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A generalization of a
theorem by Kato on

Navier-Stokes equations

Marco Cannone

Abstract. We generalize a classical result of T. Kato on the existence
of global solutions to the Navier-Stokes system in C([0,00); L3(IR3)).
More precisely, we show that if the initial data are sufficiently oscillat-
ing, in a suitable Besov space, then Kato’s solution exists globally. As a
corollary to this result, we obtain a theorem on existence of self-similar
solutions for the Navier-Stokes equations.

0. Introduction.
In the study of the Cauchy problem for the Navier-Stokes equations

governing the time evolution of the velocity v(t,z) and the pressure
p(t,z) of an incompressible viscous fluid filling all of R3

@—Av:—(v-V)v—Vp,
ot

(01) V"U:O,
v(0) = v ,

there is considerable interest in finding global solutions v(t, ) which are
strongly continuous from the interval [0,00) and take values in an ab-
stract Banach space, whose norm is invariant under the transformation
f(-)— Af(A-), for all A > 0.
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Following [1], we will call such a space a limit space for the study
of the Navier-Stokes equations. A typical example is given by the
Lebesgue space L3(R®) [2] ,[3], but one can also consider the homo-
geneous Sobolev space H'/2(R?) [4], [5], or the homogeneous Morrey-
Campanato space M3(R3) [6]-[9], or more sophisticated and somewhat
esoteric examples as the Besov or Triebel-Lizorkin spaces [1].

The reason why these limit spaces arise naturally in the study of
the Navier-Stokes equations is very simple. Suppose that v(t,z) and
p(t, x) solve the system

(0.2) ot

{ @—Av:—(v-V)v—Vp
V-v=0

then, the same holds true for vy = Av(A\%t, Ax) and py = A2p(\%t, Ax)
for any positive A.

In other words, these spaces have, as far as the space variable is
concerned, the same scaling invariance as the Navier-Stokes equations,
so that it appears very natural to solve (0.1) when the initial data vy
(which depend on the z-variable only) belong to a Banach limit space.

In a previous article [10] (see also [1]), we gave a detailed analysis
of the local well-posedness of the Cauchy problem (0.1) with initial data
in an abstract Banach space. Although the algorithm we presented in
[1], [10] allows one to recover — in a very abstract way — many previous
known results on existence of local solutions for the system (0.1), it
does not shed any light on the case of a limit Banach space.

In order to understand why and where the difficulties arise when
dealing with such a limit space, let us briefly recall the standard proce-
dure used in the study of the initial value problem (0.1).

The idea is the following. One first transforms the classical system
(0.1) into the following mild integral equation

(0.3) o(t) = S(£) vo + B(v, v)(t),
where
(0.4) B(v, u)(t) = —/0 PS(t —5)V - (v ® u)(s) ds

P and S being respectively the projection onto divergence free vector
fields and the heat semigroup.
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Then, it is customary to obtain the existence and uniqueness of a
strongly continuous global (7' = o) or local (T < oo) solution v(t,x) €
C([0,T); X) of (0.3), X being an abstract Banach space, by means of
the standard contraction algorithm. Of course, the main difficulty in
applying such an algorithm is to establish, a priori, the bicontinuity
of the bilinear operator B(v,u)(t) in C([0,T); X) x C([0,T); X) —
C([0,T); X).

In the case of the Lebesgue space LP(R3), a straightforward appli-
cation of Young inequality implies that

sup |[|B(v,u)(®)|l
0<t<T

T
(0.5) <o [ evsem) sup ool swp luo)l,
0 0<t<T 0<t<T

thus showing that B(v,u)(t) is bicontinuous in C ([0, T); LP(R3)) as long
as p > 3.

On the other hand, it is not known whether or not the bilinear oper-
ator B(v,u) is continuous in the limit L3(R?) setting. What is certainly
true is that, even if the bilinear operator B(v, u)(t) turns out not to be
bicontinuous in such a limit space L3(R3), say in C([0,T); L3(R3)), this
would not necessarily imply a nonexistence theorem of mild solutions
v(t,z) € C([0,T); L*(R®)) for the Navier-Stokes equations.

The problem of solving the integral equation (0.3) in the L3(R3)-
setting was first tackled in 1984 by T. Kato [2], who was able to
circumvent the problem of the possible noncontinuity of B(v,u)(t) in
C([0,T); L3(R3)) (i.e. the nonintegrability at the origin of the function
t~! appearing in (0.5) for p = 3).

Kato’s masterstroke was to remark that, in order to obtain an
existence theorem in C([0,T); L3(R3)) for the Navier-Stokes equations,
it is sufficient to show that the bilinear operator B(v, u)(t) is continuous
in a suitable subspace of C([0,T); L3(R3)). This subspace K is made
up of the functions v(t,z) € C([0,T); L3(R3)) such that, moreover,

(0.6) t*/?y(t,z) € C([0,T); LY(R3))
and
(0.7) }igr(l)t"‘/ﬂlv(t)llq =0

and normed by

(0.8) ol llx = sup [lv(®)lls+ sup t*/*[[o(t)]lq
0<t<T 0<t<T



518 M. CANNONE

q being a fixed constant satisfying 3 < ¢ <6 and a = a(q) =1 — 3/q.

In other words, Kato’s idea was to look for solutions in a space of
vector-valued functions equipped with two norms: the first is the natural
one, while the second controls the balance of the smoothing property of
the heat semigroup S(t) against the apparition of singularities by the
quadratic term B(v, v)(t).

Now, it is easy to observe that not only is the bilinear operator
B(v,u)(t) bicontinuous in this norm ||| - |||k, but also S(t)vg € K
as long as vg € L3(R3). All this is sufficient to deduce, by means of
a standard contraction procedure, an existence theorem of global mild
solutions for the Navier-Stokes equations in C([0, 00); L3(R?)) and small
initial data in L3(R3), the uniqueness of the solution being guaranteed
only in K, and not, in general, in the natural space C([0,c0); L3(RR?)).
More precisely, Kato’s theorem (in a somewhat simplified version [1])
reads as follows [2]

Kato’s Theorem. Let q be fized, 3 < q <6, and a = a(q) =1—3/q,
then there exists an absolute constant 6 > 0, such that if vy belongs
to L3(R3), |lvolls < 6 and V - vy = 0 (in the distributional sense),
then there exists a global mild solution of the Navier-Stokes equations
in C([0,00); L3(R?)). Moreover, this solution is the only one such that

(0.9) v(t, z) € C([0,00); L*(R%))
(0.10) t2/%y(t, z) € C([0, 00); LYR?))
and

(0.11) %i_r)%ta/2||v(t)||q =0.

The aim of this paper is to prove that Kato’s result holds true
under a much weaker condition on the initial data. In order to make
it clear, let us introduce (Definition 1.3) the Besov space B, *>(R?),
g and a(q) being chosen as before. It is quite easy to prove that

(0.12) L3(R®) < B;**(R%),

but that these two spaces are different, for |z|=1 € Bq_ @0 (R3) and
lz|~! ¢ L3(R3) (Lemma 1.2).
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Now, if we observe that for any tempered distribution vy € S’ (RR?)
the ||U0||Bq—a,oo norm is equivalent to sup;» t*/2||S(t)vo||4 (Lemma 1.1),
then Kato’s global solution exists and satisfies (0.9)-(0.11) under the
weaker conditions: vy € L3(R3), [vollg;ace < 6 and V -vg =0 in the
sense of distributions (Theorem 1.1).

Before delving into the details of this weak formulation of Kato’s
theorem, let us comment on the condition ||vg|| By < 0.

To fix the ideas, let us suppose that vg(x) is an arbitrary L3(R3)
function and let wg(z) be a sequence of functions such that ||wg||eo < ¢
(uniformly in k) and that wi — 0 in the sense of distributions as k goes
to infinity.

In other words, let us suppose that the functions wj are uniformly
bounded and are more and more oscillating as k£ increases. Under
these hypotheses, it is easy to prove that wg(z) v(z) tends to 0 in the
strong topology of B, **°(R?) (Lemma 2.1) in spite of the fact that if
|lwg(x)| = 1 (almost everywhere in z, for any k), then ||wgvol|s = ||vo]|3-
A typical example of a sequence wg(x) fulfilling all these conditions is
given by the exponential function, say wg(z) = exp(ix - k) (here, k is a
vector and we let |k| go to 00).

The importance of the weaker condition, ||vg|| gy < 0 instead of

|lvol|s < 9, is now clear and can be formulated as follows: in order to
prove the existence of Kato’s global solution, all we need is sufficiently
oscillating initial data. Of course, we have to pay attention to the di-
vergence condition on the initial data for, in general, the divergence
operator V- does not commutate with the functions wg(z). Neverthe-
less, this does hold true asymptotically as k goes to infinity (Lemma
2.2), which is exactly the situation we have to deal with.

Another remarkable property of the Besov spaces Bq_ @20 (R3) is, as
we pointed out before, that they contain among their elements homo-
geneous functions of degree —1, such that e.g. |z|~!. This is a crucial
point when looking for solutions to the Navier-Stokes equations which
satisfy the scaling property

(0.13) v(t,z) = va(t, ) = Av(A\%t, Ax), forall A > 0.

In fact, whenever they exist, these particular solutions v(t, z), which
are usually called self-similar solutions, are such that their initial value
v(0,z) is a homogeneous function of degree —1. We will show in this
paper how to obtain, by using the above mentioned weak formulation
of Kato’s theorem, an existence theorem of self-similar solutions v(¢, )
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with initial data vp homogeneous of degree —1, divergence-free, and
sufficiently small in the Besov space B, *>°(R®) (Theorem 3.2).

The plan of the paper is the following. Section 1 contains the basic
definitions and the proof of the main theorem. Section is devoted to
illustrating that ||vgl| gy < 0 Is satisfied for sufficiently oscillating
initial data vg. Finally, sections 3 and 4 deal with the existence of
self-similar solutions for the Navier-Stokes equations in By * > (R?).

1. The proof of the main Theorem.

We study the Cauchy problem for the Navier-Stokes equations gov-
erning the time evolution of the velocity

v(t,z) = (v1(t, ), va(t, x), v3(t, x))

and the pressure p(t, ) of an incompressible fluid filling all of R?

%—Av:—(v-V)v—Vp,
(11) V"U:O,
v(0) = vg .

We will focus our attention on the existence of global solutions to (1.1)
in C([0,00); L3(R3)), the space of continuous functions v(t,z) of t €
[0, 00) with values in the Banach space L3(R?) of vector distributions.

Here and in the following, we say that a vector a = (a1, asz,as)
belongs to a function space X if a; € X holds for every j = 1,2 and 3,
and we put |la|| = max;<;<3 ||a;||.

Before stating the main hypotheses concerning the initial data vg
under which the system (1.1) will be solved in C([0, 00); L3(R?)), let us
recall some definitions, which will be useful in the sequel.

1.1. The operator P.

We let 9; = —i0/0zj, (1* = —1) and we indicate by R; =
0;(=A)~/2 for j = 1,2 and 3, the Riesz transformation.
For an arbitrary vector field v(z) = (v1(z),v2(z),v3(x)) on R, we
set
3
(1.2) 2(x) = ) (Rjv)(w)

i=1
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and finally we define the operator P by
(1.3) (Pv)g(z) = vk (z) — (Rg2)(x), 1<k<3.

P is a pseudo-differential operator of degree zero and is an orthogonal
projection onto the kernel of the divergence operator.

Making use of this projection operator P and the heat semigroup
S(t) = exp(tA), it is now a straightforward procedure to reduce the
classical partial differential system (1.1) into the mild integral equation

(1.4) o(t) = S(t) vo — / PS(t —5)V - (v ®v)(s) ds

Accordingly, a solution of the equation (1.4) will be called a mild solu-
tion of the Navier-Stokes equations. It is not difficult to see that a mild
solution of the Navier-Stokes (1.4) is actually a classical solution of the
system (1.1) (and conversely). It would be inappropriate and beyond
the scope of this paper to present a proof of this equivalence here. Fore
more details on the subject, we refer the reader to [3], [4].

1.2. The Littlewood-Paley decomposition.

Let us choose a real rotation invariant function ¢ in the Schwartz
space S(R?) whose Fourier transform is such that

be)=1, ifle< T,
(15  0<gE <1, :
2(6)=0, iflgl> 3,
and let
(L6) b(w) = 8(22) — p(a),
(1.7) pi(z) =2%p(z), jEL,
(1.8) pi(z) =2%¢(Yx), jEL.

We denote by S; and A, respectively, the convolution operators with
@; and ;. Finally, the set {S;, A;};ez (actually a set) is the Little-
wood-Paley decomposition of the unity, say

(1.9) IT=S+) A=) A;.

i>0 JET
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It is worthwhile to recall that only the first of the two series, say
f=8of +>. >0 A, f, applies without any restriction on the tempered
distribution f.  On the other hand, the identity f = 37, A;f is to
be understood modulo polynomials (see [11] for a complete and general
discussion on the matter).

1.3. The Besov spaces B, *>(R?).

Let g be fixed in 1 < g < oo and a € R. A tempered distribution
v € §'(R®) belongs to the Besov space B, *°°(R®) if and only if the
following norm

(1.10) ||'U||Bq—a,oo = sup 277%|A v,
JEL

is finite. Here, A; is, for any j € Z, the convolution operator with the
function 1); given in a Littlewood-Paley decomposition of unity.

The following lemma will provide a different characterization of the
Besov space Bq_ @ (R3) in terms of the heat semigroup and will be one
of the staple ingredients of the proof of Theorem 1.1.

Lemma 1.1. Let g be fized in 1 < q < 0o and o > 0. For any tempered
distribution v € S'(R3), the following four norms

(1.11) sup 29[| Ajvllg
JEZ

(1.12) sup 277%(|S;v]q
JEZ

(1.13) sup t*/%[S(t) vllq ,
>0

(1.14) Sup“S(t)U“B;a,oo ;
>0

are equivalent, and will be referred to in the sequel by ||'U||Bq—a,oo.

The first equivalence (1.11) if and only if (1.12) is easy to prove if
we recall that A; = S;1 — G for all j € Z, that Sj11 =7, A and
that @ > 0. Of course, when passing from (1.11) to (1.12) the proviso
stated after (1.9), on the equivalence modulo the polynomials, is still
required.
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Let us examine the equivalence (1.12) if and only if (1.13). In order
to see this, it is sufficient to observe that for ¢t = 4=7 the convolution
operator S(t) essentially reduces to the operator S;. Of course, this is
the case because the Fourier transform of S(t) is given by exp (—t [£|?)
which has essentially the same properties stated in (1.5). The equiv-
alence (1.12) if and only if (1.13) can now be shown using the same
techniques as in the proof of the independence of the particular choice
of ¢ in the Littlewood-Paley decomposition (see [12] for a proof).

The next step is the equivalence (1.13) if and only if (1.14). Here
the proof is evident and left to the reader.

Lemma 1.2. Let q; and gs be two fized constants in 3 < g1 < qa < 00
and put «y =1—3/q1 and ag =1—3/q2. We have the following chain
of continuous imbeddings

(1.15) L3(R3) < B *"°(R?) < B_*>°(R?).

This result is a consequence of the Bernstein’s inequalities [13]
which allow us to deduce, for any j € Z, 3 < ¢1 < g9 < oo and any
tempered distribution v, the following chain of inequalities

(116) 277 Au]lg, < 277 A llg, < cllAjulls < cllvlls,

which finally implies (1.15).

At this point, we would like to remark that the above inclusions
are strict ones. For example, if we consider the function |z|~', here
x = (w1,T2,23), then |z|~" € By **(R?) (¢ > 3,a =1 - 3/q), in spite
of the fact that |z|~! ¢ L3(R3).

In Section 4 we will give a complete characterization, ¢.e. a neces-
sary and sufficient condition, of which homogeneous functions of degree
—1 belong to the space BQ_C”OO(R"S) (>3, a=1-3/q).

Here we limit ourselves to the case of the function |z|~!, = =
(1,22,23). More generally, we want to show that if the restriction to
the unit sphere S? of a tempered distribution function v, homogeneous
of degree —1, belongs to L°°(S5?), then v belongs to B; **°(R?) (¢ > 3,
a=1-3/q). In fact, thanks to the homogeneity of v, we have

ol g = sup 271501l
JEZ
(1.17) — Sup2_j(a_1+3/Q)||So||q
JEZ
= [[Sollq -
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Now, if v|g2 € L>®(5?), we have
C
1.18 Sov| < —2— |

which finally gives v € Bq_ @2 (R3) as long as ¢ > 3. This concludes our
remark.

We are now in a position to generalize Kato’s result. To this end
let us first introduce the Banach space G which is made up by functions
v(t, x) satisfying

(1.19) v(t,z) € C([0,00); L*(R?)),
(1.20) t¥%y(t, z) € C(]0,00); LY(R?))
and

(1.21) lim ¢%/2||o(t) |, = 0

and normed by
(1.22) |lv]|g = sup ||'u(t)||Bq—a,oo + sup ta/2||v(t)||q .
t>0 >0

This definition makes sense because, as we noticed in Lemma 1.2, the
Lebesgue space L*(R?) is continuously imbedded in By **°(R?).
The theorem that we will prove here is the following.

Theorem 1.1. Let q be fized in 3 < ¢ <6 and a« = a(q) =1 - 3/q,
then there exists an absolute constant 6 > 0 such that if vy belongs to
L3(R3), [voll ;a0 < 8, and V - vg = 0 (in the sense of distributions),
then there exists a global mild solution of the Navier-Stokes equations
in C([0,00); L3(R3)). Moreover, this solution is the only one such that

(1.23) v(t,z) € C([0,00); L3(R?)),
(1.24) t*/?u(t, z) € C([0,00); LI(R®))
and

: a/2 —
(1.25) tim /2o (1), = 0.
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The proof of this Theorem 1.1 can be obtained easily by virtue of the
following three lemmata.

Lemma 1.3. If vy € L3(R3), then S(t) vy € G.

First, by Lemma 1.1, the G norm of S(t) vy is equivalent to the
B7%%(R®) norm of vg. Next, as v belongs to L*(R®) and as L3(R®) is a
separable space, a straightforward application of the Banach-Steinhaus
theorem shows that (1.19)-(1.21) hold with v(¢) replaced by S(t) vo.
This concludes the proof of the lemma.

Lemma 1.4. The bilinear operator B(v,u)(t) defined by

t
(1.26) B(v, u)(t) = —/ PS(t — 5)V - (v ® u)(s) ds
0
is bicontinuous in G x G — G.

For the sake of simplicity, we will prove the lemma in its scalar
version. More precisely, following [1], we will consider the scalar version
of the bilinear operator B(v,u)(t), given by

12 B0 = [ (-976( =) (o)) ds,

where f = f(t,z) and g = g(¢,z) are two scalar fields in G and © =
O(z) is an analytic function of z which is O (|z|=*) at infinity.

First of all, Young inequality (here the condition ¢ < 6 appears)
gives

129 18001 < [ 97

where

\/E) Hm 1£(s) g(s)llq/2 s,

2
(1.29) = +--1

thus showing that

1B(f9)®lls < ( / (t = )72 W57 ds) O]
(1.30) - (sup 21 £(®)llg) (supt*llg (1))

= c(supt*2(|f ()llq) (sup t*/2[lg(t)]l4) -
t>0 t>0
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The next step is to evaluate the second term of the G-norm. To
this end, we use again Young’s inequality and find

(1.31) [IB(f,9)(#)]lq < /Ot(t_ S>‘2H9(\/{_—s>

where

17(5) 9(6)lqyads

1 2
=-+21

1
1.32 -
(1.32) . n'ty

this gives the desired result

IBU9Oll < ([ ¢~ 97057 as) el

0
(1.33) - (supt®/?1 £ (t)llq) (supt*/*lg(t)llq)
>0 >0

= ct=*/2(supt®/?|| £ (t)llq) (sup t*/*lg(®)ll,) -
t>0 t>0

Let us now check the validity of condition (1.21) for the bilinear term
B(v,u)(t). Actually, we will prove a more precise statement.
In fact, not only is

(1.34) lim ¢/2(| B(f, 9) (t)]l, = 0,
whenever

: a/2 1 a/2 —
(1.35) Lim e*=[ f(#)lq = lim t*Zlg ()]l = 0,

but also, if the latter condition is fulfilled, we have
(1.36) lim | B(f,9)(1)ls = 0.
—0

In particular, this last property is very important in the proof of The-
orem 1.1, because it guarantees that any solution v(t,xz) € G of the
integral equation (1.4) with data vg in L3(R?) tends to vy in the strong
topology of L3(R3®) and is unique in G.

Let us now verify condition (1.36). This is trivial because, if

L37) g <e  and  SPf(s)llg <e,
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for 0 < s < h, then an argument analogous to the one used in (1.28)-
(1.30) shows that (for 0 < s < h)

(1.38) I1B(f,9)(#)]ls < e

which is nothing more than the (g, h) definition of (1.36). The proof of
(1.34) is essentially the same and does not present any difficulties. The
Lemma 1.4 follows.

Let us now recall without proof, a classical result.

Lemma 1.5. Let X be an abstract Banach space and B : X x X — X
a bilinear operator, || - || being the X -norm, such that for any x; € X
and 9 € X, we have

(1.39) 1B(x1, z2)[| < el [|z2]],
then for any y € X such that

(1.40) Anllyll <1,

the equation

(1.41) r=y+ B(z,z)

has a solution x in X. Moreover, this solution x is the only one such
that

1-y/1-4

2n

The proof of Theorem 1.1 now easily follows if we take into account
all the previous lemmata.

2. A remarkable property.

In order to appreciate the above-mentioned weak formulation of
Kato’s theorem, in this Section, we shall devote ourselves to illustrating
that the condition ||vg]| preee < 0 s satisfied in the particular case of a
sufficiently oscillating function vg.
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A typical situation will be given by the following example. Let
vo be an arbitrary (not identically vanishing) function belonging to
L3(R3). If we multiply vo by an exponential, say the function wy =
exp (ix - k), we obtain, for any k¥ € R3, a function wgvy such that
(Lemma 2.1)

(2.1) lim [|wgvo]|g-ee = 0
|k|—o0 4

in spite of the fact that

(2.2) im [Jwgvolls = [[vols -
|k|—o0

In other words, the smallness condition ||wgvp| pyeee < 0, is verified as
long as we choose a sufficiently high frequency k. At this point, it is
tempting to consider wyvy as the new initial data of the problem and
affirm that Kato’s solution exists globally in time, provided we consider
a sufficiently oscillating data; but one can argue that wgvg is no longer
a divergence-free function.

Nevertheless, this is true asymptotically, for |k| — oo, which is
exactly the situation we are dealing with. More precisely, it turns out
that (Lemma 2.2)

(2.3) lim ||V - (wgve) — wiV - vpll3 = 0.

|k|— o0

Lemma 2.1. Let v be an arbitrary function in L3(R3®) and let wy(z),
k € N be a sequence of functions such that ||wg|lcc < C and wr, — 0 (as
k — 00) in the distributional sense. Then, the products wygv tend to 0
in the strong topology of Bq_a’oo(R?’) (a=1-3/¢>0).

In order to prove the lemma we will make use of a density argument.
To this end let us introduce the following decomposition of the function
/U7
(2.4) v=h+g,
where h € L3(R3) and

(2.5) [hlls <€
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and g € C$°(R3). The next step is to recall the continuous imbedding
(Lemma 1.2).

3 (3 H—,00 (T3
(2.6) L°(R*) = B,/ **(R°)
to infer the following inequality (k > 0)
(2.7) ||wkh||Bq—a,oo < cl||lwgh|s < ce.

On the other hand, Young’s inequality gives (j € Z)

(2.8) 1S5 (wrg)llq < 112% 027 )7 lwrgllp ,
where

1 1 1
(2.9) - =4+ -—1.

q r p

This implies
27%)1Sj(wrg)llg < €277 D27I 0=/ g,

(2.10) .
— 27903 g,

so that, for any £ > 0, any 7 > j; > 0 and any j < jp < 0, we have
(2.11) 27718 (wrg)llg < Ce

(in fact, if 7 > j; welet p=¢ >3 and if j < jp we let 1 < p < 3).

We are now left with the terms S;(wgg) for jo < j < j1. Making
use of the hypothesis my — 0 together with the Lebesgue dominated
convergence theorem, we finally find, for any k£ > kg and jo < j < j1,

(2.12) 27|S;(wkg)llq < Ce,

which concludes the proof of the Lemma.

Lemma 2.2. Let m(£) € C®(R3\{0}) be a homogeneous function

of degree 0 and let M be the convolution operator associated to the
multiplier m(€). If now we consider |£g| =1, v € LP(R3) and 1 < p <
o0, then

)\lim sup ||M(exp (i A& - z) v(z))
(2.13) 7% Jéol=1
—exp (i A€o - ) m(&o) v(z)[|lp = 0.
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In the case we are interested in, this Lemma will be used for p = 3
and with M replaced by the projection operator P onto the divergence
free vector fields and m(§) replaced by a 3 x 3 matrix whose entries are
homogeneous symbols of degree 0.

In order to prove the Lemma in its general form, we remark that the
symbol of the operator exp (—i A&y -x) M (exp (i A&y - x) v) — m(&p) v(x)
is given by m(§ + X&) — m(A&p), this by virtue of the homogeneity of
m.

Equation (2.13) will now be proved by means of a density argu-
ment. In fact, it is sufficient to limit ourselves to functions v € V C
LP(R3), where V is the dense subspace of L?(R?) defined by v € S(R?)
and the Fourier transform ¢ of v has compact support.

Now, we put

(2.14) va =exp (—iA&o-x) M(exp (i A& -x)v) — m(A&o) v,
then the Fourier transform of vy is given by

(2.15) Ua(§) = (m(£ + A&o) —m(A&o)) 0(E) -

Finally, ¥ has compact support, say in [{| < R, and then

(2.16) m(§ + A&o) —m(A&) = ra(§),

where, on |£| < R, rA(§) — 0, together with all its derivates, in the
L*>® norm. We thus have vy — 0 in S(R®) when A — oo. A fortiori,
luallp = 0 when A — oo, and the Lemma is proved.

3. Self-similar solutions.

As we pointed out in the Introduction, a remarkable property of
the Navier-Stokes equations

(3.1) ot

{(%Av—(v-V)UVp,
V-v=0,

is that they are invariant under the scaling (v, p) implies (vy, py) for all
A > 0, where, respectively,

(3.2) oa(t,z) = Av(\%t, Ax)
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and
(3.3) pa(t, ©) = A2p(A\2t, \z).

In other words, suppose that (v,p) is a solution of the system (3.1),
then the same holds true for (v, py) for any A > 0.

An interesting question arises naturally. Are there solutions v(t, z)
of the Navier-Stokes equations which satisfy the scaling invariance

(3.4) v(t,z) = va(t, x), forall A > 07

Whenever they exist, these particular solutions are called self-similar
solutions to the Navier-Stokes equations and are, by definition, global
in time.

Self-similar solutions are important because they describe the large
time behavior of general global solutions to (3.1). A heuristic argument
for this property is the following. Suppose that v(¢,x) is a global solu-
tion to (3.1), then vy (t, £) = Av(A%t, Az) is, for any A > 0, a solution to
(3.1). If, moreover, we suppose that limy_, o vx(t,2) = u(t, x) exists (in
a certain sense), then u(t, x) is again a solution of the system (3.1) and,
by taking ¢t = 1 and A = /%, we have limy_, o, Vtv(t, vViz) = u(l, z).

Here is another remarkable property of self-similar solutions. Sup-
pose that v(t, z) is a self-similar solution, then the value taken by v(t, x)
at t = 0, say the function v(0, ), is necessary homogeneous of degree
—1 and has divergence zero (in the sense of distributions). The explicit
aim of this Section is to check whether or not the converse is true. More
precisely, given a homogeneous function vy of degree —1, whose diver-
gence is zero (in the sense of distributions), does the Cauchy problem

%—Av:—(v-V)v—Vp,
(3.5) V-v=0,
v(0) = vy ,

associated to the system (3.1) admit a self-similar solution v (¢, z)?

As we will discover in due course, the answer to this problem is
positive, provided we choose a suitable functional setting for the prob-
lem.

It is worthwhile to recall that the above question is in general far
from being trivial in R3 because, as is well-known, a uniqueness result
for the Navier-Stokes equation is still lacking in dimension n > 3.
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To clarify, suppose to the contrary that we dispose of such a unique-
ness theorem for the solutions of the system (3.5) and suppose that,
moreover, for vy homogeneous of degree —1, V - vy = 0, we were able
to prove that the solution of the initial value problem (3.5) actually
exists. Under these hypothesis, such a solution would be automatically
self-similar.

On the other hand, the fact that vy should be homogeneous of
degree —1 excludes practically all the classical spaces (e.g. Lebesgue
and Sobolev) for which at least an existence theorem for the Navier-
Stokes equations is available. As a matter of fact, if we forget for a
while the divergence condition, the simplest example of a homogeneous
function of degree —1 is given by |z|™!, 2 = (x1, 2, x3), which does not
belong to any Lebesgue nor Sobolev spaces.

The problem of finding self-similar solutions for the Navier-Stokes
equations was tackled as early as 1933 by J. Leray in his pioneering
Ph. D. dissertation [14]. More precisely, Leray was interested in the
apparition of possible singularities for solutions v(t, z) of the particular
form

(3.6) v(t,z) = A(t) V(M) z)

A(t) being a positive scalar function and V(x) being a divergence-free
vector field.

It is clear that if v(¢,z) is a self-similar solution of the Navier-
Stokes equations, in other words, if v(t, z) = Av(\%t, Az), for all A > 0,
then by taking A = v/t we find, in Leray’s notation,

(3.7) o(t,z) = \%V(%) ,

where V(z) = v(1, z) is an arbitrary divergence-free vector field.

After Leray’s work, this particular representation, equation (3.7),
was utilized by several authors with the aim of finding self-similar solu-
tions by a direct approach, say via the elliptic equation (in the unknown
functions V and Q)

1.1
——V-—Z(z-V)V-AV=—(V-V)V -VQ,

(3.8) sV -5@V) V-V) Q
V-V =0,

obtained by substituting (3.7) into (3.1).
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Unfortunately, this strategy turned out to be unsuccessful (see, for
a detailed discussion [15]) and the system (3.8) too difficult to solve.

The problem of finding self-similar solutions was still completely
open when, in 1989, Y. Giga and T. Miyakawa [16] showed that in a
suitable Morrey-Campanato space, self-similar solutions to the Navier-
Stokes equations written in terms of the vorticity w(t, z) = curlv(¢, )
exist as long as the initial data wg(z) are homogeneous of degree —2
and small enough.

In this Section, we tackle and solve the problem in a somewhat dif-
ferent way. More specifically, we will not deal with the elliptic equation
(3.8), nor with the Navier-Stokes equations with vorticity as an un-
known function but, in the previous notations, we look for self-similar
solutions v(t, z) of the mild equation

(3.9) v(t) = S(t) vo + B(v,v)(t),
where
(310)  B(v,u)(t) = —/O PS(t — 5) V - (v®u)(s) ds.

The idea pursued here is to establish first a general existence and
uniqueness theorem for mild solutions v(t,z) € C([0,00); X) of (3.9),
X being an abstract Banach space containing homogeneous functions
of degree —1, and then obtain the existence of self-similar solutions as
a corollary. .

In Section 1, we showed that the Besov spaces By (R?) (3 <
g < oo, = 1 — 3/q) have the remarkable property of allowing among
their elements homogeneous functions of degree —1. Moreover, these
spaces arise in a natural generalization of Kato’s theorem (Theorem
1.1).

The starting point of this Part 3 is to restate this theorem in the
full Besov setting, i.e. to remove the condition vy € L3(R3). This will
be a crucial step in the proof of the existence of self-similar solutions,
because, for instance, |z|~1 ¢ L3(R3). Some technical difficulties will
appear when passing from L3(R%) to B> (R?), because the latter
Banach space is not separable. This implies, among other things, that
the property (1.21) (which plays an important role in the uniqueness
part of Theorem 1.1) is no longer verified when v(t) is replaced by
S(t)vo, vo € By*°(R?). An easy way to see this is to consider, for
example,

(3.11) vo(z) = (0, |_$—T§’ ;—Tz)
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and remark that
(8.12) lim £/2]1S(t) volly = [1S(1) voll # 0.

Another important limitation imposed when dealing with a non-separa-
ble Banach space X is that the heat semigroup is no longer a Co-
semigroup. This means that S(t) vo is no longer a strongly continuous
function from [0, 00) into X. A way to circumvent this difficulty is to
replace the space C([0,00); X) by the space C,([0,00); X) whose ele-
ments v (¢, x) are bounded flows in X, viz. v(t,x) € L*(]0,00); X) and
are continuous in the weak sense of distributions.

With this modification in mind, and recalling that the standard
fixed point algorithm (Lemma 1.5) gives the uniqueness of the solution
in a small neighborhood of the origin, we will obtain the following result.

Theorem 3.1. Let q be fized in 3 < q < 6 and a = aq) = 1 —
3/q, then there exists an absolute constant § > 0 such that if vo be-
longs to B;*>(R?), ||’UO||B;0¢,00 < 6 and V -vy = 0 (in the sense of

distributions), then there exists a global mild solution of the Navier-
Stokes equations such that

(3.13) v(t,z) € Cu((0,00); By ¥ (R?)),
(3.14) t/2y(t, ) € C\((0, 00); LY(R?))
and, if 3 < q < 4,

(3.15) v(t,z) — S(t) v € Cy((0,00); HY?(R3))
and, if 4 < ¢ <6,

(3.16) v(t,z) — S(t) vo € Ci((0,00); L3(R?)).

Moreover, there exists only one solution v(t,x) verifying (3.13)-(3.14)
and such that

(3.17) sup ||v(t)]| g—a.co + sup to‘/2||v(t)||q <R,
t>0 a t>0

where R = R(||vo]| g-a.) is a given constant.
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The proof of Theorem 3.1 is essentially the same of that presented
for Theorem 1.1. Here, equation (3.16) follows from an argument similar
to the one given in (1.30).

The only point which merits clarification is the regularity property
(3.15). To see this, let us recall the simplified bilinear scalar operator

¢
- _ _ )2 -
318 BUaO == [ t-970(Z=) (o)) ds.
Next, in order to evaluate the H'/2(R3)-norm of B(f,g)(t), let us con-
sider the operator A'/2 (whose symbol is |£|'/2), where A = (—=A)Y/? is
the usual Calderén operator.
We find

(3.19) A1/2B(f,g)(t)=c/0 (t— )0 (

—=) * Ua)s)ds,

where ©1 = A20 € L1(R3) N L>(R3). Finally, if 3 < ¢ < 4, we obtain

t
||A1/2B(f, D)< e (/ (t — s)_9/4+3/(2m)3—a ds) 191]|m
(3.20) °

- (sup 2 £®)l,) (sup /2 g (D))
t>0 t>0
where

1
(3.21) 5=
and the estimate (3.15) follows.

As announced before, it is now elementary to obtain, as a partic-
ular case of Theorem 3.1, the following existence and uniqueness result
of self-similar solutions for the Navier-Stokes equations. Here, the cru-
cial point is that condition (3.17) is invariant under the transformation
v(t, ) implies vy (¢, z) for all A > 0.

Theorem 3.2. Let q be fized in 3 < ¢ <6 and o = a(q) = 1 —3/q,
then there exists an absolute constant 6 > 0 such that if vo belongs to
B;*>*(R?), ||'U0||Bq—a,oo < 0§, V-vg =0 (in the sense of distributions)
and vo(z) = Mvg(Ax) for all A > 0, then there exists a global mild
solution of the Navier-Stokes equations which is written in the form

(3.22) v(t,z) = % V(\%) ;
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where V € B;%°(R®) N LY(R®) is such that
(3.23) V(z) =S1)ve + W(x),

with W € HY2(R3), if 3 < ¢ < 4, and W € L3(R%), if 4 < q < 6.
The initial value vy is taken by v(t,x) at least in the weak sense of

distributions. Finally, there is only one solution v(t,z) such that V €
B;**(R?) N LY(R®) and

(3.24) Vliggee +1VIlg < R,

where R = R(”’UO”Bq—a,oo) is a given constant.

4. An equivalence theorem for homogeneous functions on
Besov spaces.

Starting from the remark that a homogeneous function of degree
—1 is known in all R® by its restriction on the unit sphere S2, in this
Section we present an equivalence theorem for homogeneous functions of
degree —1 which belong to the Besov space B(I_a’oo(R3), withl < g < 0
and @« = 1 — 3/¢g. In Section 1 (Lemma 1.2), we showed that it is
sufficient for a homogeneous function f of degree —1 to have an L>°(S?)
restriction to the unit sphere S?, to ensure that f € By **(R%), ¢ >
3,a=1-3/q.

This remark is enough to guarantee that both Theorems 3.1 and
3.2 do not admit only the trivial data vy = 0 as initial condition. In
fact if we consider

—Ir3 T2
41 =(0,—,—)
(4.1) =0 R R

then vy is divergence free and belongs to Bq_a’m(]R:‘) for ¢ > 3 and
a=1-3/q.

In this Section we want to prove the following more general and
accurate result.

Theorem 4.1. Let 1 < g < o0 and a = 1—3/q be fized. Then, for any
homogeneous distribution f of degree —1 the following three conditions
are equivalent

i) f belongs to the homogeneous Besov space Bq_a’oo(R?’),
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ii) the restriction of f to a certain neighborhood ) of the unit sphere
S2 belongs to the non-homogeneous space Bq_"’q(Q),

iii) the restriction of f to the unit sphere S? belongs to the nonho-
mogeneous Besov space By *%(S?).

Before delving into the details of the proof of this theorem, let us re-
call some simple properties of the homogeneous Besov spaces BgP (R3),
for (s,p,q) € R x [1,00] X [1, 0.

First of all B5?(R?) is a module in the ring C§°(R?). This means
that the elements A of C5°(R?) define endomorphisms Af (A € C§°(R3),
f € BP(R?)) of Bi?(R?), as in the case of a vector space. The second
remark is that it is now possible to define a local space ByP. The
localization (in a neighborhood of zg) is obtained by multiplying by a
cut-off function x € C§°(R3?) equal to one in a neighborhood of z.

The second group of observations concerns the possibility of ex-
tending a function f(x) € B5?(R?) into a function f(z,y) that we can
suppose to be either independent of y and equal to f(z) if y = 0, or
equal to f(z)p(y), where ¢ is the function appearing in a Littlewood-
Paley decomposition and is such that ¢(0) # 0. These two points of
view are equivalent in a neighborhood of the R? x {0}, because we can
multiply by 1/¢(y) in a neighborhood of R? x {0}.

Let us start with a proof of Theorem 4.1 in a model global case as
given by the following Lemma.

Lemma 4.1. Let g € S(R®) be a function whose Fourier transform §
has compact support. To fix ideas, let g(0) # 0. Then, for any function
f (defined on R?) and any set of index (s,p,q) € Rx[1,00] x[1,00], the
norm of f(x) in the nonhomogeneous Besov space Bg’p(R2) is equivalent
to that of f(x)g(y) in B5P(R®)

Here is a simple proof of this result. First of all, let us consider a
Littlewood-Paley decomposition in R associated to a function ¢ such
that the support of § is included in the set of points ¥ € R such that
@¢(y) = 1. Then, we use a Littlewood-Paley decomposition in R? asso-
ciated to the product structure. In other words,

I=5,® S0+ Z(Sj_H ®Sj+1—S5;®S;)
(4.2) -
=5 ®So+ Y (Si®A;+A;®S;+A;®A;).
0
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But S;(g) =g for j > 0 and Ajg = 0 for j > 0. This implies that (A; ®
S;)(fg) = (8;£)(S;9) = (A;f)g and (S; ® A;)(fg) = (S;f)(A;9) =0
for 7 > 0. Finally,

o0

. / i , /
(D2 1atalz) ™" = (X281 loll) ™
0 0

(4.3) o U
= llglla (D277 11a£1E)
0

which concludes the proof of the Lemma.
Before proving Theorem 4.1 in all its generality, we recall here an
other interesting result

Lemma 4.2. Let S? C ]R:i be the unit sphere. For any tempered
distribution f € D'(S?), let f designate the distribution defined in the
open set A ={z € R® :1/2 < |z| < 3/2} by

T

4.4 Flr) = f—=—

(4.4) Fo) =1 (5 e,

where x € C§°[1/2,3/2] and x =1 in a neighborhood of 1. With these
notations, for any (s,p,q) € R x [1,00] x [1, 00] we have

(4.5) f € ByP(S?) if and only if  f € By?(2).

The proof of this result is trivial, because S? is compact, so that
one can first argue locally in a neighborhood of the point zq € S? and
conclude in a standard way. The details are left to the reader.

We are now in a position to prove Theorem 4.1. The equivalence ii)
if and only if iii) is a consequence of Lemma 4.2. In order to prove that
i) if and onlt if ii) we use the well-known wavelet characterization of the
homogeneous Besov spaces [13]. More precisely, let ¢ (x) = 9. (z), z €
R3 designate the mother wavelets (¢ = 1,2,...,7) and let us consider a
Daubechies compactly supported orthonormal base of R® . Let us put

(4.6) (G k) = /R DTG~ k) f(o) do

the wavelet coefficients of a function f, the normalization being in-
tended in the L!(R3) sense. Then, the following characterization holds
[13]
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Lemma 4.3. f € Bg’p(R?’) if and only if

(4.7) Z( 3 Jel, k)msiqz—?’j)p/q <o0.

JEL keZ3

We will use this lemma with s = —a = 3/¢— 1, p = oo and f
homogeneous of degree —1. Now, taking into account this last property,
we can write

(4.8) c(j, k) = 27¢(0, k) =: 2¢(k)
so that condition (4.7) becomes
(4.9)  feB R} ifandonlyif c(k)€19(Z%).

Finally, we consider the neighborhood 2 = {z € R® : 1/2 < |z| < 3/2}
of the unit sphere S and evaluate the B, *4(Q2) norm of an arbitrary
function f by using the wavelets whose support is included in €2. This
means 1/2 < |[k277| < 3/2 and j > jo. The last step in the proof of
Theorem 4.1 is given by the following well-known result [17]

Lemma 4.4 Let Q be an open bounded set in R3. Let us suppose
that f belongs to Bg’p(Q), in other words, let us suppose that f is the
restriction to Q of a function in B5?(R®). Then we have

(4.10) S (X1 k)|q25jqz—3ﬂ‘)p/q < o0,
7 k

where the sum over j and k is restricted to the values for which the

support S(j4, k) of ;= 2% ¢(27x — k) is included in Q. If, conversely,

this condition is verified, then for any Q¢ C Q, with d(Q,Q°) > ¢, f

belongs to By P ().

Let us conclude the proof of Theorem 4.1. If f is homogeneous of
degree —1, then f € B;*(Q2) means

(4.11) > Yoo le®m)i= ) lek)|t < oo,

Jj>30 1/2<|k273|<3/2 keZ3
that is c(k) € 19(Z3), which, in turn, is equivalent to f € Bq_""oo (R3).
Here the crucial point is that the dyadic coronas 1/2 < |k277| < 3/2
cover exactly all of Z3\{0}. The proof of Theorem 4.1 is now completed.
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Before ending, let us remark, as announced, (see also [1]) that if a
function f homogeneous of degree —1 is such that its restriction to the
unit sphere S? is bounded, then

(4.12) S 20D A F[d gy < D20 = ¢
0 0

as long as ¢ > 3, which implies that f € Bq_ @ (R3). More generally,
according to a celebrated result of J. E. Littlewood and R. Paley [18],
the sufficient condition

(4.13) fls2 € LY(S?),

would give (for ¢ > 3) the same result, for

(4.14) 220 NAG a5y < €Dl Fasn <
0 0
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