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The bilinear Hilbert

transform is pointwise finite

Michael T. Lacey
To my father, H. E. Lacey, on the occasion of his siztieth birthday

Abstract. Let f € L™ and g € L? be supported on [0,1]. Then the
principal value integral below exists in L*.

p. V-/f(x+y)g(x—y)i/—y-

1. Introduction.

The bilinear Hilbert transform is

Hfg(x) = /f(x+y)g(x—y)dy—y-

Two different rates of translation are incorporated into the integral,
making it an extraordinarily subtle object. A beautiful conjecture,
formulated first by A. Calderén in 1964, is that H maps L? x L™ into
L2

This paper gives some concrete indication that the conjecture could
be true.

1 This date was supplied to me by R. Coifman. Independently, C. Fefferman posed

the same conjecture in the early 1970’s. The motivation for both was the Cauchy integral

on Lipschitz curves.

411
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Theorem 1.1. For functions f and g supported on [0, 1],

| [ 1@+ wa—0] <Clfl ol

In particular, the bilinear Hilbert transform is pointwise finite for f €
L*> and g € L.

There is only one natural antecedent to this conjecture of Calderodn,
namely Carleson’s Theorem ([C]) on the pointwise convergence of Fouri-
er series. And the starting point of this paper is C. Fefferman’s proof
([F]) of that Theorem.

We then view one of the functions, say f, as a fixed bounded
function. This allows us to use L? techniques to bound H fg for g €
L?([-1,1]). From this point, the large scale structure of our proof
is borrowed from Fefferman. The operator is decomposed into pieces
localized in space and frequency. These pieces have an intrinsic size,
and they are grouped accordingly.

The proof depends upon combinatorial considerations to break up
the small pieces of the decompostion into a relatively small number of
orthogonal parts. A critical feature of the decomposition are certain
Carleson measure estimates which arise from the decomposition of the
function f.

The whole analysis is done solely on the function f, and only using
the fact that f is bounded. The paper fully develops the line of rea-
soning, within these restrictions. Further progress on the conjectures
can be made, by gaining a deeper understanding of the decompositions
of the function f and their properties. As well, the structure of the
function g must also be exploited, whereas in this paper g is essentially
ignored. Both of these steps can be taken,? but will add significant
complications to an already difficult paper. A discussion of this line of
investigation will be postponed.

The proof occupies the rest of the paper, which is organized along
the following lines. A strong working knowledge of Fefferman’s proof [F|
would certainly be an aid to the reader. Our approach uses especially,
the combinatorial methods therein. But moreover, many of the details
must be treated with more care in the present setting of the bilinear
Hilbert transform.

2 These words written in May of 1995 turned out to be prophetic. Together with C.

Thiele [LT], a range of L” bounds have been established for the bilinear Hilbert transform

on the real line.
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Section 2 gives the decomposition used in the proof, and a very
crude outline of the proof. Section 3 treats some technical issues.

Section 4 initiates the real work. The first half of it takes up the
most striking new element of the proof: the Carleson measure estimate
of Lemma 4.4. It is the work-horse of the whole proof. And it’s proof
employs the full strength of the combinatorial ideas of [F]. Section 6 is
exclusively devoted to a second Carleson measure estimate. Its proof is
less difficult than the first, but the formulation is far from obvious.

The rest of Section 4, as well as Section 5 are devoted building up
large units of bounded operators from the decomposition. The units
of Section 5 are trees, which are in fact Calderén-Zygmund operators.
Lemma 5.1 explains succinctly a fundamental difficulty. This difficulty
is the sole subject of Section 6.

Concerning notation, a capital C' will denote a constant, perhaps
one that changes from line to line; in contrast, a lower case ¢ will denote
the center of a relevant interval; the indicator function of a set A will
be denoted by 14, or when A has a complicated description, 1[A]; a
similar notation will be used in summation

e AfG) =Y f).

J JEA

2. The decomposition.

This section will describe a decomposition of the bilinear singular
integrals. Define the Fourier transform by

FF(E) = / &2 f () dar,

and set (f,g) = [ fgdx.

We regard the bounded function f as fixed and supported on [0, 1],
with ¢ varying but supported on [0,1]. Notice that then the bilinear
Hilbert transform is compactly supported, and we can restrict 1/y to
ly] < 2. The proof is based upon a decomposition of H f- into a rel-
atively small number of components orthogonal in either space or fre-
quency.

The place to start the decomposition is the kernel 1/y. Consider a
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kernel K (y) = >_,5; K;(y), where for each j,

1 1 . 1 .
. , (- )3 << =3
(2.1) Supp(fKJ)C{f (3 100>3 —5—33}’
o
22)  |K;() - K;() <C 'y|y|§’ L 2l <yl
as well as
(2.3) |K;(y)| < C3(1A(3y)~M), where 30 < M < o0.

The choice of M will be some large but fixed value. The negative values
of j are irrelevant, as we are only concerned with |y| < 2.3 We can write

-l-ZK“ )+ K(y), 0<lyl<2,
where ||J(y)||1 < co. We take V. = min{v : (1 + 1/56)” > 3}. For

satifies (2.1), (2.2) and (2.3). The kernels

K2 ((1+ 555) )

satisfy the same conditions. We show how to treat

Tfg(x /f:v+y (z —y) K(y) dy,

and the kernel J is trivial.

3 The Fourier transform of K will be supported on (0,00). The proof accomodates

FK; being supported on the positive and negative axes, but this slightly complicates

some other combinatorial considerations.
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Pairs. Fix triadic grids G of R and G of R4 Call p = |w,I] a pair
ifwe g, and I € G with |w| = |I|7'. We write p = [w,, []. Fix a
function ¢ with L? norm 1, supp (¢) C [-~1/100,1/100],

(2.4) [p(x)] < Car (LA J2|7M),

where 30 < M < oo is large, but fixed, and the collection of functions
below is a tight frame in L?(R).

(2.5) {p™" () = 2™/ 200%(x — 100n) : n,m € L} .
This last condition means that

S L™ =2]115
for all square integrable f; and so

(26) Fla)= 5 S0 6™" @) (. 0m

m,n

at least in a L? sense. By considerations in [D, Section 3.4], this
amounts to choosing ¢ so that

Z ‘(ﬁ(& + %> ‘ = constant .

All of these requirements can be met by choosing QAS to be symmetric,
and for an increasing function v(§) on [0,1/200] with »(0) = 0 and
v(1/200) = 7/2, setting

1
0<eE< —
A cosv(§), <¢< 200’
$(&) = A 1 1 1
Sln'j(f 200) 200 == 100"
0, otherwise .

where A is a normalizing constant. For any such v, the function ¢ will
satisfy (2.7); and for a smooth choice of v, ¢ satisfies (2.4).

4 That is, G is a union of intervals whose lengths are powers of 3. The set {I€G:

|I|=3779} partitions R, and the partitions are refining as |I| decreases.
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A further property of ¢ is that
(2.8) {p(x —200n):ncZ} are orthonormal.

This is due to (2.7).
For pairs [w, I'], set

' —c(I
b (0) = /2 ricing (22 EY

Here, ¢(J) is the center of the interval J. We will also use the notation
|w 11

2.9 P — o |:_ o _:| )

(29) (@) = @) + o [~ 503

to denote the support of the Fourier transform of ¢, ;. Much more

commonly, we will use the notation

ku(y) = ki(y),  where [w| =37,

Let fio.11(x) = ¢p(x)(f, ¢p), which forms our decomposition of f.
The smallest unit in the decomposition is

(210)  T,g(x) = Thu1yg(z) = / ko(y) folz + ) 9(z — y) dy.

The proof will bound 7% = >, pairs Lp g, which is certainly not the
full singular integral. However, as will be explained in the next section,
it is enough to bound T°.

Here are some simple properties of the T},. First, how big is T},
Certainly, [Tpg(z)| < || fplloolkj| * |g](x), hence

)
1

(2.11) [Tpll2 < Cllfplloe = C

We will use the notation

size () — [ dp)l
(p) L

The operators Tj, has good space and frequency localization. The fre-
quency localization has been made quite precise, as will be described
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by associating to every w two sets A(w) and A*(w). They are defined
by

(2.12) Aw) = elw) 3 ol + 2 [ 2 0],
and
(2.13) A*(w)ch(w)+%|w|+% [—%%]

The point of these definitions is that

Tiw,119 = Tiw 11 (F ' 14 Fg)

and
T[t.},I] g = T[Z}J](f_l].A*(w)fg) .

Or equivalently, by taking adjoints,
(214) Tpg=F "1guyFTpyg and  Trg=F '1laFT,yg.

To verify these equalities, write the “Fourier transform” of 7T}, as follows

Tonyg(@) = 72 ([ 00 0) fylo + ) dy () (@)
= FH(F5 (fole = B) fuon (9) (@) §(0) ) ().
Then, the second half of (2.14) follows by looking back at the definitions

of kw and ¢[w,[]-
A similar calculation holds for 7};. Recalling (2.10), note that

19(0) = [ Kul-u) foe ~ 20) gt~ ) dy
= F N (F5 (ke +28) fo(—B8)) () §()) () .
From this, the other half of (2.14) follows.

Another simple property of the T},’s is that, up to modest changes
in f and g, for any pair p = [w, I'], w can be assumed to be centered at
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the origin. Let us carry out the calculation. For a pair p = [w, ], and
¢ € R, (not necessarily the center of w) notice that

f[w,I](x) = ¢[w,[](m) <f7 ¢[w,[]>
_ p2mizc ¢[w_c,1] (.73) <e—27ric-f( . ), ¢[w—C,I]( . )>

— e2‘n’iwcf'[w_c,1] (.T) ,

where f(x) = e~2™ f(z). From this it follows that
Tn9(@) = [ k) floni(o+ ) 9l ~ ) dy
215) = [ hale) ) ol ) dy

_ pimizc / kw(y)f[w—c,f] (z +y) (e_QTric(:E—y)g(x —y))dy.

It is convenient to shift w’s back to the origin because for such pairs p,
fp has derivative dominated by the scale of p. That is, |d/dz f,(z)| <
C/|I|.

Partial Order for Pairs. The last topic for this section is a natural
partial order for pairs. Write p’ = [/, I'] < p = [w,I] if w C W' and
I' C I. This partial order encodes the orthogonality properties of the
Ty, in the following sense: if p and p’ are not comparable then 7}, and
T, are, roughly speaking, orthogonal.

C. Fefferman’s approach focuses attention on three separate is-
sues. The first is this: arbitrary collections of pairs must be controlled
in terms of their maximal elements under the partial order ‘<’. The
critical question concerns sets of pairs P which are mutually incompa-
rable under <. How bigis >, ;jep 11(2) 7 The answer is contained in
a Carleson measure estimate, the proof of which takes up the first half
of Section 4 below.5 The next issue concerns 77 = ZpE’P T,, where P
is a set of pairs which are incomparable under <. With the Carleson
measure estimate in place, and it’s implict orthogonality, one can check
that

1T |ls < C  [sup size(p).
PEP

5 The corresponding estimate is required in [F] but is easily obtained.
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The next important group of pairs are those which form a tree under
the partial order <. They turn out to be Calderon-Zygmund operators,
but now it can happen that

17l =1,

regardless of how small the size of individual pairs in P. This difficulty
does not occur in [F]. Fortunately, it turns out that for trees, P, the
operator norm of 77 has an explicit form in terms of the decomposition
of f. We take advantage of this in Section 6 to prove a second Carleson
measure estimate. This lemma provides a way to control those trees
which have large norm, even though their constituent parts are small.

Employing certain combinatorial tricks, one can then show that for
an arbitrary collection of pairs P,

TP ||z 2 sup {||T7 ||z : P' C P, P’ a tree}.

The concluding step in the proof is then to decompose the set of all
pairs into collections P, with [|[TP#||; ~ 27", This estimate is then
summed over n, completing the proof.

3. Technicalities.

This section serves as a catch-all; it includes all the steps that need
to be explained, but would have hampered the flow of the previous
section. The overall direction is to explain how to pass from 70 =
2 _all pairs Lp to the integral in Theorem 1.1. But first, T° will be further
modified.

Central Intervals and Admissible Pairs. The modification of 79 is
needed to gain a certain improvement in triadic intervals.® Say that I is
central if it is the middle third of a triadic interval. Phrased differently,
I is central if both I and 31 are triadic. The “convenient property of
central triadic intervals” is

(31) L CI,C---Cl,, all I, central implies 3™ 'I; C I,,, .

The proof is immediate.

6 This notion doesn’t enter into the proof until the very end.
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Let us observe that for every w € G, A(w) is central in G. Indeed
A(w) is the middle third of G. But to acheive the same result for A*(w)
we make a specific choice of grids. We take G = {3/[n — 1/2,n +
1/2) : n,j € Z}. Then A*(w) is central in G, as is easily checked.
More generally if GY = {I+a:1I e G} is the grid shifted by a, then
for w € G% the interval A*(w) is central in G22, These observations
concerning A*(w) do not hold for an arbitary triadic grid, and the
notion of centrality does not enter the proof until Section 6.

Call p = [w,I] € GY x G@ admissible if w is central in G°, and
I satisfies the following: ¢(I) € a + 200|I|Z, where a is fixed. This
requirement on I, with (2.8), shows that the functions

(3.2) {@[w,1] : [w, I'] admissible; w fixed} are orthogonal.

This will be useful in Section 6.
. . . 1 o
The proof in the next four sections will bound T =3, icsible Lp-
and in the next section, “pair” will mean “admissible pair”.

Lemma 3.3. The bound ||Tg||1 < C||g||2 implies the same bound for
the full singular integral.

PROOF. The proof averages the bound for 7' over space and frequency,
with the central tool being the resolution of the identity below. For
a,beR, let

(I)a’bf(x) = e27riaw¢(x o b) <f7 e2‘n’iaw¢(x _ b)> .

Then,

(3.4) f@)=C / / (@9 £ () da db .

One checks this by showing that for all f,g € L2,

/// (D*f) () (D) g(x) da dbdz .

(In the language of wavelets, ®*°f is an example of a continuous win-
dowed Fourier transform. See [D]). We apply this formula to f, which
is bounded and supported on [0, 1].

The definition of T'!, pair, central and admissible pair all depend
upon the choice of grids. Thus, if G is a grid, denote by G® it’s shift
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by a. Notice that the central intervals are just shifted in G, and that
they have density 1/3 at all scales. That is, amoung all the intervals
I € G with |I| = 27, every third one is central. Clearly, the admissible
space intervals have density 1/200 at all scales. Then, let

fabi (z) = Z [p admissible, |I| = 3j] bp(x) (f, bp) -

[w,I]€GexGb

From Carleson’s Theorem, one sees that this sum is convergent for
almost every z. It follows from (3.4) that

C M M )
flz) = lim — /0 /0 Y9 (z) dadb.

M— o0

And so, if T%? is the operator 7! formed over the grid G x G*, we see
that

S [ B+ gt —v = g N / " g () dadb.

M — o0

The assumption is that we have appropriate norm bounds on T%?,
independent of ¢ and b. These same bounds then clearly apply to the
averages above. In this way, we can pass to the full singular integrals.

4. No two pairs comparable.

The object of study herein are sets of pairs P for which no two
distinct pairs in P are comparable with respect to “<” Call such a set
of pairs a thicket. A convenient way to reformulate the not comparable
condition is this. Two pairs p = [w,I] and p’ = [w’, I'] are not com-
parable under ‘<’ if and only if the two rectangles in space-frequency
plane I X w and I’ x w’ are disjoint.

Here are the three facts this section is devoted to proving.

Lemma 4.1. Let 0 < b < 1. If P is a thicket and size(p) > b for all
p € P, then for any e > 0,

| 3 u

[w,I]eP

< Cyeb™?70, 1<s<o00.

S
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In particular the function above is in every L" class, for r < oco.

Lemma 4.2. If P is a thicket and size(p) < b for all p € P then for
alll <r <2,

(4.3) TP gL < C. 6T |g], where §(r) > 0.

Note that this is a L™ — L' estimate.

Both of these will follow from a study of f,, which begins with the
following Carleson measure lemma.

Lemma 4.4. Let 0 < b < 1. Let P be a thicket with size(p) > b for all
p € P. Then for all intervals U, and all € > 0,

(4.5) > I CUIg, bo,))® < Cb74|U| lg12, -
[w,I]eP

This Lemma, crucial to the whole line of reasoning of this paper,
has an intricate and combinatorial proof. In fact, it already reflects
the large scale structure of Fefferman’s argument. The procedure is to
identify nice subsets of thickets which satisfy (4.5), and decompose a
thicket into a relatively small number of these nice subsets. In choosing
our terminology, the thickets, spindly sets, shrubs and hedges of this
section, we have chosen words, which in the American vernacular, per-
tain to the understory of a forest. This seems appropriate due to the
close connection between thickets and the forests of Section 7.

The inequality is also probably in it’s optimal form; at any rate,
the purely L? estimate

> g, ¢ < Co7H g3
pEP

is false. Indeed, one can use the Fourier transform in this last inequality,
and then it is quickly seen to be false for @; even if § = 1;_; 1. Put
another way, our Lemma 4.4 relies critically upon ¢ being compactly
supported in the frequency variable.

Further, the proof given here will be applied to decompositions
of other functions that arise later in this section. To this end, it is
important to note that the only property of ¢ or rather ¢, used is this:

(4.6) wNw =g implies supp (Zs;) N supp (QZ;:) =0.
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The other element of the proof is an estimate of the form

Z [IcUII<Cbh U, for all intervals U .
[w,I]eP

In the end, it is the desire to apply Lemima 4.4 to other “thickets” that
justifies, even necessitates, our seemingly absurdly specific requirements
on the decomposition given in Section 2. To emphasize this point, let
us record here a second Lemma which we shall prove at the same time
as the one above.

Lemma 4.7. Let € > 0. Let P be a thicket and in addition assume we
have the estimate

(4.8) Z I cUIl<Cb? U, for all intervals U .
[w,]]eP

Let {¢, : p € P} be functions satisfying

—

(4.9) wpNuwy =2 implies supp (¢p) Nsupp (@) = &,

(110) op(o)] < One 1+ T5 )

where M depends upon €. Then for all intervals U and bounded func-
tions g,

(4.11) > 1, c UT(g, @) < Cb™= U] |lgll3 -
peP

In the Lemmas above and below, 0 < ¢ < 1 is fixed. It’s choice
depends ultimately on the choice of 1 < r < 2 in (4.3). The value of €
forces a certain rate of decay on ¢. Namely in (2.4) and (2.3), M has to
be chosen sufficiently large, but finite. The constants depending upon
¢ are independent of f and all pairs.

And, in the proof, it is convenient to assume these two conditions
on pairs: for all pairs p = [w,I] and p’ = [/, I']

(4.12) w=w"and I #1I' implies dist(,I") > 400b7°|I|.
(4.13) w Cw implies  |I] < b1 |I'].
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These conditions can be assumed by breaking up the set of all pairs
into O (b=2¢) disjoint sets. The effect of this will be to multiply our
bound in (4.5) by (a trivial amount) of b—2¢.

Spindly sets of pairs. Introduce a new partial order on pairs. Call
[w, ] < [, I'] if and only if w D w’ and

(4.14) je(I') = e(1)] < %b_e 1Y [ < 3791377

320

One can check that this is indeed a partial order, namely if p < p’ and
p' < p'’ then p < p".7 (By (4.12), if p < p/, then o’ C w.) Call a set
of pairs P spindly if no two pairs in P are comparable under <.

Lemma 4.15 If P is spindly and size (p) > b for all p € P, then it
satisfies (4.5).

PROOF. Assume that P is finite, and I C U for all [w,I] € P. Then
let B denote the best constant in the inequality

(4.16) | > e tol@) (9.04)]|, < Bllglle

pEP

g supported in b=°U, €, € {£1}. Our intention is to provide an estimate
for B. Averaging over all choices of signs ¢, will give a square function
inequality which is weaker than what is claimed in the Lemma, in that
a restriction is place upon the support of g. We return to this point at
the end of the proof.

We will have need of some trivial estimates below. Take g to be a
function bounded by 1. Then (g, ¢.11)| < C /1] |9]|co- Also

(Prw, 17> P, 1)
(4.17)
0, fonw =,

< 1] dist (I, 1)\ 20/
CM/—(I+7’> , fwcw.
u u

7 Roughly speaking, p<p’ if wDw’ and (3b°) 1 IN(3b°) 1 I'#@, and < is the transi-

tive hull of this pairwise relation. The trouble with the simplier condition is that it does
not define a partial order. And we have a need yet for certain intricate combinatorial

ideas, which depend upon a partial order, as in Lemma 4.28.
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Write out the left hand side of (4.16) as
2
| > e dul@) (g, |, =+ 0.
PEP

where D denotes the diagonal term

<Z¢p ¢p7¢p <97¢p>7g(x)>
peP
and the off-diagonal term is, because of (4.9),
0= Z ep (Pp(), 9(2)) Z [w C Wep (Dprs dp) (95 Ppr) -
p=[w,l |EP p'=[w',I'|€P
The assumed inequality can be used on the diagonal term D.
D = llglla|| Y- ¢p(@) (9.69))|, < BVO=IUT g% -

pEP

For the off-diagonal term, fix a p = [w,I] € P. Then the sets {I’ :
(W I'] € P,w Dw,I'# I} are pairwise disjoint, and do not intersect
b—<I. Hence, by (4.17),

Sp = ‘ Z [w -,C« w/] 6P'<¢p’7 ¢p> <g7 ¢p’>

p'eEP

1 dist (I, ')\ 20/
< Cllgle 3w G o] — (14 TELIN T

2 N 1
1 ( dist (I, x)>—20/€ .

<Cll [
<1< /1] 1]
< C: bt ||g||oo V |I| .

Therefore,

0 < || 2 I6p@)] S, gl
PEP
< Cb g% H ()| VT

=[w,l]€P

< Ce 0" g% Z 1]
[w,I]eP
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Putting these estimates together, we see that

(4.18) B < B\b=c|U]+C.0" > I

[w,I]eP

If By/b—¢|U]| is the larger of the two terms on the right, then B <

24/b=¢|U| and we have proved (4.16). So we assume that this is not
the case and we derive a contradiction by applying the inequality to f.
Of course f is not supported on b—°U, nevertheless we have

(4.19) Ay = [(f,dp) = (f Lp-ev, )| < Ce ™ 1]

Note that this bound only depends upon the L*° bound on f. Hence

HAD SNLES AT

w,I]eP peP

<23 [ L )P + A2

[w,I]eP

<CH > .

[w,I]eP

We therefore see a contradiction for small b, which is enough to prove
(4.16), because we only assumed a lower bound on the size of p €
P. To extend the square function inequality to all bounded functions,
note that inequality (4.19) is valid for all such functions, and so shows
that the condition that g be supported in b~¢U is superfluous, thereby
establishing the Lemma.

We observe that the proof above contains the following Lemma.

Lemma 4.20. Lemma 4.7 holds under the additional assumption that
P is spindly.

PROOF. We repeat the argument above, up the equation (4.18). Then
we appeal to (4.8) to conclude that (4.16) holds, with best constant
B < b=¢\/|U]. That is the Lemma holds up the restriction on the
support of g in (4.16). But this restriction is removed just as above.

Shrubs. Call P a shrub with top p* = [w!, I'] if p < p? for every p € P,
but no two pairs in P are comparable with respect to <. Because the
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sets {I : [w,I] € P} are disjoint and contained in b=¢I*, the inequality
(4.5) is trivial. What is more to the point is the following decompo-
sition, which is essentially a corollary to the Fefferman-Stein maximal
inequalities. This Lemma depends only on the combinatorics of pairs.

Lemma 4.21. Let P be a a shrub with top p* = [w* I*]. Then there
is a set P’ C P and a set F C b=cI' for which the following three
conditions hold.

i) P’ can be written as a union of at most O (b=*¢) spindly sets.
ii) For all [w,I] € P\P',b=°I C F.
iii) And |F| < C.b100 |1t

PROOF. Notice that the sets {I : [w,I] € P} are disjoint, for otherwise
two pairs would be comparable under <. Set

Foz{x: Z (le)a(x)>b_(3_o‘)5}, a:1+g.
[w,I]eP

By the Fefferman-Stein maximal inequalities

3 (MlI)O‘(a:)>1/aHﬁ < CoupIIDYP, 1< f<o0.
[w,I]eP

Using this with 3 large implies that |Fy| < C. b9 |T*].
Now, set P} = {[w,I] € P:b"°1 ¢ Fy}. Our claim is that

H 2 1[4”_61](33)“ < 64b7%.

[w,1JEP} >
Consider an « and intervals Iy,..., Iy witho € 4b=°I; forall1 < j < J,
and [wj, I;] € Py. Suppose that |I;| < |[;| for all j. Then, for all y € I,
(M1, ()" > 87,  1<j<.J,
so that

(Mg, (y)* > J8~F,  yel.
1

J
1=

The right hand side above cannot be more than 64b573¢, or we see that
[w1, I1] & P{). This gives an upper bound on J.
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The set P, will have to have some more pairs deleted before it can
be decomposed into spindly sets. To accomplish this, let

= |J bveI

[w,I]eP;

Choose p; = [wj, I;] € P so that that {b~<T; : j > 1} forms a minimal
cover of the set U;. Set P; = {p; : j > 1}. Delete these pairs from P
and repeat this procedure. As a result, we have

Py=PiU---UP, J < 64b73¢

and for each P}, the sets {b=°I : [w,I] € P;} form a minimal cover of
their union.

Last of all, we claim that for each P}, 1 <35 < J, there is a set
Fj Cb=¢I" and a P} C P; so that

i) Pj is a union of O (log 1/b) spindly collections of pairs.

i) For all [w, I] € P;\P}, b=°I C Fj.

iii) |Fj| < Cbv*° 1.

These last three conditions in fact follow from the Vitali Covering
Lemma: from {b7°1 : [w, I'] € P;} select pairs [wy, I,] € P; so that the
intervals b=¢1I, are disjoint in v and

Zb‘ﬂm%\ | oI

[w,I]EP)

The collection {[@,,I,] : v > 1} is clearly spindly. Repeating this
procedure O (log1/b) times will prove these three conditions.
Last of all, we conclude the Lemma by taking P’ = U;-Izl P;, and

J
F=U/_,F

In the first half of the proof just given we have made an observation
which will be used below. Let us formulate it as a Lemma.

Lemma 4.22. Let Z be a collection of intervals. For a choice of
1 <a< oo set

1/a

E= {x : (Z(Mh(x))a) > J}.

IeT
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Then for all x

> I ¢ B 1y-ep(z) < 2%(b7T) .
IeT

A second Lemma of a general nature is also relevant at several
parts of our argument. It shows that it suffices to prove the Carleson
measure estimate, up to exceptional sets.

Lemma 4.23. Let {a, : p € P} be non-negative numbers associated to

pairs. Assume that for all intervals U there is an open set E C U so
that |E| < |U|/2 and

> L, ¢ Ullay| < CUJ.

pEP

Then, for all intervals U,

(4.24) > eyl <2CU).
pEP

PRrOOF. Fix the interval U for which we want to prove (4.24). Set E; to
be the set E of the Lemma, and let P] = {p € P : 1, ¢ U}. We apply
the hypotheses of the Lemma to the components of the set E;. Thus,
let Uy be the open components of Ey, and let Py = {p € P\P] :
I, C Uy i}. Then for each k there is an open set Eyj C Uy g, with
|E k| < [U1kl/2, so that setting Py ={p € P : Urx D Ip, Ip € E1},

we have
> apl < C ULk
pEP{,k

But, >, |Ur k| < |E1] < 1/2|U]. And so,

Z B k] < %Z U1k
k k

Set Py = Uy, P1 - We conclude that

> lal<o(i+ %>|U|.

pEP]UP)

1 1
< - |Eq| < = |U|.
< IBil < U]
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This argument can be continued inductively inside the components of
Es =, E1k, thereby proving the Lemma.

Hedges. Call a set of pairs P a hedge if no two pairs in P are compara-
ble under < and P satisfies the following linearity or tree-like condition:
for all p,p’,p” € P with p < p' and p < p”, either p’ < p” or p” <« p'.

Lemma 4.25. If P is a hedge and size (p) > b for all p € P, then (4.5)
holds.

PROOF. Let P, be the pairs in P maximal with respect to <. Set
Pr, = {p € P:p < p,}. These sets are shrubs and are pairwise
disjoint. Indeed, more is true: if p € Py, p' € Prr and p < p’ then
Pr = Pis. The situation is this. p < p’ and p < p;,. Hence from the
definition of a hedge, p’ < P;. But also p’ < Py, so that p,, and py,
are comparable under <. Maximality then forces p, = py..

A corollary of this is that if P;, C Py, is spindly for all k£ then so is
Uy Pr.- But we know how to construct spindly sets from shrubs. And
we can give a proof of (4.5) for a fixed interval U.

Assume that I, C U for each k. Apply Lemma 4.21 to each Py.
This gives us sets P;, C P and Fj, C b~°I} satisfying i)-iii) of that
Lemma. It follows from Lemma 4.15 that UP}, satisfies (4.5). Also
from the fact that p, is spindly and size (p) > b, we see that (4.8) holds
for {p, }. Hence

(4.26) D IE S OB T < v Ul
k k

That is for b sufficently small, C b°° will be no more than 1/2, and then
the assumptions of Lemma 4.23 are seen to hold, with a, = |(g, ¢,)|?.
Therefore (4.5) holds. Again, it suffices to prove the Lemma for small
b as only a lower bound on the size of pairs is assumed.

The next Lemma is a trivial adaptation of the previous proof.

Lemma 4.27. Lemma 4.7 hold under the additional assumption that
P is a hedge.

Last of all, we want to decompose thickets into a small number of
hedges. This Lemma depends upon the combinatorics of the pairs, as
well as the Carleson measure estimate.
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Lemma 4.28. Let P be a thicket and assume that for some interval
U, ICU forall[w,I]e€P. Assume that (4.8) holds for every hedge
P CP. Then there is a set E C U and a set P' C P so that

i) P' is a union of at most O (log1/b) hedges.
ii) For all [w,I] € P\P', I C E.
iii) And |E| < C. b1 |U.

This lemma, plus Lemma 4.23 and Lemma 4.25 will prove Lemma,
4.4 and Lemma 4.7.

PROOF. Begin by letting py = [w,lgj,t] be the maximal pairs in P with
respect to <. The set {p;,} is spindly, and so in particular is a hedge.
It satisfies (4.8) by assumption. That is,

ST < cootol.
k

This allows us to delete some pairs from P. Set

Fo = {g; (M1 T (@)? > b—llo} .
k
It follows that |Fy| < C.b'°°|U]; further let p; = [w;, ;] be an enu-

meration of those Py, such that b_sf,l6 ¢ Fy. As we have already seen in
Lemma 4.22, we then have that

D 1BV L)(x) <667, forallw € b°U.
J
Take P' = {p € P : p < some ;}. Note that if [w,I] € P\P', then

[w, I] < some Py, with b_sf,l6 C Fy, and so I C Fj as well.

A few more pairs must be deleted from P! in order to gain a cer-
tain combinatorial advantage. We will proceed in an inductive fashion.
Choose a pair p; = [wy, [1] € P! for which |[;| is maximal. Let

F=J {I S I) < b0 |1y

_j o leld) = e(lh)] j
>, 3 S 23 2

0<;j<5001log 1/b
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Note that [Fy| < b |I;].8 Choose a pair py = [we, Iz] € P\ {p1}, with
I, ¢ Fy and |I3| maximal. Then define Fy as above. It follows that
I, ¢ F,. Continue this procedure until P is exhausted. Then the set
E of ii) and iii) above is E' = Fo U J;5, Fj. Let P’ = {p; : j > 1}.
Observe that

(4.29) |E| < Co™ U+ > 1.
[w,I]eP!

Of course ii) holds. It remains to verify i) and iii). And here observe
that the last inequality and i), together with (4.5) for hedges, trivially
give iii). So it remains to check i).

The advantage gained in passing from P! to P’ is this: if p =
[w, I],p =[w',I'] €P" and p < p’ then as follows from the removal of
the sets Fj, j > 1,

1 .
() — eI < sb=e 1] Y 3
j<500log1/b

As a corollary, we see that P’ satisfies the following good combinatorial
condition: if p; < pa, p3 < p4, all p; € P’ then either py < p3 or
p3 < p2.2 To see this, let p; = [w;, [;]. We then have w; D ws, w3 D wy.
Thus, we must have e.g. ws D ws. Under the assumption of (4.12),
p1 < p2,ps3, and py # ps implies that we must have ws C wge. Then

|c(I2) — ¢(I3)] < [e(I3) — c(I1)] + [e(1) — c(12)]

%b—€|13|( > yu% > 3—3')

0<j<5001log 1/b 0<5<5001log 1/b

IN

IN

1 . .
b7 |I5] > [377|Is| > |1]]377.
0<y

The last line follows from the fact that |[Io|/|I5] < 61000 (see (4.13))
and shows that p, < ps.

We can now apply a combinatorial trick of Fefferman. Let B(p) =
P, : p < Dy, }. For all p € P’, we have B(p) < 65673 for if

[w71]<<ﬁk(1)7"'7ﬁk(’u)7 U:B([M,I]),

8  Here we are simply deleting a small neighborhood of the boundary of (3b°) 'I;.

Recall that by (4.12), if [w,] < [w1,]1], then |I|<b™°°°|I,|.

9 Note that for ‘<’ this is trivial.
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then for z € I, >, 1[3b °I;](x) > v, but by construction this last
sum can’t be more that 673, Furthermore, B(p) has the following
combinatorial property: if p < p’, and p < p”, but p’ and p” not
comparable under <, with all pairs in P’, then B(p) > B(p') + B(p").

Indeed, write p" < P(1ys - -+ Pr(v)s a0d P < Dj(1ys- - - Dj(y) Where
v = B(p') and w = B(p”). If some Pr(s) €quals some P,y then one
would have p’ < p"" = P,y = pj(r) and p” < p”’. The situation is
p <L p,p" < p" which by the good combinatorial property of P’ forces
p and p” to be comparable under <. This is a contradiction which
forces the inequality B(p) > B(p') + B(p").

But then the hedges are easy to define, simply take H, = {p € P’ :
2v < B(p) < 2Ut1} for v < 1201log1/b. The combmatorlal property of
B(p) show that each #, is a hedge, finishing the proof.

We have completed the proof of the critical Carleson measure
Lemma.

The next Lemma initiates the proof of the second estimate (Lemma
4.2) on the operator T, but it’s proof will also yield the first estimate
(Lemma 4.1). We need an improvement of Lemma 4.4.

Lemma 4.30. Let P be a thicket with I, C b=c/2[—1,1] for all p € P.
One then has the inequality below for any € > 0.

asy (S 1@P) 7| s v ifle,  2sr<w.

pEP

PROOF. To prove the Lemma, it suffices to establish that for all € > 0,

w2 (3 R e]) o = ce ol

For then properties of BMO give

(5 [Stue])), < cervlal

which with the Fefferman-Stein maximal inequalities gives the Lemma.
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But also, if P is a thicket and each pair p has size at least b/2, and so
blr(z) < C|fp(x)|, it follows from the decay of ¢, that b=, C [—1,1]
for all p € P. Hence

PR

[w,I]eP

22—
<Cerb77°,

r

which is the conclusion of Lemma 4.1.
To check (4.32) it is enough to show that for all triadic intervals

1 2
9y bw.11) ——= L1(z)| do < C. b~ |U| g/ .
/ > 10| bt 1)

[w,I]eP

where g is a function bounded by 1. But this is precisely (4.5) above.

To bound T% as in (4.3) we will dualize and provide a proof of the
estimate

(4.33) 1T7*glls < Cs 8 |lglloo
where 2 < s < oo and d(s) > 0. We localize T7* in the space variable.
Lemma 4.34. Define, fore > 0,

Tiw,19(@) = 1™ 1](x) T, (1[0~ 1]g) () .

Let P be a thicket with size (p) > b for allp € P. And let g be a function
bounded by 1. Then

HZ‘T;g(x)—TﬂZg(x)‘HT < Cpe b, 1<r<oo.
peP

Proor. We will do half of the proof, the other half being similar.
Estimate (p = [w, I])

T3 g(2)-1[b~1)(z) T 9(2)|
b*nﬂ@y/u@«ynux—zwgw—yﬂ@

100 ( [ +f - dy)
ly|<dist(z,1)/3  J|y|=dist(z,])/3
— Ay(a) + Byfa).
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For the first term, use the decay of f,, away from I: from the definition,
|fo(2)] < C.(dist(z,1)/|1|)~%/¢, which implies that

dist(z, I)

—6/¢
) el s lel@)

Ay(w) < C1™* D))

< C0° (M11)*(x),

where M denotes the Hardy-Littlewood maximal function.
For the second term, use the decay of &, :

[k ()] < Celw] (l0] lyl) =/,

dist(z, I)

1] )_6/6 < Cb° (M1p)*(x).

By(w) < C. 1[(6=1)°](x) (

Thus, using Lemma 4.1 and the Fefferman-Stein maximal inequalities
we see that

|2 4@ + By ()
peP

zor| X mMu@P|
[

w,I]eP
1/2,2
<C b6H 2
- F ( Z M1 ()] ) 2r
[w,]]eP
< Cr,e b6 H Z 1[(.73)
[w,I]eP "

<G b’

This finishes the proof.

At this point, the top item on the agenda is a decomposition of
g into functions analogous to f,. But we have to abandon the luxury
of reconstructing g after the fact, as is done for f in Lemma 3.3. This
creates an extra problem, of an essentially technical nature.

Recall the definition of A*(w), (2.13). This interval is triadic in
(a shift of) G. More can be said: A*(w) is central so that 3A4*(w) is
triadic; ¢(A*(w)) = 2¢(w) + |w|/6; |[A*(w)| = |w|/9; and

(4.35) wNw' =@  implies 3A%(w)N3A* (W) =92.
Indeed, if wNw’' = &, then

|e(A"(w)) = (A" ()] = 2[e(w) = e(w)] Z ] + |o'],
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which demonstrates the assertion. These observations inform the defi-
nitions below.
To a pair [w, I'| associate the functions

X517 ()
_71-1/2 . * M z —c(I)
(4.36) | exp (27r2x(c(A (w))+6 56>>¢(7|I| )
where 6 = —56, —55,...,55. For each pair, the collection of functions

{Xd,[w,1+28n|1|] ;=56 <6 <56, neZ weg}

is just a rescaling of the collection in (2.5) and so satisfies (2.6). (The
constant A in that equation is irrelevant, and so we will take it to be
1). For a pair p, set

(4.37) Q)= Z Z X [w,1+28n1]] © Xo,[w, 1428n1]] °
[0]<5 |n|<(300b%)~1

The sum over 0 is restricted because if |§| > 6, then the support of
(X w J]) will not intersect A*(w). Therefore, one should have T,y g ~

T Qpg. This we will quantify in the next Lemma.

Lemma 4.38. If P s a thicket then

| > mre@) - T@e@)| <Gt lglles . T < o
P r
PROOF. Since a dilate of (2.6) is in force, it follows from (2.14) that

T,9 = TJ( Z Z X6, [w,I+28n|I|] <g’X5,[w,I+28n|I|]>> :
3]<5 n=—oc

The sum above is absolutely convergent. So we will give a pointwise
estimate for

(g, X&,[W,J]> T;XMW’J] (x), where dist(I, J) > b~°|I].

The ¢ is unimportant, and so will be dropped from notation.
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Set ®7(z) = (1A (Jz|/|I])1°%/¢). We need to consider the integral

‘ /kw(—y) Po(z = 2y) X, 5T —y)dy

d
< /q>, ) @, (dist(z — 2, T)) @y (dist(z — 9, 7)) |Iy|
=E(J,z).
Sum this over J to get
> ] =|J], dist(J, 1) > b~=|1|] E(J, x)
J
dy
< /@1 ) (st — 2. 1)) @y(dist(x . (1)) 7F
< % bt (M17)*(z) .
Remembering that both f and g are bounded by 1, so that
|<T7 ¢p> <§7 X6,[W,J]>| S C |I| 9
it follows that
1/2)2
* 10 2 6
HZ|T (I-Q))g |H <C.b H([Z (MlI(x))> SO,

by Lemma 4.1.

With this last Lemma, we have associated with P a collection of
pairs

P = {|w, J] : for some [w, ] € P, dist(J,I) < (3006°) 1|} .
Our claim is that P¢ essentially obeys Lemma 4.30.

Lemma 4.39. If P is a thicket with size(p) > b for all p € P, then the
following inequalities hold for all € > 0.

> \ @) X)) < O gl

16|<5 [w,J]ePe
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where r < 00.

Proor. It suffices to prove the estimate above with the BMO norm
replacing the L" norm. This in turn follows from Lemma 4.7.

We see how to apply that Lemma to the pairs P¢, and the functions
{X5p :p € P}, where |§] < 5 is fixed. The assumption (4.8) holds,
because P is a thicket and we have proved Lemma 4.4. The condition
(4.9) follows from the definition of the Xsp° And (4.9) follows from
(4.35).

The assumption of Lemma 4.7 that is not immediate is that P¢
be a thicket. Indeed, it will not be so, in general. Yet if P is spindly,
then P¢ is a thicket. Therefore our Lemma follows from Lemma 4.7
if P is spindly. Continuing in this vein, we have Lemma 4.21. And
therefore, by Lemma 4.23 our current Lemma holds under the more
general assumption that P be a hedge. Finally, we have Lemma 4.28,
so that our Lemima, is seen to hold under the sole assumption that P is
a thicket.

We can now give the final proof of this section.
PrROOF OF LEMMA 4.2. We can assume that b/2 < size(p) < b for all
p € P. For if not, we write P = J,, Py, where P,, = {p e P:27""1 <
size(p) < 27™b}. For each n we will prove the estimate
179l < Cr 270 Pg)l . 1<r<2.

This is summed over 1 to conclude the Lemma.

Recall that we wish to establish the inequalities (4.33). The inter-
esting part is to establish the bound

(4.40) IT7*gll2 < C 0% lgllos .~ € >0.

Henceforth, g will be assumed to be bounded by 1.
Make the following definitions. For p = [w, ] € P, denote

Pp) ={[,I'eP:wcCd, dist(I',1) < b ||},
P'(p) ={[w', I'| e P:wCw', dist(I',I) > b"°|I|}.
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Expand

TP gl < > I Ty9ll5+ Y (Trg(e), TP®g(2))]
pEP PEP

+ ) [(T3g(x), TP @*g(2))|
peEP

=A+B+C.

This is justified since FT}; is supported in A(w) C w, hence if wNw' = J,
(T];“g, T;,g) =0.
For the diagonal term, by Lemma 4.38, we can write

A= Tl

pEP

<OV + > T Qpl3
peEP

<OV +Cv ) [1Qpll3
pEP

<O+ N (9. )13
peEP®
< Cb2—106

where in the last line we invoke Lemma 4.39. (And again, the |[0| < 5
is dropped from notation).
The diagonal estimate also enters into the second term, B.

B= " [Tyg(x), TP g(z))|

peP

<cvd (g, Y (Mip@)?)
pEP [w',I']€P(p)

<ObY gl D M1 @)?
p€eEP [w",I"]€P(p)

But the last term on the right is no more than C/b—¢|I|, since the sets
{I' : [W',I'] € P(p)} are disjoint and contained in b=°I. We continue
as follows.

B< Cb1—2€< Z ||T;g||§)1/2< Z b_€|I|)1/2 < O b1

peP [w,I]eP
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The last term, C, is the least interesting. All the intervals {I’ : [, I'] €
P°(p)} are much smaller than I, and are pairwise disjoint. So if J is
any interval of length |I|,

dist(1, J) ) ~10/e
1]

1

W', I'leP?(p)

/ T5g(x) TP % g ()| dx < C. b(1 1
J

dist (1, J)\ —5
) |

< C.b0(1
<C (+ 5

It follows that
C<CH D |II<CH.
[w,I]eP

This finishes the proof of the L? estimate.
For the L" bound, r > 2, use Lemma 4.38 and Lemma 4.39 to see
that

| >
peEP

<O+ | Y@
pEP

< Obo+ || Ikl £y (@) Il * Qo (2)) 2

T

peEP
(4.41) <Cpb+ H(Z Ikw|*|fp|2($)>1/2Hr
peEP
1 b o) ],
pEP
< Ce, b3,

Hence the Lemma, follows by interpolating with the better L? bound.

5. Trees.

The emphasis in this section will be on sets of pairs P which are
trees under the partial order on pairs. Call a set of pairs P a tree with
top p* = [w?, I'] if all p € P are less than p’. (The top need not be in
the tree, nor is the top unique.) It turns out that the 77 are familiar
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objects, namely Calderéon-Zygmund operators. We need to estimate
IT7||2 and quantify the orthogonality between trees.

Lemma 5.1. Let P be a tree then

1. < C,, l1<r<oo.

The norm estimate here is O (1), which means that we will have to
identify that part of a tree which contributes to the large norm estimate.
This is the purpose of the next definitions.

Flavors of Trees. Call a tree P with top p' = [w* I*] an a-tree if
c(wh) € A(w) for all [w, I] € P. Call P an a*-tree if 2 ¢c(wt) € A*(w) for
all [w,I] € P. And call P a (-tree if ¢c(w') € A(w) and 2 c(w?) & A*(w)
for all [w,I] € P.

Of these three flavors of trees, (-trees are the easiest, since they
are especially nice Calderén-Zygmund operators. The other flavors of
trees are essentially the paraproducts, as we shall see.

PROOF OF LEMMA 5.1. For w D wt, let P(w) = {p € P : p =
[w, I'] for some I}. This is useful since P = (J,,P(w). That is,
the relevant frequency intervals form an increasing sequence. Let b =
Sup,ep size(p).

The top interval w® can be assumed to be centered at the origin,
by the considerations in (2.15). This means that

.
o)~ pl<cr "0 rorapep,

So, writing

Tpg(ﬂf)=/zkw(x—y) fo(2z —y)g(y) dy:/K(%y)g(y) dy,

peEP

one easily checks that K(z,y) is a standard Calderén-Zygmund kernel.
In particular, K satisfies the conditions

(5.2) K (z,y)| <
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and if 2 |z — 2| < |z — y],

(5.3) |K(x,y)—K(z,y)|+|K(ya$)_K(y’z)|SCbﬁ'

It therefore suffices to establish the boundedness of 7% on L2.

In case of a B-tree everything is easy; we see that 771 = T7*1 = 0,
so that the L? boundedness follows from Cotlar’s Lemma. In particular,
IT7 2 < Cb.

The two remaining two cases are duals of one another, so we only
consider the case of an a-tree. In that case 771 # 0 but 77*1 = 0.
Indeed, T,g acts on F~11[A(w)]Fg, by (2.14), and 0 ¢ A*(w) as P is
an a-tree. Thus 771 = 0. On the other hand, T},1 need not be zero.

For pairs p € P, set

Tpl(z)
= a,(z
(f, ¢p> P( )
One easily checks that supp(ay, ;]) C A*(w), which are disjoint lacu-

nary intervals, as w varies. One can also see that the inequality below
holds.

:/kw(y)¢p($+y)dy-

G4) | Xlp=lw.1] for some I]a, ap(a:)HZ <0 |2,

where w is fixed. See for instance [D, equation (3.4.4)]. Then

Tpl(x) = Z<f’ bp) ap()

peEP

and the BMO norm of this last term is easily seen to be

1 1/2
(55) TP 1suo < Cosup (= > [TCUIIf6)2) "
v |U| [w,I]eP

The supremum is finite as f is bounded. This estimate is in general,
sharp. Namely, for all € > 0, one can construct a bounded function f
and an a-tree P so that size(p) < € for all p € P, and || T71||pmo =~ 1.

This lemma, and it’s proof, demonstrate clearly a central reason
why the bilinear Hilbert transform is so difficult to understand: regard-
less of the size of individual 7}’s their sum can (and will) have large
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norm. And any estimate of the form 77 : L? — L', say will also be
O (1). Thus the weaker inequalities of the previous section are of no
use for the paraproducts.

Despite the bad features of a-trees, they do admit a certain control.
Namely, there cannot be a great number of disjoint a-trees, all of a fixed
norm. This point is made precise with a Carleson measure estimate in
the next section.

These considerations suggest the following definition for the intrin-
sic size of an arbitrary collection of pairs P. Set

(5.6) size(P) = sup {|T7'||5 : for all trees P’ C P} .

We shall see, in Section 7, that this really is the appropriate notion for
the size of P.

The objective we take up in the remainder of this section is to
provide a control for large unions of trees with small norm. And in the
Lemmas, we will make no distinction on the flavor («, o, or ) of the
trees involved.

Normal Trees. Let 0 < b < 1. (b is associated with the size of pairs

and trees). Beginning with this definition, we will use a parameter

A > 3 which won’t play a role until the end of proof. Call a tree P

with top p* = [w?, I*] normal if these two conditions are satisfied. For all

[w, I] € P, one has |I| < (b/A)*0000 | 1t]; and dist(I, 0It) > (b/A)*90 |Tt].
For a normal tree we nearly have that

T7g =117 (g1[1").

We make this precise, and due to some Fourier calculations yet to be
done, the truncation in the space variable needs to be done in a smooth
way. Thus let ((z) be a smooth function satisfying

(5.7) L1/a1/4(2) < ¢(z) < L_1/2,1/2)(2)

and | FC(€)] < C|€]71%9. For an interval J let (5(z) = C((z—c(J))/|J]).
Define for p = [w, I'] in a normal tree P,

(5.8) Typg () = Cuny (@) Tp(Cu(ry 9) () ,

where p(1) is (b /A)100\/|It|/|l| I. Normality guarantees that p(I) C I*.
Then let T =2 per Lip



444 M. T. LACEY

Lemma 5.9. For a normal tree P, we have the inequality

(610) [T o) ~ 179 < O(2) (M170)*() My(a).

The same inequality holds for Tﬂp*. In particular,

G11) TPl < C. max{size(P), (%)mo} . l<r<oco.

Proor. For j =1,2,... let
Pi={lw,I]€P: |1 = 379|1}.

(As P is normal, P; is empty if j < 400001log A/b.) This set is linearly
ordered in the I coordinate. We can estimate for [w, ]| € P

|TﬂwI ( ) T[w,I g

I
(T d
<10 / o ) ol ) 0o )y

“[(%H(”/_w' o) oo+ ) 9@~ )] dy

< oo (1402) 3 [10]

() o () )

This follows on the one hand by the decay estimate for k., and on the
other by the decay of f,.
Sum this estimate over p € P;.

Z Ty, 119(2) — Tpg(2)]

[w)I]EPj

IN

C(%)_m(l + 7(1157% It))_zMg(a:)

() B

IN
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This is summed over j such that 377 < (b/A)%%°) and so yields the
Lemma.

Separation of Trees. Two normal trees P with top [w?, I*] and P’
with top [w?', I''] are separated if I* N I*" = @, or otherwise if
o) p' =W, I'] € P',and I' CI* implies dist(w’, w?) > (A4/b)3°00|w’].
B)p=lw,I]eP,and Ic I implies dist(w,w’) > (A/b)30%0|w|.
~) and finally, assuming I*' C I*, for all [w, I]€ P, |I| < (b/A)%%°[I*']
implies dist(I,0I") > (b/A)*0|It'].
This next Lemma quantifies the essential orthogonality between
trees.

Lemma 5.12. For separated trees as above, we have

/ ) b\ 500
PP * PP
(g riad I i v PRl ) I
More importantly, we have the following local estimates on inner prod-
ucts. Assuming that It C I,

, b \ 500
(5:13)  KIPg. 17wl < () IMg+ 1T gl Iz bl zrery -

A similar inequality holds for Tﬂp* and Tﬂpl*.

In the special case of It = I we have TP*TP = TPTP'* = 0,
which is obvious from the Fourier transform side, and so the norm
estimate above is easy. The local inner product estimate, which is
essential, contains more information and so the proof is not as easy.
But the underlying idea is no different.

PROOF. The interesting case is I* C I*. Let

N =min{|I'|: [, ' € P'},
and split P into the trees P* = {[w,I] € P : |I| > X} and P° =
{lw,I]€ P :|I| < X}. A technical point hinges on the fact that a pair

[w,I] € P could satisfy I NIt = & and yet p(I) D I*. We treat the
point by redefining T},,.
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Recalling (5.8), T is defined in terms of the intervals (7). In-
stead, define

(5.14) in = ()" %I,

and

Pg=3 GunDo(Gung)-

peEP®

Then a trivial adaptation of Lemma 5.9 shows that
b + b b \ 500
17 g(@) ~ T g@) < C( ) Mg(a).,

and so to prove the lemima it suffices to replace Tﬂ73 ’ by TP, Now
observe that

TP 9.1 gy = Y S [ad)nul') # 2] (Tpg. Tyeh) .

[w,I1€P [w!, I’]E’P’

But now, for [w,I] € P and [w',I'] € P’, part ) of the definition of
separated shows that if (1) N p(I’) # @, then I C I*. This is because
1| < 1’|, and so [a(I)] < |u(1")]. So

dist(I, I') < 2|u(T")

by the definition of normality. But then I C It
With this done, we can assume that for all [w, 1] € P*, u(I)NIt #
@, and for all [w,I] € P°, we have I C I*. Then, let

A=min{|I'|: [0, I'] € P UP"}.

By an abuse of notation, we will write 77 = Tﬂpg +TP for the purposes
of this proof.
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From the definition of separated it follows that for all [w,I] € P
and [, I'] € P’

A~ 3000 A 500
dist(w, w') > (—) A= (—) D
b b
Here D = (A/b)?°%0 /X > (A/b)*°%%0|1t"|. We shall see that the lemma
is true because TP and Tﬂp' live on disjoint sets.

Let c and ¢’ denote respectively the centers of w* and wt’. Recalling
that T}, is supported on A*(w) which is centered at 2 ¢(w) + |w|/3, let
®(x) be a function with

(5.15) supp(®) C [— %, %] ,
(516) a0 - 11 < o(E24) 7,
(5.17) [@(2)]1 < C,

and

(5.18) d(2¢) = 0.

Since |¢ — /| is so large, there is no problem accommodating this last
condition.
Write
En=T"h—@xT] h.
Note that as D! is so small, the definition of normal and (5.15) imply
that £'h is supported in I*'. Further, we can write

(I g, T h)y = (T g, &+ T 'h) + (TTg,E'h) = A+ B.

Our first claim is that

(5.19) 17 @+ H) (@) < O(3)" x ¢ [Hl().

where x(z) = D (1 + D|z|)~3/2. From this, it follows that
A= (g, 77 (@ T 1))

b \ 500 ,
<o) dlglxx 117 h)

I
Q

b \ 500 ,
(%) o lal 17 n)

b \ 500
<O(Z) IMgllzaqen bl zaery -
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This is the principal estimate.
The second claim is that

(520) e <o(5)

hence, as supp E'h C It', and &'h = E'(h1yer),

b\ 500
Bl < (TPgl el < C( ) TP gllzaroy [bllzaqrer -

The estimates on A and B prove the Lemma.

We turn to the proof of the two claims (5.19) and (5.20). There is
no harm in assuming that w' is centered at the origin. See (2.15). For
the proof of (5.19), write

TP H(z) = / K(z,y) H(y) dy.

As the cut-off function ¢ in (5.7) is assumed to be smooth, K (x,y) is
a generalized Calderén-Zygmund kernel, and in particular satisfies the
gradient condition (5.3) above, with b in that inequality replaced by 1.
(Recall that we are not making any assumption about the size of pairs
in the current Lemma). Then g — T7*(® x g) has kernel

/K(m,z)@(z—y)dz.

Note that [@® =0, due to (5.18), and our assumption that ¢ = 0; also
the support of ® is small, see (5.15). There are two estimates to be
made. On the one hand, with the assumption [I| > A = (A4/0)?*°°/D
for all p € P, we see that

4 K coa=co(2)y" p2 for all z and
‘% (x,z)‘_ = (Z) , or all z and z.

Consequently using (5.15) and [ ®dx = 0,

‘/K(m,z)@(z—y)dz

= | /z_y|<2/D(K(a:, 2) = K(,y)) ®(z — y) dz

|
. (%>2500D
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On the other hand, if |z — y| > 4/D use (5.3) and (5.17) to see that
[ K2 06— = | [ - K)o - )| s
<Clo=yl™ [ f-yllel-y)ds
|z—y|<2/D

<CD 1tz —y|72.

Notice that

b A\ 1000
“1e=2 < (2 —3/2 i > (=
D7Ma| 2 < (Z)D(+ D)2, Dz (F) .
b\ 2000 _ b 500 32
D(5) = dhit e () D[,

so that (5.19) follows.
For the second claim (5.20), verify the dual inequality

- b y 500
|17 (b=l < C(Z) " [kl -
But we can estimate by (5.10), Lemma 5.1, (2.14) and (5.16) to see that

|77 (h = @« )]l
b \ 1000 '
<C(Z) IM(B=@ sy + 77" (h = @ b

b\ 1000 3 3
§C<Z> ||h||2+C'H1[2c’—X,2c’+X]—‘(h—cp*h)Hz

< C(%)lOOO Hh||2 '

The case of the adjoints being similar, we have completed the proof of
the Lemma.

A point which will come up several times below is that the intervals
I,, can range over the whole of the real line. (This was also an issue in
the preceeding section). Here, let us note that if P is a tree with top ¢,
then

(5.21) size(P) > b implies I' cv—¢[-1,1],
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as easily follows from the decay of ¢,,.
The emphasis of the next group of Lemmas is on forming large

unions of trees.

Rows. Define a row to be a union of normal trees P; with tops

ph = [wk, If] for which the sets {I}} are pairwise disjoint. Two rows
R = U; Pj with tops [}, I7], and R’ = [J; P}, with tops [w;f/,I;f,'] are

. !/ . . .
separated if each I;, is contained in some I;, where P; and 773’-, are
separated.

Lemma 5.22. Let R be a row with size(R) < b. Then
(5.23) TR, < Cyb, 1<r<oo.

If R and R’ are separated rows then

' I b\ 500
(5.24) IR e I ¥ < O(5) -

PROOF. As the operators TﬂR act coordinatewise on @;L"(I%), the first
assertion follows from Lemma 5.9.

And for the second assertion, again due to the coordinatewise ac-
tion of the operators, it suffices to consider the case where R is in fact
a tree P with top [w?, I'], and each I;,/ is contained in I*. Then, using
(5.13) and Cauchy-Schwartz,

’ RI(/
(T g, TF W) =Y T g, T, 7" 1)
4!

b 500 P
< C<Z> Z 1Mg + T glll2cae,y 1Bl e,y
J

b\ 500
< (=) lgllzge Wl -

The last Lemma of this section provides an estimate for a large
number of rows.

Lemma 5.25. Let R = R1U---URN be pairwise separated rows where
the number of rows N is at most C (A/b)*?0. If size(R) < b, then, for
1<r <2,

IT%gllr < Crbligllz-
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Proor. Cotlar’s Lemma, and Lemma 5.22 provide the estimate

N
| Sz, < cllgla.
n=1

To finish the Lemma, we need to remove the sharp above. We do
this by assuming that for each tree 7 in a row, we have size(7) > b/2,
so that (5.21) is in force. Denote the top space intervals of the trees in
the n-th row by {I,, x : K > 1}. These intervals are disjoint in k. For a
choice of 1 <r <2, let 1/s+1/2=1/r. We have by Lemma 5.9,

N
H D O |TFrg — TRy
n=1

=o(3) ] égwlﬂn,kbzungnz

IN

()™ iim,k]ujngnz

() ol

IN

6. Orchards.

An important point left uncovered in the previous section is the
behavior of the o and ax* trees. These operators are in essence para-
products, and can lead to operators of large norm, regardless of how
small their constituent parts are. An adequate control of these objects
requires a new Carleson measure estimate, which is the subject of this
section.

Let P;, i > 1, be a-trees with tops p! = [w!, If]. Assume
i) For i # i’, P; and Py are disjoint.
ii) For an absolute constant ¢; = (12 C,)™!, with C, as in (5.5),

C1 b2 |If| S Z |<f7 ¢P>|2'

peEP;

iii) For all p € |J; P, size(p) < b%°.



452 M. T. LACEY

Such a collection of a-trees we will refer to as an a-orchard. An
analogous collection of ax-trees we will refer to as an ax-orchard.'®

Of these three conditions, the first is a modest regularity condition.
The second is easily seen to be related to the norm of the tree operator
TP:. In particular, for a a-tree P, let

W =swpo S [TCUIF .

v U] p=[w,1]€P

Then, our analysis from the previous section, and in particular (5.5),
shows that
i) < ||T7||2 < DX,

Thus the trees in an orchard have a minimal size. The last condition iii)
is in contrast to the analysis of say Section 4, in which a lower bound
on pairs is imposed. Yet, in the context of a-trees, the interesting case
is when the sizes of individual pairs are all quite small.

An essential fact about a-orchards is that the top intervals It obey
a Carleson measure estimate much like the one established for sets of
incomparable pairs.

Lemma 6.1. There is a by > 0 so that for all 0 < b < by, and any
a-orchard O = J, P; as above, and all intervals U,

(6.2) MUl <cyv?|U].

7

The rest of this section is taken up with the proof of this inequality.
The general approach is to identify trees P, C P;, which still satisfy
ii) above, with the additional property that the functions {¢, : p €
U; P/} form a basis in L?. Applying this basis to our function f(z) will
complete the proof.

Recall the combinatorial structure of an a-tree P with top fre-
quency interval w’. Each pair [w,I] € P has ¢(w') € A(w). These
intervals are central triadic intervals. From (2.12), we have c(w) =~
c(w?) — |w|/3. And so the sets ®(w) of (2.9) form a lacunary sequence
of intervals, from which one would have Littlewood-Paley estimates.

10 Because condition iii) is an upper bound, any sufficently small value of cs is

acceptable.
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(See (6.3) below). Also, recalling (3.2), we have that the functions
P11 and ¢y, ) are orthogonal, provided I # J.

The interval U in (6.2) can be fixed, and we assume that I! C U
for all . A formally weaker statement will imply (6.2). Namely, there
is an open set ' C U so that

a) |[F| < |U|/4.
B) 2l ¢ FIII < Cv2 U]

We then appeal to Lemma 4.23 to prove (6.2). Yet, in proving this
weaker statement, we can further impose the assumption

0) 13204 c U Lp(x)]loo < 7%

To be quite specific, the statement to be proved is this: given c¢;
in ii), we can choose by so that for every 0 < b < by and every orchard
which satisfies 0) also satisfies ) (with 1/4 replaced by 1/2) and ()
(with a possibly larger constant).

Let us now argue that there is no loss of generality in assuming
). For this, we take an arbitrary orchard, O and select appropriate
subcollection of the trees P; which satisfy ). The subcollection should
be taken in this way. Denote by I;(l,v), for v > 1, the maximal elements

from among {1} : i > 1}. Remove the intervals I,  from the list, and
and again take the maximal intervals I¢ i2,0) for v > 1. Repeat this

procedure until the orchard is exhausted. The a-trees {Pj,p) : 1 <
k<K =022 v>1} satisfy §). Assume «) and () also hold. Set

{ ZZ HOTIL (25)_22}7

k=1v=1

that is, this set is the set on which 0) fails. We see that

|E|§H ZZ Loy )@ —5_22}‘

k=1v=1

<|F|+bzzzz Sy € F N1 o)

k=1v=1
< (i +Cb) 0.

This will be less than |U|/2, provided b is small enough. Thus, a slightly
weaker form of «) holds. Taking F = Fy U F, we see that
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o) |[El < |U[/2

and that () holds for the orchard O with the set F' replaced by the
set E. Again, by Lemma 4.23, this is enough to prove (6.2).

Assume §). We turn our attention to the deletion of certain small
sets of pairs. First we can assume each tree P; is finite, without violating
our condition ii). Second, for any a-tree P, we have the fact that

(6.3) ( D by ® ¢p|2) Yo L BMO.

pEP

By observing that the supports of the functions ¢, in frequency form a
lacunary disjoint sequence, the operation above is seen to be an ordinary
Littlewood-Paley square function, albeit conjugated by an exponential
to account for the location of the tree in frequency, and then the bound
above is immediate.

With this observation, we can delete pairs in P; which fall close to
the boundary of If. Specifically, set
(6.4) P2 = {|w,I] € P;: dist(I,0If) < b*°|If|} .

7

It follows that
S b P <Cb .

peP?

Therefore, after removal of this set of pairs ii) holds with a slightly
smaller constant.

The top of P; must be removed. Namely, say that p € P! if there
is no chain

P=pLsp2scSPM,
with M = 10,000 log(b/size(p)), and all p,, € P;. Then it follows that

> o) P <072,

pEP}

due to the condition iii) above. Thus, for b sufficently small, these pairs
can also be removed from P; with only a minimal weakening of ii). Set
Pt =J, P,

The import of these last two conditions is that for [w, ] € P;\(PPU
,Plt)7

(6.5) 1] < (bsize(p))™™™ |1;].
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We arrive at a critical point, which centers on the relationship between
distinct trees. Consider two top intervals I and I} which intersect.
Consider the following subtree of P;.

Qi ={lw,I]€P;:ICI,

6.6

(66) P (w') C ®(w) for some [w',I'] € Pir}.
Recall that our objective is to identify a highly orthogonal set of func-
tions ¢p. Since supp(¢,) C ®(w), the sets of pairs above are certainly
a cause of concern.!! But our claim is that Q; ; can only admit chains
of bounded length in the partial order ‘<’. In particular, there are no
ten pairs

PLSP2 S <P,

with all py, = [wg, I] € Q; i for 1 < k < 10. For assuming otherwise,
the sets A(wyg) are central, and A(wyp) € --- C A(wy). By the good
property of centrality, (3.1),

diSt(A(u)lo), 814((.4)1)) Z 39 |A(w10)| .

Recall that A(u)lo) C wio, and |A(w10)| = |w10|/9. Hence, 9wyg C
A(wy). Yet, ¢(wl) € p1o € O;4 and so for some p’ € Py, ¢(w') C
®(wyp), and so A(w') C wyp C A(w;p). This means that p; € P; is
in the a-tree with top [w,I},]. But recall that in the a-tree P;, the
intervals {®(w') : [w', I'] € P;} are lacunary. As a consequence, for any
[W',I'] € Py, the intervals ®(w’) and ®(w;) are either equal or disjoint.
This contradicts the assumption that p; € Q; ;.

Thus, this set of pairs cannot contain chains of length ten, as
claimed. Using the upper bound on the size of pairs, iii), and the
tree structure of P;, we see that

> Ifen)® <100 NI

PELQ; i

Set Q; = |J;» Qi,ir- Using the assumption J), we see that

> [f by < 100° 1] .

PEQ;

1 Recall that ¢p, ;) and ¢}, s are orthogonal for I£J, due to (3.2). In Q, ;1, we

need only concern ourselves with the case of w’ being a strict subset of w.
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This last estimate will be quite small. The pairs in Q; can be deleted
without affecting ii).

To summarize, we can without loss of generality assume that the
sets P2, P! and Q; are empty for all 4. For if they are not, we remove
the pairs in these sets, and (a trivial weakening of) ii) above continues
to hold. The essential advantage gained by these manipulations is as
follows. For p = [w,I] € O, set

(6.7) Op)={p =[,1'€0:Pw) T Pw)}.

That is O(p) contains all pairs p’ for which |I'] < |I| and ¢, is not
orthogonal to ¢,. Then

68) {I' : [, '] € O(p)} are pairwise disjoint
6.8

and contained in [(bsize(p)) 1.
To see this claim, it is enough to verify that if p’ = [w', I'] € O is such

that ®(w) C ®(w’), then
(6.9) dist (I, 1") > (bsize(p))~°|1].

This clearly proves the last half of (6.8). Yet it also proves disjointness,
as is easily seen: consider py # p2 € O(p), with p; = |w;, I;], fori =1, 2.
We want to show that I1NIs = @. The frequency intervals both contain
®(w), and hence wi Nwy is not empty. If wy = wa, it is clear that I; and
I, are disjoint. And otherwise, (6.9) shows that I; and I are disjoint.

We establish (6.9). As ®(w) C ®(w’), the a-tree structure dictates
that the two pairs are in distinct trees: p € P;, and p’ € Py with 7 # 7',
The first case is I’ ¢ If. For then, it follows from the removal of the
sets P2 and P!, that

dist (1, 1") > dist(I, 1Y)

6.10 > oo il
(6.10) > b0

> (bsize(p)) 10 |1].
Recall (6.4) and (6.5). This is stronger than (6.9).
Thus we can assume that I’ C If. But then, reversing primes in

(6.6), p' € Qir 4, a set of pairs that has been removed. The verification
of (6.9) is complete.
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The combinatorial work of the proof is complete. We have a set of
pairs O which satisfy (6.8). This condition is a rather strong incompa-
rability condition. Hence the final portion of the argument is a reprise
of the techniques of Section 4, and in particular the proof of Lemma
4.4.

Our objective is to establish the following inequality. Fix an in-
terval U, and assume I} C U for all . For all bounded functions g
supported on 2 U, and choices of signs {e), : p € O},

(6.11) | > e dp(@ (9. 00| < VU gl -
peO

To establish it, we can assume that O is finite, and therefore the in-
equality must hold with some finite constant on the right hand side.
Let B denote the best constant in this assumed inequality; an upper
bound on B can be given.

Set S, = ¢, ® ¢, then

(6.12) H Zepqﬁp (g,qﬁp)Hz: H ZspSngz:D+O,
peO peO

where D and O are the diagonal and off-diagonal terms respectively.
In the diagonal, we can use the fact that S, is a self-adjoint pro-
jection to write

D= Z<Sp97 Spg)
peO

(X 50)

(6.13) peO
< || 32 Sp9]] Jlgll
pe0O

< BVIUgll5 -

This estimate employs the assumed inequality (6.11), with best con-
stant, together with the fact that g is supported on 2U.
In the off-diagonal term, we have, recalling the notation O(p) of

(6.7),
0<2 Z Z |(Sp9, Spr9)|

peO p'eO(p)

<23 Kot D [ bpr bwr) (9600

peO p'€0(p)

(6.14)
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Denote the inner sum by S,. Recall the estimate

0, fonw =92,

w 9 w! I S I/ dtlvll _20/6 :
(o bl < 4 /%(H%) L fwcw.

We noted this in Section 4, and it is easy to verify. Use it in the estimate
of .

Sp = Z [(Dp, bpr) (95 D)

p'€0(p)

1 dist (1, I")\ —20
<Clgle Y —=(1+=222) .
wr i1com) VI 1

At this point, the essential ingredient from the first half of the proof
enters in. Namely, using (6.8), we can continue the estimate of S, as
follows. The intervals {I’ : [w',I'] € O(p)} are pairwise disjoint and
contained in the complement of I = (bsize(p))~'°°I. Hence, the sum
above can be dominated by

1 dist (7, z)\ —20
SpéC”Q”oo/ (1+ ( )) dx

o
< C (bsize(»)™*° V1] 19|00 -

Placing this estimate into that for the off-diagonal, (6.14), we get

O<Cligles D (bsize®)'* Ky, dp)| VIII

p:[waI]eo

< CllglZ b* D 1 ),

peO

with the last line following from iii) at the beginning of this section.
We collect estimates. Namely, the last display together with (6.12)
and (6.13), to see that

B2 < O(BVIUT+6" " (£, 60)7)

peO
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If the first term is the larger of the two on the right, then we see that the
best constant B is no more than C \/W , which is a perfectly adequate
estimate.

If the second term is the larger of the two, a contradiction is seen.
We can apply the inequality to f 1oy. In particular,

615) | et 10| <06 Y Iir68)

peO peO

since f is bounded by 1. It follows from the removal of the tops P?,
and in particular (6.5), that

(F200) = (F Lo 6g)] < [l [LLRU)] S5 @)
(6.16) < (bsize(p)"* V1|
< s 4,00 VT

Hence, we can average over choices of signs in (6.15), to see that

D Hfop)? <MY K(F, 6002,

pe® peO

which can only hold if b > C’, an absurdity.

The final touch in the proof our Lemma is short and sweet. We
have established (6.11); apply the inequality to f, averaging over choices
of signs. Noting (6.16), we see that

S U en> < ClUl.

peO

Yet, in the combinatorial half of the proof, we were careful to preserve
the lower half of condition ii) at the beginning of this section, and thus,
as the Lemma claims,

M tculit<cy?|ul.

7
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7. Forests.

In this section, we combine the principal estimates of the previous
three sections, and complete the proof of the bound for the bilinear
Hilbert transform. We begin with a definition of a collection of pairs,
a forest.

Call a set of pairs F a forest if
«) size(F) < b. (See (5.6)).

B) Ifp,p',p" € P,and p < p',p < p” then p’ and p” are compara-
ble, e.g. p’ < p".

7) No point x is in more than J = O ((A/b)?'°) intervals I, ..., I,
where the pairs [w;, I;] are in P, and mutually incomparable under <.

6) I, C b=*°[—1,1] for all p € F.

The first condition is a natural restraint on the size of of the collec-
tion of pairs; the middle condition is a critical combinatorial condition
imposing a tree-like structure on the forest; and the next to last con-
dition is used to write a forest as a small number of rows. The last
assumption will be satisfied by appealing to (5.21).

Lemma 7.1. If F is a forest, then there is a set E C (0,1) of measure
at most C(b/A)®0 so that for all 1 <r < 2, some § > 0,

IT7gllzr ey < Cr 0°(log A) [lg]l2 -

Two preparatory Lemmas are in order. First of all, our various
estimates break down on small subsets, and the next Lemma justifies
the deletion of these bad, thin sets.

Lemma 7.2. Suppose that T is an operator on a finite measure space
(X, A, ) so that for some 0 < b < 1, and all A > 10 there is a set
F C X of measure at most C (b/A)?° so that

1T9llrx\r) SCOAgll2(x), 7T <2.

Then,
1Tgllr < C p(X)=12012|g]l2 .
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Proor. It suffices to assume that p(X) = 1, for the general case
follows from this. Let g € L?(X) have norm 1, and A > 0. We have the
estimate

Tg|" du < C((f)zo + (bA)\_l)”) .

u({Ty > ) < 1P|+ [ .

X\F
Minimizing the estimate over A will prove the Lemma.

Deleting small subsets of (0,1) also requires us to delete sets of
pairs which live on these sets. This is the subject of the next Lemma.

Lemma 7.3. Let {I; : j > 1} be a collection of disjoint triadic inter-
vals. Let B be a set of pairs with size(p) < b, and for all [w,I] € B,
I C I for some j. Set B =\J;21;. Then for a choice of § =é(r) > 0,

HTBQHLT(EC) <C, b lgll2 1<r<2.

PROOF. In the proof, we can in addition assume that size(p) > b/2,
for then we can sum the estimate obtained for the sets B, = {p € B :
271h < size(p) < 27" FLb}, for n > 1, to get the Lemma as stated.

Let pj, = [@y, [1] be the maximal pairs in B. Remove the top from
B. Namely let B* be those pairs in p € B for which there is no chain

with m > M = 100 (log1/b) and p1,p2,---,pm € B. Then Bt can be
written as a union of O (log1/b) sets which are not comparable under
<. Hence, Lemma 4.2 implies

t
IT5 gl < C. b |lglla, 1<r<2,

which is stronger than our conclusion.

Let BY = B\B!, and set Py, = {p € B* : p < p,,}. This is a tree,
with top interval I much larger than |I| for all [w,I] € Pj. Thus, T"*
will be quite small off of the set £ = | ;2 I;. In particular, choose j so

that I, C I j» which must exist. Then, one easily sees that

TPk g(z)| < C b0 (Mljk (z))?> Mg(z), ifeg21;.
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The explicit calculation is much in the spirit of Lemma 5.9. Of course
B* =, Pk, hence for r < 2, let 1/r =1/2+ 1/s, and write

'
1T g/l () < CblOOHMg Z(lek)2
K

r

2
< 00 Mgl Yo (117, )%
k

< CO™lglls|| D217,
k

Here the lower bound on the size of pairs enters in. The p,, being
maximal, are incomparable under <. Hence Lemma 4.1 applies to show

that
IS, s
k S

which will finish the proof of the Lemma.

S

We turn to the proof of the bound for forests.

PROOF OF LEMMA 7.1. The first task is to rephrase the definition of
a forest in terms of trees, which depends critically on the condition /).
Let p; = [@;,1;] be the maximal pairs in F. Let P; = {p € F:p <
[@;,1;]}. Each P; is a tree and F = U; P;. Moreover, if j # j', no two
pairs p € P; and p’ € P;: are comparable. For if not, assuming p < p/,
then one has p < p; as well as p < p;,. But these last two pairs being
maximal, are incomparable, contradicting (3).

The last condition in the definition of a forest, condition ) implies

that A 210
Z 17, () < C(3> , for all x.
J

The next steps of the proof are made with the intent of extracting
normal separated trees from the P;. The process starts by deleting the
top and bottom from F. First the top. Let F? be the set of pairs p € F
for which there is no strictly ascending chain

P=p1<p2<c <SP

with m > M = 40000 (log A/b) and p1,p2,...,pm € F. Then F! can
be written as a union of M sets F!, for which no two pairs in any F_,
are comparable. Thus, by Lemma 4.2.,

(7.4) 177 gll» < CV*D(log A) |lgll2, 1<r<2.
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This is more than what is claimed in the conclusion above.
Let F* = F\F? and now remove the bottom of F°. Let F° be
the set of p € F° for which there is no descending chain

PLSP2S " SPm =D,

with m > M = 400001log (A/b) and p1,p2,...,pm € F°. As before,

b
177" gllr < OV (log A) flgll- . 1<r<2.

Let F! = F\(F*U F’) and P} = F N P;.
The exceptional set enters in. Two sets are defined below to con-
form with the formulation of Lemma 7.3. Set

B = {a: : dist(z, 01;) < 22'(%)400 |Tj|} fori=1,2.
j

The set £ = F, is the exceptional set of our Lemma. By part v) and
§) of the definition of a forest, |E| < C (b/A)?°. Next, we delete some
pairs. Let B denote those pairs in F for which I C E;. It follows from
Lemma 7.3 that

1Tg| L (mey < Cr b ||gll2 1<r<2,6>0.

The exceptional set will play no other role in the proof.
We have identified all the pairs to remove from F. Set Ff =

F\(FtUF*UB), and ij = P; N F* The Pg are much nicer trees. In
particular,

i) p]@ is a normal tree.

ii) If j # j' then PJn and Pg, are separated trees.

Here is the verification of the first claim. There are two conditions
to check. The second, that dist(,d1I;) > (b/A)*%0|I;| follows from
the removal of the set B. Finally, by the removal of the top, for each
w,I] € P]n, there is a chain of triadic intervals

_ A
I=LCLC - Cly=T;,  M>40000log .

And so [I] < (b/A)*000|T;]. This shows normality.
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The second claim will follow from the removal of the bottom: for
j # 7', recall that the top of p]@ is [wj, 1], and assume that I, N1 #
@. Let’s check the condition «) in the definition of separated. For
p=lwI] € 735 with I C I, as p € PP, there is a descending chain
w1, 1] =p1 < p2 < -+ < pu = p where M = 3000log A/b, and all of
the p,, € F°. The situation is that I; C I C ij, and p; € P;. But p;
and [w;r, I ;] cannot be comparable, by the condition 3) in the definition
of forest. That is, w;Nwj = &. But all of the w;,’s are central, so by the
convenient property of central dyadic intervals, (3.1), w sits well inside
wi. In particular, dist(w,w),) > dist(w, dw1) > 3M|w| > (A/b)**%|w],
This verifies «) in the definition of separated, with the proof of )
following by symmetry. The last condition in the definition of separated
follows from the removal of the pairs in B. This finishes ii) above.

The next task is to show that F* can be written as a union of at
most J = (A/b)?!0 separated rows Ri,...,Ry. To see this, let {1}
be the maximal intervals from the {I;} with no repetitions. For each
I, let (@) I*] be one of the magimal pairs p;(;y. Then R = (J; qu(z’)-
Delete the maximal pairs [W;;), '] from the list of all maximal pairs,
and repeat the procedure above. Condition ) guarantees that the
procedure stops in at most (A/b)?!° steps. Separability of the rows R;
follows from the construction.

With this decomposition Lemma 5.25 concludes the proof is con-
cluded by appealing to Lemma 5.25, Lemma 7.2 and part J) of the
definition of a forest.

A critical combinatorial trick will permit us to write much larger
sets of pairs as a union of a small number of forests.

Lemma 7.5. Let P be a set pairs with size(P) < b. Futher, letting
D = Wk, [r] denote the maximal pairs in P, assume that they obey a
Carleson measure estimate

(7.6) Y [Tk c U]kl < CO U]
k

for all intervals U. In addition assume that I, C b= [—1,1] for all k.
Then, for some 6 > 0,

179l < C° [lg]l2 -
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PrROOF. The Carleson measure estimate implies that

HE 17kH < C,b7180 1<7r<o0o.
s
k

Hence, the two sets

have very small measure: |Fy| < C (b/A)1%. Use this set to delete some
pairs. Set B={lw,I| € P:1 C E;}. By Lemma 7.3,

175 r sy < Co ¥ llglla,  1<7<2.

For the set P! = P\B, we will show that there is a set F' C (0,1) of
measure at most (b/A)%°, so that

#
||T73 |zrFey < Cr b? (log A) ||g]l2 , 1<r<2.

The estimate of this Lemma will then follow from Lemma 7.2.

We shall see that P*# can be decomposed into O (log A/b) forests.
Therefore, the estimate above follows from Lemma 7.1. The decompo-
sition is accomplished by means of the following combinatorial trick,
which has already been used in Section 4.

Let B(p) = the number of k for which p < p,,. Simply define

Fmn=1{peP:2™1 < B(p) <2m}.

By construction, this set is empty if m > O (log A/b).

It remains to verify that each F,, is a forest. The first condition
in the definition is trivial, the next to last condition follows from the
deletion of the set of pairs B and the last condition follows from the
hypothesis of the Lemma. The middle condition () in the definition
of a forest must be checked. But it is a consequence of the following
combinatorial property of B(p): for p,p’,p” € P, with p < p',p < p”
but p’ and p” not comparable implies that B(p) > B(p') + B(p"). So if
in addition p’,p” € F,,, then p € F,,, proving that F,, is a forest. To
see the super-additive property, write p’ < Dj(1),Pj2)s -1 Dj(s) where
B(p') = s, and p" < D), Pr2)s -+ » Prry Where B(p”) = t. Now, if
some P;(,) equals some Py,), the situation would be p < p', p" <
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p"" = Dj = Dk, But it is a simple property of triadic intervals that
the last condition forces p’ and p” to be comparable, a contradiction.

Thus, p <p' <Dj1ysPj2)s - - -+ Pj(s) Pr(1) Pr(2)s - - -+ Prey all pairs being
distinct, which means that B(p) > s +¢.

The previous Lemima, with it’s reliance on the Carleson measure
estimate, clearly implies the following two corollaries, which are stated
for specificity. For orchards, the necessary Carleson measure estimate is
Lemma 6.1. (Recall that this Lemma applies only for sufficently small
b).

Corollary 7.7. Let O be an « or an ax-orchard, with size(O) < b,
where 0 < b < by. Asumme that I,, C b=*°[—1,1] for all p € O. Then,
for some § > 0,

1Tl < C8° [l -

And, assuming a lower bound on the size of pairs, the necessary
Carleson measure estimate is Lemma 4.1.

Crollary 7.8. Let P be a set of pairs with size(P) < b, and with
size(p) > b3Y for all p € P. Then,

ITPglls < OV gl -
The last Lemma describes the inductive procedure with which the
set of all pairs can be broken up into sets to which the previous two

corollaries can be applied.

Lemma 7.9. Let 0 < b < by. Let P be a set of pairs satisfying
) size(p) < b3 for all p € P.
B) size(P) < b.
Then P = P U P” where, for some 6 > 0,

b
17 glly < CV° llgll2

and P* satisfies o) and ) above, with b replaced by b/2.
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ProOOF. Consider those pairs p = [w, ] in P for which there is an
a-tree T with top p so that

(7.10) > W fbp))? > b 1]

pET

Here, ¢y is constant which appears in the definiton of an orchard. How-
ever, it follows from the hypothesis ) that the sum above cannot be
more than an absolute constant times b. In addition, I C b=*[-1,1],
as follows from (5.21).

Let p, = [y, I1] be such a pair, so that the interval I; is maximal
among all such pairs. Take 7;* to be all pairs p = [w, ] € P so that
A(w) contains the center of @y, and I C I;. That is, 7,* is the largest
a-tree in P with top p;. Repeat this procedure to the collection P\ 7"
to get an a-tree Ty* with top p,. Continue this procedure indefinitely,
thereby obtaining a sequence of a-trees 7;* with tops p;.

We claim that O% = [J 7% is an a-orchard. There are three condi-
tions to check, yet each of these follows immediately from the construc-
tion. Clearly, conditions ii) and iii) hold. And condition i) follows from
maximality of the Tj. Therefore, Corollary 7.7 applies, showing that

1T gll < CW0 |lgll2 , 5§>0.

Remove the pairs 7¢ from P, and call the resulting set P'. By our
choice of the constant ¢; in (7.10), which was made in the definition of
an orchard, we see that for any a-tree 7 in P1,

b
||TT||2 < 6

Continue by removing ax-trees from P! in exactly the same manner as
the a-trees were removed. We get a set 7%* C P! with

177 gl <V lglla, 6> 0.

Let P2 be the collection of pairs obtained by removing those pairs in
T* from PL. It follows that any a*-tree in P? has norm at most /6.
Now, since size(p) < b3°, for all p, we see that any 3-tree in P? has very
small norm. Hence, for any tree 7 in P2,

1772 <

| o

Y
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which is seen by writing 7 as a union of an a-tree, a a*-tree and a
B-tree. That is, size(P?) < b/2, and the set satisfies the condition 3)
of the Lemma with b replaced by b/2.

We turn our attention to the condition ). Set

P fpers ()" <inn <7}

and

i fperni < (3}

The second collection satisfies «) and ) with b replaced by b/2. And
it remains to see that the first collection of pairs leads to an operator
with small norm. Yet, with the lower bound on the size of pairs, we
are in a position to apply Corollary 7.8 to P”, and so the proof of the
Lemma is complete.

A brief argument will finish the proof of the boundedness of the
bilinear Hilbert transform. Recall from Section 3 that set P to be the
set of all (admissible) pairs, we need only prove

(7.11) 177 gl < Cllgll2

Let P° = {p : size(p) > b3°}, and P* be the complementary set of pairs.
Now, size(P") < (), and so with the lower bound on the size of pairs,
we can apply Corollary 7.8 to see that

b
1T gl < Collgll -

Iteratively applying Lemma 7.9 to P¥, we can write this collection of
pairs as a union of collections P,,, with

ITP gl < C27°" |lg]l2 .
This estimate is summable in n, as 6 > 0, and so it proves (7.11),
finishing the proof of the boundedness of the bilinear Hilbert transform.
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