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Hilbert transform, Toeplitz
operators and Hankel operators,

and invariant A. weights

Sergei Treil, Alexander Volberg and Dechao Zheng

Abstract. In this paper, several sufficient conditions for boundedness
of the Hilbert transform between two weighted LP-spaces are obtained.
Invariant A., weights are introduced. Several characterizations of in-
variant A., weights are given. We also obtain some sufficient condi-
tions for products of two Toeplitz operators or Hankel operators to be
bounded on the Hardy space of the unit circle using Orlicz spaces and
Lorentz spaces.

0. Introduction.
Let 0D be the unit circle and dw denotes the Lebesgue measure

on dD. For p > 1 and v a positive function on 0D, LP(v) denotes the
space of functions f on the unit circle such that

/ ()P o(w) dw < o
oD

We use L? to denote LP(v) if v = 1. Let H? be the subspace of LP which
those functions are analytic on the unit disk D. There is an orthogonal
projection P from L? onto H?. The Hilbert transform 7T is defined to
be T=—iP+i(l—P).
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We are concerned with the problem of identifying those pair (v, u)
of positive functions on 0D for which the Hilbert transform 7" is bound-
ed from LP(u) to LP(v), that is

1) /8 IS o(w)du < © /8 ) uw) du.

for all f € LP(u).

This problem was first raised by Muckenhoupt and Wheeden in
[16]. There is a very elegant theorem of Cotlar-Sadosky ([4], [5]) which
gives a necessary and sufficient condition that (1) holds for a given con-
stant C. The theorem of Cotlar and Sadosky generalizes the Helson-
Szego6 theorem in two weights case. On the other hand, it is a consider-
ably interesting question in harmonic analysis to find explicit estimates
of the norm of the Hilbert transform between two weighted spaces; see
[2] for further references. So it seems interesting to find characteriza-
tions of the weight functions for (1) close in form to the following A,
condition [15]. It remains an open question ([6], [22], and [8]).

In case that u = v, Hunt, Muckenhoupt and Wheeden [12] have
proved that (1) holds if and only if v satisfies a simpler condition

(Ap) sup (|}|/ v(w) dw) (ﬁ/lvv(w)_l/(p_l) dw)P~! < oo,

where the supremum is taken over all arcs I. Muckenhoupt [14] has
shown that the A, condition is a necessary and sufficient condition
that the Hardy-Littlewood maximal function

fo—sup|l|/|f w)|dw,

zel

satisfies the following inequality

@ [ M) de <0 [ ue) do.

oD

One may expect that the following condition is a necessary and sufficient
condition that inequality (1) holds even u # v

(A7) sup(|}|/ v(w )dw)(|}| /u(w)_l/(p_l) dw)p_1 < 0.
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Simple examples [16] show that the A} condition is not sufficient for
either (1) or (2) to hold. Sawyer [21] has shown that (2) holds if and
only if

o ([ 010qu /0 @) v(w) do)
S, ! »
: </u(w)_1/(p_1) dw) < 00,

I

where x, denotes the characteristic function of I. Sawyer [22] also
showed that the S, condition with additional conditions is sufficient for
(1). Fujii [8] has obtained the following sufficient condition for (1):

There exist constants 0 < a < 1, f and 0 < Cy < oo such that, for
every arc I and all measurable subsets E and F' of I with ENF =0
and |F| > «|I],

(/Ev(w) dw> <|I|_1 /c(n a)Iu_l/(p_l)(w) dw)p

EN [ 1)
<a(ig) [ (w) duw

< o0,

where c(n, ) is a constant greater than 1 and c(n,a)l is the arc with
the same center as I and expanded c(n,a) times.

Sawyer’s condition involves the operator M, and it is interesting
to obtain sufficient conditions close in form to the A} condition. In
that direction, Neugebauer [17] has obtained the following sufficient
condition for (2) for r > 1,

(3) Sl} (%‘/lvr(ac) dx) (ﬁ/ju""/(p_l)(x) da;)p_l < 00.

Recently Pérez [19] has improved the condition (3) and obtained weaker
sufficient conditions for (2) using the general maximal operator involv-
ing in Banach function spaces.

In this paper, using Banach function norms we define a maximal
operator and a nontangential maximal operator. We shall show several
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sufficient conditions for (1). In particular, we prove that if (u,v) is a
pair of weights such that for some r > 1,

(4) sup o' (2) (u™ P (2)P 7 < oo,

then the Hilbert transform is bounded from LP(u) to LP(v). Here we
follow the convention of identifying functions on the unit circle with
their harmonic extensions, defined via Poisson’s formula, into the unit
disk D.

The condition (4) is analogous to the condition (3) and the follow-
ing condition: for 0 < a <1 and r > 1,

1 1/(pr)
Ia/n - r
sl (g f o))

1 ' 1/(p'r)
: (m/u(l_p " (z) d:):) g < 0.
I

Sawyer and Wheeden [23] have shown that the condition (5) is a suffi-
cient condition for fractional integral operators

()

If(z) = / & — g f(y) dy

to be bounded from LP(u) to LP(v).
For z € D, let ¢,(w) be the Mébius map

for w € D.

We can improve the condition (4) using the scale of Lorentz spaces
or Orlicz spaces which are concrete examples of Banach function spaces.
Let P(z,x) be the Poisson kernel

1—|z[?
P(Z,.T) = m .

We shall show that one of the following conditions is a sufficient condi-
tion for (1)

sup (sup/ t"P(z,x) dx)
z€D M t>0 Ju(z)>t

(6) o bt
' (igg (/u_l(w)>t wOP G o) dm) ) =0
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for some r > 1, and
(7) Sugllvl/pwﬁzllm lu™" 0 L < o0,
zE€

for some Young functions such as
®(t) = tPlog? (1 4+ 1)

and , ,
(t) =2 log? (1 +1),

or weaker ones
(t) = t* log? (1 + t) (loglog (1 + t))P~1+°

and
U(t) = t* log? (1 + t) (loglog (1 + )P~ 147 |

for some 6 > 0.

We will introduce invariant A,, weights and give several charac-
terizations of invariant A., weights. From these characterizations we
can easily tell the difference between A., and invariant A., weights.

If we assume that both v and v~/ ®=1 are invariant A, weights,
we will show that the condition

(8) sup v(z) (u™ P ()Pt < oo,

is a necessary and sufficient condition for the Hilbert transform to be
uniformly bounded from LP(uo ¢,) to LP(vo ¢,) for all z € D.

Boundedness of the Hilbert transform between two weighted L2
spaces is related to boundedness of products of two Toeplitz operators
or Hankel operators on the Hardy space H?. On products of Toeplitz
operators Sarason [20] made the following conjecture:

Let f and g be outer functions in H2. The product T;T5 1s bounded
iof and only if

© sup |£2(2) ol (2) < .
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On the product of Hankel operators it is natural to make the fol-
lowing conjecture [27]:

Let f and g be in L?. Then the product HtHgy is bounded if and
only if

(10) su}glle kzllz [[Hg k2|2 < oo
zE

Let f_ denote (1 — P) f for f € L% Then the condition (10) is
equivalent to

(11) sup [|f- o ¢, — f-(2)[|2[lg- o ¢z —g-(2)[]2 < o0.
z€D

Treil [20] showed that if the product 7417 is bounded, then the condi-
tion (9) holds in Sarason’s Conjecture. Conversely, it was shown [27]
that the following condition implies that TyTy is bounded

(12) sup | 17 (2) [g]*" (2) < o0,
zeD

for some r > 1. Also in [27] it was shown that the condition (10) is
necessary for HtHy to be bounded and that the following condition is
sufficient

(13) sup ||/ 0 dz = /- (2)lar lg-© ¢= = 9-(2)lf2r < o0,

for some r > 1.

In this paper we will improve the above sufficient conditions for
boundedness of the product of two either Toeplitz operators or Hankel
operators using Orlicz spaces or Lorentz spaces. In particular, we will
show that if for two outer functions f and g in H?,

(14) Sup_|[f 0 gz lpe [lg © gzlle < o0,

z

then 7Ty is bounded, and if for two functions f and g in L?,

(15)  supfIf-o¢: = f-(Z)llee lg—© - =g (2)[1x <00,
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then H}Hg is bounded. Here the Young function @ is t2 1og1+5(1 +t)
or t2log (1 +t) (loglog (1 +t))*+ for some § > 0.

The letter C' will denote a positive constant, possibly different on
each occurrence.

1. Banach function spaces.

Recall some basic facts about the theory of Banach function spaces,
Orlicz spaces and Lorentz spaces. We shall refer the reader to [1], [13]
and [18] for a complete account. A Banach function space X over the
unit circle is a subspace of the Lebesgue measurable functions with a
Banach function norm. The most important property of the Banach
function space is the generalized Holder inequality

(16) /If(x)g(xﬂd:r < [Ifllxllgllx

where X’ is the associate space to X.

Let us look at several concrete examples of Banach function spaces.
A function @ : [0,00) — [0,00) is a Young function if it is continuous,
convex and increasing satisfying B(0) = 0 and B(t) — oo as t — o0.
Each Young function ® has associated a complementary Young function
®. The Orlicz space L® consists of all Lebesgue measurable functions

f such that
/@(L;)U dxr < oo,

for some A > 0. The space L? is a Banach function space with the
Luxemburg norm defined by

||f||<1>=inf{)\>0 : /@(@)dmﬁl}.

Its associated space is L% A Young function ® is said to satisfy the
As-condition if there exist C' > 0 and 7" > 0 such that

B(2t) < CB(t),

forallt > T.
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Let 1 < s, ¢ < 0. The Lorentz space L*? is the space of the
Lebegue measurable functions f such that

q@>1/q

<00,

1fllLea = (q/ooo (t [{z € 0D : |f(x)| > t}|'/*)
if ¢ < 00, and

/]

Lo = sup t|{z€dD : |f(x)] >t} < 00,
0<t<oo

if ¢ = co. The Lorentz space L*? is a Banach function space with the
associate space L,

Let X be a Banach function space over 0D with respect to the
Lebesgue measure. Given a measurable function f and any interval [
we define the X-average of f over I by

1l r = [ (Fxpllx

where 75, with § > 0, is the dilation operator 75f(z) = f(dx), x5 is
the characteristic function of E. We define a natural maximal operator
Mx f(x) associated to the space X by

(17) Mx f(x) = sup 1.1

where the supremum is taken over all intervals containing x.
For any « € 0D, and a fixed o > 1 let

F(x):{ZED: [z = 2| <a}.

We define a nontangential maximal operator Nx f(z) associated to the
space X by

(18) Nxf(x)= sup ||fod,|x -
z€l'(z)

Let X = L? be the Orlicz space defined by a Young function ®. Then
the maximal operator Mx is defined in terms of the average

||f||X,I=inf{>\>0 : ﬁ/lcp(@) da;§1}.
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If X is the Lorentz space X = L%, then the maximal operator is

1
Mx f(z) = zléII) e [rpey 2

Proposition 1. Let X be either an Orlicz space or a Lorentz space.
Let f be in X. Then there is a constant C' such that

(19) Nx f(z) < CMxf(z),
forz € 0D.

PROOF. We shall consider only the case that X is the Orlicz space L®
with a Young function ®. The same method will prove the theorem in
the case that X is a Lorentz space.

We may assume = = 1. We will use polar coordinate re* for points
in the unit disk. Let us first consider the points z = r on the real axis
in the cone

(1) = {z eD: |11__|z: < a} .

Then
f(r) = / P(r, ) () dt

and the kernel P(r,e') is a positive even function which is decreasing
for positive t. That means P(r,e') is a convex combination of the
box kernels X(_h.n) (t)/(2h). Take step functions h,(t), which are also

nonnegative, even, and decreasing on ¢t > 0, such that h,,(t) increases
with n to P(r,e'). Then h, () has the form

N
Z DX (~t;,t5) (*)
j=1

with a; > 0, and [ h,(t)de =37, 2t;a; < 1. Suppose that A > 0 such
that A > Mx f(1). Thus

(ﬁ) /I(I)<|f(§”)|)dtS .
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for all intervals I containing 1. Then

it
‘/hn(t)fb )dt‘ ZZt CiTes )|/(_tj7tj)cb<|f(i )|)dt
SZQtjCLj
j=1

<1.

Then by monotone convergence

/@(Uoﬁ@%”dt=/@(UwiP&m%dﬂik

Hence ||f o ¢,||x < A. Now fix z € I'(1). Then |1 — re**| < a(1 —r),
and P(re**,e') is majorized by a positive even function 1 (t), which is
decreasing on ¢ > 0, such that

[uwar<a.,

for some constant A,. The function is 1 (t) = sup { P(re®, e?) : || > t}.
Approximating (t) from below by step functions hy,(t) just as before,

we have Zt
/@ M |)ﬁ§Aa

By convexity, we obtain

/’Uf¢z”

P@*

VAN

= [ o
/ |f A‘j (t) dt
1.

VAN

Thus by the definition of the Luxemburg norm, we have

Therefore
Nxf(1) < AgA.
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So we conclude that

Nxf(1) < Aa Mx f(1).

2. Distribution function inequality.

In this section we will get two distribution function inequalities in-
volving the Lusin area integral and the nontangential maximal operator
Nx for Banach function spaces X.

For w a point in 0D, we let I', denote the angle with vertex w and
opening 7/2 which is bisected by the radius to w. The set of points z
in I'y, satisfying |z — w| < € will be denoted by I'y, .. We fix the shape
of our typical truncated cone I'y, .. Whenever h is in L', we define the
truncated Lusin area integral of h to be

(20) A = ([ whePae) "

Here h(z) means the harmonic extension of h on D,

Oh|2 | 0h

Vh(z)|? = —‘ g

IVR(2)I" =571 + 53

and dA(z) denotes the area measure on the unit disk. Then A, (h)(w)?

represents the area (points counted with their multiplicity) of the image

in the complex plane of the truncated cone I'y, . under the map z —
h(z).

The Lebesgue measure of the subset £ of 0D will be denoted by
|E|. For z € D, we let I, denote the closed subarc of 0D with center
z/|z| and measure §(z) =1 — |z|.

For a number p > 1, we use p’ to denote the number so that
1/p+1/p" = 1. Let @ denote the operator I — P. As in [27], we have
the following distribution function inequalities.

2

Y

Theorem 1. Let X and Y be two Banach function spaces. Let f and
g be in X and Y respectively, and ¢ and ) in X' and Y'. For|z| > 1/2
and a > 0 sufficiently large, there s a constant Cy > 0 such that

A€ L Asso)(P(F #))(N) Aso) (P9 )N
(21) <alfodllxlao -y
- inf Nyo(¢)(w) inf Ny () ()} = CalL
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and
{A € Lt Azs (o) (Q(f 8))(A) A2s(z) (Q(g ) (A)
(22) <allf-o¢, — [-(2)x lg- o bz — 9-(2)[l¥
- inf Nxo(@)(w) inf Ny () (w)}] = CulLL].

Moreover, the constant Cy can be chosen to satisfy Cy = 1 — 2a=Y2C
for some positive constant C'.

Proor. We will show only the first distribution function inequality.
The same method will prove the second one.

For a fixed z in D, and a > 0 let E(a) be the set of points in I,
where

sy (P(f $)(N) < /([ o gl inf Naxr(w)
and F'(a) the set of points in I, where

Azs(a) (Pa ) (V) < a2 |lg o gully inf Nyap(w).

We claim the following distribution function inequalities, i.e. for a > 0
sufficiently large

(23) |E(a)| > K, |I.],
and
(24) |F(a)| > K, |1.],

and lim,_,o K, = 1.
First we show how Theorem 1 follows from those two distribution
inequalities. If w € I, is in E(a) N F(a), then

A2s(o)(P(f 9))(A) < 0" £ 0 px|lx inf Nxo(w)

and
Azs(a) (Pa ) (V) < 0¥ |lg o gully inf Nyap(w).
Thus
Azs(a) (P(f 6) (V) Azs(o (Plg ) (A)

<allfodullxllgodully inf Nx(#)w) inf Ny (y)(w).
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So E(a) N F(a) is a subset of

{A €L, 2 Az (P(f ¢))(A) Azs(2) (P(g 1)) (A)
<allf o dullxllgoally inf Nx:($)(w) inf Nys(s)(w)}
On the other hand, we have
|E(a) N F(a)| > |E(a)| + [F(a)] — L] .
Since lim,_,o K, = 1, we have
{A € Lo 2 Ags(a) (P(f ) (A) Azs(2) (P (g 1) (M)
<allf o dulix llgo bally inf Nxo(9)(w) inf Nyo(s)(w)}]
> |E(a) N F(a)| = [E(a)| + |F(a)] — || = (2K, — 1) ||
if C, = 2K, — 1. This completes the proof of Theorem 1.
Now we turn to the proof of our claim. For simplicity we will
present only the details of the proof of (23). Using the same method we

can prove (24). The proof consists of three steps. Let x, denote the
characteristic function of the subset E of 0D. In order to prove (23)

we write P(f @) as P(f ¢) = P(¢1) + (Pg2) where ¢ = f(XQIz ¢) and
P2 = f(XaD\QIz 9).

Step 1. There is a constant C' > 0 such that for all ¢ > 0,
A € L« Azs(o)(P(¢1)) <t}

> (1 _ C ||f © ¢z||X inwaIz NX’¢(w)> |Iz| .
t

From the definition of the truncated Lusin area integral, we easily see
that

(25)

As(z)(P(d1)) < Aasiz)(91) -
Thus
VLt Anyy(81) <1} CAE L : Aggio(P(61)) < 1}
To prove (25) we need only to show
A e L s Agygo(@n) <t}

2 (1 . C||fo¢z||X intwaIz NX’¢(w)>|IZ|

(26)
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By the theorem of Marcinkiewicz and Zygmund, and the fact that the
nontangential maximal function M is of weak type (1,1) then the trun-
cated Lusin area integral A.f(w) is also of weak type (1,1). So we
have, for t > 0

C C
el s A 2l < T [ orldo=5 [ 17w ow)|du.
oD

oI,

Since an elementary estimate shows that for w € 21, P(z,w)>C/|21,],
it follows that

/2 17w gtw) duw < |1 / 1 (w) d(w)| Pz, w) dw
:c|fz|/|fo¢z<w)¢o¢z<w>|dw.
By the generalized Holder inequality we have

/2 £ glw)] duw < CILI | 0dulLxlbo delx

Because for each u € I, z is in I'(u), we have

ClI, .
e L ) 2 01 < Do gl if Nxi(w).

Thus

A€ L ¢ Ay () < 1)) > (1 - TW 2 Cellxiiber, Roodlwly )

Step 2. On I,
(7)Ao (P((62)) ()  CIIf o 6 x it Nx(6)(w)

for some C > 0.

For ¢4, we shall use a pointwise estimate of the norm of gradient
of P(¢3). Since P(¢2) is analytic in D, we have

V) = 5o [ 2 e



HILBERT TRANSFORM, TOEPLITZ OPERATORS AND HANKEL OPERATORS 333

Thus
IV P(¢2)(w C/ _1928)] C/ Md&.
11— §|2 ~ Jopver, [L-wgf?
On the other hand, there is a constant C' > 0 so that
1 - (57 Z)
1— (57 w) - ,
for all § in 9D\21, and w in I', 25(,). Thus we obtain
Vs sc [ HE8E .
ap\2r. |1 —Z&]

Applying the generalized Holder inequality yields

[V (P2)(u) 7 lfodzllxll¢od:llx

| <
1||

Because z belongs to I'(u), for any u € I, the last factor on the right
is no larger than CNx:¢(u), and the desired inequality is established.

Step 3. This step will complete the proof of the distribution function
inequality (23) by combining last two steps. Since P(f¢) = P(¢1) +
P(¢3), we have

Azs(2)(P(f$))(w) < Assz) (P1))(w) + Azs(z) (P(¢2)) (w) -
So for any A > 0,

M{w € L+ Ay (Po0) < 5} € {w € L+ Ansio(P(F6)) <A}

Let E;(a) be the subset of I, such that
Azs(z) (Pi) < a'/? || o pallx inf Nxiop(w)

for 1+ < 2.
Then we have
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If in Step 1 we choose that t = a'/2||f o ¢,||x infuer. Nx:é(w), then
we have

B (5] 0-ca

for a sufficiently large a.
By Step 2, for a > 0 sufficiently large we have

Aas(s) (P(#2)) (u) < a2 ] 0 p:x inf Ny p(w)

everywhere on I,, which implies |E2(a/2)| = |I,]. So
E(a)] 2 (1—a™20) L.

This completes the proof of (23) if we choose K, =1 —a"/2C.

3. Hilbert transform.

In this section we apply the distribution function inequality (21)
in Theorem 1 to get a sufficient condition for the boundedness of the
Hilbert transform on two weighted LP. Let ||T||7 denote the norm of
the Hilbert transform T from LP(u o ¢,) to LP(v o ¢,).

Given a Banach function space X, we will use X’ to denote its
associate space which is another Banach space.

Theorem 2. Let u and v two positive functions on the unit circle, and
1 < p < oo. Suppose that X and Y are two Banach function spaces
such that Nx: maps L? to LP" and Ny maps LP to LP. Then there is
a constant C' > 0 such that

(I7[13)" < ¢ ( sup [P 0 gl x =P 0 hally

(28) U
+ (supu(z) (w0 @) ),

for all A € D.

PrOOF. Since T = —i P + i (I — P), it suffices to show that there is a
constant C' > 0 such that

(I1Pl3)7 < O sup 1077 0 bl x lu™"P 0 galy

(29) U
+ (3 0(z) (w0 @) ),
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for all A\. As (vo¢y)(z) = v(da(z)) we see that

sup [[0/Pog[|x [Ju™Pog.[ly = sup [[v}/Podrop,|x [[u=Poprop. |y .

z€D z€D

So it suffices to show

(I1P1p)" < O sup [0177 0 pallx lu™" P 0 galy

+ (supo(a) (7)) ).

This is equivalent to show

/|P )P (w) duw

< C(sup o7 0 gullx u™7 0 g1y

+ (sup o) (VO [ fotw)Puw) du

zeD

for all ¢ € LP(u). Let 9 = ¢u'/P. Then the above inequality is
equivalent to the following inequality

[ 1P@u ) @)o(w) do

< C( sup Hvl/P o ¢z||X Hu_l/p o ¢z||Y
z€D

+ (sup o) (VoD@ ) [t du,

z€D

for all ¢ € LP. On the other hand,
[ 1w @)ty dw = [ p/7w) P )P do
and the dual space of L is L?". Then
[ 1P@a ) w)pow) du
= sup | [ or(w) P ) w) Fw) du

IRl <1
!
heLP
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So we need only to estimate the pairing

/ WP (w) P u=YP) (w) i(w) duw .

Now

/ M2 (w) P u= P (w) h(w) duw
_ / P u=Y?)(w) P77 ) (w) duw .

Using the Littlewood-Paley formula [10], we have

/Pwu*”)(w)de
(B1) = P@uT)0) PV R)0)
-1 1 1
v ([t e, TP ) os L A

E

Define

ermy = u~ /P z P h)(2)) 1o i z).
Tormy = [ (9P (2), VP @) og [ dAC)

and

ermyr = uw P ) (2 oMP ) (2)) 1o 1 Z).
Tormgr = [ (9P 06, TPE 1)) og 1 44C)

It is easy to verify that
[Py u™P)(0) P(u}/? 1)(0)] < C (v(0) u™ P~V ()P~ 2 [b]], ||l
and

(VPP 9)(2), V(PP h)(2))]
< C (0(0) w =D (0)P=H) 2 | | ||l

for |z] < 1/2. So we need only an estimate of Term;. We claim that
there is a constant C' > 0 such that

| Termy| < Csug 10177 0 .l x [lw™% 0 pelly 1]l |lly -
FAS
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So by (31), P is bounded from L?(u) to LP(v) and its norm is bounded
by

O (sup "7 0 ellx ™ 0 6y + (sup o(z) (™ @0 (20 7) 7).
z€D

Now we turn to the proof of the claim. Fix an a > 0 for which the first
distribution function inequality in Theorem 1 holds. For w € 0D, let
p(w) denote the maximum of those numbers ¢ for which

Ae(P(u™H P 9)) (w) Ac(P (0 h)) (w)
sasm 10177 0 |l x lu™ P 0 galy Nx+h(w) Nyrtp(w) .

Thus
/8 Ay (PO ) 1) Ay (P07 ) ) o

S a sup ||U1/p0¢z||X ||’U,_1/p0¢z||y/NXl NYI ( )
zeD

By the Holder inequality, we have

/8 Ay (P 1) Ay (P07 ) ) o

=tih 107 0 g llx lu™% 0 galy | N bllyr [ Nyglly -

Since Nx+ maps L? to LP" and Ny maps LP to LP, we have

/6 Ay (PO ) 1) Ay (P07 ) ) o
< Csup 0177 0 g Lx ™7 o 6.l 1 [y

On the other hand, let x,(z) denote the characteristic function of

L p(w), We have

/ Ay (P2 ) (1) Ay (P07 1)) () duw

[ ([ wewrroerae)

Ly p(w)

(/ V(P (v h)(z)|2dA(z)>1/2 dw

L p(w)

/ / P(u="?9))(2)| [V (P07 h))(2)| dw dA(2) .
|z|>1/2JaD
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Now the distribution function inequality (21) tells us that p(w) > 2(1—
|z|) on a subset of I, whose measure is at least Cy(1 — |z|). If p(w) >
2(1 — |z|), then z is in Iy, ,(p). Thus x,,(2) = 1 on a subset of I, of
measure at least Cy (1 — |z|). Combining this observation with previous
inequality, we obtain

/6 Ayt (PO 7) 1) Ay (P07 ) ) o

> Cq s V(PP ) () V(PP ) (2)| (1~ |2]) dA(2)

> C,y|Termy| .

So
|Term;| < C sup 1027 0 ¢, || x |u=P o ¢,y 19l 1], -

This completes the proof of the theorem.

Corollary 1. Let X and Y be either Orlicz spaces or Lorentz spaces.
Suppose that Mx: maps L? to LP" and My maps LP to LP. Then the
Hilbert transform T is uniformly bounded from LP(vo¢,) to LP(vo ¢,)
forall z € D.

PrROOF. Since X and Y are either Orlicz spaces or Lorentz spaces,
by Proposition 1, the maximal operators Mx: and My dominate the
nontangential maximal operators Nx: and Ny respectively. So Nx:
maps L? to L?" and Ny maps L? to LP. Also it was shown in [19] that
if Mx: maps L* to Lp’, then

11l < Cllfllx
for any f € X. Then

sup v(2) (== ()Pt < O sup 1M 0 bl x [lu= @D 0 |1y )7

So the corollary follows immediately from Theorem 2.
A particular example is when X = LP" and Y = L?", where r > 1.

In this case the associate spaces are X’ = L®")" and Y’ = L®'")" whose
corresponding maximal operators are given by

, 1/(pr)’
M f@) = s (o7 [ @I ay) "

xel
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and

1 Lyl 1/(@'r)
My f(e) = s (1 [ 171" ay)

xzel

which are bounded on L?" and L? , respectively. By Proposition 1, the
maximal operator Mx dominates the nontangential maximal operator
Nx if X is an Orlicz space. So we have the following corollary.

Corollary 2. Let 1 < p < oo, and suppose that (u,v) is a pair of
wetghts such that for some r > 1,

sup v (z) (u™/ PV ()P < 0.
z€D

Then the Hilbert transform is bounded from LP(u) to LP(v).

The condition in Corollary 2 is quite close to the necessary condi-
tion that the Hilbert transform is uniformly bounded from LP(u o ¢)
to LP(u o ¢y ) for A € D.

Proposition 2. Let u and v be two positive functions on the unit
circle. Let 1 < p < oo. If the Hilbert transform is uniformly bounded
from LP(uo ¢y) to LP(uo ¢y) for A € D, then

sup v(z) (u /P (2))P7! < 0.
zeD

PRrOOF. For a fixed A € D, let Py be the operator
P—2z2Pz

from LP(u) to LP(v). It is easy to check that

Pyf = (/f(x) eo(x) dm)eo,

for f € LP(u o ¢)) where eg(z) = 1. Since the Hilbert transform is
unformly bounded from LP(u o ¢y) to LP(v o ¢y), P is also uniformly
bounded from LP(u o ¢y) to LP(v o ¢y). So there is a constant C' > 0
such that

||P0||Lp(u0¢x)—>LT’(U°¢A) <C,
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for all A € D. On the other hand, the norm of Py from LP(uo ¢y) to

LP(vogy) is [[u= P oy [[vo ¢)\||}/p. This completes the proof of the
proposition.

We can improve Corollary 2 using the scale of Lorentz spaces: if
X = LP"*, then X' = L1 and My is bounded on L?". By Propo-
sition 1, the maximal operator Mx dominates the nontangential maxi-
mal operator Nx if X is a Lorentz space. Hence we have the following
corollary.

Corollary 3. Let 1 < p < 00, and 1 < r < oo. Suppose that (u,v) is a
pair of weights such that

Slelg (igg (/{v($)>t} t"P(z, ) dx))

' (igg (»/{ul(:n)>t} TP 9) dx>p_1> <%0

Then the Hilbert transform is bounded from LP(u) to LP(v).

More interesting examples are provided by the theory of Orlicz
spaces. We have the following theorem which improves Corollary 2. In
particular, if Young functions ® and ¥ are in the following forms

(t) = tPlog? 10 (1 + 1),

and , ’
(t) =P log? ~**° (1 4+ 1),

or weaker ones
®(t) = tPlog? (1 + t) (loglog (1 + t))P~1H?

and
w(t) =¥ 1ng’—1(1 +t) (loglog (1 4 £))P' ~ 1+,

then the correspoding Orlicz spaces satisfy conditions in the following
theorem.

Theorem 3. Let 1 < p < oo, and let ®(t) and V(t) be Young functions
satisfying Ao-condition such that

[T " e [T () T Y <
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for some positive constant c. Let (u,v) be a pair of weights such that

sup ||v1/p o d,|le ||u_1/p o pyllpw < 00.
zeD

Then the Hilbert transform T is bounded from LP(u) to LP(v).

PRrOOF. Let X = L? and Y = LY. To prove the theorem, by Theorem
2, we need to show that Nx maps L* to LP" and Ny maps LP to LP.
By Proposition 1, we see that Mx: and My dominate Nx: and Ny,
respectively. On the other hand, it is shown in [19] that Mxs maps
L?P to LP and My maps L* to LP'. This completes the proof of the
theorem.

4. Invariant A, weights.

Ao weights are introduced in connection with several problems
in harmonic analysis by Muckenhoupt [15] and Coifman-Fefferman [3].
First we introduce the A, condition as [3] and [14]. A weight function
v on the unit circle is in Ao, if there are positive constants C, 9 > 0 so
that given any arc I and any measurable subset £ C I

Lv(w)dw <C(@>5

/zv(w)dw Y

There are many characterizations of A., weights [9]. A characterization
of Ay, similar to the A, condition is found in [11]. That is, a weight
function v is in A if and only if

sup |I|/ |I| exp(/jlogv_l(w)dw» < 00.

But the A, condition is not Mobius invariant in the sense

sup su vo ¢, (w)dw ex logv™to ¢, (w)dw)) < .
supsup 77 00 ¢=tw) (e [ togo~ o g-(u) )

We define a weight v to be an invariant A, weight if

(32) EIEIBU(Z) exp (—(logv)(z)) < 0.
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The invariant A, weights were first studied by Wolff in [26]. He [26]
showed that a weight v is an invariant A, weight if and only if for any
a > 0 there is a # > 0: for any subarc I C 0D and subset E C I, then

/ v(w) P(z,w) dw < B/v(w) P(z,w)dw
E I
implies that

/EP(Z,w) dw < a/P(z,w) dw,

I

for all z € D. So comparing an equivalent condition to A. ([3,
Lemma 5]) we see that invariant A, weights have a certain invariant
property.

If two weights are invariant A., weights, first we will show a neces-
sary and sufficient conditions for the Hilbert transform to be uniformly
bounded between two weighted spaces.

Theorem 4. Suppose that both v and u=Y®P=Y are invariant A
weights. The invariant A, condition

sup v(z) (u /P (2))P7! < o0
zeD

1s a necessary and sufficient condition for the Hilbert transform to be
uniformly bounded from LP(u o ¢,) to LP(vo¢,) for all z € D.

ProoOFr. By Proposition 2, we see that the condition in Theorem 4 is
a necessary condition that the Hilbert transform is uniformly bounded
from LP(uo ¢,) to LP(vo ¢,) for all z € D.

We need only to show that the condition in Theorem 4 is sufficient.
As pointed out in [26], the invariant A,, weight condition is equivalent
to that v(w) P(z,w) dw is comparable to P(z,w) dw in the sense of 3]
uniformly over z € D. So the equivalent conditions of [3, Lemma 5] are
valid for the measures v(w) P(z,w) dw and P(z,w)dw uniformly over
z € D. So there are positive constants B and r > 1 such that

v"(2) < B (v(2))"

for all z € D.
Since both v and =Y ®=1) are invariant A, weights, we can choose
a constant 7 > 1 so that

v"(2) <
w7 (7)

(v(2))",

B (v
B (u™®=1(2))",

VAN
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for all z € D. Thus
0" (2) (O (2))P 7 < B2 (u(2)" (w VO ()"
for all z € D. If u and v satisfy

sup v(z) (u™ /=D (2))P 7 < oo,
z€D

then they also satisfy

sup v (z) (u™/ PV ()P < 0.
ze€D

By Corollary 2, the Hilbert transform 7' is uniformly bounded from
LP(uo ¢,) to LP(v o ¢,). This completes the proof of Theorem 4.

What is the difference between A,, weights and invariant A
weights? The following theorem answers the question completely.

Let f(z) and g(z) be two nonnegative functions. We use f(z) X
g(z) to denote that there are two positive constants C; and Cy such
that

C1f(z) < g(z) < Caf(2)

for any z.
For each z = re* € D, recall I, as in Section 2

: 1—
Izz{eweﬁD:|9—t|§ 2""}.

Theorem 5. Let v be a positive function on the unit circle. Then v is
an tnvariant A, weight if and only if v is an Ay weight, and

ot

v(z) = v(w) dw,
(2) s (w)
forall z € D.

PROOF. Suppose that v is an invariant A,, weight. First we will prove
that logv is in BMO. By the Jensen inequality, we have

exp /D (log v — (log ) (2)) P+ (c*) df)

< /D exp (log v — (log v)(2)) P»(c¢*) df < C'.
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Hence
exp /D (log v — (log ) (2)) " P (¢**) b
< exp ([ (o = (logo) (@) Py a8) < ©
and

exp (L(logv — (logv)(2))~ P,(e') d9>

because

/D (log v — (log v)(2))* P, (%) df = / (log v — (log v)(2))~ P. (%) df .

D

On the other hand,
/ |logv — (logv)(2)| P,(e?) df = / (logv — (logv)(2)) P, (') do
b D

+/ (logv — (logw)(2))~ P, (") df
D

<2logC.
So logwv is in BMO. For each interval I, there is a point z; such that

I =1,,. We use vy to denote the average of v over I. Since logv is in
BMO, we have

og)r — (o5 0)()] < |77 [ (ogn — ogo)(2)) df
1
< 117, Nlesy — Qo)) o

<c / [logw — (log v)(2)| P () df
I
< C||logv|/BMmO -
Hence

vy <w(zp) < C (108 )(2)—(log v)1+(log v)1 < (7 (g V)1
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So v is an A, weight. In addition,

v(z) < Ce(logv)(z)—(logv)H—(logv)I < Ce(logv)l .
By the Jensen inequality we have
v(z) < Cur.

Conversely suppose that v is an A,, weight and satisfy

o 1
v(z) = |Iz|‘/lz’v(w)dw,

for all z € D.
Since v is an A, weight, logv is in BMO and

|Il | /I v(e?)df < Cexp <|Il | /I log v(e®) d9> ,

for some C' > 0. On the other hand,

1
||

/Iz (log v — (log v)(2)) df < |11Z| /I Hogv — (log v)(2)| df

< C/I lHogv — (log v) ()| P, (¢ df

< C||logv||Bmo -

Hence

1
T /I (logv) df < C | log vllmao + (logv)(2) .

Thus

< Cexp (ﬁ /Iz (logv)(e®) d9>

< C ¢CrllogvlBmo+(log v)(z)

< Cellogv)(®)
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So v(z) is an invariant A,, weight. This completes the proof of Theorem
5.
We remark that A, condition is not comparable with

’vz%
7,

for all z € D. There is an A weight v which v(z) is not equivalent
to [, v(w)dw/|L,|. As in [26], for example v(e’ %) = 10| is in A

it is not in invariant A.. So by Theorem 5, v(z) is not equivalent to
fIz v(w) dw/|L,|.

Also there is a function v > 0 such that v(z) is equivalent to
fIz v(w)dw/|I,|. But v is even not in A, see examples in [24].

If v is in Ag, then v(z) is equivalent to fIz v(w)dw/|I,|. Thus an
Ay weight is also an invariant A, weight. So a weight function v is
an A, weight if and only if both v and v=! are invariant A., weights.
Therefore invariant A., weights are somehow 1/2 — Ay weights. But
there are invariant A., weights which are not in A, [26].

Recently Fefferman-Kenig-Pipher [7] characterized A, weights in
terms of Carleson measures, which is very close to logv € BMO. To
state their result more precisely we consider weights v on the real line R.
Let ®(z) = ct=1/2e~1#°/t fix a function v which verifies the doubling
condition

v(0) df < p/ o(0) df,

|z—xzo| <2t |z—xzo|<t

for some p > 1. The heat extension of v will be defined by v(z,t) =
(v % ®¢)(z), and Vu(z,t) will denote the spatial gradient. Fefferman-
Kenig-Pipher showed that v € Ay (R) if and only if for all zp € R and

t>0,
/ / |V”S)|dds<0
|z—xo |<t U L, S))

They [7] made a remark that the above result with the harmonic (Pois-
son) extension in place of the heat extension would not characterize
A (R), for the Poisson kernel need not have sufficiently rapid decay.

However, using harmonic extension of weights we will characterize
invariant A., weights in terms of Carleson measures.

Theorem 6. Let v be a positive function on the unit circle. Then v
is an invariant A weight if and only if (|Vv(2)]2/v(2)?)(1 - |2|?) is a
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Carleson measure, i.e.,
[V (2)]? 2
1—|z]7)dA(z) < C'|I],
f o) - P aae <o

for any subarcs I of the unit circle, where

S(I)={re* e D:1—r<|I|, e* €I}.

PROOF. Since v(z) is harmonic on D, we have

_ Vu()?

By Green’s formula, we obtain

1-%

| A10g (v(w)) dA(w).

log (1(2)) — (log ) (2) = — /D log|

So

1—zw||Vou(w)|?
z—w | (v(w))?

dA(w) .

log (u(2)) — (log)(2) = /

log ‘
D

For 1/2 < |w| < 1, it is easy to check that log|w|™! = (1 — |w|?).
Also since v(w) is harmonic on D, |Vv(w)|?/(v(w))? is bounded by a
constant M for all w with |w| < 1/2. By the above equation, we have

oz v)( |l-zZw 2 |Vo(w)|? w
og o) ~egn)) < | (1| T aaw e
and
g 0(2) ~ oz = [ (1= [E2] ) TR .

By [10], (1 —|w|?) [Vv(w)|? dA(w)/(v(w))? is a Carleson measure if and
only if

) e e
zeg/pll—sz o (w)2 (1—|wl?)dA(w) < co.
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This is equivalent to

log (v(2)) — (logv)(2) < C,

for all z € D. This completes the proof of Theorem 6.

Another important property of A, is that

Ao =1J4,.

p>0

We will show that invariant A., weights have such property also.

Theorem 7. Any weight function v satisfying invariant Ay already
satisfies invariant A, for some p < oo.

PROOF. Since v is an invariant A, weight, we have

(33) log (v(z)) — (logv)(z) < C'.
By the Jensen inequality, we also have
(34) log (v(z)) — (logw)(z) > 0.

On the other hand, by Theorem 5, we see that v is an A, weight. It
follows from [10] that logwv is in BMO. By the theorem of John and
Nirenberg [10], there exist positive constants Cy and Cy such that

[{w € D : |log v(w) — (Iog (1))(0)] > A}| < Cy e~ CxMNogvllanso

for A > 0. Let ¢,(w) denote the Mobius map on the unit disk. Then
|[logv o ¢.||lBmo = || logv||Bmo. Therefore

{w € 0D : |logvo¢,(w)—log(vod,)(0)] > A} < Cy e—C2M[[Tog v|BMmo
By (33) and (34), we have

(35) |{w € 0D : |logv o ¢,(w) — log (v<(z))| > A}

O, e~ @2 M logvliByo

Let E be a subset of 0D. For z € D, let

wz(E):/EP(z,w)dw.
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Then (35) is equivalent to
(36) w.{w € D : |logv(w) — (logv)(z)| > A}| < Cre~C2MIlogvllsuo
Let By = {w € 0D : eFv(2)7! <w(w)™! < e*fTly(z)71}. Then
vV @D (5) < y(z)~ V@D (1 +3 w(Ek)e(kJrl)/(p—l)) _
k=0
By (36), we have
v(z)~ Y@= (1+Cl 3 et/ =1~k logvnBMo) < Cu(z)"Y®-D
k=0

if 1/(p— 1) < Co/||logv|mo. Therefore if p > 1 + || logw||smo/Co,
we have

o(z) (=MD (L < 0,
for all z € D. This completes the proof of the theorem.

Now we show another characterization of invariant A., weights.

Theorem 8. A weight function v is an invariant Ay if and only if
there is a constant C' > 0 such that

[ P () a - sy aae) < oot

for all s € D where Py(z) = (1 — |s|)/|1 — 52|* for s,z € D, and

forall z € D.

PRrROOF. Suppose that v is an invariant A,, weight. By Cauchy and
Jensen inequalities

exp ((logv)(2)) < (v1%(2))* < w(z),

and since v is an invariant weight,

v(z) exp (—(logv)(2)) < C.



350 S. TREIL, A. VOLBERG AND D. ZHENG

Therefore

v(z) < C (vY%(2))2.

In addition by Theorem 6, (|Vv(2)|?/v(2)?)(1 —|2|?) is a Carleson mea-
sure,

Lv(%)(l ~122) dA(2)

< [ e (TER 0 - aac)

< C‘/aD(Ul/Z(eie)f do

_ (e
—C/aD (e") do
= Cv(0).

In the above inequality replacing v by v o ¢, and making the change of
variables give

(T o
[ P (S ) (1= [ dA) < Oul).

for all s € D.

Suppose that a weight function v satisfies two conditions in Theo-
rem 8. By Theorem 5, we need only to show that v is an A, weight.
By Green’s formula, we have

v(2)log (v(2)) = (vlogv)(2)

)

It is easy to check that

1—zw

—2 | A(v(w) log (v(w))) dA(w)

A(v(w) log (v(w))) = ‘M‘
So
v(z)log (v(z)) — (v logv)(,z):_/Dlog 12__751;” ‘M‘ dA(w
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By the first condition in Theorem 8, we have

S

(w)
U(Z)>dw < Cu(z).

/Pz(w)(%) (1og (%)) dw < C,

Now we write logz = log™ z—log™ . It is easy to see that xlog™ z < C.

Then
/P (w)(w) <1og+ <v(w))> dw < C
T w(z) v(z) -
for all z € D.
For L > 10, then we have

P,(w)v(w)dw < v(z).
v/{v>Lv(z)} 1OgL

/fanmwmg(

Hence

Hence

v(w)dw < v(z) |1,].

/{wEIz:11>L11(z)} 1OgL

For any subset F of I, with |E| < |I,]/L?,

/ v(w) dw = / v(w) d’w-l-/ v(w) dw
E {E:w(w)<Lv(z)} {E:ww(w)>Lv(z)}

v(2) ||

<L E
< Lo(a) [E] +

By the second condition in Theorem 8, we have

/E’v(w)de %/Iz U(w)dw+logL /Iz v(w) dw

= (% + logL> /Iz v(w) dw.

If L is sufficiently large, there are two numbers 0 < o = 1/L? < 1 and
0 < p=1/L+C/logL < 1such that whenever E C I, and |E| < «|l,|,

/ v(w) dw < B|L|.
E
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We have proved that v is an A, weight by [3]. This completes the
proof of Theorem 8.

In [25], it is shown that if a measure p in D satisfies

/D Pu(2) 0(2)? du(z) < Culs).

then the following imbedding theorem

/D (FoM2)(2)[2 du(z) < KC) I3

for all f € L?, holds. We will characterize invariant A., weights by the
so-called imbedding theorem.

Theorem 9. A weight function v s an tnvariant A., weight if and
only if there s a constant C' > 0 such that

[ reer s (EEh 0 - ae

<C [ |f(e) os(e?)do,
oD

for all f € L*(vs) and all s € D, where vs = v o ¢, and

ot

v(z) = v(w) dw,
(2) s (w)
forall z € D.

PROOF. Since the condition in v is an invariant A.,, by Theorem 8, we
have that there is a constant C' > 0 such that

[ P () a - sy aae < oot

for all s € D. The above condition is invariant. So we need only to
show that

1 (IW(Z)I2

2 142 p RN
[ 10or = (SR a-lR e <o [ i) o) as.

oD
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for all f € L%(v). Let g = fv'/? and

(T pyancs

v

dp =
Then it is sufficient to show

/D|(gv1/2)(z)l2du(z)§0 1g(e®)|2do .

oD

By Theorem 1.1 in [25], it is sufficient to show that

/P )2 du(z) < Cu(s).

This is equivalent to

[ ot (G0 0 ) ) < oute).

Conversely suppose that v satisfies the conditions in Theorem 9. If we
let f be 1 in the first condition we have

/D (03)(2) 2 Uiz) (|Vvs(z)|2>(1 —22) dA(2) < C/aD va(ei®) df .

vs(2)2

Making the change of variable implies

[ ot (G0 0 o) o) < 00t

for all s € D where Ps(z) = (1—|s]?)/|1—3z|? for 5,z € D. By Theorem
8 we conclude that v is an invariant A, weight. This completes the
proof of Theorem 9.

5. Toeplitz operators and Hankel operators.

Let f be in L?. The Toeplitz operator Tt and the Hankel operator
H ¢ with symbol f are defined by Typ = P(fp), and Hyp = (1-P)(fp),
for all analytic polynomials p. Obviously they are densely defined on
the Hardy space H2. In this section we will show several sufficient



354 S. TREIL, A. VOLBERG AND D. ZHENG

conditions for the product of two Toeplitz operators or Hankel operators
to be bounded.

Theorem 10. Let X and Y be two Banach function spaces such that
Nx: and Ny: map L? to L?. Suppose that (f,g) is a pair of functions
in L? such that

sup [|f- o ¢, — f-(2)[Ix llg- o ¢z — g-(2)|ly <o0.
z€D

Then the product H;Hg is bounded on the Hardy space H?.
PROOF. Let ¢ and ¢ be in H?. Then
(HyHgt, ) = (Hgp, Hy ) .

Using the Littlewood-Paley formula, we have

(HiHy. ) = [ [ (V). V(H8) () og - dAG).

2|

Define

1
term, — [ /|Z|>1/2<V<Hg¢><z>, V(Hy)(2)) log - dA(2)

E

and
1
Termyy = [ /| o V)T U 0) () o - dAG).

It is easy to verify that there is a compact operator K on H? such that

TermH = <K7,b,¢> .

We claim that there is a constant C > 0 such that

| Termy| < ngg 1f= 0 bz = f-(2)lIx [lg— © ¢ — g-()ly [[¥[l2 [[#]l2 -

So

|H} Hyll < [IK1| + leelg [f+ 0z = f+(2lIx llg- 0 ¢z —g-(2)[ly -
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Now we turn to the proof of the claim. Fix an a > 0 for which the
distribution function inequality (22) holds. For w € 9D, let p(w) denote
the maximum of those numbers ¢ for which

Ac(Hyd)(w) Ac(Hytp) (w)
< allf-o¢. = f-(2)|lx l9- © ¢2 — 9-(2)[ly Nx(¢)(w) Ny (¢)(w).

Thus

/aDAp(w) (Hy¢)(w) Ap(w) (Hgy)(w) dw

<asup |[f- o, — f-(2)lx [lg- o ¢z —g-(2)[ly
z€D

Nx:(¢)(w) Ny () (w) dw

oD

< asup |f=od, — F—(2)llx llg= o b — 9—(2)|lv

INx (D)2 [Ny ()]
<asup [|f-o ¢ = f(2)lIx llg- 0 bz = g-(2)lly ll¢ll2 [[¥]l2 -

zeD

The last inequality holds because Nx: and Ny are bounded on L2.
On the other hand, letting x,, (z) denote the characteristic function
we have

of '

w,p(w)>

/ Apw)Hyd)(w) Apw)(Hgt)) (w) dw

~[ ([ wutoerae)”

Ly p(w)

([ Fumerae)” w

w,p(w)

> [ [ @IV HE V) dodAG).
|z|>1/2 JOD

Now the distribution function inequality (22) tells us that p(w) > 2(1 —
|z]) on a subset of I, whose measure is at least Co(1 — |2]). If w € I,
and p(w) > 2(1 — |2]), then z in I'y, ,(p). Thus x,,(2) = 1 on a subset
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of I, of measure at least C, (1 — |z|). Combining this observation with
the previous inequality, we obtain

/BD ApwyHyd)(w) Apwy(Hyt)) (w) dw
2Ca | | IVHE|VHAE] @~ ) dA)
> C, |Termy|.

So

| Termy| < ngg /=0 ¢ = F-(2)lIx lg— o ¢z — g-(2)lly l|Dll2 [[¥]]2 -

This completes the proof of the theorem.

Theorem 11. Let X and Y be two Banach function spaces such that
Nx: and Ny: map L? to L?. Suppose that (f,g) is a pair of outer
functions in H? such that

sup [|f o ¢z|[x ||g 0 dzlly < oo.
zeD

Then the product TTg s bounded on the Hardy space H?.
PROOF. Let ¢ and ¢ be two polynomials.
(TyTgo, o) (T, T5 ¢) -

Using the Littlewood-Paley formula, we have

(Tyth, T3 ) = /D (V(Ty ) (2), V(Ty 6)(2)) log — dA(z) .

2|

Define

1
Term; = / /|Z|>1/2<V(T§¢)(z), V(T76)(2) log 7 4A(2).

and

1
Termy; = / /| 1T, T 6o 1 dAC).
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It is easy to verify that there are constants C; > 0 and Cy > 0 such
that

[ Termpr| < Cy [|9]]2 [[4]]2

and
|Termyr| < Cy [[1]|2 ||#]|2 -

We will show that there are the same estimates of Term; as above ones.

Let X and Y be two Orlicz spaces. Fix an a > 0 for which the
distribution function inequality (21) holds. For w € 9D, let p(w) denote
the maximum of those numbers ¢ for which

Ac(T5 ¢)(w) Ac(Tg 1) (w)
<allfod:llxllgod:lly Nx:(#)(w) Ny (¢)(w) .

Thus

/6 . At (T ) (1) Ay (T ) () o

<asup [ o ellx g0 delly [ Noo(6)(w) Ny () () do.
z€
On the other hand, letting x,, (2) denote the characteristic function of
Ly p(w), we have

(/ V() (2) 2 A2 >)1 o

Lo p(w)

> [ @IV V) ) dwdA).
|z|>1/2 JOD

Now the distribution function inequality (21) tells us that p(w) > 2(1 —
|z|) on a subset of I, whose measure is at least Cy(1 — |z]). If w € I,
and p(w) > 2(1 — |2]), then z in I'y, ,(p). Thus x,,(2) = 1 on a subset
of I, of measure at least C, (1 — |z|). Combining this observation with
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the previous inequality, we obtain
| A (T3 8) (1) Ay (T ) ) o

> Ca/||>1/2 V(T5¢)(2)| [V (T3 ¢)(2)| (1 — [2]) dA(2)
> C, | Termy]| .

So

Termy| < asup |If o b:lx lg o sy / Nixs () (w) Ny () () do
z€D

<a sup 1o @zllx llg o d=lly INx: (9)ll2 [Ny ()]]2 -

Since Ny and Ny are bounded on L?, we have

| Termy| < asup 1f o dalx [lg o dzlly [lpll2[14]]2 -

This completes the proof of the theorem.
Acknowledgements. We thank the referee for useful comments.
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