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Diffusive limit for finite velocity

Boltzmann kinetic models

Pierre Louis Lions and Giuseppe Toscani

Abstract. We investigate, in the diffusive scaling, the limit to the
macroscopic description of finite-velocity Boltzmann kinetic models,
where the rate coefficient in front of the collision operator is assumed
to be dependent of the mass density. It is shown that in the limit the
flux vanishes, while the evolution of the mass density is governed by a
nonlinear parabolic equation of porous medium type. In the last part
of the paper we show that our method adapts to prove the so-called
Rosseland approximation in radiative transfer theory.

1. Introduction.

In the kinetic theory of rarefied gases, two-velocity models of the
Boltzmann equation are supposed to describe the evolution of the ve-
locity distribution of a fictitious gas composed of two kinds of particles
that move parallel to the z-axis with constant and equal speeds, ei-
ther in the positive z-direction with a density u, or in the negative
x-direction with a density v. The most general two-speed gas which is
in local equilibrium when u = v is described by the equations

8—u+c% = k(u,v,x) (v —u),
ot Oox
(1.1) 5 9
v v
= = — >
5 " C 5 k(u,v,z) (u—v), reR, t>0,

473



474 P. L. Lions AND G. TOSCANI

where ¢ is the modulus of the constant speed of the particles, and & is
a nonnegative rate coefficient.

The most famous example of these models was proposed by Car-
leman’s in the 1930’s and appeared in print for the first time in 1957
in [Car]. In Carleman’s model k(u,v,x) = uw + v, so that the “colli-
sion” terms on the right-hand side of (1.1) describe binary interactions
between particles. An interaction between two molecules of the for-
mer type results into two molecules of the latter type and vice versa.
Clearly, Carleman equations have no meaningful physical interpreta-
tion; in particular, there is no conservation of momentum.

Choosing k(u,v,x) = 1, we obtain a linear system, known as
Goldstein-Taylor model [Gol], [Tay]. The system represents the forward
equation for the density of a molecule moving with constant speed along
the x-axis, subject to spontaneous reversals of directions, at the jump
times of a standard Poisson process of unit rate.

The macroscopic variables for these models are the mass density
p = u+ v, and the flux j = c(u — v). It is interesting to remark
that, since u and v can be expressed in terms of p and 7, so that
k(u,v,x) = k(p, j,x), system (1.1) is equivalent to the following macro-
scopic equations for the mass density and the flux

(1.2)

_+C_:_2k(p7j7$)jv reR, t>0,
T

Basically, two different types of problems for the system (1.1) can be
formulated. The first one is the initial or initial-boundary value prob-
lem. The second one is an asymptotic problem. Let us assume that the
mean free path is not normalized to unity, but is left in the equation
as a “small” parameter e. More precisely, this means that in (1.1) we
replace k by k/e. The following question then naturally arises: what is
the limiting form of system (1.2) as ¢ — 0, and how do the initial data
of the limiting equation match the initial data associated with (1.2)7

The limit ¢ — 0 corresponds to the transition from a kinetic
description of the gas to that of a gas as a continuum, and we refer to
the asymptotic problem as the hydrodynamic limit associated with the
kinetic system (1.1).

Much is known for Carleman’s equation in the scaling

Ou 10u 1 o
ot 2 )
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Jv 1 0v 1
1.3 — — - — = = (u® —v?).
(13) ot e dr &2 (" = v%)
This asymptotic problem was first investigated by Kurtz [Kur]. By
means of the theory of nonlinear semigroups, he proved that, for initial
data ug(z) = vo(z) € LY(R) the mass density pe(z,t) converges in L.
for all ¢ > 0 to p(x,t) satisfying the nonlinear diffusion equation

dp 1 0 /1 0p
(1.4) 5_1%(;%), ZER, t>0,
while j.(x,t) converges to zero. In other words, (1.4) is the hydrody-
namical limit of the Carleman’s equation (1.3).

Subsequently, McKean [McK] generalized the preceding result, by
removing the restriction that the initial flux has to be taken equal to
Zero.

Further results are due to Kaper, Leaf and Reich [KLR], who inves-
tigated the problem treated by Kurtz with e-dependent initial data, and
to Fitzgibbon [Fil], [Fi2] who studied the problem in a bounded domain
with specular reflecting boundary conditions. The method of proof of
all the aforementioned papers relies mainly on the theory of nonlinear
semigroups, and on the fact that these problems are Ll-accretive.

McKean’s result [McK], has been recently extended by Toscani and

Pulvirenti [PTo] to the system

%+1%—i a(_)
ot eow 2P 0T

ov 1 0v |
ot cox e2F (u—w),

(1.5)

with 0 < o < 1. The system (1.5) includes as particular cases both
Carleman’s equation (o = 1) and the Golstein-Taylor model (o = 0).

In the present paper, we will investigate in the diffusive limit the
system

Ope | 9je _
ot or

dje . Ope
2
ot ow

for any value of @ < 1. The case a < —1 is of particular interest since
we obtain in the limit the well-known porous media equation

Op L 0% i)

ot 2(1+ |a]) Ox?

(1.6)

=—-2p%J¢ , reR, t>0.

(1.7)
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In the second part of the paper we will investigate the multidimen-
sional and in particular the three dimensional version of system (1.1).
In three dimensions of space, the molecules of the fictitious gas can
move in directions parallel to one of the axes x1,x9,x3 either in the
positive direction or in the negative direction. Denoting by w; (respec-
tively u;13), @ = 1,2, 3 the densities of molecules moving in the positive
(respectively negative) x;-directions, the most general system which is
in local equilibrium when u; = p/6, i = 1,2,...,6, where p = > u; is
the mass density, takes the form

8ui 811,1 .
ot +Ca$i_k(ula"'vu&x)(p_Guz)a
(1.8) ; :
(/7 Us
8:3 —C (93;:3 :k(ulv"'vuﬁvx) (p_6ui+3)7

with 4 = 1,2,3, € R3, and t > 0. With a few modification, our
one-dimensional analysis extends to the three-dimensional case when
k(uy, ..., us,x) =p®, a<1.

Other models (one or multidimensional) can be studied with our
technique. Among them, let us mention the cases k(u, v, z) = a(z), and
k(u,v,2) =Y 0 u™ o, m € NT.

The main object of the present investigation is to justify the pas-
sage from the mesoscopic description of kinetic theory to the macro-
scopic one of continuum theory. This passage is usually described by
the asymptotic relations between solutions of the Boltzmann equation
and solutions of Euler and Navier-Stokes equations. It is worthwhile
mentioning that the target equations of continuum theory can be ob-
tained directly from a microscopic description. In particular, the de-
duction of diffusion equations as a hydrodinamic limit of particle model
is a well-studied subject. We quote here the paper by K. Oelschlager
[Oel], in which the porous medium equation is obtained as a limit of a
particle system that interact under the action of adequate potentials,
as the number of particles tends to infinity. Depending on the scaling
parameter applied, different versions of the porous medium equation in
the limit dynamics are obtained. A different aspect of the limit dynam-
ics for a Markov system of many particles, and the convergence to the
porous media equation of the empirical density of the number of parti-
cles has been investigate by Inoue [Ino|. In this paper, the Kac-McKean
propagation of chaos for the system is shown to hold.

In Section 2 we discuss the initial and the initial-boundary value
problems associated with (1.1), and we will recover elementary a priori



DIFFUSIVE LIMIT FOR FINITE VELOCITY BOLTZMANN KINETIC MODELS 477

estimates for the solution. Here, the models (1.5) naturally separate
in two subclasses, corresponding to |a| < 1 and a < —1 respectively.
When |a| < 1, at least in one dimension, the problem is shown to be
L'-accretive. Entropy bounds are discussed in Section 3, and the limit
theorems in Section 4. When the model is accretive, given initial values
of bounded variation, L*-contraction and translational invariance imply
total variation bounds on the solution, and one can pass to the limit for
general L' initial conditions, in a rather straightforward (and standard)
way. Let us briefly discuss the case a > 0. The entropy bounds of
Section 3, Theorem 3.1, imply that {j.} is bounded in L2, and thus by
the second of equations (1.6) dp./0t is bounded in L2(0,T; H!) for
all T > 0. In view of the a priori bounds of Section 2, {pc} is bounded
in L>°(R).

These bounds, combined with Proposition 2.3, imply that the fam-
ily {pc} is relatively compact in C([0,T]; L*(R)) for all T' > 0.

Hence p%j. — p®j in L2-weak, ¢% jo —> 0 strongly in L? and
from the flux equation we deduce

dp

= —2p%
Oz PJ

at least in the sense of distributions (and in fact in L?). Considering
that p € L, the above equality implies that we have

1 8p1—a
2(l—a) Ox

j=-

in L2. The case —1 < a < 0 follows with similar arguments.

The case a < —1 is more delicate, and the result is achieved by
compensated compactness theory (see F. Murat [Mul], [Mu2], and L.
Tartar [Tal|, [Ta2]). In Section 5, we extend our analysis to the three-
dimensional models (1.8). Finally, we state without proofs various ex-
tensions and variants of the results obtained below. In fact, our method
of proof adapts to models with a continuous set of velocities. In par-
ticular we make contact (and propose more general proofs) with the
so-called Rosseland approximation in radiative transfer theory (see C.
Bardos, F. Golse, B. Perthame and R. Sentis [BGPS], and the references
therein).
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2. Basic a priori estimates and global existence.

In this section we discuss the initial and the initial-boundary value
problems for system (1.1). Many arguments that follow are very ele-
mentary, and the proofs will be omitted. Besides, it has to be pointed
out that the general a priori estimates we will use in the sequel, to our
knowledge has never been used before.

For our purposes, as will be clear later on, we need to study (1.1)
in a bounded interval Q = (—a, a) with periodic boundary conditions.
This limitation allows us to prove existence and uniqueness of a solution
under weak conditions on the rate coefficient k.

Useful a priori estimates for the solution to system (1.1) follow
by the structure of the “collision” term. Taking the sum of the two
equations, and integrating over {2, we obtain the mass conservation,
namely [, p(x,t) dz is independent of ¢ > 0. Let now ¢(r), 7 > 0 be a
(regular) convex function. If we multiply the first equation of system
(1.1) by ¢'(u) and the second by ¢'(v), after integrating over Q we

obtain
[ 2ot [ el
q Ot q Ot

(2.1)

Since ¢’ (r) is non decreasing, the right-hand side of (2.1) is non positive.
Thus we deduce, at least formally, that [, (¢(u) +¢(v)) dz is monotone
non increasing in ¢ > 0, and

/ (p(ulz, 1)) + p(o(z,1))) da
(2.2) ¢

< / (p(uo(2)) + lvo())) da

In particular, if the initial densities wug,vp belong to L°°(£2), taking
o(r) = rP for any p > 1, and letting p go to +oo, we deduce the
following bound

(2.3) max {[|u(t)]lo, [[0(#)][co} < max {[[uolloo, [[volloo} -

Similarly, we may assume that uo(z) > 6, vo(z) > 6 in Q for some
d > 0. Then, choosing ¢(r) = =P, (p > 0) in (2.2) above, and letting
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p go to +00 we obtain

e o W ol R o R

or, equivalently, for all £ > 0
. i > i .
(2.4) Inf {u(z, 1), v(z,)} 2 inf {uo(x),vo(2)}

These formal a priori estimates are sufficient to yield the global exis-
tence of a unique solution of system (1.1) for a large class of rate coef-
ficients. More precisely, we now need to specify our basic assumptions
on k(u,v,z).

Definition 2.1. 1) k(u,v,x) is an admissible rate coefficient of type 1
for system (1.1) if

a) k(u,v,z) < ci1(p) < oo, if u,v < p for any >0, and x € Q).

2) k(u, v, x) is an admissible rate coefficient of type 2 if k(0,0,x) =
oo and

b) k(u,v,z) < c2(N) < 00, if u,v > A >0 for any A > 0.
A simple example is given by the rate coefficient
k(u,v,2) = (u+ v)*.

k is of type 1 if a > 0, and of type 2 if a < 0.
We then have the following

Proposition 2.1. Let 0 < ug(x),vo(z) € L>®(Q). Then, the initial-
boundary wvalue problem for the system (1.1) with a rate coefficient
of type 1 has a unique solution u(z,t),v(z,t) € L®(Q x (0,7)) N
C([0,T]; LP(2)) for all T > 0,1 < p < oco. In addition, the solution
satisfies the bound (2.3).

Proposition 2.2. Let 0 < ug(z),vo(x) € L>(Q) satisfy ug,vg > 6
on ) for some 6 > 0. Then, the initial-boundary value problem for the
system (1.1) with a rate coefficient type 2 has a unique solution bounded
away from zero u(x,t),v(x,t) € L=(Q x (0,7)) N C([0,T]; LP(2)) for
all T > 0,1 < p < oco. In addition, this solution satisfies the bounds
(2.3) and (2.4).
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A particular choice of k obviously allows to obtain additional re-
sults for the initial-boundary value problem (1.1). As precised in the
introduction, we are interested in the fluid-dynamical limit of system
(1.5), that corresponds to the choice k(u,v,z) = (u+ v)* = p®, where
a < 1is a fixed constant. Since (u + v)® is admissible, existence and
uniqueness of a solution in L follows by Proposition 2.1 when « is
positive, or by Proposition 2.2 when « is negative.

We are now going to use a few simple facts from the theory of
dissipative operators. Let f = (u,v), and let A, be the operator defined
by

Aof = (p*(v =u), p*(u—0)).

Then we have

Lemma 2.1. Let 0 < o < 1. Then, the operator A, is dissipative from
the domain

D¥(Aa) = {(u,v) € L}(Q) x L}(Q), |Julloo, [Iv]leo < 00}

into L' (Q) x LY(Q).
If -1 < a <0, and if § > 0, the operator A, is dissipative from
the domain

Dy (Aa) = {(u,v) € L} () x L'(Q), u,v >3, [|ulloo, [Jv]|cc < 00}
into L1(Q) x LY(Q).

PROOF. Let us recall that a closed operator A from the domain D(A) C
L*(X) into L'(X) is dissipative if, for any functions fi, fo € D(A)

/X(Afl — Af2)sign (f1 — f2)dr < 0.
In our case, f = (u,v), so that
(Aaf1 — Aafo) sign (f1 — f2)

= ((u1 +v1)%(v1 — u1) — (u2 + v2)“(vy — ug)) sign (uy — ug)
+ (w1 +v1)%(ug —v1) — (ug + v2)*(u2 — v2)) sign (v1 — va).
Then, the conclusion of the lemma follows by observing that, for a > 0,

the function
y=(r+a)*z—a).
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is monotone non decreasing for any fixed o € [—1, 1].

Let us now set

ou ov o 0
Baf = (= 5o+ (0 =u), 52+ p*w=0)) = = (<u,v) + Aaf.

Then, the following lemma is immediate

Lemma 2.2. Let 0 < o < 1. Then, the operator B, is dissipative from
the domain

D¥(By) = {(u,v) € WHH(Q) x WHH(Q)}

into L*(Q) x L*(Q).

If -1 < a <0, and if 0 > 0, the operator B, is dissipative from
the domain

DI (By) = {(u,v) € WH1(Q) x WHHQ), u,v > &}

into L*(Q) x LY(Q).
REMARK 2.1. If 0 < a < 1, the existence theory in L can be ex-
tended to all of R without any difficulty. A further consequence of
Proposition 2.1, combined with the a priori estimate (2.2) is that, if the

initial data uo(z), vo(z) € L>®(R) N LP(R) for some p > 1, the solution
u(z,t),v(x,t) € L*°(R) N LP(R) and

1/p
( / (u(a, )P + vla, 1)) da )
R
is monotone non increasing for ¢t > 0.

By Lemma 2.2, provided the initial values are in D¥(B,), the
solution of the system (1.5) can be written as

(u(-51),0(+, 1) = ePe(uo(-), vo(-))
and, given f1 = (uy,v1), fo = (ug,vs)

(2.5) le*Pe fr — e P folly < Ifs = fallr -
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In particular, if the initial densities (ug(x),vo(x)) are of bounded vari-
ation, we see that the solution (u(x,t),v(z,t)) is of bounded variation,
and

ma{| 2522 7503

(2.6) Oz H Sua(a) ‘

’
1

500

Let us now consider the case —1 < a < 0. By Proposition 2.2, given
any 0 > 0, we have a unique global solution of system (1.5) in L°°(2).
Furthermore, by Lemma 2.2, given initial data f; = (u1,v1) and fo =
(u2,v2), with f1, fo € DJ(B,) the solutions at any subsequent time
t > 0 satisfy inequality (2.5).

As is well-known for accretive nonlinear semigroups, this allows to
extend the semigroup to all L'-data. In addition, if ug(z),ve(x) have
bounded variations, the solution (u(z,t),v(x,t)) has bounded variation,
and inequality (2.6) holds. The previous arguments are summarized by
the following

< max{

Proposition 2.3. Let 0 < wug(z), vo(z) € LY(Q). Then, provided
la| < 1, the initial-boundary value problem (1.5) has a unique global
solution u(z,t),v(x,t) € C([0,T); LY(Q)) for all T > 0. In addition,
if uo(x),vo(z) € BV(Q), then u(x,t),v(z,t) € L>*(0,00; BV(Q2)) and
(2.10) holds. Furthermore, for any p > 1, if ug,vg € LP(2), we have

1/p

1/p
([ wtota + ooty dn) ™ < ([ (atosta)? + o600 dr)
R R
forty <ty. If 0 < a <1, these results extend to 2 = R.
REMARK 2.2. We emphasize that neither BV -bounds, nor L”-bounds
for the system (1.5) depend on €. This is not the case if we look for
LP-bounds on the derivatives.
Indeed we have
Proposition 2.4. Let 0 < up(z), vo(z) € DT(By), if 0 < a < 1,

and 0 < ug(z), vo(x) € DF(By), for some § > 0, if a < 0. Then, if
0 < up(x), vo(x) € W™P m >0, 1<p< oo, u(z,t),v(x,t) € WP,
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and, fort <T

[ (ot | 2Oy g,
0™ ug |P 0™y

< m 7T77 oy oo
< e (& 128 [l ol | (|| + [

p) dx .

The case a = 0 seems to be exceptional. Let us consider the system
(1.1) with a constant rate k = ko, that is let us consider the Goldstein-
Taylor model

ou Ju
— +c— =ko(v—u),
(2.7) gt gx
v v
e = _ >0.
5 Coa ko(u — v), reR, t>0

Easy computations show that

P Ov
+_

. (‘ o or

p
2. — — <0.

Hence, combining (2.8) with the result of Proposition 2.3 we conclude
that, if the initial data ug,vo € WHP(R), 1 < p < oo, the solution
u(z,t),v(z,t) € WHP(R), and

(o) ([ (2] + 320 )

is monotone non increasing in time.
Since the problem is linear, the same conclusion can be reached for
higher order derivatives. So, we proved

Proposition 2.5. Let 0 < ug(x), vo(z) € W™P, form > 0,1 <p <
00. Then the unique solution u(x,t),v(z,t) to the initial value problem
for the Goldstein-Taylor model (2.14) belongs to W™P for all t > 0,

and . ) )
m P 1/p
([ [5ma + o) )

1s monotone non increasing with time.
To end this section, let us recall that By is in fact accretive in L?
for all p € [1, o).

p n ov™
ox™
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3. Entropy bounds.

Having in mind the passage to the fluid dynamic limit, we discuss
in this section further a priori bounds for the system (1.5), when o < 1.
Let us introduce nonnegative functions ug(z),vo(z) € L'(R) N L (R)
such that

(3.1) /R(uo(x) | log ug(x)| 4+ vo(x) | logvg(x)|) de = My < oo
and, for w(z) = (1+22)P/2, 0 < B < 1/2,
(3.2) /Rw(a:) (o () + vo(x)) dz = My < 00,

The bounds (3.1) and (3.2) ensure a suitable decay at infinity of uy and
vg. In section 2 we showed that different values of a produce different
results of existence, uniqueness and regularity of the solution to system
(1.5). Nevertheless, since we wish to give a unified treatment of our
system for any value of «, we first maintain our analysis as general as
possible, postponing to the end of the section the remarks concerning
the various possible extensions of the results for particular values of the
parameter c.

To this end, given v > 0, let us denote by €2, the domain [—1/e7,
1/€7]. In addition, given p > 0, let

(3.3) ug = max {up(z), e}, vg = max {vo(x),e"}.

By the results of Section 2, the initial boundary value problem for sys-
tem (1.5), with periodic boundary conditions on €., and initial values
(3.3), has a unique global solution u®(z,t),v¢(z,t), for all a < 1.

Moreover, provided p > v (1 + ), uf and v§ satisfy bounds (3.1)
and (3.2) with different but finite constants M5 and M5. In fact we
have

[ o) o) + i) g i) e

_ /Q (up(z) |loguo(z)| + vo(x) |logve(x)|) dx
(3.4) ’

= ‘/ (e* |loge?| — up(x) |log up(x)|) dz
Q.N{up<er}
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+f (e [ log €| — vo() | log o) ) de
Q.N{vo<er}
< 4det|loget|e™

=4 pet™7 | loge]

and

‘Aw(x) (uﬁ(az)-l—vg(x))dx—/ w(z) (uo(z) + vo(z)) da

Q.
(3.5) <2elw(e”)2e™7
=401+ E—2v)ﬁ/2€u—v )

Let us choose ¢(r) = rlogr, for r > 0. Then, by (2.1) we obtain

d
7 (u®(z,t) logu® (z,t) + v°(x,t) logv(x,t)) dz
Q.
(3.6)
uf(x,t) — v (z,t) u(x,t)
— — [ (W, ) + 0% (, 1)) 1 da .
| )+ ) - og 222 do

€

On the other hand, if we multiply both equations (1.5) by w, after
integrating over ()., we get

d € €
pr o w(z) (u(x,t) + v (z,t)) do

1 0
+ —/ (@) 2 (0 (2, 8) — v (1)) d = 0.
Q 833
Integrating by parts, and making use of the periodicity, we deduce

d
— [ w(x) (u(z,t) +v°(x,t)) dx
(3.7) o /Q
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Then, taking the sum of (3.6) and (3.7) we conclude

% o (uf(x,t) logu® (z,t) + v¢(x,t) log v (z, t)
Foo(a) (5 8) + (e 0))) s
3.8 Wl (. t) — v (a u (x
- +/Qs(us(x’t)+vs(x’t))a : ,t)gz (@.) log Ueé:z:jg dx

S/Q ‘w'(x) us(x,t) —ve(z,t) .

€

€

Let pe = u*+v°, and by je = (u®(x,t)—ve(z,t))/e. Then, for0 < 6 < 1,
we obtain

Pl log— = pl it — —
1
o« 2
(39) ~ Pe e 0 ue + (]. - 9) Ve
a—1 ;2 u® +v*
Pe e gue v (1= 0)ve
> 202712
Now, by the a priori bound (2.3),
(3.10) pe < 2max {|[uo|loo, [lvolloo } = ¥(u0,v0) -
Hence, since a — 1 < 0,
u® — v u® 1.
(3.11) p = logv—E >2p27 52,

In all cases we obtained a bound from below in terms of v(ug, vg), which
depends only on the L°°-norm of the initial values, and not on e.
Let us now consider the case —1 < a < 0. Then, by (3.9) it follows
ut — v €

(3.12) P log = 2 20 2 2 220 200

We next observe that

1 w'
w'|js|dx=—/ Y 2w .| da
/Q 2 Jo. VV

(3.13) :
<Z/ j2d:1:+i/ (w)?dx.
- 2 Q. € 2v Q.
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By definition, since 0 < 3 < 1/2, w’ € L*(R). Thus, by (3.8) we deduce

d

g (u®(x,t) logu®(z,t) + v°(x,t) logv®(x, t)
Qc

(3.14) +w(z) (us(x,t)+v€(a;,t)))da:+%/9

<5 | (W@

i2(z,t) dw

In particular, for any ¢ > 0

/Q (u®(t) logu®(t) + v°(t) logv® (t) + w(u(t) + v°(t))) dx

< (W) de + / w(ug(t) + v§(t)) da

— 2v Q. Q.

(3.15) + /Q (ug(t) logug(t) + v§(t) logvg(t)) dx

€

t
< — [ (W)3(x) dx-l—/w(uo-l-vo)dx
2v R R

+ / (up log ug 4+ vo logvg) dz + o (g) ,
Q

€

where the rest o (¢) is given by the sum of the right-hand sides of (3.4)
and (3.5). By (3.15), the monotonicity of

/Q (u®(t) logu®(t) + ve(t) logv®(t)) dx

implies

/ng(uf(t)-l-uf(t))dx < ;—V R(w')2(az) da:+/Rw(u0+UO)dx
+/R(w1(ﬂ:) | log ug(2)| + vo(z) |logvo(z)|) da

(3.16) b [ @t 0 + e @ og v () da

€

+o0(e),
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where log™ r denotes the negative part of the logarithm.
By the classical inequality zlog™ 2z < y — zlogy, 0 < z, y < 1,
choosing y = exp (—w(x)/2), and z = ue(x), we obtain

w(x)

1
/ uelog_uedxg/exp<——>da:+—/ wutdx,
Q. R 2 2 Ja.
1
/ velog_vsdxg/exp<—w)da:+—/ wodr.
Q R 2 2 Ja.

€

(3.17)

Finally, for any ¢ < 1, making use of inequalities (3.17) on the right-
hand side of (3.16) we obtain

%/Qaw(us(t)-l—ve(t))da:
< Zt—u (W")2(z) dx—|—2/exp<— @) dm+/w(u0+vo)dx
(3.18) ¢ ¢ -

-l-/R(uo(a:)|logu0(x)|+v0(x)|logvo(x)|)da:+c.

In conclusion, for any ¢t > 0 we obtained the bound

(3.19) /Q WU (t) + v (1)) da < et g, v0) |

€

where the constant ¢; does not depend on . By applying (3.19) into
(3.17) we obtain an upper bound for the negative part of u®(t) log™ u®(t)
+ ve(t) log™ v=(t) in terms of ¢;. Hence, if the initial data satisfy con-
ditions (3.1) and (3.2), for any 7" > 0 there exists a constant Crp, de-
pending only on ug and vg, such that, for all ¢t < T and € > 0,

/Q (u () | Jog u (1)

€

(3.20)
+v°(t) | logv®(t)| + w(u(t) + v°(t))) de < Crp .

Now, by (3.14) we argue that for any @ < 1 and 7" > 0, j. is bounded
in L2([0,T] x ©.). In addition, in view of (3.9), if a < 1, p®~ /%,
is bounded in L2([0,T] x €¢). Next, if |o| < 1, p%jc is bounded in
L2([0,T] x Q.). This follows by (3.12) when « < 0, and by (3.11) and
the L°>°-bound (3.10) when o > 0.
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By the Propositions 2.3 and 2.4, it follows that the previous bounds
can be extended to all initial data satisfying (3.1) and (3.2) and to all
of R when « is positive, to all initial data satisfying (3.1) and (3.2) and
to any domain €2, when —1 < o < 0. In conclusion we proved

Theorem 3.1. Let 0 < ug, vg € L*(R) N L®(R) satisfy conditions
(3.1) and (3.2).

i) Let 0 < a < 1. Then, for all T > 0, and € > 0 there exist con-
stants dy = dy(ug,vo,T), do = da(ug,vo,T) and d3 = dz(ug, vo,T) such
that, the unique solution u®(x,t),ve(x,t) of the initial value problem for
system (1.5) satisfies

(3.21) / / v, t)) de dt < dy
(3.22) / / L t>>

u® (z, )+v (z,t))* tdedt < dy ,

oy 0EOosrE®)
+v°(t) | logv® ()| + w(u®(t) +v°(t))) dx < ds .

ii) Let —1 < a < 0. Then, for all T > 0, and k € Nt the
unique solution u®(x,t),ve(x,t) of the initial-boundary value problem
for system (1.5) on the domain [—1/e* 1/e¥] satisfies

(3.24) / /1/6 i t))2 dw dt < dy

1/ek €

. / /11//; : —v°(,t) ) 2

(uf(z,t) + v (z, 1) dedt < dy |

1/ek
PP IR Gl 0l
+v°(t) | logv® ()| + w(u(t) + v°(t))) de < d3 .
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iii) Let a« < —1. Given k € Nt let p > k(1 +f3), and let u, vf be
defined by (3.3). Then, for all T > 0, the unique solution of the initial-

boundary value problem for system (1.5) on the domain [—1/e* 1/e¥],
with initial data uf, v§, satisfies the bounds (3.24), (3.26) and

(3.27) /OT /_11//5; (us(x,t) ; ue(gg,t))2

(uf(x,t) + v (2, )*T do dt < dy

forall0 <7 < (|a|+1)/2.

REMARK 3.1. Let a < 0. Given € > 0, the velocity of propagation
of the hyperbolic system (1.5) is exactly 1/e. This means that, given
any time 7" > 0, for t < T the solution u®(z,t), v¢(z,t) on the interval
[—(1+T)/e,(14+1T)/e] depends only on the initial values on the inter-
val [-(142T)/e, (14 2T)/e], provided the boundaries are located at
[—1/ek,1/e¥], for k large enough. In other words, for € small enough,
the presence of the boundaries does not affect the solution on the in-
terval [—(1 + T)/e, (1 + T')/e]. This explain why the presence of the
boundaries does not affect the solution in any bounded set in the limit
procedure.

4. Limit theorems.

The macroscopic equations for the system (1.5) can be expressed
in terms of the mass density pc(z,t) and of the rescaled flux

ue(x,t) — ve(z,t)

(4.1) Je(z,t) = -
as follows
Op: | 0je _
(4.2) ata, 3‘”3 ’
2 5;+ 826 — 20%j., w€R,t>0.

In this section, we study the limiting behaviour, as € goes to zero, of the
solutions (pe, je) to system (4.2). In our passage to the limit, we will
consider various relatively compact sequences. In these cases, without
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risk of misunderstanding, when we say that the sequence converges to
a limit, we mean that there exists a subsequence that converges to a
limit.

In the rest of the section, we will consider initial values for the
kinetic problem (1.5) satisfying the conditions of Theorem 3.1.

Let us first consider the case 0 < a < 1. In this case, by Proposition
2.3, if the initial values ug, vy belong to L! N L, (2.9) holds. Hence
we see that, for all T'> 0

(4.3) lim sup |pe(z+ h,t) — pe(z,t)||1 =0.
h—0 0<t<T

Moreover, by (3.23) we deduce that

(4.4) lim sup / pe(z,t)dz=0.
R—004e(0,11J|z|>R

In addition, by Theorem 3.1, {j.} is bounded in L?, and thus by (4.2)
Ope/0t is bounded in L2(0,T; Hy,}) for all T > 0. In view of the bound
(2.3) {pe} is bounded in L*°(R).

These bounds, combined with (4.3) and (4.4), imply that the family
{pe} is relatively compact in C([0, T]; L*(R)) for all T' > 0.

Hence p%j. — p%j in L%-weak, ¢%j. — 0 strongly in L? and
from the flux equation (4.2) we deduce

dp

4.5 e
(4.5) o P

at least in the sense of distributions (and in fact in L?). Considering
that p € L*°, (4.5) implies that we have, at least formally

1 8p1—a

(4.6) j:_2(1—a) 0w

in L?. This fact follows indeed from (4.5), since p € H! and thus

9 (etp™ _ 5 p°

or 1—« (€+p)aj’

which converges in L? to —2j1y,50}. Therefore, p'~* € H !, and

(4.6) holds on the set {p > 0}. In addition, the entropy bound (3.22)
shown in Section 3 implies at the limit that p(*=1/25 € L2(R x (0,T))
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for all T > 0. Thus, if @« < 1, 7 = 0, almost everywhere on p = 0,
almost everywhere, and the proof of (4.6) is complete.

If we now replace (4.6) in the continuity equation, we recover that
the limit density p satisfies the fast diffusion equation

@ B 1 82p1—a

ot 2(1—-a) 0x2 =0

(4.7)

Since we assumed the initial values ug,vg € L' N L, so is the initial
density po(z) = p(z,t = 0). On the other hand, the fast diffusion
equation (4.7) has a unique global solution in D', provided p(0,z) €
Li .(R) (¢f. M.A. Herrero and M. Pierre [HePi]). The uniqueness result
guarantees the existence of a unique limit point for the whole family.
Hence, we obtained the result of [PTo] as a particular case (a > 0)

of the limit behaviour of the system (4.2).

Theorem 4.1. Let 0 < « < 1, and let (pe, jc) be a sequence of solutions
to the initial value problem for the system (4.2), where the initial values
ug, Vo satisfy the hypotheses of Proposition 2.3 and Theorem 3.1. Then,
there exists p € L* N L™ such that p.(x,t) converges to p(x,t) strongly
in C([0,T); LY(R)) for all T > 0, while eje converges to zero strongly in
L?(R x [0,T]). The limit density p(x,t) is the (unique) weak solution
to the Cauchy problem for the fast diffusion equation (4.7), in D'(R) x
(0, 00), with initial datum py = uo + vp.

The proof for the case —1 < « < 0 is similar. By Theorem 3.1, we
deduce that n. = p%j. converges to v in L?-weak, while p. is relatively
compact in C([0,T]; L} (R)) for all T > 0. In addition £?j. — 0
strongly in L2, exactly as in the case o > 0. Let us rewrite the second

equation of system (4.2) in the form

07 0
g2 J€+ Pe = —2n¢ .

4.
(4.8) ot ox

Passing to the limit in (4.8), we deduce

_ 1op

in D’. Now, from the continuity equation, considering that
, Yy €eq ) g

ol g
: p!“l Op
e = plme — —- o
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in L%-weak, we obtain that the limit density satisfies (in a weak sense)
the slow diffusion equation

3/) 1 a2p1+|a|

(4.10) o 2(+a) 042

=0.

We proved

Theorem 4.2. Let —1 < a < 0, and let (pe,je) be a sequence of
solutions to the initial-boundary value problem for the system (4.2),
where the initial values ug, vy satisfy the hypotheses of Proposition 2.3
and Theorem 3.1. Then, there exists p € Li N L> such that p.(x,t)

loc

converges to p(x,t) in C([0,T]; LL . (R)) for all T > 0, while €j(x,t)
converges to zero strongly in L2 (Rx[0,T]). The limit density p(x,t) is

the (unique) weak solution to the Cauchy problem for the slow diffusion
equation (4.10), in D'((0,00) x R), with initial datum py = ug + vy.

REMARK 4.1. An easy consequence of the previous results is that both
ue(x,t) and ve(z,t), solutions to the initial (if 0 < a < 1) (or initial-
boundary (if —1 < a < 0)) value problem for the kinetic system (1.5)
converge strongly to p/2, where p is the solution of the corresponding
nonlinear diffusion equation.

We will now examine the case o < —1. The main argument in
our proof of the passage to the limit will be the “div-curl” lemma of
compensated compactness theory (see F. Murat [Mul], [Mu2] and L.
Tartar [Tal|, [Ta2]).

Lemma 4.1. Let A be an open set of R", and v. and w. be two
sequences such that

Ve — U, in [L*(A)]"-weak,
(4.11)
We — w, in [L*(A)]"-weak,

(4.12)  divw,. is bounded in L*(A) (or compact in H='(A)),
curl we is bounded in [L*(A)]" (or compact in [H_l(A)]"z) .
Let (-, -) denote the inner product in R™, i.e. (v,w) =Y i | v;w;. Then

(4.13) (Ve, we) — (v, w) in D .
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Let us take initial data satisfying part iii) of Theorem 3.1. Since, with
these hypotheses, Proposition 2.2 holds, p. > 2¢&#, and, for given n € N,
n > 1, the system (4.2) is equivalent to

Ope | OJe _ ¢
ot or
(4.14) o -
g2 p Je = P _ petmi

£ ot n+1 Ox

The second equation of the system (4.14) can be written as follows

0 : 1 oppt! . a1 Op .
(15) - g (5 pede) ooy =g —medereT G = ~2oe e
Making use of the continuity equation, we deduce
) dp n 072
_m el n—1 e __ " 2 n-1 €
nEJele T T2 P oy
n o, 0 1. n(n—1) 5.5 Op
4.16 = g2 L (pn—1l52y _ 2 n-2,2 9P
(4.16) 5€ 5y Pe Jc) 5 € P s 5

Hence, choosing n = 1, we conclude that the system (4.14) is equivalent
to

dpe N 0Je
ot ox

=0,

(4.17) X

O o D s .
@(ezpeye)Jra—x(g +732) —2p2*1 . .

If n > 1, we substitute the result of (4.16) into (4.15) to obtain

P?H 2 n—1 2) o2 n(n—1) 5 ., 5 0pc

J— 2n. j—
g (€ PEJe) + 5 (n+1+ 5 Pe e g Jepe T 5

(4.18) —2 p2t™ g,

The term dp./0z in (4.18) can be evaluated by the second equation of
the system (4.2), to give

2”(”_1)j2pn—2%
2 cre Ox

(4.19) =n(n—1)e22p7>T +¢

—€

gn(n—1) n—2 ajg

6 = ot
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If we now take n = 2, we find that the second equation of system (4.2)
can be written as follows

0 o4 J?) 0 (Pg’ 2 -2)
(120) o (Po2ie+et i) + §+s pe J-

~2p2*%je — 2672 p e

The general formula follows easily by induction. In particular, consider
that, given o < —2, there exists n € N such that 7 = |o| — 2n <
(|| +1)/2. This implies, by Theorem 3.1, that p-"j. is bounded in
L?. With this choice, the second equation of the system (4.14) can be
written in equivalent form as

0 2k 2(n—k) :2k+1 o (ptt - 2k 2(n—k)+1 :2k
( Zanke Pe Je )+8x(2n+1+zbn’k€ Pe ,75>
k=1

n
(4.21) - —2(05?7; +3 cun €2kp6—7—2kj3k+1> 7
k=1

where a,, i, bn r and ¢, are suitable bounded constants that can be
computed explicitly.
The previous argument allows us to prove the following

Proposition 4.1. Let 0 < ug, vy satisfy the hypotheses of Theorem 3.1.
Given o < —1, let n € N be such that 0 < 7 = |a| —2n < (Ja| +1)/2.
Then, if p = w* — lim p. in L™,

2n+1 2n+1 . /
P —p m D",
(4.22) ©
Pe — P, mLfocforalllgp<oo.

PROOF. Let us set Us = (pe, jo). The continuity equation (4.2) becomes
{divU.} = 0. Given any region A € R x R, from equation (4.21) we
see that the right-hand side is bounded in L#(A). In fact, by definition
of je, |je/pe| < 1/e. Thus

(4.23) / (e%Fp7 772k 2kT1N2 dy dt < / “27 2 du dt
A

and the above integral is bounded in view of (3.27). Moreover

/|€2k —T—2k ; k+1|d$dt:€2k/p€_7 1,2 Ze
A

Ss/pET Yi2dxdt,

-1
dx dt

€

(4.24)
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which implies that €2kp€_T 2’“]3’““ converges to 0 strongly in LlOC (R).

Let us set Ve = (pe, ge ), where

2n+1

b= IR S

2n+1
(4.25)

_ 2 Za k€2kp2(n k)J2k+1
k=0

Then, equation (4.21) shows that {curlV.} is bounded in L?*(A) for
all A as before. Since V. is also bounded in L?(A), as can be easily
checked from the definitions of p. and ¢. with the same argument lead-
ing to (4.23), we are in a position to apply the div-curl lemma 4.1, and
deduce that the product (U, V) converges (along subsequences) in D’
o (U, V), where

U=w-1mU, = (p,j),

(4.26)
V=w-1lmV. = (p,q).

By the same bounds we used in (4.24), we deduce that

n
an " €2kp2(n R+ 2k pr - €2kp2(n k)+1]2k 0,

n n
2 2k 2(n—Fk) -2k+1 2. 2k 2(n—Fk) -2k+1
€ E Qn k € ps(” )je 0, %, E Qn k € ps(” )je o0,

k=0

strongly in L!(A). Hence we see that (along subsequences)

p2n—|—1
4.2 = w— i ( e ) —0,
(4.27) p=w—lim 1 q=0
while
p2n+2
(4.28) (U,V):—w—lim( = )
2n+1

In other words, we have shown that

(4.29) — lim p2"*? = (w — lim p2"*1) p.
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As is well-known in such contexts, the conclusion of Proposition 4.1
automatically holds. One possible proof consists in recalling that, by
convexity,

w — lim p2r+2 > (w — lim p2n+1)Gn+2/Cnt1)
so that
(4.30) w — lim p§"+2 > p2n+2 .

Inequality (4.30), combined with (4.29) yields that w — lim p?"*2 =
p2n+2.

We may also use Minty’s trick, as in [Lio], [MaMi] to conclude that
w—lim p2"t1 = p?"*+1 In both cases, we deduce the strong convergence

of pe to p using the strict convexity of f™(t), t € [0, 00), for m > 1.
We are now able to handle the singular case.

Theorem 4.3. Let « < —1, and let (pe, jo) be a sequence of solutions
to the initial-boundary value problem for the system (4.2), where the
initial values uf,v§ for the kinetic system (1.5) satisfy the hypotheses
of Theorem 3.1, part iii). Then, there ezists p € LllOC N L*> such that
pe(x,t) converges to p(x,t) in L (R x (0,T]) for all p € [1,400) and
all T > 0, while ej.(x,t) converges to zero strongly in L (R x [0,T7]).
The limit density p(z,t) is the weak solution to the Cauchy problem for
the porous media equation in D'(R x (0,T]), with initial datum pgy that

is the weak limit of pe(z,t = 0) = uf + v§.

PROOF. Let us rewrite the second equation of the system (4.2) in the
equivalent form (4.21), where n has been chosen in such a way that 7
satisfies the hypotheses of Theorem (3.1) (bound (3.27)), and at the
same time 7 > 1. Let us remark that this is always possible in view of
(4.17) and (4.20). Let

n
(4.31) ve = —2(05‘% +3 eus €2kp€—r—2kj3k+1> .
k=1

By the proof of Proposition 4.1 we see that the sequence {v.} has a
weak limit in L2, and that

(4.32) v=w—limv, =w—lm (-2p_"j.) .
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Using the definitions (4.25), (4.21) becomes

0qe Ope o
(4.32) % om = Ve .

We pass to the limit in the sense of distributions in (4.32), and recall
that g. converges to zero in D. We find

8 p2n—|—1

4. = —
(4.33) or 2n +1

in D’. However, since v € L%, 0p?"T1/0z € L? as well. Let us write
now the continuity equation as

Ope 0 [(plue 2k 2k+1
4.34 ——( £ +E - +)—— .
(4:34) ot Oz \ 2 e €0 0

Since p. — p in LY
L°°, we have

strongly for p € [1,400), and p. is bounded in

loc

2n+l 9 p1—|—|a|

9 p
4.35 T . — T 2n+1\7/(2n+1) ¥
(4:35) pe¥ pro=1{p ) Or 2n+1 0z 1+ |a|
in L?-weak. Consequently, as ¢ — 0, for all ¢ € C*, such that
supp¢ C R x Rt

(4.36) /+oo /+oo ¢tp b . :1—||a||> dx dt+/_—:0 é(x,0) p(z,0) dz

The Cauchy problem for the porous media equation, with initial data pg
satisfying the hypotheses of the theorem, is well-posed in the weak sense
(4.36). In fact, existence, uniqueness and continuous dependence on the
data for (4.34) is known (c¢f. Aronson [Aro|). The existence theorem
guarantees a unique limit to the singular perturbation problem (4.2).

5. Extension to higher dimensions.
In this section, we shall discuss the three dimensional model (1.7).

In fact, all the results can be adapted to an arbitrary number of dimen-
sions, and we just choose to emphasize the three dimensional example.
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Moreover, the largest part of the one-dimensional arguments can be
adapted to higher dimensions, so we just sketch the main differences.
We shall study equations (1.8) in the box = (—a,a)?® with pe-

riodic boundary conditions. Besides, we will limit our analysis to the
case of a rate function k of the type p%, with a < 1. In analogy with the
one-dimensional model, we will also write system (1.7) in the equivalent
form
( + +

WL IO L o6,

ot ¢ O0x €2

ovt 1 ovt 1

5.1 UL 2 e (p—6o*
5-1) 8ti€ Jdy €2p(p 6v%),

owT 1 ow* 1
—:t_ [ Q _6 4+ ,
\ Ot e 0z €2p (p w?)

where u = (ut,u™, v, v, W, w™) = (uy, ug, Uz, us, Uz, Ug)-
As in the one-dimensional case, given any convex function ¢(r),
r > 0, we deduce the estimate

(5.2) - / 37 () — ' () (s — ug) de

i#j
<0.

In particular, if ¢(r) = rP, p > 1, we obtain

0§ Lt
(5.3) /Qggufda:: 262/ Z up —ug) (uy " —uh ) dx.

The existence theory follows as in the one-dimensional case, and we
obtain the corresponding of Propositions 2.1 and 2.2.

Proposition 5.1. Let 0 < a < 1, and let 0 < ug j(z) € L>(Q)
j=1,...,6. Then, the initial-boundary value problem for system (5.1
has a unique solution u(z,t), such that, for j = 1,...,6, u;j(z,t)
L>(Q x (0,T7))nC([0,T]; LP(2)) for all T > 0 and 1 < p < co. In
addition, the solution satisfies the following bound

—

m

5.4 (-t < (-, ft1 <ty .
(5.4) max [|u; (- 2)lloo < maxflu; (- tu)lleo, At S
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Proposition 5.2. Let o < 0, and let ug j(x) € L*(Q) satisfy the
lower bound ug; > 6 on § for some d > 0. Then, the initial-boundary
value problem for the system (5.1) has a unique solution bounded away
from zero u(x,t) such that for j =1,...,6, uj(z,t) € L>=(Q2 x (0,7))N
C([0,T]; LP(2)) for all T > 0 and 1 < p < co. In addition, this solution
satisfies the bounds (5.4) and

(5.5) inf w;(x,t1) < inf u;(x,t2), ifty <ty .
€S TESL
Jj<6 Jj<6
Given u = (uq,...,ug), let us now introduce the operator B de-

fined by components by

« au @ .

B‘yu:_a—xj_,_p (p_ﬁuj)a 1 =1,2,3,
« au (63 -
ijza—x;m (p—6uy), i=4,56.

Then, the following lemma is immediate

Lemma 5.1. Let 0 < a < 1/5. Then, the operator B* is dissipative
from the domain

D*(B%) = {u e W (Q)]°}
into [L*(2)]°.

If -1 < a <0, and if 6 > 0, the operator B, is dissipative from
the domain

DH(B*) ={ue W' Q)% u; >4, j=1,...,6}
into [L1(2)]°.
Thus, we obtain the analogue of Proposition 2.3.
Proposition 5.3. Let 0 < ug j(z) € L*(Q2) NL>®(Q), j = 1,...,6.

Then, provided —1 < a < 1/5, the initial-boundary value problem (5.1)
has a unique global solution u(x,t) such that uj(x,t) € L>(Q2x(0,77))N
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C([0, T;; LY Q) NL>(Q)) for all T >0 and j = 1,...,6. Moreover, for
allt >0
6 6
(5.6) Y lluj(w + hot) —uj(a, )]l <D lluo (@ + h) — o j(x)]l1 -
j=1 j=1
If 0 < o < 1/5, these results extend to Q = R3.

As in Section 3, we can obtain entropy bounds, that allow us to pass
to the limit. Let us briefly outline the main differences. We introduce
functions 0 < ug ; € L*(R) N L>*(R), j = 1,...,6 such that

6
(5.7) /3 ZUO,j(x) |logug j(x)| de = My < 00
R3 <
=1
and, for w(z) = (1+22)?,0 < B < 1/8,
6
2 —
(5.8) /RS w(zx) ;uo,j(aﬂ) dr = My < 00.

Given v > 0, let us denote with . the domain (—1/e7,1/¢7)3. In
addition, given p > 0, let for j =1,...,6

(5.9) ug ; = max {ug(z),e"} .

By Proposition 5.2, if o < 0, the initial boundary value problem for
the system (5.1), with periodic boundary conditions on €., and initial
values (5.9), has a unique global solution u®(x,t).

Moreover, provided p > v (3 + [3), u§ satisfies bounds (5.7) and
(5.8) with different but finite constants M{ and MS.

The proof of the entropy bounds follows along the same lines of
Section 3. We only remark that, in consequence of (5.8), one has to
study the time evolution of

/ (Zuj(x,t) log us (w,t) +w(m)Z(u§(az,t))2) dz .
Q - -
< j

Since the integrand on the right-hand side of (5.3) is nonpositive for
any convex function ¢(r), choosing () = r? we obtain

d w(@) > (u5(x,t))® dz

@t Jo, V) 2

™ | =

Z/Q w(z) % ((u5)? — (uS13)%) dz < 0.

j=1 B J
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Hence, integrating by parts and making use of the periodicity, we de-
duce the analogous of (3.7)

d € 2
| wl@) > (u(x,t))? da

QE .7
1< B
2 7 92 (4= ) de < 0.
. ;:1/95 o, w(z) ((u5)? — (u543)?) dz <0

We next observe that (0/0z;)w € L*(R3), j = 1,2,3. This implies the
analogous of (3.14)
A further step consists in the identification of the limit Maxwellian.
Let us set p = 2 in (5.3). Then, integrating over time we get

1 T (67 [ €
(5.10) 6_2/0 /QE Pe ;;(uz —uj)2 dx dt < /QE zz:ug,z dz .

Now, considering that the solution satisfies the bound (5.4), if « < 0,
. (67 > . « — «
(5.11) 2 = (Gmaxluollc) = v

and by (5.10) we obtain

« T
(5.12) V—2/ / Z(uf - uj)2 dr dt < / Zu% ;dx .
€ Jo Ja Q.5 ’

¢ i

Inequality (5.12) implies that, for ¢ # j, ui — u5 — 0 strongly in
L2([0,T] x Q).

The same conclusion can be derived when 0 < a < 1. Since in this
case (5.11) does not hold, we shall make use of a different argument.
Let us write (5.3) by taking p = 2 — . We obtain

22_52a /OT /RS P (s — uf) ((u§) == (u§)'~*) dwdt

i#]

(5.13) g/ > ug i da.
R3 %
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This implies

T 2
(5.14) (1-— a)/ / Z(uf - uj)2 dr dt < 28_ / Zug;-a dx
0 TR iz @ IR

and also in this case, uf — u§ — 0 strongly in L*([0,T] x R?) for i # j.
The rest of the proof leading to Theorem 3.1 follows along the same
lines of the one-dimensional situation. So we have

Theorem 5.1. Let 0 < wug; € LY(R*) N L>®(R3), j =1,...,6 salisfy
conditions (5.7) and (5.8).

i) Let 0 < a < 1. Then, for all T > 0, and € > 0 there exist
constants di = di(ug,T), do = da(up,T) and d3 = d3(uo,T) such that,
the unique solution u®(x,t) to the initial value problem for system (5.1)
satisfies

r e(x,t) —us 1)\ 2
(5.15) / / (“Z(x ) E“”?’(x )) dedt < dy
0o Jrs
T (. t) — us A 2
(5.16) / / (uz(x, ) €u’+3($’ )> pe(w, ) tdudt < dsy
0o Jrs

where, in both cases, 1 = 1,2,3, and

(5.17) / (Zu ) | log us (¢ |+wZ )dx<d3,

(5.18) ;13})/ /RSZ 2dzdt =0.

i#]

ii) Let =1 < a < 0. Then, for all T > 0, and k € N, the unique
solution u®(x,t) to the initial-boundary value problem for system (5.1)
on the domain Q. = (—1/e*,1/e¥)3 satisfies the bounds (5.15), (5.16),
(5.17) and the property (5.18) in [0,T] x €2..

iii) Let @« < —1. Given k € N, let p > k(3 + ), and let uf
be defined by (5.9). Then, for all T > 0, the unique solution to the
initial-boundary value problem for system (5.1) on the domain Q. =
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(—1/e¥,1/e%)3, with initial data u§, satisfies the bounds (5.10), (5.15),
(5.17) and the property (5.18) in Q.. In addition we have

T e(r.t) — u N 2
(519) / / (Uz (.777 ) Uz+3($7 )) pg($7t)_27- dx dt S d27
0 Ja. €

where 1 =1,2,3, for all 0 <7 < (Jo| + 1) /2.

Let us denote by j.(z,t) the flux, i.e.

+ _ + _ = wt —w—
. (ud —ug vl —ul wl —wg
JE: - Y Y °
€ € €

(5.20)

Then, the macroscopic equations for the system (5.1) can be expressed
in the form

dpe

+divie =0,
(5.21) 3;, 1
2502 4~ grad p. = =6 0% + E
€ ot +3gra Pe pejs+ )

where E. denotes the vector
0 /1
B = (g (50— 07 —00),
ax 3 p (UE U’E )

2 (Lot 2 (ot )

(5.22)

The presence of the vector F. is the main difference between the one-
dimensional system (4.2) and the three-dimensional system (5.21). This
is a consequence of the fact that in more than one-dimension the system
of the macroscopic equations can not be expressed only in terms of the
mean quantities. Let us rewrite

with obvious meaning of el, 2, and e2. We have

(5.23) el = = (vF —uZ)+ 5 (v —uZ) + 5 (wf —uf)+ 5 (W —uD),
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so that, thanks to (5.18) we conclude that el converges to zero strongly
in L2 ;. The same conclusion holds for the other components. We
are in a position to obtain the corresponding of Theorems 4.1 and 4.2,
provided —1 < a < 1/5. In this range of «, by dissipativity, we have the
compactness of pc(z,t) in L} or L . if & < 0. Let us remark that when
« is positive, 1/5 < a < 1 we can derive the same result of compactness
as a consequence of the “div-curl” Lemma 4.1. Let us set Uz = (je, pe)
and V. = (0, p:). Then, the first of equations (5.21) reads divU, = 0,
and this obviously implies that div U, is bounded in Li,t. In view of
(5.15) we deduce that j. converges to zero strongly in L2 ,, and by
(5.16) follows that p?j. is bounded in L7 ;. But el,eZ, and e converge
to zero strongly in L%yt. Consequently, from the second equation of the

system (5.21) we obtain that curl V. is compact in H |, and U.V, = p?

x,t)
passes to the limit. At this point, we deduce as in Section 4 that p.(z, )
converges to p(z,t) in L] , 1 < p < co. Finally, thanks to the bound

(5.17), we can show that

(5.24) lim sup / pe(z,t)dr =0
R—000<t<T J|a|>R

and, since p. is bounded in L*, p. converges to p in L?(R)3.

have

So we

Theorem 5.2. Let 0 < « < 1, and let (pe, j.) be a sequence of solutions
to the initial value problem for the system (5.21), where the initial values
uo,j, J = 1,...,6 satisfy the hypotheses of Proposition 5.1 and Theorem
5.1. Then, there exists p € L' N L™ such that p.(z,t) converges to
p(x,t) strongly in C([0,T]; LP(R3)) for all T > 0 and 1 < p < oo, while
€ je converges to zero strongly in L2(R® x [0,T]). The limit density
p(x,t) is the (unique) weak solution to the Cauchy problem for the fast
diffusion equation
ap 1

r_ - Aptte_— n D' (R3
o A =0 in DR X (0,00)),

with initial datum py = Z?zl U, ;-

Theorem 5.3. Let —1 < « < 0, and let (pe, jo) be a sequence of solu-
tions to the initial-boundary value problem for the system (5.21), where
the initial values ug j, 7 =1,...,6 satisfy the hypotheses of Proposition
5.3 and Theorem 5.1. Then, there exists p € L ML such that p.(z,t)

loc
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converges to p(z,t) in C([0,T); LY. (R®)) for all T > 0 and p € [1,00),

loc

while € j(z,t) converges to zero strongly in LE (R® x [0,T]). The limit

density p(x,t) is the (unique) weak solution to the Cauchy problem for
the slow diffusion equation

ap 1 1 .
e ——— - D' (R® ~

with initial datum py = Z?zl U, ;-

REMARK 5.1. As in Section 4 we observe that the u$(z,t),7=1,2,...,
6, solutions to the initial (if 0 < a < 1) (or initial-boundary, if —1 <
a < 0) value problem for the kinetic system (5.1) converge strongly to
p/6, where p is the solution of the corresponding nonlinear diffusion
equation.

We will now examine the case o < —1. Let p1 . = ul +uZ, pae =
oI+, p3e = wl +wZ, and let j; ., = 1,2,3 be the components
of je, given by (5.20). Then, summing and subtracting the first two
equations (5.1), we obtain the system

apls 8j16 2 «
’ ’ — _3
8t + a:L. 62 pE (ps p17€)7

(5.25) _
2 8.]1,6 + apl,e
ot ox

:_2p?j1,€7 JTGR, tZO

The analysis of Section 4, following Lemma 4.1 can easily be applied
to system (5.25). With few differences, due to the presence of the
term on the right side of the first equation, we will arrive to analogous
conclusions. In particular, since p. is bounded in L°°, and, in view of

(5.19) pz 1 FD/25 " is bounded in L2, p2p1.eji,e is bounded in L2,
provided w > —3. The same argument shows that j1 . p% (pe—3 p1.¢)/e?
is bounded in L ; if o > —3. Hence, (9/0z)p3 . is compact in Hm_t1

By identical computations, summing and subtracting the third and
fourth (respectively the fifth and sixth) equation (5.1), we deduce that,
if > —3, both (9/0y) p3 . and (0/0z) p3 . are compact in H, ;. More-
over, in view of (5.18), p%,e - P?,e converges to zero in L:%:,t' So we
conclude that grad p? is compact in H ;.

This result, coupled with the first equation of the system (5.21)
enables us to handle, by the “div-curl” lemma, the passage to the limit
for —3 < a < —1, exactly as in the one-dimensional case.
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The extension to a < —3 follows by the same strategy we adopted
above, along the same lines of the one-dimensional proof, first multiply-
ing the second equation of the system (5.25) by pf ., n > 1, and then
recovering the equivalent system in which the terms on the right-hand
sides are bounded in L ;.

Finally we prove

Theorem 5.4. Let « < —1, and let (pe, jo) be a sequence of solutions
to the initial-boundary value problem for the system (5.21), where the
initial values ug ;, j = 1,...,6 for the kinetic system (5.1) satisfy the
hypotheses of Theorem 5.1, part iii). Then, there exists p € LllOC N L*>®
such that p.(z,t) converges to p(x,t) in L (R* x (0,T]) for all p €
[1,+00) and all T > 0, while ¢ je(x,t) converges to zero strongly in
L2 (R x [0,T]). The limit density p(z,t) is the weak solution to the
Cauchy problem for the porous media equation

op 1 1
E_ - Apitlel =
ot 18(1+|af) 7 0

in D'(R® x (0,T]), with initial datum py that is the weak limit of
6 €
pe(@,t =0) =3/ uj ;-

6. Variants and extensions.

In this section, we present briefly a few variants and extensions
of the previous problems and results. For most of these variants and
extensions the proofs are straightforward adaptations of the proofs in-
troduced above. First of all, we can allow the rate function k£ to depend
on z, satisfying for instance

(6.1) k() p* < k(z,p) < kolx) p”,  for0<p<1,

where k1, ky € L (R), inf cr k1 > 0, and «, 5 < 1.

Another variant consists in replacing the right-hand side in (1.1),
k(v — u) (respectively, k(u — v)), by ¢(v) — ¢(u) (respectively, p(u) —
©(v)), where ¢ is increasing.

Next, we can treat the system in which the velocities in the stream-
ing terms are 1/e + a and 1/¢ + b, where a # b € R. In this case we
obtain at the limit the additional presence of a linear term.
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Finally we can study the system

ou 10u™ 1
e Lt

(6.2) ot e Ox
ov 1ov™ 1
R L

where m > «, which yields in the limit

op _, 0

(6:3) o o2’

where ¢ = m (2™(m — «))~!. Of course, (6.2) is a weakly coupled
system of one-dimensional hyperbolic scalar conservation laws, and u, v
are entropy solutions of (6.2).

To end this section, we now wish to look at different models in-
volving velocity sets which are not finite anymore. We begin with a
model arising in radiative transfer theory, recently studied by C. Bar-
dos, F. Golse, B. Perthame and R. Sentis [BGPS]. This equation de-
scribes the transport of photons in a starlike medium and is, mathe-
matically, a nonlinear version of the transport of neutrons. We look for
e = u.(z,w,t) > 0, where x € RY, w € SV~ (the unit sphere of RY),
t > 0, solution of the initial (or initial-boundary) value problem for the
equation

ou 1 1
4 o, - : D) e e Pe) — VY-
(6.4) 8t+5w gradu-l—52 k(pe) (ue — pe) =0

In (6.4) p. denotes the integral

pe(z,t) :/ ue (2, w,t) dw,
SN—l

where dw is the normalized Lebesgue measure on SV~ ([¢y_, dw = 1).
The nonnegative function & is continuous on [0, c0) and is supposed to
satisfy

(6.5) v 8% < k(s) <wys?, for s € (0,1],

with o] < 1, |B] < 1, v1,v2 > 0.
Our method of proof adapts to this model and yields at the limit
dp

(6.6) 5¢ ~ AF(p) =0,
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where L e g
s
F(p)=— —.

D=5/ i
In radiative transfer theory, this limit is known as the “Rosseland ap-
proximation”. Not only this convergence can be shown in a slightly,
more general setting than in [BGPS], but our method of proof is com-
pletely different and simply relies upon entropy bounds and the “div-
curl” lemma. In particular, our proof works if k(p) = p* with |a| < 1.
In conclusion, let us indicate that it is possible to interpret both
the finite-velocity models and the above model (6.4) in a single setting.

We briefly mention this remark: let V be a bounded set on RY, and let
it be a probability measure on V' satisfying

/depzo, forall1< k<N,
(6.7) v

/(v-i)zd;z>0, for all ¢ € SN71,

v

We then look for u. = u.(z,v,t) > 0, solution on RY x V x [0, 00) of

ou 1 1
—v-gradu = ?P?(pa‘_ue)v

(6.8) N + -

where |a] < 1 and

ps(x,t):/ ue(x,v,t) dp .
1%

The hydrodynamical limit for this equation is then
N l—«

ap 0? p
(6.9) ot Z i 0x;0x; (1 — a) =0,

)

where

Qij :/ ijd,u.
14

Let us observe that the two (or six in three-dimensions) velocity model
we were primarily interested in this paper corresponds to V = {+1, —1},
with (1/2,1/2) for the probability measure p, while the Rosseland ap-
proximation corresponds to V = SV~ and dy = dw/|SN 1.
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We do not wish to give a detailed proof of the above claims about
Rosseland approximation or (6.8)-(6.9), since it is a straightforward
adaptation of our method of proof. In particular, using the ideas of
Section 4, one obtains all the a priori estimates concerning the mono-
tonicity for convex functionals of the solution.

However, there is one point that we need to detail. Indeed, since V'
is no more finite (in general), we cannot estimate from below p¢ /u., and
thus we have to modify a little bit our use of the dissipation of entropy.
More precisely, we obtain L2 (L' N L°) bounds on u. (and thus on p.)
independently of €, and from the monotonicity of the entropy we obtain
forall T > 0

T JE—
(6.10) / dt/dx/ dp p Pe 2u€ 1og& <C,
0 1% € Ue

where C' denotes various positive constants independent of €.
Hence, if we denote by j. the flux

je(a:,t):/v%d,u:/vus_pedu,
% 9 % 9

i < ([ 1ol

we have

Vit + Vel dp)
< C/V SE ;2\/0_6)2 du/v(us+pa)d#

SCpe/ Pe— 2 tog 2=y,
\ € Uu,

€

where we used the classical inequality, valid for all a,b > 0
(Va—VB)? < Cla—b)log .

In particular, we deduce from (6.10) that |j.|?p2~! is bounded in L1
and thus, since |a| < 1, j. is bounded in L2.

The convergence analysis follows along the same lines as in the
preceding sections, writing the macroscopic equations for the equation

(6.4)

dpe
ot

+divj. =0,
(6.11)

9
szi—kdiv/ V@ Ve dit = —p2Je
ot v
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observing that j., p%j. are bounded in L?, and finally that

(6.12) /v®vu5dp:Ap5+/v®v(u5—p5)dpJ,

1% 1%
from which we deduce that Agradp. and thus grad p., since by con-
struction the maftrix A is positive definite, lie in a compact set of H, ,}
In addition, the integral on the right-hand side converges converges to
Z€ro in Li,t as a consequence of the fact that j. is bounded in L2, while
V' is bounded.

Several relevant differences between this approach and the ap-
proach by C. Bardos, F. Golse, B. Perthame and R. Sentis [BGPS]
are worth emphasizing. First of all, the above proof seems a bit simpler
and yields, on the technical side, apparently more general results. But
in addition, and this is more important, the compactness phenomena
are somewhat different, since velocity averaging (as in [BGPS]) would
require the measure p to satisfy the condition

pfveV: v-£€=0} =0, for all ¢ € SN=L,

while we only need that the measure p satisfies the second condition in
(6.7), namely

/(v-é)zdu>0, for all € € SN-L,
Vv
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