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Abstract. We prove analogue statements of the spherical maximal
theorem of E. M. Stein, for the lattice points Z". We decompose
the discrete spherical “measures” as an integral of Gaussian kernels
Ste(z) = e2milel’ (t+ie) By using Minkowski’s integral inequality it is
enough to prove LP-bounds for the corresponding convolution opera-
tors. The proof is then based on L?-estimates by analysing the Fourier
transforms §; (), which can be handled by making use of the “cir-
cle” method for exponential sums. As a corollary one obtains some
regularity of the distribution of lattice points on small spherical caps.

1. Introduction.

Let us denote by oy the characteristic function of the sphere of
radius A'/2 in Z", i.e.

O\ = X{wezn:mz:)\} and Sx = gz:n ox(z).

Let A be a fixed positive number and define the spherical maximal
operator as

1) Myf@) = sw |(F+F)@)|.

-~ %
A<a<2A | N SA
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It is proved that

Theorem 1. If n > 5, p >n/(n—2), f € LP(Z"), then
(2) [MafllLe@ny < np llfllLe@n)
where the constant c,, , s independent of A.

We generalize estimate (2) to the case of the k-spheres, which are
defined by

oy =
AT Xipenm|z 2=}

and it is proved.

Theorem 2. Let k > 2, K = 2¥=1 then forn > 4Kk, p > n/(n —
4Kk) we have

(3) IMakfllp < cnpp 1l s

where the constant c, i, s independent of A.

It is well-known, that for n > 5, there exist constants 0 < ¢,, < C,
such that

(4) cn N2 < 8, < 0, A2

We start with the decompositions

1
O')\(.T) — / 627Ti(|;1;|2_)\)t dt
0

and
1 e ) )
(5) e 2meA O_)\(x) _ / e27r1,|m| (t+ie) e~ 2miAL 1y
0

and define the modified maximal operator as

(6) My f(z) = S [(e72m AN 20 ) 5 f ()]

From inequality (4) it follows, that if A < e~ and f > 0, we have

(8) Mpf(z) < cMpcf(z),
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for every z, so it is enough to prove (2) for the modified maximal
operator. Introducing the convolution operator

. 2 .
Stef =8tex [, where Ste(z) = e2mi|z]”(t+ie)

Minkowski’s integral inequality together with formulae (4) and (5) im-
ply

1
(9) IMacflly < e AT/ / 1S.c fllp dt .
0

In order to understand the integrand on the right side of inequality (9),
we will apply the so-called “circle” method in the variable t (cf. [3]).
First we decompose the interval [0, 1] into neighborhoods of rationals,
whose denominator is smaller than a given number N as follows:

Let N > 0 be given and consider the set

H={p/qg:1<qg<N,0<p<gq, (p,q) =1},

and define the neighborhoods

p .
v :{te 0,1:‘t——: [ — }
P,q [0, 1] q 71?16115” r|

From the obvious inequalities:
if p/q # p1/q1 then

1 1
(I) b y4 ‘ >

- _—+ .
q q 2Nq 2Nq

For every t € [0, 1] there exists p/q € H such that,

P 1
11 ‘t__‘g—v
(1) . S Ng

it follows
W;,q g ‘/ZJ;Q g Wpaq ’

where Wy = {t: |[t—p/q| <1/2Nq)} Wpq={t:|t—p/ql < 1/(Nq)}.

The crucial point is that one can estimate the Fourier transform
5t.¢(§) separately in each neighborhood V,, , by using Poisson summa-
tion and the properties of Gaussian sums, as it is shown below.
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2. Fourier transform estimates.

Lemma 1. Let t =p/q+7,t €V, 4, then

(10) I1Seflle> < eng™™? min{e™/2, 772} | fl2 .

Proor. The Fourier transform of the function s; = s; . is defined by
§,(¢) = ZeZwi(|m|2(t+is)+m§) : ¢ eI

and inequality (10) is equivalent to

(11) sup [8:(¢)| < ¢ ¢~/ ? min {e /2, 77"/}
3

Since §4(¢) is the product of n one dimensional functions, i.e. §(¢) =
I1;5:(&;) it is enough to prove formula (11) in case when n = 1. By
Poisson summation and substituting x = rq + s, we have

§t(£) — Z e27ri392p/q P (x)e}n'iw{

| 8

g—1

_ e27riszp/q Z s, (rq + S) e27ri(7’q-+-8)§
s=0 T
q—1 1 l

= Y emitna 2 pemis/ag (5 )
s=0 l q q

where §-(€) = [, s7(x) e7?™*¢ dz is simply the Fourier transform of s,
as function on R, which has the simple form

5, (6) = /Re27ri(ac2(7'+is)—w€) 0 = (¢ — i)/ € /eim).

So we have the formula

5:(¢) = (e —ir) /2
(12) 1958, 2 e
l mi(p/qs*—1/qs) \ ,—m({—=1/q)" /(2(e—iT))
. e e )
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In order to estimate this expression, first we note that because of the
properties of Gaussian sums one has

qg—1
‘% ZeZwi(szp/q—sl/q) S \/iq—l/2 ]
s=0

Now we choose e = A=, N = [A'/2] (where [z] denotes the integer part
of r), and since t = p/q+ 7 € V, , we have 7 < 1/(Nq) < e¥/2¢ 1. It
follows

1 .
?(e2 4+ 72) ~ 2q¢% 25’ ifr<e
and
c >_° 1 (eY2q )2 > 1 ife <7.
?(e2+12) T 2¢%272 2 =9’ =

Now it is easy to estimate the right hand side of formula (12)

8] < e —ir| Mg/ Ze‘“f/(2(q£—l)2(q2(52+72)))
I

< Cq1/2(€ + T)_1/2(Ze_w/4(q§_l)z>
!

< cq_l/z(s + 7')_1/2,

where the constant ¢ is independent of ¢ and &.
This proves inequality (10) and Lemma 1 follows.

PRrOOF OF THEOREM 1. It is easy to see that

(13) I1Sef Il < ISella 11l < cne™ 21 £]]1 -

Let 1 < p < 2 and we choose the number a such that 1/p = a/2+(1—a).
Interpolating between estimates (10) and (13), we have

ISl < ena= 2= min {1, (T) "Y1,

This implies

/ 1S,f 1l < 0 A—P/2FLg=nar2

Vpaq
([ ()
0 €

<ec, q—ncx/2(€ A)—n/2+1
<ena |l -
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It follows when n > 4, a > 4/n or equivalently p > n/(n — 2)

IMacfllp < en (D0 @)1y

p/q€EH

< calllly (S0
< call

This proves Theorem 1.

3. Estimates for k-spheres.

We now briefly describe how the L? estimate generalize to k-
spheres. The extra complications arise are similar to those of the War-
ing problem. Indeed we refer to the analysis of Hardy-Littlewood in [3],
where it was proved that for n > 2F—1k

(14) Cne NETL < Sy g < C g AVRTL

hence as for £ = 2 one has
1
IVl < i A7 S,
0

where the kernel of the operator Sy is s¢(z) = 2™ ;1) (+ie)
For t = p/q + 7 Poisson summation yields

oo

o= 3 (EE i)z (L)
s=0

[=—o0
where §,(n) = [, s7(x) e7?™*" dz is the Fourier transform on R.

The decomposition into neighborhoods of rationals for k£ > 2 looks
as follows

Hk70:{§ :qul/k}, Hk,lz{gcAl/k<q§A1_1/k}.

Vp.q is called a major arc if p/q € Hy, o and a minor arc if p/q € Hj, 1.
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The reasoning of Theorem 1 generalizes to the major arcs as is
shown in

Lemma 2. Letp/q € Hy o, t € Vp, 4. Then we have forp > n/(n—k+1)

15 AT Sl dt < g

Vpaq

where a =2p/(p—1).

Proor. We make use of the following estimates which are proved in
[3] using slightly different notations.

(16) 5 (| < clr+iel 7V

holds uniformly in n. Let n =1 — ¢ £ then one has

i (,5 _ l)‘ < o |r + i~/ @=D) =2/ (k1)
(17) g/ =
- |~ =2/ 2=1)) =l * )

From inequalities (16) and (17) it follows

>

l
5. (5_5” < e (|rie| V4 |rpie| Y @1 ((6=2)/ 0= 1)y

where inequality (16) is used when |l — ¢&| is minimal. Also one has
the standard estimate for the Weyl sum

q—1
‘q—l Z e27ri(skp/q—sl/q) < cq_l/K ,
s=0

which holds uniformly in [, when K = 2¥=!, Taking the n-th power of
§t, we obtain (in n-dimension) on the major arcs

sup |5:(€)]|
3

< Cup @ VE(T +ie|TE 4|7 4 g7/ G rk=2)/ (k1)

Let 1/p = a/2+ 1 — « and using the trivial estimate

n
selln < (Yo em2melel)” < et

TEZ
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we obtain by interpolation

1Stllp—p < Cnkp q_na/K e~k

. T
1%
9

Using the facts that on a major arc e'/kqg = A=%/k¢ < 1 and the simple
estimate

—n/k 0/ @2(k-1))
+ ‘z + =

’ (El/kq)n(k—2)/(2(k—1)))a _

TP
/‘z-l-—‘ dr <cge, for g > 1.
R g
Estimate (15) follows when na/(2(k — 1)) > 1. This proves Lemma 2.

On the minor arcs one can give direct estimates for §;(&) exploiting
that the denominator ¢ is large

Lemma 3. Let p/q € Hy 1, t € V,, 4 then we have

(18) sup §¢.6(§) < cn A"/ k=n/(4kK)
§

PROOF. Tt is enough to prove (18) in one dimension. Let L = AY/*+9
for some 6 > 0, then one has

L

(19) 8(6) = Y et 4 (3 et

=0 rz>L

and k 146 B
Z e—ET < e—eA 8_1/k < e—A Al/k _ 0(1) ]
z>L

To estimate the maim term of formula (19) we use partial summation.
Let us define the sums s;¢ = Zl ezm(wkp/q‘””g), we have

L
D (s1e = s1-1.¢) e2mil (ric)

200 =°

L
_ Z S1¢ (627rilk(7'+i6) . e27ri(l—1)k(7—+is)) _
1=0

Since on the minor arcs 7 < AYVk=1g=1 < A= it follows

|627Ti(7'+i6)lk . ezm(T+ie)l’“*1| < e A—l/k—i—k&’
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so the sum in the formula (19) is less than equal

A < (k+1)6'
15:(8)] < Ck,d(rlf%agdsl,d)A

Using the standard estimate for Weyl sums (¢f. [2, Chapter 6]), one
has

l
(21) ‘ Zezw(wkp/q-i—w&)‘ < rs AL/k)(1=1/(2K))+2kd

=0

holds uniformly in ¢ and p, when AY* < g < AM=VE | < AV/E+S,
The above estimates imply for 6 < §(k) the estimate

(22) 150.(6)| < crs AV/R=1/QRE) 448 < A1/R=1/(4REK) < Cnk
holds uniformly in ¢ , and Lemma 3 follows.

PROOF OF THEOREM 2. Interpolation between the trivial L', and the
L? estimate (18), shows that for 1/p = 1 — /2 on a minor arc we have

A—n/k-{—lHSth_)p < Crkep An/k—na/(4Kk) )

Hence for n > 4Kk, p > n/(n — 4Kk) one has

IMasfly < enp( Do g7/ % AT /GO ) )
p/q€Ho k

lf“p )
since na/K > 2 and na/(4Kk) > 1. This proves Theorem 2.

/
< Crk,p

We would like to point out how these estimates are connected with
the distribution of integer points on spherical caps. More precisely we
define the maximal function

where z + D} = {u € Z" : |z — u| < [*/?}. On the other hand the
average number of integer points on a spherical cap of radius ['/? lying
on the sphere of radius A'/2 is clearly

S)\ ;= l(n—l)/Q)\—l/Q )
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Theorem 1. implies the following

Corollary 1. Lete > 0. Ifl > X\1=%/2 then

(23) A2z e DY sh(@) > A8} < cne \—en/(2(n=2))

PrROOF. Let A > 0, f(x) = |z|~" 2. First we estimate M, f(z) from
below as follows

M f(z)
> ep AT sup Y TPy e 2 o -y =1 Jy? = )
ASu<2A 1T

> cp, A—n/2+1

sup > LTy ezt L< o —yl® <2L, Jy)* = u
ASH<2A [ qyadic

sup Y LTy ez -y < Ly =l

ASH<2A I gyadic

where the last inequality was obtained by partial summation. This
immediately implies

—n/2+1 sx.L(®) L2

(24) M)\f(x) Z Cn )\ g)\,L )\1/2 bl

for every dyadic value L = 2!, but it remains true for every integer I
since the function s} ;(z) is monotone increasing in [.

Choosing p = n/(n — 2) + 7, it follows for [ > \1=¢/2

s5(@) 11/2 )n/<n—2>+n

M 2 AT/ 0A 57 (S0
<Dy Al

> \en/Aln=2)=in/2\n/2|(p € DR sy > G
Choosing 7 small enough estimate (23) follows immediately, since f €

LP(Z™) and the maximal operator M) is bounded in LP(Z™) by Theo-
rem 1.
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