1] Caglar, H., Akansu, A. N., A generalized parametric PR-QMF design technique based on Bernstein polynomial approximation. IEEE Trans. Signal Processing - -
- [2] Daubechies, I., Orthonormal bases of compactly supported wavelets. common a straight statute and part of the straight
- Fettis H E Caslin J C Cramer K R Complex zeros of the error function and of the complementary error function Math- Comp- \blacksquare
- \blacksquare . The approximation problem in the approximation problem in \blacksquare lter design IEEE Trans- on Circuit Theory
 - -
- [5] Kantorovich, L. V., Sur la convergence de la suite des polynômes de S.
- [6] Lemarié-Rieusset, P. G., Polynômes de Bernstein en théorie des ondelettes C- R- Acad- Sci- Paris - - -
- [7] Lorentz, G. G., Bernstein polynomials. Chelsea Publ., 1986.
- [8] Meyer, Y., Ondelettes et opérateurs. vol. I. Hermann, 1990.
- [9] Nevanlinna, R., Le théorème de Picard-Borel et la théorie des fonctions $m\n *from* or *phes.* Gauthier-Villars, 1929.$
- Polya G Szego G Problems and theorems in Analysis I- Springer Verlag, 1986.
- Strichartz
 R
 How to make wavelets Amer- Math- Montly
- [12] Varga, R. S., Edrei, A., Saff, E. B., Zeros of sections of power series. Lecture Notes in Math- - SpringerVerlag

 $Recibido: 20$ de febrero de 1.995 $Revisado: 10$ de noviembre de 1.995

> Djalil Kateb Université Technologique de Compiègne Mathématiques Centre de Royallieu BP 649 60206 Compiègne Cedex FRANCE - <u>in andere andere</u>

> > and

Pierre Gilles Lemarié-Rieusset Université d'Evry Mathématiques Bd des Coquibus 91025 Evry Cedex FRANCE lemarielami-univevry-fr