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Asymptotic behavior
of global solutions to the

Navier-Stokes equations in R”

Fabrice Planchon

Abstract. We construct global solutions to the Navier-Stokes equa-
tions with initial data small in a Besov space. Under additional as-
sumptions, we show that they behave asymptotically like self-similar
solutions.

0. Introduction.

When studying global solutions to an evolution problem, it is natu-
ral to study their asymptotic behavior, as it is usually a simpler way to
describe the long term behavior than the solution itself. Global solution
of the non-linear heat equation have been showed to be asymptotically
close to self-similar solutions [7]. Under certain conditions, we will
show how to obtain similar results for the incompressible Navier-Stokes
system.

We recall the equations

%zAu—V-(u@u)—Vp,
(1) V-u=0,
u(z,0) = up(z), reR, t>0.
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As we are in the whole space, if u(z,t) is a solution of (1), then for all
A >0, up(x,t) = Au(Az, A?t) is also a solution.

We now note that studying the asymptotic behavior of u(x,t) for
large time is equivalent to studying the asymptotic behavior of uy (z,t)
for large A with fixed time. Actually, we shall show that, as ¢t goes to oo,
the natural space scale is v/ as in the heat equation. If we replace z by
x/+/t and let t — 0o, we obtain the same result as if we let A\ — oo in
ux(x,t). This new point of view is interesting for the following heuristic
reason: we expect that the limit v(x,t) of uy(z, t) will also be a solution
of (1). Furthermore, one might assume that v(z,t) is the solution with
initial data vo(z) = limy 00 Au(Ax,0). Of course, the limiting solution
is invariant under the scaling, so

v(z,t) = % V(%) ,

and vg(z) is an homogeneous function of degree —1.

Such self-similar solutions have been studied previously (see [4],
[2]), and we shall see in the present work how to make rigorous the
previous heuristic approach.

Let us define the projection operator P onto the divergence free
vector fields

Ul Ul Rla
(2) P u9 == u9 - RQO' s
us us R30’

where R; is the Riesz transform of symbol

&i
(3) OR; (é) = T
I3
and where
(4) U:R1U1+R2u2+R3U3.

Therefore P is a pseudo-differential operator of order 0.
We transform the system (1) into an integral equation, where
S(t) = et denotes the heat kernel,

(5) u(z,t) = S(t) up(x) —/0 PS(t—s) V- (u®u)(z,s)ds.
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This equation can be solved by a classical fixed point method (see [1],
[5], [6]). Following the method of [1], we remark that the bilinear term
in the previous equation can be reduced to a scalar operator

) B.0)= [ (=) < U ds,

where G is analytic, such that

(7 6| < T30
(8) VG (2)] < ﬁ -

This comes easily from the study of the symbol of B, as we have an exact
expression under the integral. The matrix of this pseudo-differential
operator has components like

_fjgkfl —t|€]?
) G

off the diagonal, with an additional term &; e~tI€" on it. The function
G is then the inverse Fourier transform of any of these functions at
t = 1. The only thing we will need is that G € L' N L,

This paper is organized as follows. In a first part, we will define the
functional setting which is well-suited for our study, then study global
existence in this setting, and lastly the behavior of attracting solutions
for large time, if they exist. Then in a second part, we will try to
state a partial converse to the Theorem 3, that is a condition on the
initial data in order to obtain a convergence to a self-similar solution
for large time. The third part will be devoted to a better understanding
of this condition, and will include reformulations of the condition and
examples.

1. Global existence in Besov spaces.
A well suited functional space to study (1) is L ([5]), as ||ux||zs =

|ul|zs. But homogeneous functions of degree —1 are not in L3, and
we easily see that the weak limit of ug x is 0. We therefore have to
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enlarge this functional space to include homogeneous functions of degree
—1. We have chosen the homogeneous Besov spaces Bp_(l_s/p)’oo. We
will see later they arise naturally in our problem. Let us recall their
definition ([9], [10]).

Definition 1. Let ¢ € S(R™) such that ¢ =1 in B(0,1) and ¢ = 0 in
B(O, 2)c; (,ZSJ(JT) = 2nj ¢(2J .T), Sj = ¢j * -, Aj = Sj.|_1 - Sj . Let f be in
S'(R™).

e If s<mn/p, orifs=mn/pand q =1, f belongs to B;’q if and
only if the following two conditions are satisfied

— The partial sum
> 85()
converge to f for the topology o(S',S).

~ The sequence ej = 275[|A;(f)||» belongs to 9.

o Ifs>n/p, ors=mn/p and q > 1, let us denote m = E(s —n/p).
Then B% is the space of distributions f, modulo polynomials of degree
less than m + 1, such that

— We have f =32 Aj(f) for the quotient topology.
~ The sequence ej = 2% ||A;(f)||L» belongs to £9.

We remark that nothing in this definition restricts s from being
negative. In fact, we will use s = —(1 — 3/p) which is indeed negative
as p > 3. In the particular case where s < 0, it is worth noting that
we can replace the condition e; = 27¢ ||A;(f)| L» € £7 by the equivalent
condition &; = 27% ||S;(f)||» € £9. This second condition implies easily
the first one, and conversely, we remark that £; can be seen as a con-
volution between ¢; and 7; = 2% € £*. We shall obtain the following
theorem which extends the results of [1].

Theorem 1. There exists a positive function n(q), q > 3 such that if
ug € Bp_(l_g/p)’oo, V-ug =0, p> 3, satisfies

(10) ol 037 < 1(a)

for a fized q > p, then there exists a unique solution of (1) such that

(11) u € Cy([0+ 00), Bp—(l—S/p),oo) ,
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where C,, denotes the weakly continuous functions, and, if p < 6 and
u=S(t)up +w(x,t), then

(12) w € L®([0 + 00), L}(R?))
and
(13) lwllzs < v(q),

where y(q) depends only of n(q).

We remark that the restriction p < 6 in order to obtain (12) is
merely due to the linear part: the equivalent of (12) actually holds for
p > 6 if one considers higher order terms, if u is written as a sum
of multilinear operators of u. For the sake of simplicity, we restrict
ourselves to the first term, which yields this restriction.

We will prove the Theorem 1, using a fixed point argument via the
following abstract lemma (Picard’s theorem in a Banach space).

Lemma 1. Let £ be a Banach space, B a continuous bilinear applica-
tion, T,y € £

(14) 1B(z,y)lle < v ll=lle [lylle -

Then, if 4 ||xolle < 1, the sequence defined by
Tnt1 = To + B(.Tn, xn)

converges to x € £ such that

1
(15) r =9+ B(z, ) and lz||le < 5y

Let us define the space
(16) Fy = {f(@.1)  sup|f(,0)]0 < +oc}.
The following characterization will be very useful.

Proposition 1. Take a > 0, v > 1, f € S(R™), then

(17) I£1l = supt*/* ||S () f ||~
t>0
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1S @ norm in B;a"’o equivalent to the usual dyadic one.
Therefore, using the Sobolev inclusion

53/p—1,00 23/q—1,00
B, — B, ,

for p < q, we see that ug € Bg/q‘l’o", so that
Vit (S(t) ue) (Vt z) € F, .
Then, in order to apply Lemma 1 to F,, we are left to prove that if
Dif =Vt f(Vta,t),

then Dy;B(D;!-, D; ) is bicontinuous on F,. Take f = Dyf and j =
Dg in F,. We denote M = fg € F,/5. We observe that the bilinear
operator (renormalized with D;) can be written as follows

E(f,g):/o (1_1/\)20(\/1“7__/\)*1\4(%,,\1:)%.

Then, by Holder and Young inequalities, we obtain

- L CdA S s
18)  NBG9)lr < | msyersreayr 1wl

which gives us 7(q). Proceeding the same way, if p < 6 gives

~ 1 C d\ .
(19) |B(f,9)lF S/O (1= \)3/ani=5/a 1 fll7, 9] 7, -

This proves (12) and (13). We have now to prove the weak convergence
when ¢ — 0. Clearly S(t) ug U0 by a duality argument. As for the
_)

bilinear term, if ¢ € C§°(R?) and if we denote by Q(6) the convolution
operator with G (- /v/0)/6?,

(Q(t = 9)fg(s), ¢) = (fg(s), S(t— 5) Q$),
where @ is defined by

Qo(6) = 51?(5‘ a(6).
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so that éqﬁ € L', like the function G defined previously. Therefore
S(t — s) Q¢ is (uniformly in ¢ — s) in L7, with 1/y + 2/q = 1. Thus

([ @t~ rots)as.0)

t
(20) <C [ 179(5) s ds

0
21 <o %\ Fie s
(21) ¢ =377 [/ ll7, llgll7,
(22) <Ct3T—0.

The uniqueness part of the theorem follows from the construction part,
so we have proved the Theorem 1, in the case where p = ¢, with ¢
for which (10) is verified. We next remark that the solution u actually
satisfies

(23) Vtu(Vtx,t) € Fy , forallq' >p, ¢ >3,
and that moreover the bilinear term w satisfies

(24) Vtw(Vtx,t) € Fy forg<q'§p.

(23) is of course true for the linear part. Then, the bilinear term is in
F, /> and in F, for the particular ¢ we have fixed. And by interpolation
between Fj, /o and I, it is in all F;s with p/2 < ¢’ < q. We are left to
prove (23) for the bilinear term when ¢’ > ¢. An easy modification of

(18) takes care of this situation

- 1 CdA F
@) 1BU9)ls, < | gesyramrcsan s 1w 161

and if ¢ > 6 we get all the ¢ > ¢q. Otherwise, we have to proceed in
several steps to reach a value ¢’ > 6. Note that the great amount of
flexibility provided by inequalities of type (18), (25) allows us to obtain
this result in many different ways. In particular, we could establish the
bicontinuity of the renormalized operator from Fy x F, to F, and carry
along the fixed point iterations all the properties we want, provided
the different continuity constants verify inequalities in the correct way,
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which happens to be the case. By the way, we remark that initial
data in the the space L3> are included. In fact, we have the following
embedding,

Theorem 2.
L3,00(R3) s Bp—(l—?z/p),oo 7

for all p > 3.

In order to prove this, we will make use of the following character-
ization of weak Lebesgue spaces

feL*®  if and only if /E |f (@) dz < C |E|*/3,

for all Borel sets E. In particular, if ¢ € § then ¢ *x f € L, and
therefore is in LP, for all p > 3. In fact ¢ x f € L>*°, and all bounded
functions in L3°° are also in LP, as the following estimate shows

Y 2P e 277 < gl <277 <0 " 2167 < oo
§>0 §>0

Thus,
5,(0) =29 [ o2z - 27y) 1) dy
— [e@o—w sy
— 2 [ (a2 (2 y) dy
=20 h(2z).

Also, as h and f have the same norm in L3, we obtain

1S5 (H)llLe < 24727 |fll oo

which achieves the proof.

Now that we have solutions in the proper functional setting, we
can study the asymptotic behavior of these solutions. We begin with a
definition:
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Definition 2. We say that u(z,t) “converges in LP norm” to a function
V(x) if and only if one of the two equivalent conditions is satisfied:

1) For all compact intervals [a,b] C (0 4 o0)

Pdz) 1
ux(z,t) Lﬂ>) —V(i), as A\ — oo,

i\
uniformly for t € [a, b]
L (dz)
2) Vtu(vVtz,t) — V(z), ast — oo.
Then we will show the following

Theorem 3. Let us take 3 < p < +o0o. Let u(x,t) be a solution of (1)
such that

(28) il;g) |Vt u(Vt z,t)||zr < 400

and

(29) u(z,t) converges weakly to up(x) whent — 0.
If

(30) u “converges in LP norm” to 'V,

then the initial data ug(z) belongs to Bp_(l_g/p)’oo, V(z/Vt)/VE is a
self-similar solution of (1), and

(31) S(t)up “converges in LP norm” to vi(z),
where vi(x) = S(1)vy, and vy is the initial data of the self-similar
solution.

Note that we did not make any smallness assumption on the initial

data. In other respects, when ug € Bp_(l_s/p)’oo, the condition (31)
implies that

(32) Aug(Az) converges weakly to vg when A — 0,
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but this is not equivalent, and we postpone the discussion on that mat-
ter to Section 3. We recall that the integral equation is

VEtu(Vt z,t)
= VIS u)(Via) ~ [ PP 5) ¥ ueu(s)ds.

Let us denote U(t) = vt u(v/t z,t). Then we have

U(t) = vVt (S(t) uo)(Vt z) — B(U,U)(t),

where we still use the usual notation for the bilinear operator. By
hypothesis

p/2
M=UUYSN=VeV.

We consider the difference

) 8= [ () (4 (520 N () T

and we want to estimate the LP-norm. Let

w(t) = [|M(z,t) = N (@) pos2 »

SO

x x
M=, M) - N(—= = AP w(At),
H <\/f ) (\/X) p/2 ( )
and therefore,
1
w(At) dA
(35) [A¢(z)[[r < C/O (1 — \)1/2+3/C@p) \1=3/p

We know that w(t) is bounded, and
(1— )\)—1/2—3/(21)) \3/p=1 ¢ LY(0,1),
when p > 3, so we can apply the Lebesgue theorem and obtain

Jim [ Ay(@)][ze = 0.
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Therefore, the bilinear term becomes

1

with

. T T\ d\
W(x):/o (1—1A)2G(m> *N<ﬁ) e

The equation (33) can be written as
(36) V(z) = tY2(S(t) uo)(Vt &) = W(z) +o(1).

We see that the Fourier transform of v/ (S(t) uo) (vt x) is

()

81

which converges in FLP to a distribution. Therefore, i (&/v/t)/t con-

verges weakly to 0p(§). On other hand, by means of (35) and (36),
(37) H\/Z(S(t)uo)(\/ix)HLp <C < +o00, forallt > 0.
Hence,

(38) sup ¢1/27/ P S (t) ug|| e < C,
£>0

which is equivalent to ug € By~ Then for all A, ug , € By/P~1*,

and
o g7 = [l gg70-1.0

so that we can extract a subsequence which converges to vy in the space
of tempered distribution, actually the convergence is in the sense of the

topology U(B;’/p_l’oo, B,}_g/p’l). Then because the limit is unique, we
have that 9y = vy, and the whole sequence converges weakly to vy, and

moreover vg(z) belongs to B;’/p_l’oo

. We remark that v is necessarily

homogeneous of degree -1. Let us prove that V is actually a solution
of (1) where uy has been replaced by vy. The set (uy)x satisfies the

estimates (28) and (38) uniformly in A and indeed, for fixed t > 0,

P 1 T
Au(ha, N2t B —v(=).
U( v ))\—H—oo\/g (ﬁ)
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Therefore, if we pass to the limit in the equation (5) which is satisfied
by wy, we obtain

(39) % V(%) = S(t)vo — /Ot PS(t — 5)V - V(s)® V(s)ds.

We see that .
x
lim — V(—) =v
0o Vi \Vi/
weakly, which can be obtained in the same way as in the proof of
Theorem 1.

2. Initial data and asymptotic convergence.

Theorem 3 was the easy part of the study. In some sense, if we
have a convergence to a function, then this function must be a self-
similar solution whose initial data is obtained in a natural way from
the initial data, namely the weak limit of the rescaled initial data. It
would be nice if the existence of such a weak limit was enough to ensure
convergence toward a self-similar solution. Unfortunately, it is untrue,
and this is the purpose of Proposition 4 to explain why. Nevertheless,
we can obtain a necessary and sufficient condition in order to obtain
this converse to the Theorem 3. We have seen in the first theorem
that it is useful to see the solution u(z,t) as the sum of two terms
u(z,t) = S(t) up + w(x,t), the heat term which gives a tendency, and
the bilinear term which is some sort of fluctuation, more regular than
the linear term. We will do the same for the self-similar solution, so
that

v(x,t) = %V(%) = S(t) vo +

Theorem 4. Let ug be in B;’/p_l’oo, V-oug=0,3 <p< +o0, such
that for some q > p,

1 x
i)

Juollg3/-1. < 1(@).
Moreover, suppose that there exists v, v > p and r > 3, such that

ug “converges in norm” to vi(z) .
40 S(t “ m L" "t
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Then A ug(Azx) converges weakly to a function vy such that vy = S(1) vg.
Further, if u(z,t) is the solution of (1) with initial data ug, V (x/\/t) /1t

15 the solution with initial data vy,

. 1 T
41 li t1/2—3/(2q>H t)y— —=V(——= ‘ =
( ) t—1>I£10 ’U,(JT, ) \/EV<\/E> La 07
forallg>p,q>3 and, if p<6
. 1 T
(42) Jim et = 2w (2], =0.

We remark first that the case uy € L3 leads to v; = 0, so that
vo = V = 0. In this case, (41) and (42) become the usual estimates
(see [5]). Therefore, we shall assume that r > 3. We easily see that
the convergence (40) is in L9, ¢ > p (and even ¢ = p if p > 3). In
fact v/t (S(t) uo) (vt x) is bounded for the norm || - ||.4, for all § > p,

as B;’/p_l’oo — 'g/[j—l,oo. Therefore, we conclude by interpolation

between LP and L" norms or between L" and L°°.
We obtained

Lemma 2. Let f € B;Z’/p‘l’o", p > 3, such that for some r > p,

lim ¢Y/273/C) ) 1S(t) fll- = 0.

t— 00

Then, for all ¢ > p

42) Jim #7279/ CDS(0) fllza = 0.

From the proof of the Theorem 3, we already know that vg, which
is the weak limit of ug x, belongs to the same Besov spaces as ug. There-
fore,

[voll gara-1.00 = [luoll gara—1.0 <m(q) -

Furthermore we obtain the solutions u(z,t) and V (z/v/t)/v/t by apply-
ing the Theorem 1, which used a fixed point argument. If we denote by
u(™ | respectively V(™) the successive approximations of u, respectively
V', we remark that

u (z,t) = S(t) uo ,
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respectively

If we recall that
t
u D (1) = S(t) ug — / PS(t = 5) V- (u™ @ ul™)(s) ds,
0

we see from (40) that for r = ¢, we just have to prove, for a fixed n,
that

(44) VEu™ (Vi 2, t) 25 v (z)

This can be done using the estimates obtained in the proof of Theorem
3. Recall that we obtained a estimation on S(t) ug using an estimation
on u and the equation. Here, the same technique applies, but we know
an estimation on S(t) ug and wu,, and deduce the estimation u,,41 using
the equation. Then, by means of an estimates like (42) and (45) and
the dominated convergence theorem, we obtain

W) VB W) Wi L B v)
Therefore, splitting

o) = 2V () = () + (V=) 4 () = v),

we conclude with an £/3 argument to obtain (41) using (44) for the fixed
q we have chosen. We obtain the same result for all ¢ by interpolation
between various L7 norms, as in Lemma 2. We obtain (42) using (45)
in the same way.

3. Understanding the condition on the initial data.

We might ask about the meaning of condition (40) and the rela-
tionship with the remark we made previously. Let us first introduce an

equivalent definition of our Besov spaces Bp_(l_g/p)’oo, p > 3.
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Proposition 2. Let {¢.,}c be a set of 7 wavelets such that the set
{¢(272 — k) }e.j ez is an orthogonal basis of L*(R®). Then if

f(z) = Z e (7, k) 27 ¢6(2j$ — k),

E’j7k

fe Bp_(l_g/p)’oo is equivalent to

sup (Yl b)) < oo
J k

Then we have

Proposition 3. The following two conditions are equivalent,

If ac(4, k) are the wavelets coefficients of f under the previous nor-
malization, and

(46) feByU3/mee 3 < p < oo,

1) f satisfies

(47) A f(Ax) converges weakly to 0,

and

(48) tim (3 el k)|p)1/p —0.
j——o0 A e

2) The function f satisfies

(49) lim ¢Y273/CP) | S(8) f|l»r = 0.

t— 400

Using the previous propositions, we will later prove the promised
Proposition 4, which explains why the condition (40) is necessary and
sufficient in order to obtain Theorem 4. It is in fact deeply linked to
the nature of the functional space we are using, rather than to the
equation itself. Omn the other hand, no other pathological examples
are known to the author other than those constructed in the proof of
this proposition. On simple practical examples, where we start with a
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rather regular initial data, the condition will be fulfilled. Let us give
an example, where we forget about the divergence free vectors and deal
with a scalar function for sake of simplicity. Take

We put an € in order to comply with the smallness assumption. Then
the condition (40) is verified, because the difference § = ug — vy belongs
to L3 outside of the unit ball, so that the solution of the heat equation
with initial data §(z) has its L3>(R*\B(0,1)) norm going to zero as
time goes to infinity, and by Sobolev’s embedding we get (40). In
other words, what matters is the behavior of the initial data for low
frequencies.

Proposition 4. There exists a function f € By (R®), such that
A f(Ax) converges weakly to 0 when A — +oo, but such that, if p > 3

T [5(1) (A7) e 0.

We will now prove Proposition 3. Proposition 2 is nothing else than
the usual characterization of Besov spaces with wavelets coefficients
([8]). We only changed the normalization. We restrict ourselves to
Littlewood-Paley wavelets, as defined in [8], because they are closely
related to Littlewood-Paley decomposition. But the same results hold
for any wavelets basis, provided it has sufficient regularity. Let us recall
a few useful properties of these particular wavelets basis, as they will
be used later. The so-called scaling function of the wavelet basis is a
function ¢ € S, such that ¢(€) = 1 if —27/3 < £ < 27/3, (&) = 0 if
Am/3 < €, ¢(€) is even, positive and such that ¢2(&) + ¢2(2r — &) = 1 if
0 < £ < 27. Then the equivalent of operator S; in the Littlewood-Paley
analysis is an operator Ej;, defined as follow:

Definition 3. The operator Ej; is a sum of three terms,

Ej =% + MjA7 + M AT
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where the three terms Xj, Aj_ and Aj are the Fourier multipliers by
§2(2796), $(279€) 27 (27 +€)), and $(279) $(279 (27 — €)). M_ is
the multiplication by exp (2w i2’x). We then define D; = Ej4q1 — E;

which is very close to the usual A; from Definition 1.

We see that (49) can be written as
(50) Jim [[S(1) (A fA))][ze = 0.
—00
Then, if ¢ € S and supp QAS is compact,
(51) )\lim o (A f(Ax))||r =0.
— 00
We remark then that

(52) (D letjne

N = Do F A len

with A = 277, and Dy defined as in [8, p. 45]. Then we know from (3)
that Dy is a sum of operators like M A, where M is a multiplication by
an imaginary exponential, and A is a convolution by a function whose
Fourier transform is compactly supported. We deduce our result by
using (51). Conversely, if we suppose that (46) is true, we first prove
that for ¢ as defined above,

Jim ¢ fallze = 0.

Doing a rescaling and taking A of the order of 2%, we are left to prove
that

I 2N<1—3/p>H 20 (2 —kH —0.
im Z Zaf,k, Ye(2'x — k) .

N—o0 .
j<—N e,k

The sum on j < —N being the convolution with ¢, if we assume the
support of ¢ to be contained in the unit ball. However, for a fixed j

. 1/p
< (¢ 2i(1=3/p) ( E . p) )
= - |t ke e |

| >0 e ? ve(@o — b
e,k
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Then, by means of (43)

|5 s @, <209,
k,e

with limj_,_oo €5 = 0.

Then .
9(1=3/p)N Z £ o(1=3/p)i 4
j<=N

as it it a convolution between £ and ¢!'. Equation (49) follows by
splitting S(1) into a sum of dyadic blocks.

Let us go back to Proposition 4. It helps to understand why (31)
is a necessary and sufficient condition, unlike (32). In fact, let us forget
for a while the proposition and suppose only (32); in the opinion of the
author, the following gives a good heuristic of the situation, and could
be made rigorous except that in our case, and unlike [3], it doesn’t
produce any useful results. With the help of the Theorem 1, we can
construct a set (uy)x of solutions of (1) with initial data ug . All the
estimates do not change by rescaling, which means they are indepen-
dent of A\. Therefore, we can extract a subsequence which converges in
C([t1,t2], xB(0, R)), where t; > 0, for exactly the same reasons as in
[3]: by bootstrap we obtain uy € C([t1,t2], W), with a bound in-
dependent of A\, and then we know that W1?(B(0, R)) — C(B(0, R)).
We also obtain easily that v(x,t) is actually the (self-similar) solution
of (1) with an initial condition vg, which is the weak limit of (ug x)a.
But to prove (41), we just have to prove

(53) Ali_)ngo lua(z, 1) — v(x,1)||pa = 0.

This last sentence is true if we replace L? by L?(B(0, R)), and in order
to prove (53), we should prove something like

Rh—l;réo “XRU)\(x? l)HLq =0,
uniformly with regards to A, where x,(r) = x(v/R) has value zero
on B(0,1), and one outside B(0,2). Let us deal with the linear part:

suppose that ug € L?, ||x puoallzs < [[uol|s(jz)>Ar), We obtain easily

lim [[x5S(1) uoallze =0, uniformly in A > 1.
R—o0
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We conclude with such a proof for the two dimensional case, as in ([3]).

However, if ug € By'™ but up ¢ L3, then X puol| go.e — 0 is not
3

always true when R — oco. For instance, if we take f = 1/|z|, then

HXRfHBgm = ||xf||Bg,oo = constant .
We could hope to have a property like

lim [, S(1) w0 =0,

R—o0

uniformly if A > 1. In fact, it is not possible, as we will see.

Proposition 5. There exists f € B§’°° such that for all R, there exists
A > 1 such that

IXgS() fallps = 1.

Here, we have chosen p = 3, ¢ = 4, but we could have chosen any
other values.

We remark that, if A is fixed, S(1)f\ € L* and
Jim_ (xSl =0.

We will need the following lemma:

Lemma 3. If f € L*, g € L', then

([, o)

A 1/4
ol ([ iptde) T e [ jglda
|z|>R/2 |z|>R/2

Therefore, in order to prove that |[x,,S(1)fl|z+ is large enough,
we just need to find a function g € L' such that X5 (g% S(1)fr)||za is

large. Let ¢ € S be a function such that supp ¢ C {9/10 < || < 10/9},
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and

fz) = Z2‘j o279 x —x;), where |z;| — 00,
0

m—1

27 f(2Ma) = > 2" T2 — x) + p(w — w)

0

+ Z 2M I (2™ — x4)
m—+1
= U () + ¢(z — zp) + U () .

We observe that the frequencies of w,, are in {|{| > 9/5} and the ones
of vy, in {|¢| < 5/9 < 9/10}. Thus there exists g € S such that

AC{10<|£|<18}

S — —

WPI=1g =181=1g

and 9 10
G(€) = elé’ for — < < =
GO = for <<

We take A = 2™ g S(1)fx = ¢(x — x,,,), and

lim b(x — )| dz = || ]| 34 -

We can go further in our study of f.
If 2™ < X < 2m*1 we split f as

Af(AZ) = um(z) + v (),

where u,, is the part of frequencies 277 A with |m — j| < N and v,, the
one where |m — j| > N.

Then, we take a test function ¢ such that 0 ¢ supp 7,;, and N
such that supp ¢ C [27V,2N]. Then [ A f(Az) 4 (x)dz contains only
terms with |j —m| < N, which are in finite number and go to 0 when
|| — oo.

We have proved the following proposition:
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Proposition 6. There exists [ € Bg’o" such that fx — 0 for the weak
topology o(By*™, Bg}lz), but nevertheless, ||x (1) fallLa does not go to

0 when R — oo, uniformly in A > 1.

The reader should consult [10] to see why the test functions ¢ we
used are dense into Bg’/lz.

We have now to link the Proposition 6 and the condition (31).
Proposition 7. Let
feBy™,  fal)=Af(Ax).

The two following properties are equivalent:

1) The function f satisfies

(55) Jim /2 S(t) f]|za = 0.

2) fa — 0 for the topology a(BS’O",Bg’/lz), and

(56) ([, Jswnt) " <en,

with limg_, eg = 0 independently of A > 1.

Let us prove that the first condition implies the second one. The
weak convergence has already been proved. Knowing that (55) is equiv-
alent to

lim [|S(1)fAlls =0,
A—00
this proves

([, Jswnitar) <.

for A > A\g. It remains the case where A € [1, Ag). As

SW)falz) = A (S f) (Aw),

we remark that the functions S(A?)f are in a compact set of L. Then
there exists R, such that, for A € [1, \g) and R > R,
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([, Jsmnitas) <e,

the converse statement can be easily proved. In fact, if

f)\_\()?

we obtain that

S1)fa(x) — 0

uniformly on any compact set. We can therefore estimate

1S (1) fall s

by splitting for || < R and |z| > R, which ends the proof.
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