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Statistic of the winding
of geodesics on a Riemann

surface with finite area and
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Nathanaél Enriquez and Yves Le Jan

Abstract. In this paper we show that the windings of geodesics around
the cusps of a Riemann surface of finite area, behave asymptotically as
independent Cauchy variables.

1. Introduction.

In this paper we show that the windings of geodesics around the
cusps of a Riemann surface of finite area, behave asymptotically as in-
dependent Cauchy variables. Results of this type were originally given
for Brownian paths. The original proof of [16] for the winding of pla-
nar Brownian motion around the origin was analytic. This theory was
developed in many works including [1], [2], [14], [9] and [12] using ex-
cursion theory and geometric ideas. The idea that such a result might
hold for geodesics is suggested by the central limit theorem of Ratner
[13] and Sinal, and the logarithm iterated law discovered by Sullivan
[17]. Using coding theory a proof is given in [3] and [4] for modular
surfaces. In the note [10], it was briefly shown that this result could
be extended to arbitrary Riemann surfaces, by a simple argument that
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reduced the problem to the Brownian case. However, in these works,
the contribution e! of each cusp C; was not identified. The asymptotic
was actually obtained for linear combinations Y A\;e? under the condi-
tion that > A; = 0. We show that this condition is unnecessary, using
the relation between the Brownian motion on the stable foliation and
the geodesic flow which was obtained in [11]. It is reasonable to think
that the constant curvature assumption could be relaxed as in [7], [8].

2. Presentation of the result.

Let M be a surface of constant negative curvature with finite area,
represented as the quotient of the hyperbolic plane H, under the action
of a Fuchsian group I

The well known model of the hyperbolic plane, using the upper
half-plane C* with the metric di? = (dz? + dy?)/y* (y > 0), can be
transformed into the model of the open unit disc via a conformal map,
the metric being then

dz? + dy?

2 _
dl* = (1—$2—y2)27

2 +y? < 1.

In the representation of the disc, there exists a polygon (whose edges are
geodesics) which is a fundamental domain for I'. There comes out some
invariants of the group, (independent from the choice of the system of
generator) like its genus g and the multiplicity of the vertices of the
polygon. M in our case, will be the union of a compact part and of
n cusps C1,Cy, ..., Cy, a cusp being the region of the polygon limited
by two geodesics going at infinity to the same point of the boundary of
the hyperbolic plane (though it is non compact, this region remains of
finite area).

Let m be the normalized Liouville measure on the unit tangent
bundle T'M. Functions on T'M can be viewed as random variables
on the probability space (T*M, B, m) (B denoting the Borel o-field on
TM).

We denote by 6; the geodesic flow on T* M, which preserves m and
is known to be ergodic [5].

Let w be a 1-form on M: we assume that dw vanishes in a neigh-
bourhood U; of each cusp C;. Let \; denote the residue of w at C;
(which is the integral of w along a loop around Cj, included in U,
which doesn’t depend on the loop as far as this form is locally closed).
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If¢=(q,v), g € M, v €Ty M, set 0,(€) = (g, vr), and

€)= | (a0 1u(a) ds.

(If A; does not vanish, e} describes the winding of the geodesic in U;).
We prove the following;:

Theorem 1. The joint distribution of (e} /t,e?/t,..., el /t) converges
in law towards the product of n Cauchy distributions of parameter |A;|/
|M| where |M| denotes the area of M.

REMARKS. If @ is another form, closed near the cusps, with the same
residues, the theorem applied to w — @ implies that (€} —e})/t converges
to 0 m almost surely.

If dw = 0 on M, > \; vanishes. Since we assume only that dw van-
ishes near the cusps, the residues can take arbitrary values. Therefore
our theorem describes the winding of the geodesics around each cusp.
This was not achieved in [4] and [10] where only the case of closed forms
was treated.

Finally from the theorem we get the independence of the limit from
the choice of the neighbourhoods.

If {&} : 1 < i < n} is defined using a different system of neighbour-
hoods {U; : 1 <i < n}, (€] — e})/t converges to 0 m almost surely.
This comes from the lemma we shall use in the following:

Lemma 1. Ifw is a 1-form, ¢ is a C°°-function of compact support in
M, then

1

t
lim — / (w(gs),vs) p(gs) ds — 0, almost surely.
t—+oo t 0

PrROOF. This comes from the ergodic theorem, as far as

/ w(q,v) (g) dm(q,v) = 0

because the transformation o : (¢,v) — (g, —v) changes the sign of
the integrated function, and m is o-invariant.
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NotaTIiONS. H will be represented by the complex upper half-plane
{z=x+iy:y > 0}. We shall identify T*H and PSL5(R) using the
relations

_ai+b d B 1

Tcitd MY VT lciraz

I appears as a subgroup of PSLo(R). It is well known that T'M can
be identified with I'\ PSL2(R), in such a way that 6;(§) can be written

&0y, if we set
0. — et/2 0
P\ 0 et/2 )

Similarly the right actions of the 1-parameter subgroups

1 ¢ _ 1 0
w=(0t) e o=(1Y)

define the horocyclic flows on T M.
We can define the operators of derivation Ly, Ly and L_ on C!
functions of T'M by

Lof©)= 2| feo.).

ds ls=0

d
Laf(§)= | _ £eoh),

Lofe)=2  feon).

dsls=0

For a > 0 and f € L?(m), we can also define a resolvent operator

Rof(€) = / et f(£0,) d

We introduce the matrix T,

1 Yy
B (5 1)
and we recall the formulas T,T,: = T4, and the decomposition of T’

in terms of the geodesic and horocyclic operators: T4y = 0;F Orogy =
Orog y Oi/y. We deduce from there the commutation formulas

010y 0 Orogy = 9;—/3, and 0—10gy 05 bhogy = 0y -
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From these commutation formulas we deduce the following equalities
which will be useful especially in the proof of the convergence of some
R,-type integrals

LE (6(£0,)) = e7*=(LE ¢) (£0s)

L (¢(€05)) = e**(LE 9)(£05) .
for all ¢ € C®(T'M) and k.

The influence of the geodesic and horocyclic operators is described by
the following formulas

ng;’— = Lz4ys+iy and ngs = T:n—i—iyes .

The foliation {{T,,z € H}, describes all the matrices we can obtain
from ¢ by the action of the geodesic and horocyclic flows.
Lastly, we shall denote the rotations of PSLy(R) by

wo(l) ()
“an(l) el

Kt:

3. Reduction of the problem.

We shall denote by p the canonical projection of H on M and by
7 the canonical projection of T'M on M.

Each cusp C; is represented by a I['-orbit on the boundary of H,
i.e. the projective line R U oo. Picking up an element C; in that
orbit we can choose v; in PSLy(R) such that v; '(co) = C;. The
subgroup of I' which consists of the elements which fix C;, can be written
{yt 9:)(1- vi, n € Z} where X; is a positive number independent of the
choice of C; and ;.

We define a fundamental domain F; of I' contained in {; li0<
r < X;}, and containing Ry, /4 = {fyi_lz :0 <z < Xj,y > hi/4} for
some positive h;. Choosing h; large enough, we can take U; = p(Ry, /4)
and assume the U;’s are disjoint. We shall denote p(Rp,/3) by V; and
p(Ry,) by W;.

Lastly we denote U = U} U;, V = U, Vi, and W = U} W;.
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Let v be a C* function on R, such that u = 0 on [0,1/4], and
u=1on [1/3,40c0].

Let s; denote the section of p relative to F;. There is a 1-form 7
on M that vanishes outside U = U}_,U; and represented in U; by

on Uz

Inside W;, w —n is a closed form with 0-residue. Therefore (since
W; is isomorphic to a disc minus a point), it is exact. Let Fj be a
smooth function on W; such that w — n = dF; on W;. F; will be
extended into a smooth function vanishing outside V;. Then the 1-form
wo=w—n— ., dF;, vanishes on W.

Note that
el 1t
?t - Z/ (wo(gs),vs) Lu, (gs) ds
0

; %;@(se» - B+ [ (ala).v)ds.

Since 0 preserves m, F;(£0;) is a stationary process, so the middle
term converges to 0 in probability (without any assumptions on the
integrability of F').

The first term converges to 0 m p.s. by application of the ergodic
theorem: indeed (wy(q), v) 1y, (¢) is an integrable function T M since it
vanishes everywhere except on the compact set (‘W NU)xS. Moreover
the mean value of this function is 0. Indeed, the transformation o :
(q,v) — (g, —v) changes the sign of the function, and m is o-invariant.

Setting ¢(&) = (n(q),v), where £ = (¢,v), the third term can be
written

1 t
L | otenas.

Since the residues A; are arbitrary, the theorem can be reduced to the

Proposition 1. The law of

1 t
o | otenas
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converges in law towards a Cauchy distribution of parameter

i By .
= M|

4. Expression of ¢.

We shall first introduce a fundamental domain for 7'M, as it was
already for M:

Fj ={g € PSLy(R) : g(i) € F;}, is a fundamental domain for the
left action of I" on PSLy(R). It is possible to characterize any element
€ of T*M by its representative g;(£) in Fi.

We can define the Iwasawa coordinates z;(£) = x;(§) + i y;(§) and
0:(£) by the equation v; g;(§) = T%, (e Ko, (¢)-

Note that if

a b 1 . —2cd
TZK9:<C ), y:m and sm@zm.

It can be easily seen that 6;(¢) and y;(§)/h; have a geometrical inter-
pretation:

e y;/h; is the exponential of the distance from 7 (&) to the boundary
of Wz

e 0; is the angle between the geodesic going from 7 (&) to C; and
the geodesic {£6;,t > 0}.

We can deduce, from the definition of 1 the following expression of
¢ in the y;, 6; coordinates

06 = = - 3 u( B )sin () 16, (r(6)) .

=1

for all £ € T'M (it is worth remarking that although ¢ is a function
on T'M, it depends only on 2 dimensions). It is useful to give the
expression of the differential operators Ly and L in terms of y; and 6;:
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Lemma 2. Let F be a function on U;, of the form G(y;(§),0:(&)).
Then

U, = Yyicosb; (9_G + sin 0; 8—G

U, = y;sinb; (9_G + (1 — cos 6;)

Ly F(£) o

90;

Let us finally introduce the function

76 =3 3 (2 ) i costu(©) 10, (x(6)).

The interest of this function lies in the following:

Lemma 3. Let wé be the 1-form on H defined by the equation

~ d d
Wi(z) = ¢ (ETy) f +B(ET) ;y

and let je be the application from H to M which maps z onto m(£T7).
Then we get

PrROOF. The proof is just a matter of change of variables.

5. A differential form.

To follow the spirit of the proofs given in [10] and [11], we have to
introduce closed forms. We first notice that since 05 = Tj.s,

t et dy
| otesds= [ atemy L.
0 1 Y
We shall introduce a function ¢ such that

dy -~ dx
S = p(eT,) =2 T,) —
w> = ¢(¢T) ” + (€ T%) ”
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is a closed form on H, so that we will get

t

/()t¢(§93)d8=/z_ie wf

(the second integral being independent of the path from 7 to iet).
#(€) will be defined by the integral

— / €_tL+¢(£ 9,5) dt
0
Its convergence will be proved using the following lemma:

Lemma 4. Let x be a locally bounded function on I'\SL2(R) such that
for some positive constant P, x(§) is bounded by

2 42

Py; (1 —cost;) =P ——=
e = e e

in V;, for every i, where a;, b;, c;,d; denote the matriz coefficients of the
matriz v; g;(§), and y; and 0; its Iwasawa coordinates. Then

+oo
/0 e *x(£0s)ds

converges uniformly in €.

PROOF. As

+o00 +oo
/ e |x(€0)] dt = et / =5 x(€ Ouy ss) | ds

to 0

for all tg € R, it is enough to get an upper bound of f0+oo e x| (€6,) dt,
independent of £ (the right integral being the value of this function for
3 9750 )

Outside V, |x| is bounded so that the contribution of the part of
the geodesic contained in “V is uniformly bounded.

Hence it is enough to show that

ZZ/ e~ IxI(€6,)

1=1 jeN
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is uniformly bounded where the disjoint intervals [uf , v{ | are defined by
recursion as follows: u? denotes the first time after v/ =" (or 0 if j = 0)
where the geodesic enters W; and vz the next exit time of W;.

We will in fact majorize the contribution of each interval of excur-
sion [u, v/] by the contribution of an asymmetric excursion [u?, u! + s7]
such that sg is bounded below by a positive number and the geodesic
between uf and uf + sg lies in V;.

Let us denote by 5{ the matrix ; é’ug and

¢ — al bl
v cg dg '
We get 1/(052 +dg2) = h;.

Let us show that s7 = log (2/(c] ’ h;)) satisfies the required proper-
ties.
First

2 2
i2 > 2 2 — 4

(2 7

thus sg > log 2. Second

252
C'Z d'] h/l < tat 4 ? Z < 2,
so that " . "
— < 2 = -2z 2 < hz
3 desi+dle® cl dl h?

All the conditions concerning sg are hence satisfied.
We are going now to estimate the contribution of the j* passage
of the geodesic in the neighbourhood of Cj, by

J

ug-i—sl
[ e ds,

A

for which we are going to prove that it is the term of a convergent serie.

uj—}—sj sj

i i s —uJ 7 s .
[ g ds =t [ e 0 ds,
uy 0



STATISTIC OF THE WINDING OF GEODESICS ON A RIEMANN SURFACE 387

with the above notation concerning the matrix 5{ . We first notice that
the minoration of s} by log 2, gives u! > (j — 1) log2, so that

Moreover,

. log (2/(he!)) g3
‘/ e *|x|(& 6) ds‘ < P/ e ® ‘ ds
0 0

(d]" + ] e>)?

2/(hel”) i
:P/ 2Q$ dx
1 (d]

+cl a2)?
_ P[ 1 ]2/<hcf>
(" +¢ a?)
1

"U Sl lav

()2 + (c])?
h

[\]

So the contribution of the j** passage is less than M;h/27, which is the
term of a convergent serie. The lemma is proved.

Lemma 5. The function q~5 = —R1L;¢ is continuous.

PRrOOF. In each V; we have an explicit formula for ¢

i
P(€) = X Vi sin6; .

Lemma 1 yields

Li¢) = % y;i (cosf; — 1) (2cosb; + 1) .

So L ¢ satifies the conditions of previous lemma, which ends the proof.

Lemma 6.
1) L0¢~S and L+¢~5 are well defined and continuous,
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2) wt is a closed form with C coefficients.

PRroOOF. 1) For Loé, we have to prove the uniform convergence in & of

/oo e~ LoLy (& 0,) ds.
0

We just have to check the assumptions of Lemma 4. But using the
formulas of Lemma 2, we get when w(§) € V;

2\
X;

LoLi¢(§) = yi (1 — cos ;) (1 —4cosb; — 6cos 6;) .

This function satisfies the assumptions of Lemma 4.
For L ¢, note that

Li( [ "L b(e0.) ds) - / L (Lyd(E0.)) ds.

To prove the uniform convergence in & of the last integral when T goes
to oo, we first note that

L+(L+¢(§ 98)) = 6_8L3-¢(§ 98) )

An easy calculation yields

6A; .
L3 ¢(¢) = ~, Yisin 6; cosB;(cos; — 1),

so we can conclude by Lemma 4.

2) It is easy to check [11] that

~ - dxANd
dw® = (=L1¢ + Lop — ) y? !

and that the parenthesis vanishes by definition of ¢.
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6. Geodesic flow and Brownian motion.

We are going to show the relation between the integral of ¢ along

-t
the flow between 0 and ¢, which is equal to f;e w¢, and the integral
along the Brownian path on H starting at .

Let us define the Brownian motion by the equations:

\/_yt (1)7 -TO:O?
dyt = \/5 Yt th(2) ) Yo = ]-7

where Wt(l) and Wt(z) are two real independent Brownian motions. The
generator of the process so defined is

0? 0?
(8.732 8—3/2)
(the explanation of the choice of this normalization will appear in
Lemma 10). We shall denote z; = zy + i y;.
N.B. ¢T,, is a Brownian motion on the leaf £ T, (in the matricial
sense).

The relation between both flows is given in the following lemma:s:

Theorem 2.
/l; iet
lim [ m(d€)exp (t/ w§>

t—-+o00
_ z b
_thHlE/md§ exp / w)],

where Sy denotes the hitting time of the line of equation y = e~t by the
Brownian motion on H starting at i.

PRrROOF. Using the invariance of the Liouville measure under the action

of 6; and performing first the change of variables £ 6, — &, and then
change s — t into s, the left hand side becomes

[mtaeresn (; [ o as)
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-t
With that remark we do not have to consider f;e wé anymore, but

B j‘i’ieit wg

By the invariance of m under the right action of 6, we get

[mresn ([ sconas) = [miaeyesn ;[ stcozonas),

for all u € R, thus

[miren (5 [ o) as)
//ut (du) m(de€) eXp / SO0, )ds)

where v4(du) is any probability measure on R.
But from Section 3, 676, = T\ y;ct, hence

—t u-{—ie_t
/ p(E0F0,)ds = / wt.
0 u+1

We have now to study

//ut (du) m(de) exp< /u+ tw£>

t

— // v (du) m(d€) exp (_TZ /iuﬂ'e_ w&)
_ // vy (du) m(d€) exp <_TZ /iu+z‘et wg) (1 —exp (% /iu+i w&)) :

We are now choosing for v; the Cauchy law with parameter 1 — e~¢,

namely the hitting distribution of the line y = e~! by the Brownian
motion. The last term vanishes as ¢ goes to +o00, by dominated conver-
gence since

v (du) 1—et 1
= < for t > log2.
du (1—et)2+u2 1 ’ ort =708

4

+ u?
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With this choice of vy,

[ miawymagyesn (3 e )
= 5[ [ miag)exp (7 / )]

which can also be written,

E[/m(dﬁ) exp (_Ti/OSt(wg,odzJ)] )

where o denotes the Stratonovich integral as in [6]. It is indeed the
stochastic integral for which the differential calculus coincides with the
usual one; in other words, if

7. From Stratonovich to Ito.

By previous lemma, we have to study

i 2 g (7 [ 000)]

The difficulty lies in the fact that w® is not a priori harmonic, and so
the integral f(f (w8, 0dz,) is not a martingale, so that we cannot directly
treat the problem using excursion theory as it was done in [10].

Let us examine the integral (we denote {; = €T,,)

/0t<ws,odzs> _ / (PET) gy, 4 JET.) vir)

Ys Ys

t
— [0 aw® + e aw )
0

+%/0 (d<¢(§yfzs)7ys>+d<¢(£yfzs),xs>).
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By It6’s formula,

d<%,ys> _ %(@)d@s,yﬁ

- (2ys g—j(szs) - 2¢(€Tzs)) ds .
Similarly,
d<%,xs> - %(qz(gyTz))d(xs,xs) = (2 Ys g—i(éTzs)> ds .
Thus

t t
/ (W, 0 dzy) = / B(E2) AW + (&) WD
0 0

t 0¢ 0¢
+A <ys a_y(szs) + Ys 8_.T(€TZS) - ¢(£Tzs)) ds,

which can also be written

t t
/ (W, 0 dzy) = / B(6) WD + §(es) aW D
0 0

t ~
+/ (Log+ Lad — $)(€ T, ) ds
0

We notice that the last term describes the “lack of harmonicity” of the
form wé. Indeed (Lop + Lid — ¢ = 0) as soon as w® is harmonic and
we can then see that fot (w, 0dz,) is a martingale.

We show that the second term has no influence on the limit by the
ergodic theorem, proving that Lo¢ + Ly¢ — ¢ is in L'(m), and that its
mean value is equal to 0. For that purpose we shall prove two lemmas:

Lemma 7. With the notations of Section 4, L+q~5’ = —Lop+ ¢.

Proor. By Lemma 2, we have just to check the following equality

(yi sin 6; % + (1 — cosb;) %) <u(z—1)y, cos Qi)

0

= —(y,- cos 0; 3iy, + sin6; 3—9) ( — U<}yl—z>yz sinﬁi)

— u(}yl—:)y, sin6; .
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REMARK. QNS’ has the property to make coclosed the form

¢'(§T>) " + ¢ T%) y

Lemma 8. f = Ly¢ + L_|_<$ — @, is m-integrable.

PROOF. By lemmas 6 and 7, it is enough to prove that L (¢ — ¢') is
integrable on w=1(V;).
Set for £ € 771(V;)

(ZZ ZZ) = ’Yz'gi(f)-

Note that ¢2 + d? < 3/h;. Then (&) = —Ry L, ¢(€) can be written

+o0
¢@>:—3A L $(E0,) ds

log (2/(c?hs) +o0
=— / e *Lyp(E0s)ds — / e *Lyp(Efs)ds
0 1

og (2/c}hi))

Ai log (2/(c?hi)) ( 22 28 82 d2 e ) J
I - S
Xi Jo (df +cie>)?  (df + ¢ )’

“+oo
—/l e *Lyp(Efs)ds.

og (2/c}hi))

Since in matricial coordinates

A 2¢c? 8c2 d?
L — 3 7 o )
0= (@ apr  @rar)
PPN VIl B 2/¢thi Ryl -
P(&) X, [W]l + 3 A EETHY)
2
I P
~ )\ h 7 th ~
= ¢/(£) + fl 4Z 5 T 12 ¢(£T2z/(cfhz)) .
(7 + %)

It follows that L+(¢~S — ¢ ) can be decomposed in the sum of two terms,
which both appear to be bounded.
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The first one is

h_i_d% 0 9, h_i_d%
() e ()
' SCidi Z

hz’ ZCidi

) ()

which is clearly bounded since |¢;| and |d;| are bounded by 1/v/h;.
The second one is Ly (1) with

N

h; ¢z -

w(f) = 2 : ¢(£T2i/(cfh,i)) .

Note that for that z close to i,

BET) = " G T aypy) = Y BE T,y n)
and therefore
Lop(eT) =y PPETE)
= Cih% 3/2 (hfc? %Qz(f Tm+2i/(c§hi))>
= @ y? (Li9) (€ T y2i/(c2h)) -
Hence 4o
Liy(§) = ci4hi (L+9) (€ Toi/(c2ny)) »

¢; h?/4 is clearly bounded, moreover as shown in the proof of Lemma
7, €T2i/(c?hi) belongs to V;\W;, which is relatively compact and L4 ¢ is
continuous. The integrability of f on 7'M is now proven.

We can now state:

Lemma 9. The integral of f on T*M vanishes.
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ProoFr. From Lemma 7 it is enough to show that
| Lat@-miae =o.
T M

Let g2 a sequence of smooth positive functions on M, increasing towards
1 as n goes to oo, and such that [|[Vg2 || is less than some constant C
for all n. Set g, = g2 om. An integration by part yields

| st =@ Ome) = [ (@ =) Lygu©m(ae)

T M

and the result follows by dominated convergence, letting n increase to
infinity.
Hence, we reduced our problem to the study of

tiw_ B [ m(ag)exp (F2 / " e AW + g6 awi®)].

t—+oo t

8. Calculation of the limit via excursion theory.
Lemma 10. S;/t converges almost surely towards 1 as t — +o0.
PROOF. Since

ye=exp(V2WH —1),  fort>0,

we have

Sp—t=V2Ws.

So the graph of t — S, is symmetric to the graph of t — t—/2 Wt(l),
with respect to the first diagonal and

; — 1, almost surely, as t — oo

Set

Nia

1 [t~
— = ;/0 D(€s) Lin(e.)ew} WM + (&) Lin(e.)gwy daw® .
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Lemma 11. Ng, 1/t converges to 0 in L?.

PROOF. N is a martingale with bracket

t ~
/0 (0°(&) Lineygwy + 07 (&) Line)gwy) ds -

Since ¢ and ¢ are bounded on 7~ 1(W¢), say by K, for all integer M,

SIAM
E N3, am] = E{/O (07 (&) Limeygwy + 07 (&) Lineygwy) ds

so that
E[N§ apn) < K?E[S; A M].

But Sy A M + log (ys,am) = 2W§B\M, and as far as log (ys,am) > —t,
E[S;AM]|<t,

so that by Fatou’s lemma, we get when M converges to oo,
E[N§,] < K*t

and we deduce the lemma.

Set now,
Nshz 1 St (1) (2)
r 1), P8 Mmenewy AW H 06) Limeewy dWST

Lemma 12.

1 .

s, 3
L[ 6 = F €D ey W
0

converges to 0 in L?.

PROOF. The same proof as in the previous lemma yields the result,
since ¢ — ¢’ is easily seen to be bounded.
The averaged integral in the limit can therefore be replaced by

\/5 St 1 2
- /0 V(&) Uneoewy AW + 6(€0) Linceyewy AW
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In order to use excursion theory, we have to get rid of “incomplete
excursions” containing 0 and S;. For that purpose we introduce T¢ the
first exit time of 7= (W) of the Brownian motion starting at &, and S5
its first exit time of 7= 1(W) after S;. (N.B. T¢ vanishes if w(§) ¢ W
and T¢ = S; when 7(&s,) &€ W).

Note that under m ® P, the distributions of

Té
i ¢ (&) Lim(eoyewy AW + 6(&s) Lime,yewy AW
and
CHI
g ' (65) Lin(enyewy AW + ¢(€s) Line)ewy AW
t
are independent of ¢ ( for the second integral, this follows from the T,-
invariance of m and the independence of ¢ and S;). Their quotients by
t converge therefore to zero in probability. The averaged integral in the
limit can finally be replaced by (Lemma 3),

/
H; = / ' (5) Linieyewy AW + 6(€s) Lin(enyewy AW

st n
= 2 a0 1 sy od).

=

where 2& = 7(¢,) is the Brownian motion on I'\ H, starting from ().

We now denote by E the expected Value with respect to m ® P.
Denote e the excursions of 2§ in W;, and é its lift into H, starting from
the image in 7; F; of the starting pomt of ef. Denote a(&%) and b(&%)
the starting point and the endpoint of & in H and denote [S(e3), T(ezg)]
the corresponding time interval.

With these notations,

1= A
Hiw)= 5> (X bE) —al)).
=1 ¢ ef
0<S(ef)<S;

From excursion theory we get that

Blewp (1115 )) = B[ ex (3 B (enp (15 5) 1)) 205

7
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where L; ; is the value at time ¢ of a local time on 9V; of 2§ and By, is
the excursion law of the Brownian motion on H, above the line y = h;.
Its normalization depends on the choice of L;, via the identity

E[% /Ot 1{Z§EW¢} ds] = E[Lti’t Ehi (C)]

(¢ being the excursion lifetime).
X is the abscissa of the excursion endpoint.
By definition of Ej,,,

Bl (35 (o0 (12 %) 1))

1=1
o (3 e P (s s 5 111

where 75, denotes the hitting time of the line y = h; by the Brow-
nian motion on H starting from the point (z,h;(1 4+ ¢)) and K is a
normalization constant related to the normalization of L,.

This last expression equals

2

o3 i gz Bencosn (o0 (-~ s | 02 ~1) s

= 2o (3t g (MGG 1) es)

- Bl (3 2 (g0 1205,

i=1
where by the Feynman-Kac formula, ¢; solves the differential equation

2

3
X2

Y2l — y2p; =0

with ¢;(h;) = 1 and ¢; bounded at +oco. Therefore

bil) = e (- B - 1)
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and our expression takes the form

n

£low (-3 £y bus) ]

1=

We now come back to the problem of normalizations. If E), is normal-
ized in such a way that Ej,(() = 1, we have

1 [t EL;4
E[Z/ol{zgewi}ds]: t

Since under m ® P, z, is an ergodic process with invariant measure

dx dy /| M |y?,

E[Li;] 1 dedy  X;
t M| Jy, v*  [Ml|h;

The ergodic theorem for additive functionals (e.g. [14]) yields the al-
most sure convergence of L;./t towards X;/(|M|h;). As Si/t — 1,
L; s, /t converges also, almost surely, towards X;/(|M| h;).

The expectation of the excursion lifetime equals

1
lim —— Ej, (14¢)[7h;] = lim lim —

e—0 Ke e—=0a—0 KECYEhi(1+€) [eXp (_aThi) - 1] s

by monotone convergence (monotonicity in « follows from the convexity
of the exponential).
The normalization of the excursion lifetime yields

L 1
1= il_l;%ilg})—K—w(@bz,a(hz(l +e€)) —1),

where v; ., is the solution of the differential equation

y2 ! (y) — aia(y) =0

bounded at oo and such that 9; o(h;) = 1.
Hence 1; o(y) = (y/h;)* where p is the negative root of the equa-
tion (g — 1) — a = 0, namely

1
Nzi(l_ vl+40[),



400

N. ENRIQUEZ AND Y. LE JAN

therefore
1 k_1
limlim%:1 and K:lim—ﬁzl.
e—=>0a—0 EQ a—0
Finally

i 2lesn (=3 e )] = (-3 ).
i=1 ' i=1

A
| M|

Hence

lim
t—o0

E(exp <zn:Ehi(exp (z))\(—i ?) — l)Li,st)] = exp (_Zz:;

=1

).

Y
| M |

and the average on T1M of exp(in ), converges towards

eXp(‘ 2. ||])\\/_;||)’

which ends the proof of Theorem 1.

References.

[1]

[6]
[7]

Franchi, J., Théoréme des résidus asymptotique pour le mouvement
brownien sur une surface riemanienne compacte. Ann. Inst. H. Poinca-
ré, Probabilités et Statistiques 27 (1991), 445-462.

Franchi, J., Le Jan, Y., Brownian charges around loops. Probab. Theory
Relat. Fields. 104 (1996), 501-514.

Guivarc’h, Y., Le Jan, Y., Sur ’enroulement du flot géodésique. C. R.
Acad. Sci. Paris. 311 Série I (1990), 645-648.

Guivarc’h, Y., Le Jan, Y., Asymptotic winding of the geodesic flow on
modular surfaces and continuous fractions. Ann. Sci. Ecole Norm. Sup.
26 Série IV (1993), 23-50.

Hopf, E., Ergodicity theory and the geodesic flow on surfaces of constant
negative curvature. Bull. Amer. Math. Soc. 77 (1971), 863-877.
Ikeda, N., Watanabe, S., Stochastic differential equations and diffusion
processes. North Holland, 1981.

Ledrappier, F., Central limit theorem in negative curvature. Ann. Pro-
bab. 23 (1995), 1219-1233.



8]
[9]
[10]

[11]

[14]
[15]
[16]

[17]

STATISTIC OF THE WINDING OF GEODESICS ON A RIEMANN SURFACE 401

Ledrappier, F., Harmonic 1-forms on the stable foliation. Bol. Soc.
Bras. Mat. 25 (1995), 121-138.

Le Gall, J-F., Yor, M., Enlacements du mouvement brownien autour des
courbes de 'espace. Trans. Amer. Math. Soc. 317 (1990), 687-722.
Le Jan, Y., Sur 'enroulement géodésique des surfaces de Riemann. C.
R. Acad. Sci. Paris 314 (1992), 763-765.

Le Jan, Y., The central limit theorem for the geodesic flow on non
compact manifolds of constant negative curvature. Duke Math. J. T4
(1994), 159-175.

Lyons, T., Mc Kean, H. P., Windings of the plane Brownian motion.
Advances in Math. 51 (1984), 212-225.

Ratner, M., The central limit theorem for geodesic flows on N-dimensio-
nal manifolds of negative curvature. Israel J. of Mat. 16 (1973), 180-
197.

Revuz, D., Yor, M., Continuous martingales and Brownian motion.
Springer Verlag, 1991.

Sinai, Y. G., The central limit theorem for geodesic flows on constant
negative curvature. Dokl. Acad. Nauk SSSR 133 (1960), 1303-1306.
Spitzer, F., Some theorems concerning 2-dimensional Brownian motion.
Trans. Amer. Math. Soc. 87 (1958), 187-197.

Sullivan, D., Disjoint spheres, approximation by imaginary quadratic
numbers and the logarithm law for geodesics. Acta Math. 149 (1983),
123-237.

Recibido: 20 de mayo de 1.996
Revisado: 21 de abril de 1.997

Nathanaél Enriquez and Yves Le Jan
Départment de Mathématiques

Bat 425

Université Paris Sud

91405 Orsay

FRANCE

enriquez@proba. jussieu.fr
Yves.LeJanOmath.u-psud.fr



