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of an elliptic equation

related to Brownian
motion with drift (II)
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1. Introduction.

In this paper we continue the study of the Dirichlet problem for an
elliptic equation on a domain in R* which was begun in [5]. For R > 0
let 2r be the ball of radius R centered at the origin with boundary
0CQ2r. The Dirichlet problem we are concerned with is the following
(1.1) (—A —b(z) - V)u(z) = f(z), z€Qpr,
with zero boundary conditions
(1.2) u(z) =0, x € 0 .

Since we shall be obtaining estimates on the solution of (1.1), (1.2) in
terms of R we shall think of the functions b(z), f(z) as defined on all
of R®. Thus we assume

b:R® — R3, f:R® —R,

are Lebesgue measurable functions.
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568 J. G. CoNLON AND P. A. OLSEN

For 1 <r < ¢q < oo let M2 be the Morrey space on R® defined as
follows: a function g : R® — C is in MY if |g|" is locally integrable and
there is a constant C' such that

(1.3) / lg|" dz < C” |Q|1_T/q,
Q

for all cubes Q C R3. Here |Q| denotes the volume of ). The norm of
g, 19lq,r is defined as

9llqr = inf {C : (1.3) holds for C and all cubes Q@ C R*}.

In our previous paper we proved that the problem (1.1), (1.2) has a
unique solution if |b| € M, p > 1, and ||b|s , is sufficiently small. This
is a perturbative result. We also had a nonperturbative theorem. This
theorem stated that if b is locally in Mg with the local Morrey norm
being small then (1.1), (1.2) has a unique solution. The proof of the
nonperturbative theorem required p > 2. In fact the estimates diverge
as p approaches 2. Our goal in this paper is to obtain nonperturbative
theorems which are valid for p > 1.

To state our first nonperturbative theorem we need a quantity
introduced by Fefferman [9]: suppose we have a dyadic decomposition
of R? into cubes Q. A cube ( is said to be minimal with respect to ¢ if

IRCRCEEIC
Q

/ blPde < e |Q7PP, Q' CQ,
QI

for all proper dyadic subcubes Q" of ). Then N.(b) is the number of
minimal cubes in the dyadic decomposition.

Theorem 1.1. Suppose f € M2, 1<r<gq,r<p,p>1,3/2<q<3.
Then there existse > 0 depending only on p, q,r such that if N.(b) < oo
the boundary value problem (1.1), (1.2) has a unique solution u(x) in
the following sense:

a) u is uniformly Holder continuous on Qg and satisfies the bound-
ary condition (1.2).

b) The distributional Laplacian Au of u is in M2 and the equation
(1.1) holds for almost every x € Qp.
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REMARK 1.1. The restriction ¢ < 3 is required by b) while ¢ > 3/2
is required by a). Thus if f is in L7 for any ¢ > 3/2 the solution has
property a).

Next we turn to the problem of obtaining good L estimates on
the solution u(z) given in Theorem 1.1. For 1 < p < 3 and n an integer
define a function a,,, : R* — R by

A8 @ = (2 [ )

|lz—y|<2—m

In [5] the following (Theorem 1.4) is proved:

Theorem 1.2. Let ng be the integer which satisfies the inequality
(1.5) 4R > 27"° > 2R.

Then there exists v, 0 < v < 1, depending only on p > 2 such that u
satisfies the L°° estimate

m

(16) flulleo < o B>/ || fllg S 4™ sup exp (€23 tnyesp(a))

m=0  TE€Lr =0

The constant C1 depends only on p,q,r and Cy only on p > 2.

It is easy to see that the inequality (1.6) becomes stronger as p de-
creases. We shall show in Section 3 that Theorem 1.2 does not hold for
1 < p < 2. We will accomplish this by constructing a counterexample
to (1.6) for f = 1 and any p < 2. This is somewhat surprising since
(1.6) does hold for 1 < p < 2 if the drift is spherically symmetric. In
that case one can obtain an explicit formula for the solution of (1.1),
(1.2). The counterexample constructed in Section 3 has a drift which
is far from being spherically symmetric. In fact it is concentrated on a
set with dimension 1. By the recurrence property of Brownian motion
the process hits this set with high probability. Once inside the set, the
drift pulls the Brownian particle towards the center of the ball Qg.

We wish to obtain a theorem which generalizes Theorem 1.2 to
the case 1 < p < 2. Let s > 2 be a parameter, and suppose we have
a dyadic decomposition of R® into cubes Q with |Q| = 273, m an
integer. For m,n integers with m > n, and z € R® let

Ny (z) = number of dyadic cubes @ with |Q| = 27°™
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such that @ is contained in the ball centered at z with radius 27" and
[ 1o > e o,
Q

where € > 0 is a given parameter. We define the function a. ,, s p(x) by

B SUD >y, N () \ 1/
(1'7) as,n,s,p(m)_( 9(m—n)(3—s) )

We may compare the functions a,, , and ac y s, defined by (1.4), (1.7)
respectively. In fact by definition of NV, (z) we have that

e? | Q" P/® Ny () gfl - bI?(y) dy = ap p(x)? 273~
r—y|<2—"

whence
Np(z) < e7P an,p(x)p 9(m—n)(3—p) 7

and so (@)
N, (x
m -p p 9(m—n)(s—p)
Sm—m)(3-5) <ePapp(x)P2 :

We conclude that

(1'8) as,n,p,p(x) S 6_1 anyp(m) Y T e Rg *

Theorem 1.3. Let ng be the integer satisfying (1.5) and suppose 2 <
s < 3,1 < p < 3. Then there exists €,y with e > 0, 0 < v < 1,
depending only on s,p such that the solution u of (1.1), (1.2) satisfies
an inequality

m

Julloo < C1R>~3/1 £ llg,r Z 7" sup exp (02 Zae,m-i—j,s,p(m)) .

TEQR

m=0 7=0

The constant Cy depends only on p,q,r,s and Cy only on s > 2 and p,
1<p< 3.

It follows from (1.8) that Theorem 1.3 implies Theorem 1.2. We
shall show in Section 8 that Theorem 1.3 implies that for 1 < p < 3,
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there exists € > 0 and constants Cy, C3 depending only on p, g, r such
that

(1.9) lullse < CLRZ/ | flgr exp (C2Ne (D).

Theorem 1.1 will be proved in Section 2. It will be sufficient to give a
proof of Lemma 4.2 of [5] which is valid for 1 < p < 3. The remainder
of the argument of the proof of Theorem 1.1 is then exactly as for [5,
Theorem 1.3]. In the new proof of Lemma 4.2 we will introduce the
notion of a weighted Morrey space. This notion will play a key role in
sections 4, 5, 6, 7, 8 where we prove Theorem 1.3.

The main problem we need to solve to prove Theorem 1.3 is to
estimate the exit probability from a spherical shell of Brownian motion
with drift. Thus let us consider a particle started at z € R3® with
|z] = R and let P be the probability that the particle exits the shell
{y : R/2 < |y| < 2R} through the outer sphere. For Brownian motion
one can explicitly compute P = 2/3. For the case of Brownian motion
with drift b we need to obtain a lower bound on P in terms of b. In
Section 4 we analyze this problem in the case when b is perturbative,
that is when ||bl|s, < 1. When b is not perturbative we estimate P
by first defining a length scale A < R in terms of b. Then we construct
paths from z, |z| = R, to the outer sphere {|y| = 2R} which are linear
on scales larger than A but diffusive on scales less than A\. Thus the
paths of the drift process are confined to a cylinder of radius A. The
drift is propagated perturbatively on a length scale A and ballistically
on larger scales.

In order to propagate the drift perturbatively on the length scale
A we must limit the number of nonperturbative cubes on scales smaller
than A to have dimension less than 1. The requirement that the con-
stant s in Theorem 1.3 exceeds 2 ensures that this holds on average.
The analysis of this situation is in two parts. In sections 5, 6 we analyze
the case when the number of nonperturbative cubes on a scale smaller
than A actually has dimension less than 1. Then in Section 7 we use
an induction argument to show that we may relax this requirement to
having dimension less than 1 on average.

Once we have a lower bound on the probability P of exiting from
a spherical shell, Theorem 1.3 follows almost exactly as in the proof of
[5, Theorem 1.4]. This is accomplished in Section 8.

The main task of this paper was to replace the use of the Cameron-
Martin formula in [5]. The reason is that the Cameron-Martin formula
involves integrals of |b|? and hence cannot be used to estimate the so-
lution of (1.1), (1.2) in terms of integrals of |b|? with p < 2. In [5] we
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obtained a lower bound on the exit probability P from a spherical shell
by combining the Cameron-Martin formula with [4, Theorem 1.1.a)].
In Appendix A we give a new proof of [4, Theorem 1.1.a)] which brings
out the relationship between the methods employed in this paper and
in [5]. We show that Theorem 1.1.a) is a consequence of the fact that
Brownian motion confined to a long cylinder of radius A behaves ballis-
tically on length scales larger than A. The proof of the ballistic behav-
ior of Brownian motion depends on estimating accurately the Dirichlet
Green’s function for the heat equation on a disc of radius A at large
time. Estimates of this type are already known [2], [8] for operators
in divergence form with L coefficients. It therefore seems reasonable
that one might be able to generalize the results of Appendix A to the
situation considered in [2], [8].

In the subsequent work we need to do more than simply estimate
the exit probability from a spherical shell. We need to keep careful track
of fluctuations of densities. The simplest example of this is as follows:
Suppose we have a density p; on a sphere |x| = R; and that density is
propagated by the drift process to a density ps on a sphere |z| = Ro,
R, < Rs. In the case of Brownian motion the fluctuation of py is smaller
than p;. Thus if ||-||, denotes the L? norm, normalized so that ||1]|, =1
we have that if ||p1 — Av p1]|q < 0 Avpy then ||p2 — Av pal|q < J Av po,
where Av p1, Av ps denotes the average value, and ¢ is arbitrary. We
shall show in Section 4 that for a perturbative drift this still holds
provided (Ry — Ry) ~ Ry. If (Re — R1) < Ry it may not hold. We
investigate this question further in [3].

There is now an extensive literature on elliptic equations with non-
smooth coefficients. Within it there are roughly speaking two currents
of thought. On the one hand there is the approach dominated by tech-
niques from harmonic analysis as exemplified in [11], [12]. On the other
hand there is the approach where functional integration and probability
is at the fore as in [6], [7]. In the present paper the former approach
dominates whereas in the previous paper [5] the latter approach was
more prominent. See also [13] for results related to those of this paper.

2. Proof of Theorem 1.1.

Our goal in this section is to give a proof of [5, Lemma 4.2] which
is valid for p > 1. Theorem 1.1 will follow from this and the proof of
[5, Theorem 1.3].
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First we need a generalization of [5, Theorem 1.2]. Let Qg be a
ball in R® with radius R and boundary 9. For an arbitrary cube
Q C R? define d(Q) by

d(Q) = sup{d(z,00Rr) : z € Q}.

We define the Morrey space M2(Qg) where 1 < r < g < oo as follows:
a measurable function g : Qr — Cis in MI(Qpr) if (R — |z|)" |g(x)|" is
integrable on 2r and there is a constant C' > 0 such that

@) B[ (R fal) g de < CTIQPTY,
QNQE

for all cubes @ C R3. The norm of g, ||g|4.rr is defined as
l|gllgr,r =inf {C : (2.1) holds for all cubes Q}.

Let x, be the characteristic function of the set {2g. Evidently g is
in M(Qg) if and only if the function (1 — |z|/R) x,(x) g(v) is in the
Morrey space M2 of [5].

Let T be an integral operator on functions with domain €2 which
has kernel kr : Qr X Qr — C. Thus for measurable g : Qr — C one
defines T'g by

Tg(ffrf)=/Q kr(z,y)g(y)dy,  x€Qg.

Proposition 2.1. Suppose the kernel kr of the integral operator T
satisfies the inequality

b(z . R —
el < 20 i {1, 220 sy,

|z — "o —y

where |b| € M;’, 1 <p < 3. Then for any r,q which satisfy the inequal-
ities

l<r<p, r<qg<3,
the operator T is a bounded operator on the space MI(Qg). The norm
of T satisfies the inequality

1)) < Clb

|3,p ’
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where the constant C' depends only on r,p, q.

REMARK. Observe that [5, Theorem 1.2] follows from Proposition 2.1
by letting R — oo.

The proof of Proposition 2.1 follows the same lines as the proof of
[5, Theorem 1.2]. Define an integer ng by

27—l SR <20,

Let Qo(§) be a cube with side of length 27 and centered at £. It is
clear that if £ € Qp then Qr C Qp(£). Let K be one of the cubes Qo(§)
with £ € Qr. We define an operator Tx on functions u : Qp — C
which have the property that (R — |z|) u(x) is integrable. To do this
we decompose K into a dyadic decomposition of cubes ), with sides
of length 27", n > ny. For any dyadic cube @) C K with volume |Q)|
let ug be defined by

ug = RL[Q! / (R — |a) Julz)| de

QrNQ

If () is a distance of order R from 0€2g then ug is comparable to the av-
erage of |u| on ). Otherwise ug can be much smaller than the average.
For n > ng define the operator S, by

Spu(z) = 2_"( r € Q.

d(Q ) “Q
( n) "
The operator Tk is then given by

Tgu(x) = > |b(z)|Sau(z), x€Qp.

n=no

It follows now by Jensen’s inequality that there is a universal constant
C such that for any » > 1 and cube () there is the inequality

/ (R — |2])" |Tule)] de
QNLE

CT T T
<[ ae [ (B lal) [Toyeru@) e
| R| Qr QNQR

(2.2)

Hence it is sufficient to prove Proposition 2.1 with the operator T re-
placed by Tk where K = Qo(§) and & € Qp is arbitrary.
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The following lemma generalizes [5, Lemma 2.4]. It is proved in an
exactly similar fashion.

Lemma 2.1. Let Q' C K be an arbitrary dyadic subcube of K with side
of length 27"<". Suppose r,p satisfy the inequality 1 < r < p. Then
there are constants €, C' > 0 depending only on r and p such that

|Q|1/3+€ ug S |Ql|1/3+€ ug:

for all dyadic subcubes Q of Q' implies the inequality

oo

/ (=2 (D2 b@) Spule)) dw < C7 b, Q'R uy

TL:TLQI

If we replace the function u(z) by the function (R — |z|) u(z) in
the argument of [5] and use the previous lemma we conclude:

Corollary 2.1. For any dyadic subcube Q" C K one has
[ @=pely (X @) Suu() do
n:an

<O Wbl | (R lol) e de

for some constant C' depending only on r and p.

Proposition 2.1 for Tx follows now from the last corollary in the
same way as the corresponding theorem in [5] from [5, Lemma 2.4].

Next let g € L9(02R), 1 < g < oco. We define a function Bg(x) for
x € Qg by

@3 Bele) = b [ W4y el <R

ly|=R lz -y’

Lemma 2.2. Suppose b € Mg’ with 1 < p < 3/2, and r,q are numbers
which satisfy the inequalities

1 1 2
(2.4) 1<r<p, - > -+ —.
r q

=3
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Then B is a bounded operator from LY(0Qg) to M (Q2g) where

(2.5) L

L2
q1 3q

Wl =

Furthermore the norm of B satisfies an inequality

(2.6) |B|| < CR™!||b|ls, and C is a universal constant.

PROOF. From (2.1) we need to estimate the integral

(2.7) R oo (R — |z))" |Bg(2)|" dx

on an arbitrary cube ). From Holder’s inequality this integral is
bounded by

R ( /Q _ bla)p da:)

' rp' 1/p'
(S =10 ([ )™ )™

Y

r/p

where r/p+1/p' = 1.
Again from Holder we have

l9(y)] dy 1/q
/ — s dy < ||9||q< _73@:) ;
=R [T — Y| wl=r T — Y|

y|=

where 1/q + 1/¢' = 1. Using the fact that

/ dy < C1
wi=r [z = y?" (B —[z])?=2"
for some universal constant C, we conclude that (2.7) is bounded by

R_”( /Q mQR|b(a;)|pdx> |
-C’“HgH;(/Qrm (R — |a:|)—2w’/qczx)1/p .

r/p

(2.8)
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The inequality (2.4) implies that 27p’/q < 1.
Hence if we use the fact that b € M} then (2.8) implies that (2.7)

is bounded by
CTR b5, llglly QI P/ d(@) 7>/ Q¥
<C'R™"[b

55 lglly Q7o

on using the fact that d(Q) > |Q|'/3.
Hence Bg € M1 (Q2g) and its norm satisfies the inequality (2.6).

Suppose Gp(z,y),z,y € Qg is the Dirichlet kernel, whence

1 1 /R 1
G - - ()
e e e €7 e

where § is the conjugate of y in the sphere 0Qg. Let g € M{(Qr),
1 < ¢ < oo and define Hg by

Hy(z) = / Go(e.y) g(y)dy, =€ Q.
R

Lemma 2.3. Suppose m > 1 satisfies the inequality
2 1 1

3 mgq q

Then H is a bounded operator from M{ (Qg) to L™ (Qg/2) and the norm
of H, ||H||, satisfies an inequality

(2.9) |H|| < Cqm RPF3/m%4,
where Cy m, 15 a constant depending only on q and m.

Proor. We write Hg = H1g + H2g, where
Hyg(x) = / Gp(z,y) g(y) dy.
Q3Rr/4a

Since we are restricting « to the region |z| < R/2, there is a universal
constant C such that

C C _
el < 55 [ (R =1o)low)dy < 3 101 g1

R2
R? Jqo,
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It follows that Hyg is in L™ (Qg/2) for any m > 1 and

(2.10) ||Hs|| < C R?*3/m=3/a for some universal constant C'.

Next we bound H;g by using the method of proof for the John-Niren-
berg inequality [10]. For any a, 0 < a < 1, we have the inequality

gy
)< - [ 20,
4m Qsr/4 |z —y|

(2.11)
1 1/m 1/m
— d
w ) ()

where 1/m + 1/m/ = 1. Now

19(y)] / /
Yy = l9(y)| dy
/5‘23]{/4 |x - y|am am am +1 Q3R/4ﬂ{y:|m—y|<p}

2R p
= am’ / pam om!+1 ||g||q,1,Rp3 3/q

(21 b | ol (2R

3-3/q—am’
|q,1,RR /a )

IN

<Clg

for some constant C provided
3 /
(2.13) 3———am' >0.
q

On the other hand

)| d
/ d / <'1 g S C RO / l9(y)| dy
Qry2 QsRr/2 |$ - y| Q3Rr/2

(2.14) < CR3-U=)mg||. 1 g R®73/9,

for some constant C' depending on «m, provided

(2.15) (1—a)m < 3.
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It is possible to choose an a, 0 < a < 1, satisfying both (2.13) and
(2.15) provided m and g satisfy the inequality (2.9). Choosing such an
« yields the inequality

m
q,1,R >

(2.16) /Q Hg()[™ dz < O, R2m+3=3m/4 | g
R/2

upon using (2.11)-(2.14). Here the constant Cy ,, depends on ¢ and m.
Taking the m-th root of (2.16) and combining with (2.10) yields the
result.

PROOF OF [5, LEMMA 4.2] FOR p > 1. We shall freely use the notation
of [5]. Let us suppose that p and ¢ satisfy the inequalities

1 2 3
(2.17) -+ -<1, I<p< <.
P q 2

It will be sufficient for us to show that for any ¢ > 0 there exists ¢ > 0
depending only on p, ¢ such that ||b||s, < ¢ implies that the operator
Qy, is a bounded operator from L{(A,_1) to LL(A,) and satisfies the
inequality

(2.18) Q7 F g < 01 f

| s

where || - ||4,, is the norm in the space L{. To do this observe that
Q> f(z) is given by the formula

2n_1 2—n+3/2

Qnf(r) = ménﬂ (=Ap ) I —T\)"'b- VP f(x)dX,

where 27" < || < 27"*1/2, This follows from (3.38) of [5].

Now let us assume for the moment that A is fixed and f is in
L4(082y) with norm || f||4,00,. It is easy to see from the explicit formula
for the Poisson kernel that

|b(z) - VP\f(z)| < CBf(z), x €Qy,

where C'is a universal constant and B is the operator defined by (2.3).
In view of (2.17) we can choose 7 > 1 such that (2.4) holds. Hence by
Lemma 2.2, b- VP, f is in the space M1 (Qp) where ¢; is determined
from (2.5). It is easy to verify that the operator T has kernel which
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satisfies the conditions for Proposition 2.1. Hence the function (I —
T))"'b-VP,\f is also in the space M2 (Qg) provided ||b|[z, < € and
¢ is sufficiently small. Now Lemma 2.3 tells us that the function

ga(z) = (_AD,A)_l(I —T\)"'b-VP\f(x)
is in the space L™ (25-nt1/2) provided m satisfies the inequality
1 1
>

mqy q_l,

2
2.19 -
(2.19) -

with ¢; given by (2.5). Furthermore, the norm of g, satisfies an in-
equality

(2.20) lgallm < Cp,q,m€2_n(1+3/m_3/ql) | f

lg,00,

where the constant C), , ., depends only on p, g, m. It is clear that the
inequality (2.19) implies that 1/m > (2 —¢)/(2+¢). Taking m = ¢, we
have from (2.20) the inequality

lgally < Cpge27™ | fllg,00, -

The triangle inequality now yields

9—n+3/2

2n—1
— dA
H (V2-1) /2n+1 > q
(2.21) < 2T
. < (\/5_1) . 9IXllq
2”—1 2—n+3/2

= m_/z— - Cp.g €27 ||fllg.00, dA .

From Jensen’s inequality we see that

on—1 RS 1/q o—2n/
q9—an/q
e2) e [ Wlaandr < i

where C' is a universal constant. Putting (2.21), (2.22) together gives
us the inequality (2.18) with § proportional to e.

I%H’

gt
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3. A counterexample.

Let 79, Rop be two numbers which satisfy 0 < rg < Ry < oo, and
let v be the solution of the two dimensional boundary value problem,

Av(z) =0, ro<lz| <Ry,

(x) =

(3.1) 1,
() =0, |z| = Ry .

v lz| =ro ,
v

The function v is explicitly given by the formula,

(3.2) v(z) = R\

For a € R? and r > 0, let D(a,r) be the disc centered at a with radius
r and let D(a,r) denote the closure of D(a,r). We can extend v to
R2\D(0,70) by setting v to be zero for |z| > Ry. In that case v is a
subharmonic function, and so in the distributional sense one has

(3.3) Av(z) >0, lz| > ro .

Lemma 3.1. Let U C R? be a domain and suppose aj € U, j =
L,...,k. Let ro > 0 be such that all the sets D(aj,79) are disjoint and
contained in U, 3 =1,...,k. Let W be the domain

k
W = U\ U E(aj,To) .

Let u(x) be the solution of the equation

Au(z) =0, zeW,
(x)=0, ze0U,
() =1, xz € dD(aj,r0), j=1,...,k.

For Ry > 1o, suppose Sy is a subset of {1,...,k} with the property that

u
u

D(CLj,Ro)CU, J €Sy .
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For x € W define a function u(z) by

Z v(x — ay)

JE€So

sup{Zv(ai—aj+5):|5|:r0, 1§i§k} ,
JESo

u(x) =

where v is given by (3.2). Then there is the inequality

(3.4) u(z) > u(z), zeW.

PROOF. From (3.3) it follows that @ is subharmonic on W. By defini-
tion of Sy one has u(z) = 0, x € OU. Furthermore one has u(z) <1
if x € 0D(aj,r0), 5 =1,...,k. The maximum principle now yields the
inequality (3.4).

Next let Z3 be the lattice

73 = {\(n,m) : n,m integers} .
For 27y < A < R let W) r be the set
(3.5) War=D(,R)\U{D(a,r): a€Z3, D(a,r0) C D(0,R)}.

Consider the function u(x) which is the solution of the boundary value
problem

Au(z) =0, ze€Wyg,
(3.6) { u(x)=0, |z[=R,
1, ax€dD(a,r), a€Zi, Dla,rg) C D(a,R).

Evidently u(z) is the probability that Brownian motion started at z €
D(0, R) hits one of the discs radius ro, centered at a € Z3, before exiting
the region D(0, R). Let us consider the quantity inf {u(z) : |z| < R/2}.
If \,ro are fixed and R becomes large we should expect this quantity
to converge to 1 since a Brownian path is unlikely to avoid all the discs
centered at points in Z3 over large distances. The following lemma
gives an estimate which verifies this intuition:
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Lemma 3.2. Suppose 8ry < R and u(x) is the solution of (3.6). Then
there is a universal constant ¢ > 0 such that

cA
3.7 inf >1—- =
(3.7) |w|1§IlR/2u($) 7
provided A lies in the region,
(3.8) 270 < A <
log
To

PROOF. Let us take Ry = R/4 in (3.2). Then by Lemma 3.1 we have
that

v(z —a)

a€Z2 sup{ Z v(d —a):|d] :'ro} 7

2
a€Ly

(3.9) u(z) >

provided |z| < R/2.
We have now that

R
LA~ X I(E”R;

0<|n|<R/(4>\)
1 / R
~Y T RN log do
log <£) |z|<R/(4)) (4)\|x|)

4T0

3l

: log (4]7?0) |

By virtue of (3.8) we can conclude then that

R\2
(3.10) 3 v —a) ch@
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for some universal constant c.

We estimate the numerator of (3.9) by Taylor expansion. Let b €
Z2% be the nearest lattice point to  and y = x — b. Thus |y| < A/V/2.
Hence we have

Z’v(x—a): Zv(y—a)

iy "
=> wE—a)+ > (v(y—a)—v(d—a)),

where |§| = ro. By Taylor’s theorem we have

S (u(y — a) — (6 — a)) = Z/O (y—3)-Vo(d—a+t(y—2s)dt.

a€l3 a€Z3

Now if we use the inequality

log (%)

]

[Vo(z)| <

Y

we conclude from (3.10), (3.11) that

(3.12) 1 —u(z) < RL > 1

: (_>2 ez’ "
AN o< in|<R/(aN)

where C' is a universal constant. The inequality (3.7) follows now by
observing that the sum in (3.12) is of order \/R.

Next we wish to obtain a three dimensional generalization of Lem-
ma 3.2. First we consider a generalization of the boundary value prob-
lem (3.1).

Let v(z) be the solution of the problem

Av(z) =nov(z), ro<|z| <Ry,
(3.13) v(x) =1, lz| =70,
v(x) =0, lz| = Ry .

The function v(z) is a Brownian motion expectation value. In fact
let X (t) be Brownian motion started at a point x and 7 be the exit



ESTIMATES ON THE SOLUTION OF AN ELLIPTIC EQUATION 585

time from the region {y : 7o < |y| < Ro}. Let x be the characteristic

function,

() {1, if |z| =70,

z) =

X 0, if|2] =R .

Then we have
(3.14) v(z) = Exle”" x(X(7))].
It is well known that the solution of (3.13) exists provided the parameter
n is larger than the largest eigenvalue of the Dirichlet Laplacian. For
n = 0 the solution of (3.13) is given by (3.2). For  # 0 we have the

following:

Lemma 3.3. Let Iy be the modified Bessel function of the first kind
defined by the infinite series,

lo(z) = g;) (kl!)2 (g)%

Suppose n satisfies the condition

(315) Io(\/’f_]t)iéo, ’I"()StSRO
Then the solution v of (3.13) is given by

Roo gy
L(yir [ g
(3.16) o(z) = / ”‘)(ft) ,

nin) | iz

To

where r = |z|.

PROOF. The problem (3.13) is rotation invariant. Hence v(z) is just a
function of r = |z|, v(x) = v(r), and satisfies the equation

li( @)_
r dr Tdr — s
(317) ’U(TO) — ]_7

U(Ro) =0.
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This is a Bessel equation of order zero. It is easy to see that v(r) =
Io(\/n r) is a solution of the equation (3.17), but not the boundary
condition. A second solution can be found by the method of reduction
of order provided (3.15) holds. It is given by

Ry
(3.18) o(r) :IO(\/ﬁr)/ ”g(dﬁ.

It follows from (3.18) that the function (3.16) satisfies (3.17).
We consider a region in R® which has a two dimensional structure.
For 0 < 4ry < Ry consider the two cylinders

Sy ={x = (v1,22,23) : —Ro < 23 < Ry, 7 + x5 < RZ},
(3.19)

Ry
-, x%+x§<r§}.

—R
Sy = {x: (x1, 2, 3) : TO < w3 < 5

The region D we wish to consider is given by D = S1\S5. The boundary
0D of D is evidently the union of 957 and 9S2. We consider the problem

Av(z) =0, z€D,
(3.20) v(ix) =1, xz€0Sq,
v(x)=0, x€0S;.

Lemma 3.4. Suppose v = (r1,72,23) € D, and r?> = 13 + x3. Then
there 1s a universal constant ¢ > 0 such that

(3.21) v(z) > c

provided |z3| < Ry/4.

Proor. Consider the two dimensional Brownian motion started at
(1, 22) and consider all paths which hit the circle » = r¢ before hitting
the circle r = Ry. Let 7 be the hitting time for such paths and suppose
p(r,t) is the density for 7. Then the function

(3.22) / T e ol 1) dt
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is the solution to the problem (3.13). This follows from the represen-
tation (3.14). Next let X3(¢) be Brownian motion started at z3 € R
and let 75 be the first exit time from the interval [— Ry, Ry]. We define
w(zs,t) by

R R
(3.23) w(zs, t) = Py, | — 70 < Xs(tATs) < 70 .

Evidently w(xs,t) satisfies the heat equation

ow 0*w

24 guw _2w
(3:24) ot 0x%’

—R0<$3<R0,t>0,

with the boundary conditions
(3.25) U)(Ro,t) = w(—Ro,t) =0, t>0,

and the initial conditions

1 Bo . T
_— $ —_—
(3.26) w(zs,0) = { D P

0, otherwise.

It is clear from the definition (3.23) that the solution v of (3.20) has
the representation

(3.27) v(xy, T2, x3) = v(r,x3) = /000 p(r,t) w(zs,t)dt.

Observe that for any a > 0 there is a constant v, > 0 depending only
on «, such that

R
w(zs, t) > 74 >0, |x3|<TO,0<t<aR3.

Hence, provided |z3| < Ry/4 there is the inequality

aR?
(3.28) v(r,zg) > 'ya/ p(r,t)dt.
0

Now from Lemma 3.3 we see there exists an ¢ > 0 independent of Ry

such that
o ()

/000 exp (%)p(r,t) dt < C. 10g<]§0) ,
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for some constant C. > 0 depending only on ¢. Thus for any o > 0 one
has the inequality

Ry
00 log (—)
/ p(r,t)dt < exp (—ea) Ce 71%” .
o ()

Choosing « such that exp (—e ) Cc < 1/2, we conclude that

2 o
(3.29) /OCXRO p(r,t) dt > % ngé"o; :
og | —

The inequality (3.21) follows now from (3.28), (3.29).

Lemma 3.5. Let v(z) = v(x1,22,23) = v(r,z3) be the solution of
(3.20). Then there is a universal constant C' > 0 such that

(3.30) ‘8“0‘<—1 <@).

To

ProoOF. The eigenfunction expansion for the solution to the problem
(3.24), (3.25), (3.26) is given by

2,,2

w(ws,t) = Rio mi::l exp ( — % t) sin <2R0 (w3 + Ro))

Ro/2 T™m
. sin | —— (( + Rop) | dC .
[ i (5 €+ )
Hence from (3.27) we have

2,2

o)=Y % (1 (1" ulr, %) sin (7).

where u(r,n) is the function given by (3.22). Consequently

(3.31) 6 Z () sin (ﬂm) :
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where

2,2

(3.32) (1) = % (1— (=)™ % (v %) >0,

The inequality (3.32) follows from the maximum principle applied to the
equation (3.13) which u(r,n) satisfies. We shall prove in the appendix
that

d 0 u(r,n)
(3.33) Wa_n(\/ﬁ>>0’ ro<r <Ry, >0,

It follows then from (3.33) that a,,(r) is a decreasing function of odd
integers m. Hence by the alternating series theorem applied to (3.31)
we conclude that

dv(r, 0

20 < 010) + aslr).
Next we use Lemma 3.3 to estimate aq(r), az(r). From (3.16) we see
that

(A0 maan [ )
wvi |

To

Thus we have

1t () 10g (Ko
oo g < ¢ )

for some universal constant C' > 0. In view of the fact that 2% log (1/z) <
1/e, for 0 < z < 1, we conclude that

C

a(r) < ———,

rlog (f—f)

for some universal constant C. Since a similar inequality holds for a3 (r)
the inequality (3.30) follows.
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We wish to obtain a three dimensional analogue of Lemma 3.2. For
a = (a1, as) € R? let Sa(a) be the cylinder Sy of (3.19) centered at the
point (a1,az,0) € R®. Then for 279 < A < L we define the set Wy 1, to
be

(3.34) Wiz = S1\U{S2(a): a€Z2, Sh(a)C Si},

where we take Ry = L in (3.19). Thus W) 1 is a three dimensional
analogue of the set (3.5). Consider the Dirichlet problem corresponding
o0 (3.6),

Au(m)zo, JJEWA,L,
(3.35) wz) =0, z€dS;,
(.T) 1, anSQ() SQ()CSl,aEZz

The following lemma generalizes Lemma 3.2.

Lemma 3.6. Suppose 8ry < L and u(x) is the solution of (3.35). Then
there 1s a universal constant ¢ > 0 such that

cA
. inf 1——
(3.36) |x|1£L/4 u(z) > T
provided A lies in the region
L
210 <A< ——— .
L
log (—)
o

PRrOOF. First consider z = (z1,x2,0). Let v(x) be the solution of the
problem (3.20) with Ry = L/4. Then

Z v(x —a)

a€Z3

sup{ Zv(y—a): yE@SQ} .

a€Z3

(3.37) u(w) >

From Lemma 3.4 it follows that

sup{Zv(y—a):yE@Sz}_ (4(2>
a€Z3 log 4—
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for some universal constant ¢ > 0. Now we can obtain a lower bound
on the numerator in (3.37) by the same argument as in Lemma 3.2,
using Lemma 3.5. Hence (3.36) follows for x of the form = = (21, z2,0),
|z| < L/4. Finally it is easy to extend these considerations to the case
x3 # 0, |x| < L/4, by observing that u(x) is bounded below by the
solution for cylinders centered on the x3 constant plane of length L /2.
This last situation is just the z3 = 0 case again.

Next let 2 < 79 < Ry and D C R3 be the cylinder
D= {x=(v1,23,73): —Ro <3< R, r* =a3 + 23 < R3}.

We define a drift b : D — R3 as follows

b(.Tl,.Z‘z,.Tg)ZO, 7“0<7‘<R0, —R0<$3<R0,
(3.38)
b(xl,xz,xg):—(%,?J), r<rTo, —Rop <3< Ry .

For x € D let P;(D) be the probability that the Brownian process
with drift b, started at x, exits D through the bottom of the cylinder,
ODN{z : z3 = —Rp}. We wish to obtain a lower bound for P, (D) when
r = ro. To obtain this we consider an auxiliary region D’ defined by

R
D’:{x: r<l, —R0<x3<70}.

Let QQz(D') be the probability of exiting the region D\D’ through the
bottom of the cylinder 0D N {x3 = —Rp} or through 9D’. Then it is
clear that for = € D\D’,

(3.39) Py(D) > Qu(D)inf {P,(D) : y € dD'}.

We shall estimate both quantities on the right in (3.39).

Lemma 3.7. Let b’ be a drift on D which is the same as b except the x3

component is always zero. Let Q. (D') be the probability corresponding
to b’. Then

(3.40) Qa(D') = Q,(D").
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PRrROOF. Let u(z) = Q(D'), x € D\D’. Then u is the solution of the
Dirichlet problem

—Au(z) — b(x) - Vu(z) =0, z € D\D',
(3.41) u(r) =1, x € (0D N{xs=—Ry})UID’,
u(z) =0, x€0DN{xs>—Roy}.

Similarly if v(z) = Q,(D’) then v satisfies the equation
—Av(z) = b'(x) - Vo(z) =0, z € D\D',

with the same boundary conditions as in (3.41). We shall show later
that

(3.42)

Thus we have
—A(u—v)—b(z) - V(u—v) = (b(z)-b'(x))-Vu(z) >0, z € D\D',

in view of (3.42). Since u — v has zero boundary conditions on 9D UID’
it follows by the maximum principle that

u(z) > v(z), r € D\D'.
This is exactly the inequality (3.40).

To prove (3.42) we use a representation for the function v(z) which
is analogous to (3.27). Consider two dimensional Brownian motion with
drift b(z1, z2) defined by

0, T>Ty,

b(z1,22) = { _<ﬂ,@), r<Tp.

T T

Suppose the motion starts at (z1,x2) and consider only paths which
hit the circle » = 1 before the circle r = Ry. Let 7 be the hitting time
for such paths and p;(r,t) be the density for 7;. Similarly let 75 be the
hitting time for paths which first hit the circle r = Ry and pa(r,t) the
density for 7.
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Next let X3(¢) be Brownian motion started at 3 € R and 73 be
the first exit time from the interval [— Ry, Ro]. Let w(zs,t) be given by

R
’LU(.Tg,t) = ng(_RO < X3(t/\7'3) < 70> ,
h(a?g,t) = ng (7'3 < t, X3(T3) = —Ro) .
Then we have the representation,

v(xy, To, T3) = h p1(r,t) w(xs,t)dt
(3.43) /0

n / T (a(ry0) + palr 1)) B, 0) dt.

The function w(xs,t) satisfies the heat equation (3.24) with boundary
condition (3.25) and initial condition given by

R
1, —Ry<z3< 70 )
(3.44) w(zs,0) =
0, 70<.Z‘3<R0,

The function h(zs,t) satisfies the heat equation (3.24) with boundary
conditions

(3.45) h(—Ro,t) =1, h(Ro,t) =0, t>0.
and initial conditions given by

(346) h($3,0) = 0, —RO <x3 < RO .

Lemma 3.8. The function h(xs3,t) is a decreasing function of xs in
the interval [—Ry, Ry).

PrRoOOF. By the maximum principle one has
Ogh(xg,t)gl, —Ry<z3<Ry.

Hence if we put u(xs,t) = 0h(xs,t)/0xs, then u(xs,t) satisfies the heat
equation with initial and boundary conditions satisfying

’LL(.Ig,O):O, —R0<$3<R0,

U’(_R07t)§07u(R07t)§07 t>0.
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Again by the maximum principle for the heat equation it follows that
u(zs, t) <0, —Ry<x3< Ry, t>0.

Hence h(zs,t) is a decreasing function of 3.

Lemma 3.9. The function w(xs,t) + h(zs,t) is a decreasing function
of x3 in the interval [— Ry, Ry).

PROOF. Putting u(zs,t) = w(xs,t) + h(xs,t), it is easy to see from
(3.44), (3.45), (3.46) that w satisfies the heat equation with boundary
and initial conditions given by

’U,(—R(),t)zl, U(Ro,t)zo, t>0.
It follows again by the maximum principle for the heat equation that
Ogu(xg,t)gl, —R0<$3<R0,t>0.

Now we apply the same argument as in Lemma 3.8 to complete the
proof.

The inequality (3.42) follows easily now from (3.43) and Lemmas
3.8, 3.9.

Next we wish to estimate Q,(D’). In view of the fact that the drift
b’ does not depend on x3 this is easier to estimate than Q;(D’). Let
us consider the function

u(r, n) :/ e py(r,t)dt.
0

Then u(r,n) satisfies the equation

d*u , 1\ du
W+(b(r)+;>$_UU7 1<r <Ry,
u(l,m) =1,

uw(Ro,m) =0.

(3.47)
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Here 0'(r) is given by the magnitude of b’,

b,(r):{o, r>Ty,
-1, r<rg.

Lemma 3.10 Suppose 2 < ro < Ry, and 0 < nRy < 1. Then there is a
universal constant C such that

log rg

. >1-— .
(3.49) u(ro.) 2 1-C 50

PROOF. By the maximum principle the solution of (3.47) is bounded
below by the solution of the zero drift problem. Thus from Lemma 3.3
we have the inequality

oo gt
w0 | e
u(ro,n) > Ro ot
Wi | et
/TO dt
_ Lo(y/n o) LN t15(y/mt)
Io(y/7) /RO dt '
L I/ t)
Evidently one has
(3.49) %\%)0) > 1,
(3.50) /17’0 ”g(dﬁ <logry .

If we use the fact that there is a universal constant C > 0 such that
In(ynt) <Cfor0<t < Ré/z then it is clear that

Ro dt
3.51 / > logRy ,
( ) 1 tfg(\/ﬁ t) . 0

for some universal constant C7. The inequality (3.48) follows now from
(3.49), (3.50), (3.51).
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Lemma 3.11. Suppose x = (x1,2,23) € D\D' with x3 < Ry/4 and
ro = (22 +22)Y/2. Then if 2 < ro < Ry there is a universal constant C
such that

log r¢
3.52 "DY>1-C .
(3.52) QD) =1-C 5
PROOF. First we show that
Ry lo
g7To
3.53 JBDdt>1-C ,
(3.53) R A s

for some universal constant C;. To see this observe from Lemma 3.10
that

o0 log r
~t/Ro dt>1—Cy—20
|tz 1o B
Thus
Ry /2 [ lo
_pl/2 gT‘O
3.54 Jt) dt Ry Bdt>1-C .
50 [ penar W [ iz o
Now, if we use the fact that
/ p1(r,t)dt <1,
0
we conclude from (3.54) that
e
(1—e Ho') / p1(r,t)dt
(3.55) 0 1
_Rl/? 0g o
>1—e " —C :
- ¢ 2 log Ry

The inequality (3.55) clearly implies (3.53).
The result (3.52) follows now from the representation (3.43) by
observing from the reflection principle that

R
Py, | X5(t) < 70, 0<t<R3/2]

1-2 / h L ( 2 )d
=1- ——————exp| — —= ) dz.
Ro/2—z3 (47‘(’R3/2)1/2 4R3/2
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Next we wish to obtain a lower bound on P, (D) for y € 0D'. We
shall show that if r( is of order log Ry then this bound is close to 1.

Lemma 3.12. Let X3(t) be one dimensional Brownian motion started
at v3 € R with constant drift b(xs) = —1, x5 € R. Let 73 be the exit time
from the interval [—Rg, Ro|, where Ry > 1. Then there is a universal
constant C > 0 such that for x3 in the interval |x3| < Ry/2 there is the
inequality

C
(3.56) Py, (13 < R, X3(13) = —Rg) > 1 — —
Ry
PrOOF. For n > 0 let u(xs,n) be defined by
(3.57) u(zs,n) = L, [e”" x(X3(73))],
where
( )_{1, if 2 <0,
e = 0, ifz>0.
Then u(z3,n) satisfies the equation
d*>u  du
d—x%_d—a:g,_nu’ —Ry <23 <Ry,
3.58
( ) U(—Ro, T/) =1 ’
u(Ro,m) =0.

The equation (3.58) can be solved explicitly to yield

1/2
@3 +R0)/2 iy ((1 +4n)2(Ry — a:s))
2
sinh ((1 + 47n) 1/2R0)

(3.59) u(rg,n) =

Next we take n = 1/R3/2. Then it is clear from (3.59) that

C R R
L ——0<.T3<—0.

(3.60) u(zs,n) 21— Sh 2 2
0

Arguing as before we can see from (3.57) that

Pw?)(Tg < R%, X3(T3) = —Ro)

3.61 2 2
300 > (1— ¢ ™5) 7 (ules,n) — e 1)
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The inequality (3.56) follows now from (3.60), (3.61).

Lemma 3.13. Let X (t) be two dimensional Brownian motion started
at v = (z1, 1) € R% with drift b defined by

(y1,92)
b(y17y2) - _W .

Suppose (x1,x2) lies on the unit circle and T is the first hitting time
on the circle radius ro > 1. Then for Ry > 2 there exists a universal
constant C' > 0 such that if ro = C'log Ry then there is the inequality

(3.62) P(tr>R})>1- <.
Ry

PrOOF. Let us put
U’(x) = Ew[e_nT] ) n>0,

and let r = (22 4+ 22)*/2. Then u(z) = u(r) satisfies a boundary value
problem,

d*u 1 du
) (;—1>%:nu, 0<r<rg,
u(ro) =1.

Let v(r) be the solution of the boundary value problem

d?>v 1dv 9 <r<

— — = —— =10 r<r

a2 " 2ar 1Y 0>
(3.63) oro) = 1.

In view of the fact that «’(2) > 0 it follows from the maximum principle
that
u(r) < wo(r), 2<r<rg.

Now we have

(3.64) P(T < RY) §eu<1,%) <eu(2, L) <ev(2,i>.
0
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We can estimate the last expression in (3.64) since the solution of (3.63)
can be explicitly computed. It is given by

(@ — 1) exp ((a+ 1)4(7" — 2))
’U(T‘, 77) = A
(3.65) (- 1)(r—2)
. (a+ 1) exp ( - 1 )
A
with

(a+1)(rp — 2)
4

(o = 1)(ro — 2)) 7

Az(a—l)exp( 1

)+(a+1)exp<—
where « is related to n by
(3.66) a=(1+16n)12.

It is easy to see from (3.65), (3.66) that

(3.67) o(2 RL(%) < anl e - (Oz+1)4(’l"0 — 2)> . R%

if 1o = C'log Ry and C is sufficiently large. The inequality (3.62) follows
now from (3.64) and (3.67).

Corollary 3.1. There exists a universal constant C > 0 such that if
ro = C'log Ry then for y € 0D’ there is the inequality

C

PrOOF. From Lemmas 3.12 and 3.13 there is the inequality

P,(D) > (1—%) (1—1%).

Thus we are estimating the probability by restricting to paths which
remain in the cylinder r < ry until they exit. For paths which remain
in the cylinder, the components of the Brownian motion in the z3 and
(21, x2) directions are independent.
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Corollary 3.2. Suppose v € D\D' with x5 < Ro/4, ro = (z3 + 23)'/2.
Then there is a universal constant C > 0 such that for ro = C'log Ry,
there is the inequality

C
(3.68) P,(D)>1- T

PROOF. The inequality (3.68) follows from (3.39) and Lemmas 3.7,
3.11 and Corollary 3.1.

Lemma 3.14. Suppose R > 2. Then there is a drift b : R3 — R?
with the following properties:

a) supp (b) C {z: TR/8 < |x| < 9R/8}.
b) b(z) -2 <0, z € R3.
c) [[bllec <1,
/ Ib|dz < CR (log R)*,
R3

for some universal constant C > 0.

d) For z € R® satisfying |x| = R let P, be the probability that the
drift process exits the region {y : R/2 < |y| < 2R} through the outer
boundary {y : |y| = 2R}. Then there is a universal constant C > 0
such that

. (2 C

PROOF. Let a € R? satisfy |a| = R, and W), 1(a) denote the set W) 1,
of (3.34) rotated and translated such that the origin corresponds to a
and the (z1,z2) plane to the tangent plane to the sphere {x : || = R}
at the point a. We furthermore choose A, L by

L
3.70 L=aR A= ——
(3.70) all, 2Tos L’
where « satisfying 0 < a < 1 will be chosen independently of R.
We define a drift b, (), z € R® as follows: Suppose Ss is one of the
cylindrical holes in Wy r(a). Thus Sy has radius 7y and height L. Let
(21,22, z3) be orthogonal coordinates with x5 in direction a and origin
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at the center of the circle formed by the intersection of S; with the
tangent plane to the sphere |y| = R at a. We define b, (x) for x € Sy
by (3.38). We similarly define b, (z) for z in any cylindrical hole Sy of
Wi r(a). Otherwise we set by (z) = 0.

Next we choose a finite number of points aq,...,ay on {z : |z| =
R} with the properties: 1) For any « € {y : |y| = R} there is an
a;, 1 <i < N, such that |z — a;| < L/4. 2) None of the holes Sy in the
cylinders W) r(a;), 1 <14 < N, intersect.

Finally we choose ryo = I'log Ry, Ry = L, so that Corollary 3.2
holds and define the drift b by b = vazl b,,. It is easy to see now that
the parameters «, I, N can be chosen in a universal way so that 1), 2),
a), b), ¢) hold. It remains then to verify d).

To prove d) let x be such that |x| = R and a; satisfy |z —a;| < L/4.
Let @, be the probability of hitting one of the cylinders where b # 0
before exiting the region {y : R(1 —¢) < |z| < R(1+¢)}. Then by
Lemma 3.6 and (3.70) there is a constant C. depending on ¢ such that

Ce
71 e > 1— )
(3.71) Qo 2 log R

Next, fory € {z: R(1 —¢) < |[z] < R(1+¢),b(z) # 0}, let H, be the
probability that the drift process exits the set {z : R (1 — 2¢) < |z] <
R (1+ 2¢)} through the inner boundary {z : || = R(1 — 2¢)}. Then
by Corollary 3.2, £ can be chosen sufficiently small such that

C
3.72 H,>1— ——
( ) y = (logR)1/2 ’

where the constant C' depends only on «,'. Finally, for y satisfying
ly| = R(1 — 2¢) let K, be the probability that the drift process exits
the set {z: R/2 < |z| < R} through the outer boundary {z : |z| = R}.
In view of b) and the maximum principle this probability is less than
the corresponding Brownian motion probabilty. Hence one has

1-4
(3.73) K, < €

<1.
Y=1-2¢

We use (3.71), (3.72), (3.73) to estimate P, from above. In fact one
clearly has

(3.74) P, < (1 —Qu) + Q.(1 — ir?}f Hy)+ Qg sup H, sup K, sup P, .
y y y
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The inequality (3.69) follows now from (3.74) and the previous inequal-
ities since € can be chosen in a universal way with ¢ > 0.

We use Lemma 3.14 to construct a drift on R3. In fact let b,, be
the drift constructed in Lemma 3.14 with R = 27", n = —1,-2,...
Then we put

(3.75) b= 3 b,.

n=—oo

Observe that supp (by,,) do not overlap for different n. Hence from b),
d) of Lemma 3.14 we have the inequality

p_pn = sup P (drift process started at « with drift given by
|lz|=2="

(5.75) exits the region 27"~ ! < |y| < 27"F!

(3.76)
through the outer boundary)
<o {3,253}
min § —, ———=

for some universal constant C > 0, —n =1,2,...

Lemma 3.15. Let b be the drift given in (3.75) and suppose ay, , is
defined by (1.4) and ng, R related by (1.5). Then for any constants 7,
Cy>0,0<vy<1, there is the inequality,

(B77) D" sup exp (Co) anpsia(e)) < KR
m=0  TEUR j=0

for some constants K, «a depending only on v,Cy and p satisfying 1 <
p<2.

PRrOOF. From c) of Lemma 3.14 we see that
(3.78) > tyip(0) < C.
j=0

where (' is a universal constant. This follows because p < 2. On the
other hand it is easy to see that if = satisfies 27" ~! < |z| < 27" then

(3.79) Any+jp(7) < Cnf,
j=0
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for some universal constant C. Hence from (3.78), (3.79), we have

sup exp (C2 Y g 11()) < exp (€2 C o) = B
rEQR j:O

for some [ depending only on CyC. Hence (3.77) follows.

Our final goal now is to use the inequality (3.76) to prove that the
expected time to exit (2, starting at the origin, exceeds R* for any «,
provided R is sufficiently large. In view of Lemma 3.15 this will show
that there is no inequality (1.6) for p < 2.

Lemma 3.16. Let So,S1,...,Snm be a set of concentric spheres with
radii ro,r1, ...,y Satisfying ro < ry < -+ < rp. Let Y(t) be a
stochastic process with continuous paths which is Brownian motion in
the set {x : |z| < ri1}. Consider every path of Y(t) as being a random
walk on the spheres Sy, S1,...,Sym. For x € Sy let N, be the number
of times this random walk, started at x, hits Sy before hitting Spr. Let
Tz be the amount of time taken for the process started at x to reach the
sphere Spr. Then, if 21y < r1, there is an inequality

(3.80) E[r:] > Cr§ E[N,],
where C' is a universal constant.

PRroOOF. For z € S7 let p(z) be the probability of the process started at
z hitting Sps before So. Forn =1,2,...,and z € S1, y € So let ¢,,(z,y)
be the probability density for the process started at  and hitting Sy n
times without hitting Sp;. Thus if O C Sy is an open set,

P (Y with Y(0) = z hits Sy n times without hitting Sy and

that on the n-th hit it lands in the set O) = / qn(x,y) dy .
o
For x € Sy let T, be the first hitting time on S; for the process Y
started at . In view of our assumptions 7, is purely a Brownian
motion variable. Then we have the identities

P(Nac = 1) =FE [p(Y(Tm))]v

B8D N —ma) :E[/s gm (Y (), y) p(Y (T)) dy| .
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with m = 1,2, ... Clearly we also have the relation

(3.82) qm(a;,y):E[/S 4 (@2 2) G (V(T2), ) 2]

0

withn = 1,...,m—1. We shall use the functions p, ¢,, and the variables
T, to obtain a lower bound on E [7;]. We do this by bounding F [7,]
below by the amount of time the path spends in jumping from Sy to
Sl. Thus

Elrp] > E [Ty p(Y(1%))]

Y
£ 3 (B[L | an(Y ()0 p(Y(2,)) dy
(3.83) m=1 %

m—1

+> E[/SO /So dy dz gn (Y (1), y)

n=1

Ty G (Y (T,), 2) p(Y (T2)|
B[ [ V(@) TV (@) an])

Since T}, is purely a Brownian motion variable and 279 < 1, there is a
universal constant C' > 0 such that

(3.84) E[T,|Y(T)]>Cri, y€S;.

Substituting (3.84) into (3.83) and using the identities (3.81), (3.82)
yields the inequality (3.80).

Lemma 3.17. Let Sy, S1,...,Syp be a set of concentric spheres with
radit ro, 1, ..., " Satisfyingro < ry < ---<ry. Forg=1,...,M—1
let pj(x,y) be nonnegative functions of x € Sj, y € Sjy1 satisfying

0</ pj(x,y)dyﬁpj<1, .IESJ',
Sj+1
for some positive numbers p1,...,pp—1. Suppose now that the p;(x,y),
Jg=1,....,M — 1, are probability density functions for a stochastic pro-
cess Y (t) with continuous paths in the following sense: for any open set
O C Sj—i—l:

P (Y started at z € S; exits the region

between S;_; and Sj;q through O) = / pi(z,y)dy.
o
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Let x € Sy and N, be the number of times the process hits Sy before

hitting Spr when viewed as a random walk on the spheres Sgy,...,Sn.
Then

M—-1 3 '
(3.85) EIN]>1+ S J[%,

j=1 i=1%"

where ¢; =1 —p;, 1 =1,...,M — 1.
PrOOF. We shall first prove (3.85) in the case M = 2. Thus if we put
u(z) = E[N,] it follows that

| a@uwdr. s,
(3.86) u(z) =4 7%
/ pO(xay)u(y)dy_i_]-a 'TESOv
S1
where
P (Y started at z € Sy exits the region inside

3.87
(3.87) S through the open set O C S7) = / po(z,y) dy,
o

P (Y started at x € Sy exits the region between Sy

3.88
(3:88) and Sy through the open set O C Sy) = / q1(x,y) dy.
o

Evidently from the definitions (3.87), (3.88) one has
/ po(z,y)dy=1, x€S,
S1

/pl(x,y)dva/ qi(z,y)dy =1, z €S .
Sz SO

From (3.86) we have

(3.89) wu(z)= /s po(x,y)[g q1(y,z)u(z)dzdy + 1, x €Sy .
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Hence if we put ug = inf {u(z) : x € Sp} then
u(z) > Uo/ P0($7y)/ q1(y,z)dzdy + 1
Sl So

= uo/Slpo(a:,y)(l - /S2p1(y,z) dz) dy + 1

ZUO/ po(z,y) (L —p1)dy+1=wuo(l—p1)+1, x €Sy .
S1

Taking the infimum on the left in (3.89) we conclude

1
3.90 ug > — .
(3.90) 0z
This last inequality is just (3.85) for M = 2.
To generalize this for M > 2 let Py(z,y) be defined by

P (Y started at x € S exits the region between Sy

and Sps through the open set O C Sy) = / Pi(z,y)dy.
o

From [5, Lemma 6.3] it follows that

(3.91) Py(z,y)dy < Py, r €Sy,
Sm
where
3.92 P = L
(3.92) L= M-1j
1+ > J[%
j=1 4=1""

Hence (3.85) follows from (3.90), (3.91), (3.92).

We use Lemmas 3.16 and 3.17 to obtain a lower bound on u(0)
where w is the solution of (1.1), (1.2) with f = 1 and drift given by
(3.75). Let Sj,j = 0,1,2,... be spheres centered at the origin with
radius 27. Then the probabilities pj,J=1,...,M — 1, of Lemma 3.17
satisfy by (3.76) the inequality

e
}, i=1,2,...

p'émin{_a—.
J 3 \/j
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Consequently, if R = 27" one has from Lemmas 3.16 and 3.17 the
inequality

u©) 2 0(1+ 3 [[%) = Coxp (Culno|log nol)

7

where C, C'; are universal constants. Thus one has an inequality
U(O) > CvRozloglogR7

for some C,a > 0. In view of Lemma 3.15 the inequality (1.6) does not
hold for R sufficiently large.

4. Perturbative estimates on the exit probabilities from a
spherical shell.

In this section we shall be interested in the drift process with per-
turbative drift b. For Ry < R < Ry let Ug, g, be the spherical shell

Ur,.r, = {r €R®: Ry < || < Ra}.

Now suppose we start the process off on the sphere {z : |z| = R}
with density f(z), || = R. Some of the paths of the process exit the
shell Ug, g, through the boundary {|z| = R2} and the others through
{|z] = R1}. Hence the density f induces densities f1 on {|z| = R;} and
f2 on {|x| = Ry}. We shall be interested in comparing f;, fo and f.
To do this we shall need to define norms of these functions. Let p > 0
and g a measurable function on the sphere {|z| = p}. For 1 < ¢ < o0
we define the L9 norm of g by

lgllg = (47rlp2 /|m|:p lg(x)|? dx) 1/q.

Thus ||1]|, = 1. For an L' function g we define Av g by

1
Avg=— g(x)dr.
e N

It is clear that the functions f1, fo, f satisfy

Avfi+Avfo=Avf.
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We wish to obtain an expression for fo in terms of f . Let g(z) be a
function defined on the sphere {|z| = R2} and u(z) = Pg(x) be defined
for x € Ug, g, as the solution of the boundary value problem

AU(.Z‘)ZO, R1<|.Z‘|<R2,
(4.1) w(z) =g(z), |z|=Rs,
0, |.T|:R1

the kernel

(42) kT(‘rv y) - b(‘r) : VwGD(xv y) ) T,y € UR1,R2 .
Suppose g € L1({|z| = R2}). Then we define the operator @) by

(4.3) Qo) = / Gp(e.y) (I-T)"'b-VPg(y)dy, |e|=R,

UR1 »Ro

where T is the operator induced by the kernel kp. The expression (4.3)
is purely formal. It takes functions with domain {|z| = Rz} to functions
with domain {|z| = R}. Similarly, the operator P defined above takes
functions on the sphere |z| = Rz to functions on the sphere |z| = R.
Hence the formal adjoints P* and Q* of P and () take functions on
|z| = R to functions on |z| = Ry. We have now the relation

fo=Pf+Q°f.

Our major goal here will be to show that the operator Q* is dominated
by the operator P*. We shall prove this by showing that (Q is dominated
by P. To do this we shall need various estimates on the Green’s function
Gp(z,y) and its derivatives. Observe that the Green’s function for the
shell Ug, g, can be obtained from the Green’s function for a sphere by
the method of images. The estimates we need on Gp(z,y) can easily
be derived from this image representation. First we shall consider the
simplest of cases Ry = 0, Ry = 2R. We obtain an improvement on
Lemma 2.2.

Lemma 4.1. Suppose Ry =0, Ry = 2R. Let r,p, q satisfy the inequal-
wies 1l <r<p<3,q>r,

(4.4)
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Then if g € LY({|z| = Rz}) the function b-V Pg is in the Morrey space
M ({Jz] < Ra}), where

. L1
' g1 3 3q
and
(4.6) b VPgllg .~ < CRYT|b[3, llgllg -

ProOOF. The idea of the proof here is to use the Harnack inequality.
Thus it follows from Harnack that if g is a nonnegative function then
there is a universal constant C' such that

(R2 — []) [VPg(z)| < CPg(z).
Hence for any cube @ one has

1

T (Rz — |z])" [b(z)[" [VPg(x)[" dz
2 JQn{je|<R:}

Cr T T
< [ ba)|" |Py(a)|" do
2 JQN{|z[<R2}
C’r ril—«a ra r
(4.7 - b)) [b(a) " [Py(a)]" do
2 JRN{|z|<R2}
Cr / 1-r/q
< — |b(x)|r(1—oc)/(1—r/q) dr
A )

o r/q
(/ b(2)| | Py(x)|" d)
QN{|z|<R:}

Since P(1) =1 it follows by Jensen that

(Pg(a))" < Pg(x).

Thus

/ b(a) " Py (o) do
(4.8) QNilz|<R2}

sup Co(x x)|?dz,
< (5w Co) [ 1ot
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where

Colz) = / b(y)|" P, (y) dy,
Qn{ly|<R2}

and ¢, is the Dirac 0 function concentrated at x, |z| = Ry. We suppose
now that o > 0 is chosen so that ga < 1. Then we have

Co(x) <C b(y) d <C Z 22"/ y)|1% dy,

Q |?J—9’7|2

n=ni

where the @, are cubes with side 27" and n; is chosen so that |Q] ~
273", Using the fact that b € M} we conclude that

Co(z) <C Z 227 Q|93 || b |42

n=mni

55 < C1RIUT 2 bllgs,

for some universal constant C. Hence from (4.7) and (4.8) we conclude
that

1

T (Rz — |z])" [b(z)[" [VPg(x)[" dz
2 JQn{je|<R:}

(49) |Q|1 r/q—r(l— O‘)/3|Q|(1 qa)r/Squ

2r r
<& 5.0 57 gl

2/q—1 _
= ORIV QI b5, gl
where ¢; is given by (4.5) and « must satisfy the inequality

(4.10) M < p.
'y

The inequality (4.10) taken together with the condition ¢ v < 1 implies
(4.4). The inequality (4.6) is an immediate consequence of (4.9).

REMARK. Observe that (4.5) is the same as (2.5) but (4.4) is an im-
provement on (2.4).

Proposition 4.1. For 1 < q < oo the operator QQ defined by (4.3)
is a bounded operator from Li({|x| = Ra}) to LY({|x| = R}) provided
Ibl|s,p < € for sufficiently small € depending on p and q. Furthermore
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the norm of Q, ||Q|| satisfies an inequality ||Q|| < Ce, where C' is a
universal constant.

Proor. We have by Lemma 4.1 and Proposition 2.1 that if ¢ is suffi-
ciently small then

Qg(x)=/||<R Gp(x,y) h(y) dy, lz| =R,

where h is in the Morrey space M ({|z| < R2}) and

2/g—1
(4.11) 1Allgrr < CRY T bl [lglq

for some universal constant C'. Arguing as in Lemma 2.3 we see that if
m > 1 satisfies the inequality

(412) 2+ L >1+ L
' 3 gm ¢ 3m’

then

Qg € L™ ({|z| = R})
and
(4.13) 1Qgllm < CRE™>“ {|A]| gy 1+

for some constant C'. This inequality (4.12) holds provided m satisfies
the inequality
2—-4q

1
4.14 —
(4.14) — >

It is easy to see that (4.14) holds with m = ¢ for all ¢ > 1. The
result now follows from (4.11) and (4.13) by observing that 2/¢ — 1 =

—(2-3/q1).

Corollary 4.1. Suppose Ry =0, R =2R. Then for anyp, 1 <p <3
and q > 1 the following holds: there exists €,0 > 0 depending only on
D, q such that if ||blls, < e and ||f — Av f||, < 0|Av f| then

1f2 = Av fally < O[AV fo].
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ProOF. By Proposition 4.1 the operator Q* is a bounded operator
from LY({|z| = R}) to LI({|z] = R2}) and ||Q*|| < Ce. We combine
this with the fact that there exists v, 0 < < 1, such that

(4.15) 1P*(f = Av )llg <AIF = Av Fllg -

The inequality (4.15) follows by the same argument as in [5, Lemma 4.1].
It is clear that

Avf=P(Avf)=AvP*f =Av f,.
Thus

1f2 = AV follg = IQ"f — AvQ"f + P*(f — Av f)llq
<2Ce||fllg +yIIf = Av fllq
<2Ce(1+0)|Av fl+v0]|Avf|
< d|Av S|
=0 |Av fof,

if € is chosen so that
14+9

2Ce +v<1.

The proof is complete.
Next we state an obvious generalization of Corollary 4.1.

Corollary 4.2. Suppose Ry = R/2, Ry = 2R. Then for anyp,1 < p <
3 and q > 1 the following holds: there exist positive constants ¢y, ca,€,0
depending only on p, q such that if ||bl|s , < € and || f—Av f||2 < § |Av f]
then

|AVf1| 2 C1 |AVf| and “fl — AVf1||q S 5 |AVf1| y

|AV fa| > c2 [Av f] and | f2 = AV fallqg < 0 |AvV fof.
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PrROOF. We shall just show that |Av fa| > |Av f|. Observe that
Av (P*f)= P*(Av f)
= (Avf) P*(1)
= (Av f) P [Brownian motion started at z with |z| = R

exits Ug, r, through the boundary |y| = Rs]

L1
R R
11 T Av f
Ry R,
2
= gAVf

Hence

|Av fa| = |Av (P f) + Av (Q" )]
21Avf[

> 2 _geyg),
zw—cs(ua)mvﬂ
> ¢z [Av fl.

The proof is complete.

In Corollary 4.2 the distances R — Ry and Ry — R are commen-
surable. Now we wish to consider the situation when R — R; is much
smaller than Ry — R.

Lemma 4.2. Suppose R/2 < Ry < R < Ry =2R. Then if b =0 there
exists a universal constant co > 0 and a constant v, 0 < v < 1 such
that

(4.16) AV fo| > ¢ |Av f] R;%Rl ,
A
(4.17) 172~ Av fall < o ol L2l

forany q, 1 < q < 0.



614 J. G. CoNLON AND P. A. OLSEN

PROOF. Since we are in the Brownian motion case we have fo = P* f.
The inequality (4.16) follows by the argument in Corollary 4.2. To get
the inequality (4.17) we let k& > 0 be such that £ P(1) = 1. Since
fa = P*f it follows that

<17f2>:<17P*f>:<P17f>7

and so we have
1
(4.18) Av fy = % Avf.

Using Jensen’s inequality and the fact that P = P* we have that for
any ¢, 1 < q < oo there is the inequality

1k Pgllg < llgllq -

The inequality (4.17) will follow if we can show a version of the Harnack
inequality, namely

(4.19) C Pg(xp) > Pg(x) > ¢ Pg(xo), |z| = |xo| = R,

for universal constants C, ¢ > 0 and nonnegative functions g. In fact
we need only repeat the argument of [5, Lemma 4.1] for the operator
k P and use (4.18).

To see (4.19) we write

Po(a) = BlgX (] = | puly) Bylg(X (7).

Here 7 is the exit time from the shell Ug, gr, for Brownian motion. The
density p;(y) is the density for paths started at z, |z| = R, which hit
the sphere |y| = 3R/2 before hitting the sphere |y| = R;. Thus

1 _ 1

R R
ly|=3R/2 - _ =
R: 3R

Now by the standard Harnack inequality applied to the shell Ug, g,
there exist universal constants C7, ¢; > 0 such that

3R

C1Pg(yo) > Pg(y) > c1Pg(yo) , ly| = lyo| = 5
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Hence we have

/ y) Pg(y) dy
lyl= 3R/2

< y) C1 Pg(yo) dy
lyl= 3R/2

= Pzo(y) C1 Pg(yo) dy
ly|=3R/2

< pzo(y) CT Py(y) dy
ly|=3R/2

Similarly we obtain a lower bound Pg(z) > ¢?Pg(xzo). Thus (4.19)
follows with C' = C%, ¢ = 3.

Next we wish to generalize Lemma 4.2 to the case of nontrivial
drift b. To do this we shall need to generalize further the notion of
a Morrey space. For () a dyadic cube intersecting the spherical shell
Ur, r, let d(Q) be defined by

d(Q) =sup{d(z,|y| = R2) : x € Q} .

Observe that d(Q) is not the maximum distance from points in @ to
the boundary of Ug, gr,, only to the part of the boundary consisting of
the sphere |y| = Ry. We define the Morrey space M, (Ug, r,) where
1 <r <qg< ooands > 0 by the following: a measurable function
g : Ur, g, — Cisin MI (Ug, gr,) if (R2 — |z|)" |g(z)|" is integrable
on Ug, r, and there is a constant C' > 0 such that

1 R sr
420 g [ (el ol e < 0P ()

for all cubes @ C R3. The norm of g, ||g4.rs is defined as

lgllq,r,s =nf{C : (4.20) holds for all cubes @} .

Lemma 4.3. Suppose R/2 < Ry < R < Ry =2R. Letr,p,q satisfy the
inequalities 1 < r <p <3,q>r and (4.4). Then if g € LY({|z| = Ra})
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the function b-V Pg is in the Morrey space M} (Ug, r,) where s = 2/q
and

Ib-VPg|l3,s < CR;'||b

3. llgllq -

ProoF. This follows immediately from the argument of Lemma 4.1.
The only modification is in estimating the function Cgq(x). It is clear
that if |x| = Rq then

Q%72 b5
(4.21) Co(x) <C e P

for some universal constant C'. Observe that we also have an inequality
(4.22) IVPg(x)| < CRy lgll

provided R; < || < 3R/2. This follows since Pg(z) = 0 for |z| = R;.
To get the inequality (4.20) we divide the cubes @ into two types, those
with d(Q)) < R/2 and those with d(Q) > R/2. For the first type we
use the estimate (4.21) and the corresponding estimate in Lemma 4.1
to obtain (4.20) with s = 2/¢. For the second category we use (4.22)
and the fact that b is in M.

Lemma 4.4. Suppose R/2 < Ry < R < Ry = 2R. Then the operator T
with kernel kr given by (4.2) is a bounded operator on the Morrey space
Mg (Ug, r,) provided 1 <r <p and1 < q <3, s> 0. Furthermore,
the norm of T is bounded as ||T'|| < C'||b||3, where the constant C
depends only on r,s,q.

Proor. This follows from Corollary 2.1 and the fact that

nor nor
Q Q
R

> b(@)] Spu(z) < [b(z)] Y 27" U0 Gy

n=-—oo n=—oo

where the (),, are an increasing sequence of dyadic cubes containing the
point . We have now from (4.20) that
Ry

/
ua, < Cl (G) Telans-

Hence,

Q! R R s+1
Z 2=y, Qn) C|Q |1/3 1/‘1( (Q/)) Hqu,T,Sv

n=-—oo
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for some universal constant C', since ¢ < 3. Here we have used the fact
that d(Q,) > d(Q’) since @, D Q'. Thus

nQ/

(Bz = [2)"( D2 b@)] Spulx)) da

n=—oo

1
Rg Q’ﬂURl,RQ
R

<o ([ @)l () 1@

R sr
11—1/3 r nr/3—r/q
QI Nl s () 19

(i) QI

<C"|b

I?"
3,p

=C"||b

|3, llu

Proposition 4.2. Suppose R/2 < Ry < R < Ry =2R. For1 < ¢ < o
the operator Q) defined by (4.3) is a bounded operator from Li({|x| =
Ry}) to Li({|z| = R}) provided ||b||3, < € for sufficiently small €
depending on p and q. Furthermore, the norm of Q, ||Q|| satisfies an
inequality ||Q|| < Ce (R — Ry1)/R, where C is a universal constant.

PROOF. From Lemma 4.3 and Lemma 4.4 we have
Q)= [ Golw)dy, el =r.
URy, Ry
where h is in the Morrey space ML (Ug, gr,) for any 1 <r < p, r <

q1 < 3, provided (4.4) is satisfied and

11
4.23 — =
(4.23) o3

2

i
3 3q’
with 0 < s < 2/q. The norm of h satisfies an inequality

(4.24) 1Al s < CRY 57 ||b

3. ll9llq -

We write Qg(z) = g1(x) + ga2(z), where

g1(z) = Gp(z,y)h(y)dy.

/URl,RQH{IyI<3R/2}
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It follows that for |z| = R, there is an inequality

C(R—R
nte)) < SEZI (1>~ o) In(y) dy
Ury,ryN{ly|>3R/2}

C (R - Ry)
(4'25) < Rz R*3/ ||h||q1,rs

C (R - Ry)

= S b gl
Next observe that
h
@2 ln@ <cm-m) [ )l
Ur,,ry N{|y|<3R/2} |z —y]

We estimate the integral in a similar way to Lemma 2.3. Thus

@I )=
o= | e ey

<( Jﬂ@ﬁﬂwy“( |MwW“”“>d@u¢7

o=y o — y|C7 /07

where 1/q+ 1/¢' = 1. We have used here the fact that r < ¢ which is
a consequence of (4.4). We can estimate

Fdy <C Y 2"(2_%/")("/ [h(y)|* =D dy,

n=ngo n

|h(y)|q’(1—r/q)
|x — y| (2—2a/q)q

where (), is the cube centered at x with side of length 27" and 270 ~
R. In view of the fact that ¢'(1 —r/q) < r we have

t/'“www””@snwﬂz”@wahﬂPNWm.

Hence, provided «, 0 < a < 1, satisfies the inequality

(4.27) (22;‘)q’3+<q)<0,

we have the inequality

q(l r/q) 1/q
/ | ||<2 e dy) < C s R G fas0r
r—y Q@
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There exists «, 0 < a < 1 satisfying (3.27) provided

1
1- =
1 q
— <.
")
q

Observe that since r > 1 the number on the right hand side of the last
equation exceeds 1/3. Since ¢; satisfies (4.23) and we can choose s as
close as we please to 2/¢ the number ¢; may be chosen so that 1/¢; is
less than any number larger than 1/3. Hence we can find an o« with
0 < a < 1 such that (4.27) holds. Then

h)]
/|ac|=R < E _yy|2 dy) e

< C||h||¢=r  RT™ (3—2a)=3(a— r)/qlf /
e |z|=R |z — y[2 y|2“

RI~(B—2a)=3(a—7)/a1 R2— 2a||h||q R3-3/a
1,

r,s

< C|AlIG s
= O[]l s BT
< C1R*1|bll3, llgll3

for some universal constant C' by (4.24). Hence by (4.26) we have

R—R
(4.28) lg1ll < € -

b

3.0 ll9llq -

Putting (4.25) and (4.28) together we conclude that

R—- Ry

lQglly < © =

b

3,5 ll9lq

and hence the result follows.

Next we put Lemma 4.2 and Proposition 4.2 together to obtain an
analogue of Corollary 4.2 for the case when R — R; can be much smaller
than Ry — R.

Corollary 4.3. Suppose R/2 < Ry < R < Ry = 2R. Then for any p,
1 <p<3andq>1 the following holds: there exist positive constants
c,e,0 depending only on p,q such that if ||b||3, < € and

(4.29) If = Av fllg < 0[Av f1,
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then
(130) Avpl> ot Ay g
and
(4.31) | f2 = AV fallq < 0 |AvV fof.

PROOF. We have

R— Ry
R

AV fol = |AV(P*f) + Av(Q"f)| = |Av (P*f)| - Ce £l

by Proposition 4.2. Now from the assumption (4.29) we conclude that

_ CE(R—Rl)

@) JAvhl 2 |Av e - S

(146) |Av f].

The inequality (4.30) follows now from (4.32) and (4.16) of Lemma 4.2,
provided we choose ¢ sufficiently small. To get (4.31) observe that

f2 = Av Folly  IP°f = Av(P*f)lly | [Q"f = Av(Q"F)lg

|AV f2| - |AV f2| |AV f2|
|Av (P*f)] 2Ce(R— Ry) |Av f|
<70 AV A R PO

where we have used (4.17) of Lemma 4.2 and Proposition 4.2 together
with (4.29). Now from (4.32) and (4.16) it is clear that for sufficiently

small € we have

AvPr) 1L

1
|AVf2| 2 2’}’7

since v < 1. Similarly we see that for sufficiently small ¢ there is the
inequality

2Ce (R~ Ry) AVl /1~
R L+ 7 <(3-3)9

Putting the last three inequalities together we conclude that (4.31)
holds.
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Observe that, in contrast to Corollary 4.2, we cannot expect the
inequality || f1 —Av f1]|q < 6|Av f1] to hold in the situation of Corollary
4.3. The reason is that if R — R is small then Brownian motion has a
very small smoothing effect on a smooth density f. Thus the fluctuation
of P*f decreases by a small amount proportional to (R — R;)/R. On
the other hand the perturbative part Q* f can generate high frequency
modes with norm strictly larger than (R— R1)/R and hence the relative
fluctuation of f; can be larger than that of f. We study this situation
further in [3].

5. Perturbative estimates on the exit probabilities from a
spherical shell with holes.

Consider a set S C R3 which is a union of disjoint cubes. In this
section we shall prove theorems analogous to the theorems of Section 4
for the drift process restricted to paths which do not intersect the set
S. To do this we associate with § a potential function Vs from which
we can estimate the probability of hitting the set S.

First we consider the case of Brownian motion b = 0. For each
cube ) in S let Q be the cube concentric with ) but double the size.
We define a function Vg : R> — R by

1 €O
T~o/3 0 L )
(5.1) Vo(z) =4 QP73
0, otherwise .

The potential Vs is then defined as
(5.2) Vs=> Vo.
QCS

Now let X (t), t > 0, be Brownian motion started at a point z € R3.
If X hits a cube Q C S then it will spend time of order |Q|?/3 in the
cube. Thus [;° V(X (t))dt is of order 1 on paths X (t) which hit Q.
Hence we expect that the probability of Brownian motion hitting S can
be estimated by the expectation of [~ V(X (¢)) d¢ This is in fact the
case.

Proposition 5.1. Let X(t) be Brownian motion in R3. Then there is
a universal constant C' > 0 such that

Po(X hits ) < C’Ew[/oo Vs(X(8)) dt] .
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PROOF. Putting u(z) = P,(X hits §), z € R*\S it is well known that
u(x) is the solution to the Dirichlet problem

{Au(x)zo, r e R\S,
u(z)=1, x€dS.

On the other hand the function

w(z) :Em[/ooo V(X (1)) dt] = i/ Vs 4,

AT Jgs |z —y|

satisfies
Aw(z) =0, r € R\S.

Suppose x is close to a boundary point of §. Then this point is part of
a cube (). Thus

1 %
lim w(x) > lim —/ o) dy>c¢>0,
&—0S 2—0Q 4T Jo v — y|

where c is a univeral constant. Consequently we have

u(z) < w(cx) ) x € 0S.

Hence by the maximum principle we have the inequality

u(r) < , r € R3\S,
which proves the result.

We shall use the argument of Proposition 5.1 to prove an analogue
of Corollary 4.1.

Proposition 5.2. Suppose Ri = 0, Rs = 2R, b = 0. Let f be a
density on the sphere |x| = R and f2 the density induced on |z| = Rs
by f propagated along Brownian paths which do not intersect S. Then
for any q, 1 < q < oo, there exists 0,n > 0 depending only on q such
that of

If = Av fll, < 5|Av /]

and

Aapen (B2 [ Vax @) de]) <.
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then

o= Avlle <OAVEl  and  |Avfl > 2L

PROOF. We consider the operator from functions g on |z| = Ry to
functions on |z| = R given by

Ag(x) = Elg(X(7R,)), X(t) €S, somet, 0 <t < Tg,].
Then for any r,r', 1 <r < oo,1/r 4+ 1/r' =1, we have
|Ag(z)|" < P.(X(t) €S, some t, 0 <t< TR2)’"/T’Em[|g(X(TRz))|’"] ,

by Holder’s inequality. Now by the property of the Poisson kernel we
have that
Eullg(X(Tr,))"] < Cllgll

for some universal constant C'. Hence if » > r/, we have
|Agllr < Cllgll; Avig)=r Pe(X(t) € S, some t, 0 <t < 7Tg,).
If » < 7’ we have by Jensen,
| Ag|lm < C |lglls (AVigj—r Po(X () € S, some t, 0 < t < Tg,))"/" .
Now by the argument of Proposition 5.1 we conclude that

1Agll < C llgllr ==/t

for some universal constant C'. Thus the adjoint A* of A is a bounded
operator from LI({|x| = R}) to L4({|x| = R2}) with norm || A|| bounded

as
14| < Cnmin{l/q,l/q'} ,

for some constant C'. Observe next that the densities f and fo are
related by the equation

f2:P*f_A*f7

where P is the integral operator with Poisson kernel as in Section 4.
Hence we have

Avfo=AvP*'f—Av(A*f) =Avf—Av(A"f).
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Now since ¢ > 1 it follows that

AV (A* )] < [|A*fl,
< Cygrinit/at/dy) g

< Cmin{/a1/d} (1 4 §) | Av f].

Thus by choosing 7 sufficiently small we have |Av fo| > |Av f]/2.
Next observe that there exists v, 0 < v < 1 such that

1P*f = Av (P f)llg < IIf = AV fllq -

Hence

£ = AV fally |17 = Av (P* Dl + 147f = Av (A7),
<75 |Av f] + 20 ALY (14 6) | Av ).

It is clear by choosing n > 0 sufficiently small that the right hand side
of the last inequality is less than 0 |Av f2|. The result is complete.

REMARK 5.1. Observe that in Proposition 5.2 we have used the fact
that if @ is a cube in S then Vs(z) > |@|~2/3 on the double of Q, Q. The
reason is that if  has a small intersection with Ug, r, then QNUg, g,
has volume of order |@)|. Hence a Brownian path which hits () makes
an order 1 contribution to [ Vs(X(t)) dt.

Next we wish to generalize Propositions 5.1, 5.2 to the case of
nontrivial drift. First we estimate the probability that the drift process
visits a cube ().

Proposition 5.3. Let Q,, be a cube with side of length 2=, m an
integer, and P, (Q.,) the probability that the process with drift b started
at x wvisits Q,, before exiting to oo. Then for any o < 1 there exists
e > 0 such that if ||b||s,, < € then

C
2md(z, Q) + 1)’

(5.3) Pp(Qm) <

for some universal constant C. Here d(z,Qy,) is the distance from the
point x to the cube Q.
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PrRoOOF. First we consider the solution of a boundary value problem
on the shell Ug, g, with Ry = R/2 and Ry = 2R. Thus we wish to
estimate the solution of

Aw(z) +b(z) - Vw(z) =0, z€Ug R,,
w(r) =0, lz| = Ry,

Let wq be the solution when b = 0. Then, in the notation of Section 4,
wo = P 1. 1t is easy to see that wy is given by the formula

wo(x):é(l u )

~ 2Jg]

We shall show that € > 0 can be chosen so that if ||b||3, < ¢ then there
exists a universal constant C' > 0 such that

(5.4) lw(z) —wo(z)| < Clbll3,,  ©€Ug, R, -
In fact we have
(5.5) w(z) = wo(z) + Q 1(z), x € Ug, R, ,

where @ is the operator (4.3). It is easy to see that if 1 < r < p,
r < q < 3, the function b - Vwy is in the Morrey space M? and
b - Vuwolly,r < CRY472|bll3,,

for some universal constant C' > 0. It follows then from [5, Theorem 1.2]
that for e sufficiently small

Q1(z) =/U Gp(w,y)g(y)dy,

where g € M7 and

g < CR¥42Jb

lg |3,p )

and C is a universal constant. If we take ¢ > 3/2 then the inequality
of (5.4) follows by standard argument.
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To prove the inequality (5.3) let S, £ = 0,1,2,... be spheres
concentric with ), and with radius 2¥2=™. Thus Sy contains Q,,.
From (5.4) we can choose ¢ sufficiently small such that w satisfies

2a

. inf > .
(5.6) |wl|n=Rw(x)_(1+2a), 0<R< o

The inequality (5.3) follows immediately now from (5.6) and [5,
Lemma 6.3].

REMARK 5.2. Observe that in the Brownian motion case one can take
a = 1 in (5.3) but for the case of nontrivial b one must have o < 1.
This fact will determine our selection of the function Vs in the case of
nontrivial b.

The proof of Proposition 5.3 does not generalize to the situations
we are interested in. We shall therefore give a different, more compli-
cated proof of the Proposition which does generalize. Let us consider
the region (2p external to the ball of radius R > 0 centered at the
origin. The Dirichlet Green’s function for this region is given by

5.7)  Goly) = — (

T dm

1 R 1 )
lz—yl |yl lz—7|/’

jz], [yl > R,

where 7 is the reflection of y in the boundary of €2r. We estimate Gp
and its gradient V,Gp:

Lemma 5.1. a) There is the inequality

1
0<@G < > R.
>~ D('Tvy) = 47r|x—y| ’ |'T|7|y|

b) |VwGD($7y)| < kl('ray) + kz(d?,y), where

C
. k < -
(5 8) | 1($7y)|— |x—y|2 s |'T|7|y|>R7
ko 9)| € ——, Iyl > 3lal, Jo| > R
2 ) = ) ) 9
(5.9) |z | y]
|ka(z,y)| =0, otherwise,

and C s a universal constant.
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PROOF. Since a) follows easily from the maximum principle we shall
just consider b). We have now

-1/ z—y R z—-Yy
me Yy =——\ = "7 —= ) -
VaGole) = o (=5 ~ Tyl o —79)

Since Gp(z,y) > 0 it follows that

1 1 1
VwGD Zr,Yy §_< + _)-
Vool < g \G o " =yl =7

We consider first the case |y| > 3|z|. It is easy to see that |z — y| >
2 |y|/3 and

=

_ _ |z
—gl >zl = gl > |z - = > 2L
lz 7| > |z| - [g] > |z| 325
Hence
1 3
— < .
lz —ylle =7 = || |yl

Next consider the situation R < |y| < 3|z|. Suppose that |z| > 2R.
Then

N R i et

-2 8 - 8

In the case R < |z|, |y| < 2R it is clear that there exists a universal
constant C7 with | — | > Cy |z — y|. We conclude then that in this
situation one has

[z =7 = |z| - R

2Gp(T,Y)| < —
|v D('T y)| —= |x—y|2

for some universal constant C' > 0. The proof is complete.
Next we define Morrey spaces for the region 2r in a similar way

to (4.20). Thus for 1 <r < g<ooand s >0 wesay g:Qr — Cisin
the Morrey space M (Qg) if

R

G0y [ el < crier ()

for all cubes @ and constant C. Here d(Q) is defined by
d(Q) =sup{ly|:y € QN Qr}.

Evidently one has d(Q) > R. The norm of g, ||g|lqrs is then the
infimum of all C such that (5.10) holds.
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Lemma 5.2. Let T be the integral operator on functions with domain
Qpr which has kernel [b(x)| ki(z,y) where b € M}, 1 < p < 3 and k;
satisfies (5.8). Then for 1 <r <p,r <q<3,s>0,T; is a bounded
operator on M (Qr) and the norm of Ty, ||T1]| satisfies an inequality
IT1|| < C||bl|3,, where C depends only on r,p,q,s.

PROOF. Same as for Lemma 4.4.

Lemma 5.3. Let Ty be the integral operator on functions with domain
Qg which has kernel [b(x)| ka(x,y) whereb € M7}, 1 < p < 3 and k;
satisfies (5.9). Then for1 <r <p,r<gq,s>0and2<3/q+s<3/r,
Ty is a bounded operator on M, (Q2g) and the norm of Ty, ||Tz|| satisfies
an inequality ||T2]| < C||b||3,p, where C' depends only on r,p,q, s.

Proor. For n = 0,£1,... let (),, be the cube centered at the origin

with side of length 27", If u : Q2r — C is a locally integrable function
we denote by ug, the average value of |u| on @y, whence

uo, = Q™ [ Ju(e)do.
QRan
Hence we have

C |b(x —on
|T2U($)|§% Z 272 uQ,

|lz[<27m

for some universal constant C. Hence for 2=™ > R, we have

o) k
/ermR Tyu(z)|" dz < CTk:Zm/Qk (|b(x)|2k Y oo uQn) dz

n=—o0
oo k
r
<O b5, Do 2 (YT 2, )
k=m n=-—oo

Observe next that

k k
> 27 ug, < fullyrs Do 2R

n=—oo n=-—oo

< Oy RS [l 2928 9),
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since 2 < 3/q + s. Thus we have

[ 1Bl de < €T GLRT S bl ul 2507

m k=m

< O3 R bl llullg o 2mCr/ater=2),

q7’r,s

since 3/q + s < 3/r. Consequently, we have

R \sr
d(Qm)> '

| aa@) o < €5 bl ful 1@l 7

m

We have shown therefore that (5.10) holds for cubes centered at the
origin. It is easy now to generalize the previous argument to all cubes.

PROOF OF PROPOSITION 5.3. Evidently P,(Q,,) is bounded above by
the probability that the drift process started at x hits the ball concentric
with @), of radius R = 27" . For Brownian motion this probability is
given by wq(x), where

{ Awg(z) =0, |z|> R,
wo(z) =1, lz| = R.

Thus wo(x) = R/|x|, |z| > R. For the drift process it is given by w(z),
where

(5.11) w(z) = wo(x) + ; Gp(z,y) (I —T) b - Vuwy(y) dy.

Here Gp is the Green’s function (5.7) and 7T is the integral operator
with kernel b(z) - V,Gp(z,y). We wish to show that the function
b - Vwy is in an appropriate Morrey space Mg (Q2gr). Evidently one
has |b(z) - Vwo(z)| < R |b(z)|/|z|>. Now for the cube Q,, with side of
length 27" > R centered at the origin one has

R|b(x)[\" moo
(5.12) / (W) dz < C> |bll , R 27G=50)

j=n

< Cy|blls,, 7™,
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for some constant C4, provided 1 < r < p. On the other hand if @) is a
cube such that d(Q) > |Q|'/? then we have

/Q(R|b(x)|>"dxS R" Iblls, Q173

]2 d(Q)*"
R \r(3=3/q)
< RT(3/q—2) bll% 1-r/q
< (zgy) Il
< Rr(3/q—2)(i>rs|lb n QI
B d(Q) ?

for any r,s,q with 1 <r <p, ¢ <3, s <3 —3/q. Combining this last
inequality with (5.12), we see that if r, s, ¢ satisfy the inequalities

1 1
(5.13) 1<r<p, r<q<3, s§3(———>,
r o q

then b - Vwy is in Mg (Qr) and

b - Vawpllgr,s < CRY172 b

|3,p ’

for some constant C' depending only on ¢, r, s.

Observe next that for any s, 0 < s < 1, it is possible to find
r,q such that 3/2 < ¢ < 3 as well as the inequalities (5.13) and the
conditions of lemmas 5.2, 5.3 hold. Hence the function

g(z)= T -T)" b Vuwy
is also in M} (Qg) for sufficiently small e and has norm which satisfies

lgllg.rs < CR¥ 172 |b]3, ,

for a constant C' depending only on ¢,7,s. Now let us suppose that
|z| > 2R. Then from (5.11) we have

wi) —wo(@)l < | Golz,y)lg(y)ldy

§/ dy+/ dy
(5.14) o=yl <|e|/2 lyl<lzl/2

-l-/ dy
{lz—y|>1z|/2, ly|>|=|/2}

=L +1+15.
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If we take now 270 ~ |z| for a suitable integer ny we have

11<022k/ y)| dy

—yl<27k

o0 3 R s B 3
<O Y R g, (4o ) 20

o(5w)’

Y

k:no

R )8+3/q—2

= CIbllsp (5

since ¢ > 3/2.
On the other hand we have

m

I, < C 2™ / l9(y)|dy

< ¢ Z R3/a- 2(2 k) b3, 2™ 3k(1—1/q)

k:no

R s+3/q—2
|3’p(2—no ) ’

<Clpb

since s + 3/q > 3. Finally we have

<C Z 2’“/ l9(y)| dy

k——o00 k<|$—y|<2_k+1
<C Z ok p3/a— 2(2 k) bl 2 3k(1—1/q)

<Oy ()"

Y

631

provided s + 3/q — 2 > 0. Now it is easy to see that we can choose
s,q,r appropriately to make s+ 3/q — 2 as close to 1 as we please. The

inequality (5.3) easily follows from this.
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Next we consider a cube @,, with side of length 27™ which is
contained in the ball Uy g, of radius Ry. For z € Up g, let P (Q,,) be
given now by

P,(Q,,) = probability that the drift process started at x
hits @), before hitting the boundary of Uy g, .

It is easy to estimate this probability in the case of Brownian motion
b = 0. In fact by the argument of Proposition 5.1 it is bounded by

(5.15) P.(Qn) <C 22™ G p(z,y) dy,
Qm

where G'p is the Dirichlet Green’s kernel on Uy g, and C is a universal
constant. Since G'p is given explicitly it is easy to estimate the right
hand side of (5.15). Let d(Q.,) be defined by

d(Qm) = sup {d(yv 8UvO,Rz) VNS Qm} .
Then we see from (5.15) that

C

516 P@n) € g

min {1’ gm ZTX&& 1 } )

where C is a universal constant. In view of Proposition 5.3 it would
seem that one could generalize (5.16) to the case of nontrivial b by

2" d(Qu) }
2m d(x, Q) + 177

Ca

(5-17) - Po(CQm) < gm0+ 1)

min{l,

where 0 < o < 1 and the constant C, depends on a. We shall prove
the inequality (5.17) following the same lines as the second proof of
Proposition 5.3.

Let B,(p) be the ball of radius p centered at the point a. Suppose
a € Uy gr,, the ball of radius R, centered at the origin and the distance
from a to OUy g, is larger than 3p. Let wy be the solution of the
Dirichlet problem

Awy(z) =0, x € Uygr,\Balp),
(5.18) wo(z) =1, o€ 0By(p),
wo(a:) =0, T € 8U0,R2 .
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Lemma 5.4. There is a universal constant C > 0 such that for x €
UO;RQ\BG/(p)

Cp _ d(a,0Uy r,)
5.19 v < P {1, —2}
( ) | w0($)| = |.T—CL|2 min |.T—CL|
PRrROOF. Let Gp(z,y), x,y € Uy g, be the Dirichlet Green’s function

for the ball. Then just as in Proposition 5.1, there exists a universal
constant C' such that

wolz) < Cp~2 /B Gy, e € Uon\Bulp).
alp

It is easy to estimate wg(z) from the last inequality since we have an
explicit formula for Gp. Thus there is a universal constant C' > 0 such
that

Cp . d(a, 8U0 R2)
. < — —_— =,
(5.20) wop(z) < P mln{l, P }

We obtain the estimate (5.19) from (5.20) and the Harnack principle.
First let us consider the case where p < |z — a| < 3p/2. Now the
function wp can be extended in a harmonic way inside the ball B,(p)
by using the Kelvin transform [1]. Hence wg is harmonic in the region
p/2 < |z —al < 7p/4 and ||wy||s < C for some universal constant C.
It follows then from the Harnack principle that
Vo) < S,  p<lr—d <P
p 2
for a suitable universal constant C' > 0.
Next we consider the situation where

d(a, 8U0732)
—2 .

3p
— < — <
5 |z — al

Then wp is harmonic in the ball |y — 2| < |z — a|/4. In fact we have

r—a
o —al < o=yl +ly—al < T 4y —al,

whence |y —a| > 3|z —a|/4 > 9p/8 > p. On the other hand

5|z — al < 5d(a,0Uo Rr,)

—a| < |z — —al <
R R

< d(a, aU(),R2) .
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It follows easily now from (5.20) and the inequality |y —a| > 3 |z —al|/4
that |Vwo ()] < Cp/|z — a|? for some universal constant C.

Finally we consider the situation |z — a| > d(a,0Uy r,)/2. Using
the Kelvin transformation the function wy can be extended in a har-
monic way to the entire ball |x — y| < |z — a|/4. Now, using Harnack
and the estimate (5.20) we conclude that there is a universal constant
C such that

All cases of the inequality (5.19) are now covered.

Let Gp,i(x,y) be the Dirichlet Green’s function for the domain
Uo,r, \Ba(p). We wish to prove an analogue of Lemma 5.1.

Lemma 5.5. a) Let d = d(a,0Uy g,). Then there is a universal con-
stant C such that

Q

21 < <
(5 ) O—GD,l(‘r?y)— |x—y|

b) |V:BGD,1(x7y)| < kl(xvy) + k2($7y)7 where

ly —al+d
5.22 k < 1
( ) | 1('T7y)|— |x—y|2 mln{ ’ |x—y| }7
C _ |z —al+d
5231)  |ka(z,9)| < ——— min {1,
B28.0) kol y)] < gy min {1 ==

if ly —a| > 3|z —al and
(5.23.2) k2 (z,y)| =0,

otherwise.

PROOF. a) Let Gp(z,y) be the Dirichlet Green’s function for the ball
Uy r,. Then we have the inequality

d(y,0Uo Rr,) } ,

C
0<Gple,y) < —— min{1,
|z — y| |z — y|

for some universal constant C'. The inequality (5.21) follows now from
the fact that

0<Gp,(z,y) <Gp(w,y), d(y,0Upr,) < |y —a| +d.
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b) Consider first the situation |y — a| < 3 |x — a|. Then we have
e —y|<|r—al+|y—a| <4|z—al.

Consider next the ball B, (|x —y|/8) centered at x with radius |z —y|/8.
For z € B, (|z — y|/8) we have

7z —yl

=yl 2 o=yl - s -l 2 T

and

-yl le—a

[z —al >z —al = |z -2 > |z —af - >
8 2

Hence if |z — a| > 2p the ball B, (|x — y|/8) does not intersect By, (p).
Furthermore, the function u(z) = Gp 1(z,y) can be extended in a har-
monic way by the Kelvin transform to the entire ball B, (|z — y|/8).
From (5.21) it follows that the L>° norm of u, ||u||~, on this ball satis-
fies

[ufloo <

|y—a|+d}'

min{l,
|z — |

C
|z =yl
The inequality (5.22) follows now from this last inequality by the Har-
nack principle. To deal with the situation |« —a| < 2p observe that the
inequality (5.22) is just the same as ki(z,y) < C/|z — y|?.

We get this last inequality by exactly the same argument as be-
fore, extending the harmonic function G'p 1(2,y) into the ball B,(p) as
necessary.

Finally we consider the case |y —a| > 3|z — a|. As in Lemma 5.1
it follows that |y — x| > 2|y — a|/3. For z € B,(|z — a|/4) we have

2ly—a| _|r—al  Tly—d

=2z ly—al — |2 —a = =5 e

Furthermore, |z —a| < 5|z — a|/4. Now consider again the function
u(z) = Gp,i(z,y) which can be continued in a harmonic way to the
entire ball By(|z — a|/4). By the symmetry of Gp; it follows from
(5.21) that

min{l, w}

0<u(z) <
(=) |z =yl

- |z -yl
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The inequality (5.23) follows now from this last inequality and the Har-
nack principle.

Next let 2, be the domain
Q,={z eR®: |z —a| > p}.

We define Morrey spaces on 2, which generalize (5.10). For 1 < r <
q < oo and s > 0 we say that g : 2, — C is in the weighted Morrey
space M1 (€2,) with weight w if

- p rs
G2 [ i@l < crioiri( )"
QNQ, (d@3)>
for all cubes () and constant C'. Here d(Q) = sup {|z—a| : 2 € QNQ,}.
The norm of g, ||g|¢,r,s is then the infimum of all C such that (5.24)
holds.

Lemma 5.6. Let Ty be the integral operator on functions with domain
Q, which has kernel [b(z)|ki(z,y) where b € M}, 1 < p <3 and k;
satisfies (5.22). Then for 1 <r <p,r<q<3,s>0,T1 is a bounded
operator on the weighted Morrey space Mﬁ’s(Qp) with weight w given by

(5.25) w(z) = ! . weq,.

min{l, ﬁ}

The norm ||T1|| of T1 satisfies an inequality ||T1]] < C'||b||3p, where C
depends only on r,p,q, s.

Proor. We proceed in a similar way to the proof of Proposition 2.1.
Consider a dyadic decomposition of R® into cubes Q. For u : Q, —C
we define ug by

d
vo="er [ i, jel<d,

ug = Q| / w(@) ju(@)|de, Q] > d®.
Q,NQ

Let n € Z and S,u(z) be given by

d
d(Qn)

Spu(z) = 2_"< )UQn , T € Qn,
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where @), is the unique dyadic cube with side of length 27" containing
x. The operator S on functions u : {2, — C is then defined as

oo

(5.26) Su(x)= Y |b(z)|Spu(z), w€Q,.

n=—oo

Now we can think of the dyadic decomposition as being centered at
some point & € R®. The operator S of (5.26) should therefore be more
accurately written as S¢. Then, in analogy to (2.2) we have

/ w@) @) do < & [ de w(@)” |Seu()|" dz,
Qne, [A] Ja Qne,

where A is a sufficiently large cube and C is a universal constant. This
follows from the inequality (5.22). We can therefore restrict ourselves
to showing that S¢ is a bounded operator on the weighted Morrey space
for an arbitrary £. Let ng be the smallest integer n such that 27" < d.
Then we may write S¢ = A + B where

Z|b )| Spu(z),  xe€Q,.

n=no

Suppose @, is a dyadic cube with side of length 27 where m > ny.
Then supw/inf w is bounded above by a universal constant on Q.
We write Au(z) = Aju(z) + Asu(z), for € Q,, where

Aru(w Z|b )| Spu(z

Then we have

/ w(z)" |Aju(x)|" dz < (sup w)”/ |Ayu(x)|" dz

Qmep Qmep

(.27 < (upw)” Y b, [ Ju@)l do
QmnQ,

<Glbls, [ w) @) de.

me

where C'; and C5 are constants depending only on r» < p. Here we are
using the boundedness of the operator A; as given in [5, Theorem 1.2].
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Since sup w/ inf w is bounded above on the dyadic cube @, with side
of length 270 which contains @Q,,, we have

| Asu(a)| < b |222"/ o)l dy
nﬂQ

n=no
< Clb(2)] 2 /
< 27" dy
B S [ ol
C|b )| 1/r
< 2n(3/r 1) / r " d
< _Z (), g, o) el dy)
Clb(z)| s
< 2n(3/7’ 1)02 3n(l/r—1/q)
~ supw nzno (d(Qn)>
C1 [b(z)] 1/3-1/ 14 s
< —= 4 .
~  supw (@] (d(Qm)>
Hence we have
/ w(z)" |Agu(x)|" dz
QmNR,
(528) < C Qm r/3—r/q Ts/ b2 da
lQnl (G S) b

< bl 1onl " (35)

If we put this last inequality together with (5.27) we conclude that

o vt A de < Gl [Qn ()

Suppose next that m < ng. Then we have

/ w(z)" |Au(a)|" dz
QmNL2,
- Y [ @ Auwrds

> bl | wa) e ds

by (5 27) am o
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— 7 bl /Q w(a) Ju(z)|" dz.

m

We conclude therefore that if m > ng then the inequality (5.28) holds.
Therefore the operator A is bounded on the weighted Morrey space and
|A]| < C'||bl|s,p for some constant C' depending only on 7, p, g, s.

Next we turn to the operator B. To bound it we follow the same
strategy as in Lemma 2.1 and Corollary 2.1. Observe that Bu(z) is
constant for x € @), where (), is an arbitrary dyadic cube with side
of length 270, We can bound Bu(z) by

0 /Q o, P ),

where the @, are the unique dyadic cubes with side of length 2=
containing (),,. Hence we have

no].

|Bu(z)| < [b(z)] > 22n

n=—oo

’no].

B b 2n nl 1/r r " d Lr
Buta) < Io(w)| 3 2 o 10~ L, wtr )
ng—1 d s
n(3/r—1) 1/r—1/q
I)'nzz_ooz g Ol ()
no—1 d p s
— n(3/q—1)
=Ch@| 3 2 s ()

d S
n0(3/ _1) p
< Culb(a)| 20 o= (o)

Let @y, be a dyadic cube with m > ng. Then if Q,, C Q,, we have

/ermp w(z)" |Bu(z)|" dx < max{ (?lm) }

no(3/q—1 d \"
'(012 v )d(Qno)(d(5n0)>>

/ ()] da

m

< CT bl 1Quml* "4 (

d(Cgm)) ’
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since

d(Qno) > d(Qm)7 |Qn0| > |Qm| .

Next we consider dyadic cubes @, with m < ngy. Putting Q' = Q,,, one
can easily verify the analogue of Lemma 2.1. Thus there are constants
e,C > 0, depending only on r and p such that

|Q|1/3+€ ug < |Ql|1/3+€ ug:
for all dyadic subcubes @Q of Q" with |@Q] > 273" implies the inequality
no r
[ ur( Y b Sau) de < bl 1@/ ug
Q'NQ, n=ng
Now the analogue of Corollary 2.1 yields

/Q'rm w(x)T( f: |b(x)|Snu(g;)>de

TL:TLQI

<C bl [ wle) ful)l do.

Q'NQY,
for some constant C' depending only on r, p. We conclude therefore that

/Q'rm w(x)T( i |b(x)|Snu(g;)>de

TL:TLQI

<C"|b

lg,p Ql|1—r/q(d(g/) )Ts |

by virtue of the fact that u is in the weighted Morrey space. Finally we
see just as in Lemma 4.4 that

/Q’rm w(x)T(nif [b()] Sn“'(x))rdx

<O bl 11 ()

Hence the operator B is bounded on the weighted Morrey space. Since
the operator A is also bounded it follows that 77 is bounded.
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Lemma 5.7. Let Ty be the integral operator on functions with do-
main 2, which has kernel |b(z)| ka(x,y) where b € M} and ky satisfies
(5.23). Then for 1 <r <p,r <gq,s>0and2 < 3/q+s < 3/r,
T5 is a bounded operator on the weighted Morrey space M,S{S(Qp) with
weight w given by (5.25). The norm ||T3|| of Ty satisfies an inequality
IT2|| < C||bl|s,, where C' depends only on r,p,q,s.

Proor. We follow the same lines as the proof of Lemma 5.3. Thus for
n=0,%£1,..., let @, be the cube centered at a with side of length 27"
and assume that the integer ng satisfies 27" ~ d. Then if |z —a| < d
we have the inequality

Y

|T2’U,($)| < M Z 9—2n ug C|b Z 2=y,

|z — al " Je—al a|
|lz—a|<2— " <d n=-—00

where C'is a constant and ug, is an average of u on (), given by

uq, = 12" [ u(@)| da
QnN{lz—al[>27"72}

Thus if m > ng we have

/ w(z)" [ Tyu(z)[" dz
QmN2,
< / |Tou(x)|" dx
Qmn9,
k

(5.29) <C" Z / ()2 Y 272 uQn)r dx

nno

+C’“Z/ |b |2k2d2" )da;.

n=-—oo

Arguing as in Lemma 5.3 we see that

Z/ |b(z |2k222"uQ>daz

n=no

< O7 P ol p lfully o 27/ aF =30

q)r7s
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since we are assuming 3/q+s < 3/r. To bound the second term on the
right in (5.29) we estimate

o no
> d2"uq, < ullgr. D d*2M 0

n=—oo n=——oo

< C1p" [[ullgr s d® 270G/ T4

2—-3/q—s

=C1p%||lu

since 0 < 3/q + s.

Hence
o0 no r
S [ (b@I Y d2ug,) ds
k=m Qk n=—oo
< O} ully g A1 3 b, 25
k=m
<y |Iblls, Nully . 2m @ atsr=3),

since 2 < 3/q+s. We conclude then that if m > ng there is the estimate

/Q . w(z)" | Teu(z)|" dz
(5.30) “@mM%

< Gy [blf3,p [J]

el ()

,
q7”’7s
Next we consider the case m < ng. Observe that if |x — a| > d then

Tyu(z)] < Clbx)] Y 2"ug, -

|z—al<2—m

Hence we have for £ < ng

/ w(z)" | Tou(x)|" dz
QrN{lz—al|>2-F=2}

k+2

<or( Y d—12—"—kuQn)r/ Ib(z)[" da.

n=—oo Qrk
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We have now

k+2 k+2 p s
At kg, < 27 | s O —1/‘1(—)
n;oo Qn — n;oo || Iq) ’ | | d(Qn)

< Cp* |lullg,r,s 2¥THH T

Combining the last two inequalities we conclude

/ w(z)" | Tyu(z)|" dz
QrN{|z—a|>27k-2}

< o4 psr “b r 2k(3r/q+sr—3) )

q’T7s

5l
Now by sumiming this last inequality over k, m < k < ng and using the
fact that (5.30) holds with m = ny we conclude that (5.30) continues
to hold for m < ny.

We have shown that g = Thu satisfies the inequality (5.24) provided
d(Q) ~ |Q[*/3. The inequality (5.24) for cubes Q with d(Q) > |Q|*/3

follows by similar argument.

Proposition 5.4. Let (Q,, be a cube with side of length 2=, m an
integer, which is contained in the ball Uy g, of radius Ry. For x € Uy g,
let P.(Qn,) be the probability that the drift process started at x hits Q,
before hitting the boundary of Uy r,. Then for any oo < 1 there exists
e > 0 such that if ||bl|s, < € then the inequality (5.17) holds where the
constant Cy, depends only on «.

Proor. We follow the same argument as the second proof of Propo-
sition 5.3. We can choose a point a € @, such that the ball B,(p) of
radius p ~ 27™ centered at a is a distance larger than 3p from 90U g,.
Let v(z) be the probability of the drift process started at = € Uy g, of
hitting B, (p) before 0Uy r,. Then we have

v(x) = wo(x) +/Q Gpi(z,y)(I— T) 'b - Vuw(y) dy,

where Q = Uy g, \B,(p) and Gp ; is the Dirichlet Green’s function on
Q). The function wq is given by (5.18) and T is the integral operator
with kernel b(z) - V,Gp 1(z,y), z,y € Q.

We wish to show that b - Vwy is in a weighted Morrey space M},
with weight given by (5.25), where d = d(Q,,). It is an immediate
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consequence of Lemma 5.4 that this is so provided r, g, s satisfy (5.13)
and that
b - Vuwollgrs < Cp* 172 ||b

|3,p :

Now T = Ty +T5 where T and T; satisfy the conditions of lemmas 5.6,
5.7 respectively. Since the conditions in these lemmas on r,p,q, s are
exactly the same as in lemmas 5.2, 5.3, we have that

(5.31) wmwwmuns[;@muwnmwm%

where g is in the weighted Morrey space M4

7,87

s < CPY17% b

lg |3,P )

and 3/2 < ¢ < 3,0 < s <1, as well as the inequalities (5.13) hold.

We need then to estimate the integral on the right in (5.31). If
d(z,Qm) < d(Qn) then the inequality (5.17) is the same as (5.3). Hence
we may argue directly as in the second proof of Proposition 5.3. The
estimates on the integrals I, I, I3 in (5.14) are exactly as previously,
since the weight function for our Morrey space is always greater than
1. Hence we may consider the situation when d(x, Q) > d(Qn). We
write

/@nmwmw@=/ +/
Q lz—y|<|z—al/2 ly—a|<|z—al/2

o,
{lz—y|>|z—al/2, |y—a|>|z—a|/2}
=L +1+15.

Then from Lemma 5.5 we have if | — a| ~ 27™.

I1<CZ2"’/ y)| dy

k=n, |z—y|<27k
k 3/q—2 P \®o—sk(1-1/q) ¢
gCZz P12 by, (2 ) 270D
k:n1
p S+3/q—2 d
<Olblay (35) 5o
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as in the estimate of Iy in the proof of Proposition 5.3. Similarly we
can estimate I3 as

n<c Yy 2 l9(s)] dy
.

k=—o00 k<|y_a|<27k+1

<oy o] w(y) lg()ldy

k=—o00 k<|y_a|<2_k+1

SC il: 22kdp3/q—2(2%)s|lb
k=—o00

p )s+3/q—2 d

2-m 2-m

L, 27 3k1=1/0)

E

< ClIblls, (

provided s +3/q—1 > 0.
Next we write Iy as a sum,

I2 e / +/ — I4 + I5 .
ly—a|<d d<|y—al<|z—al/2

We can estimate I from Lemma 5.5 as

Is < C o / l9(y)| dy
ly—a|<d

d _ _ P\*
< C e g2 by 21 £)

- 2—2711 d

p \st3/a-2 d d \3—s—3/q
= Cblls, (55 = (550

p s+3/q—2 (]
< O bllsy (55) =

since d < 271,
Finally, from Lemma 5.5 we have

— d
I;<C d
DO O

k:n1

= d ol P \*® ak(1—
<C). oy P 2(@) [bfs,p 27201/

k:n1

p >8+3/q—2 d

2-m -

< Cpblls,
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since s + 3/¢q < 3.
We conclude therefore that there is a constant C such that

s+3/q—2
[ Goata) ol dy < C bl (55
Q

—ni 2—n1 ’

The result follows now from this last inequality just as in the proof of
Proposition 5.3.

We can use Proposition 5.4 to generalize Proposition 5.1 to the
case of nontrivial drift b. First we need to modify the definition of Vg
in (5.1), (5.2). For any @ such that QN Uy r, # @ we define a potential
function Vg ,, : Ug g, — R which depends on a parameter n > 0 by

R ~
|Q|_2/3(|Q|12/3>n7 T € Qv

0, otherwise .

Von(z) =

With this new definition of Vj, , the potential Vs ,, is defined exactly as
in (5.2). Thus

Vs = Z Vo -
QCS

Proposition 5.5. Let X(t) be Brownian motion in R® and Xy (t) be
the drift process with drift b. Suppose S is a union of cubes with sides
of length < Ro. Then for any n > 0 there exists ¢ > 0 such that if
Ibl|s,p < € then

P,(Xp hits S before exiting Uy gr,) < CE, [/ Vs n(X(t))dt|,
0

where |x| < Ry/2. Here T is the first exit time out of the region Uy g,
and C s a constant depending only on n,c.

Proor. It is sufficient for us to assume that S consists of a single
cube ) with side < R, which intersects Uy g,. In that case Q N Uy, R,
contains a cube @Q,, with side of length 27" which has the same order
of magnitude as the length of ). In view of Proposition 5.4 it will be
sufficient for us to show that

B[ [ %o, (X®) ]

27"\ n 2-2m : 2"d(Qum)
R ) 2md(z, Q) + 1) mm{l, 2md(z, Q) + 1 } ;

(5.32) > cn(
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for some a, 0 < a <1 and constant ¢, depending only on 7. Now the
left hand side of the above inequality is just

Gp(z,y)dy,
Qum

where G'p is the Dirichlet Green’s function on the ball Uy g,. It is easy
to see from the explicit formula for Gp that if |x| < Ry/2 then

2"d(Qm) }
"2 d(z, Q) + 17

/ Gp(z,y)dy > c2 i {1
D&,y y_2md($,Qm)+1m1n

m

for some universal constant ¢ > 0. Thus the inequality (5.32) holds
provided ao > 1 — 7.
Next we generalize Proposition 5.2 to the case of nontrivial b.

Proposition 5.6. Suppose Ry = 0, Ry = 2R, and suppose S consists
of cubes of length < Ry Let f be a density on the sphere |x| = R and f,
the density on |x| = Ry by f propagated by the process with drift b along
paths which do not intersect S. Letn > 0,1 < qg<oo,1 <p<3. Then

there exist €,6,§ > 0 depending only on n,p,q such that if |b|s, < e,
If — AV fllqg < |Av f| and

AVig=r Ew[/o N Vsn(X (1)) dt| <€,

then

[Av f]
B

|f2 = Av fallqg < 0 |Av f and  |Av fof >

PROOF. We proceed as in Proposition 5.2. Letting ¢’ satisfy 1/q¢ +
1/q' =1, we need to show that the operator A defined by

Ag(z) = E[9(Xp(TR,)); Xp(t) € S, some t, 0 <t < Tg,]

which maps functions on |z| = Ry to functions on |z| = R satisfies an
inequality
1Agllg < (&) llgllg

where y(§) — 0 for & — 0. To prove this let 1 < r < ¢’. Then it is
sufficient to show that

(5.33) Eollg(Xp(tr,))["T < Cllglly ,  |o] =R,
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for some constant C' depending only on 7, q,p,e. Now we can write

Ex[lg(Xo(r,))I"] = (2, 19]7)

where p, is the density of the drift process started at x, || = R, on
the sphere |y| = R2. Arguing similarly to the proof of [5, Lemma 4.3]
and using Corollary 4.1 we see that for any s, 1 < s < 0o, we can
choose € > 0 sufficiently small so that p, is s integrable on |y| = Rs
and ||p;|ls < C where C is a universal constant. Now we obtain the
inequality (5.33) by choosing s to satisty 1/s + /¢’ = 1 and applying
Holder’s inequality.

6. Auxiliary perturbative estimates.

In this section we shall prove a perturbative theorem which will be
needed in the induction argument of Section 7. The theorem is similar
in spirit to the results of sections 5 and 6 and our proof will depend on
these. Let Qg be the ball of radius R in R?® centered at the origin and
suppose a1, ag are points which satisfy |a1| = |az| = R/2, |a1 —az2| = R.
Thus a; and ag lie on a diameter of Qr at a distance R/2 from the
center. Let B, be a ball of radius r; > 10R such that a; € 0B,, and
the outward normal to 0B, at a; makes an angle less than 7/100 with
the vector ay — a;. Similarly, let B,, be a ball of radius 7o > 10R such
that ay € 0B,, and the outward normal to 0B,, at a2 makes an angle
less that /100 with the vector as — a;. We shall be interested in the
surfaces D1 = B(ay, R/4) N 0B,, and Dy = B(as, R/4) N 0B,,.

Next suppose we have a vector field b : R> — R3 and a dyadic
decomposition of R?® into cubes ). For ng an integer and € > 0 let S
be the set of all dyadic cubes @Q,, with side of length 27", n > ng, such
that

(6.1 [ @i > e,

n

For ) € § and n > 0 define Vg ,, : R — R by

|Q|_2/3(|g|?;3>n, z€Q,

0, otherwise ,

Von(z) =
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where Q is the double of Q. The potential Vi, is then given by

(6.2) Vo= Von-

QeS

Observe that the potential V,, defined here is a particular case of the
potential Vs, of Section 5. Suppose p; is a density on the surface D;.
Then Avp, p1 is the average of p; on Dy and ||p1||p,,q, 1 < g < 00, is
the L7 norm of p; normalized so that ||1||p, ;, = 1. The theorem we
wish to prove is as follows:

Theorem 6.1. Let R = 27", n > ng, and p1 be a density on D;.
Suppose f € MIR®) with 1 <r <t, r <p, 3/2 <t < 3. Let py be
the density induced on Dy by the paths of the drift process Xy (t) which
start on Dy, avoid the cubes Q € S with |Q| < 273", exit the region
Qr N By, through Dy, and satisfy the inequality

/ 1 (Xp(0)) dt < Cy B2/ | f||e
0

where Cy is a constant. Let 0 < n' < n and suppose
1 '(n=no)

(6.3) — Vy(z)de < 27 o)
R Jq,

where & > 0 1s a constant. Then there exists a constant « > 1 depending
only on n' such that if 1 < q < oo and Cy is sufficiently large, &
sufficiently small, one can find constants Ca, co such that

(6.4) lp1][D,y,q < C2a” 7" Avp, p1
mplies that

P2l Dy,qg < C2 Avp,p2 , Avp,p2 > co2Avp, p1 .
The constants &, Cv, Cy, co can be chosen independent of R.
REMARK. Theorem 6.1 is rather like the results we have already proven.
In fact, if we take C7 = oo, £ = 0, we are in the situation studied in

Section 4. The case C; = o0, & > 0, n = ny, is the situation studied in
Section 5. Observe that since the regions Dy, Dy are not spheres the
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results of sections 4 and 5 do not immediately yield a proof of Theorem
6.1 in the above mentioned cases.

We shall prove Theorem 6.1 in a series of steps starting from the

simplest situation. We first consider the case of Brownian motion where
b=0.

Lemma 6.1. Let p; be a density on D, with Avp,p1 < oo and ps
the density induced on Dy by Brownian paths started on D1 which exit
QrNDB,, through Dy. Then there exists universal constants cg, Co such
that for 1 < q < oo,

1p2llDy,q < Co Avp,p2 Avp,p2 > c2 Avp, p1 .

PROOF. Suppose g is a function defined on D, and let u(x) = Pg(x),
x € Qr N B,, be given by the solution of the Dirichlet problem

Au(z) =0, x€QrNB,,,
(6.5) u(z) =g(x), x€ Dy,
u(z) =0, x € 0(Q N By,)\D2 .

Thus P defines a mapping of functions on Dy to functions on D;. Let
P* be the adjoint of P defined by

<f7Pg>D1 = <P*fvg>D2 ’

where (-,-)p,, {-,)p, are the standard inner products on L?(D;) and
L?(Ds) normalized so that ||1||p, 2 = ||1]|p, 2 = 1. Then p; and ps are
related by the equation ps = P*p;. We have therefore that

AVD2P2 = <P2, 1>D2 = <P*p1, 1>D2 = <p17P1>D1 .

Thus to show that Avp,ps > co Avp, p1 it is sufficient to prove that
P1(z) > ¢a > 0 for all z € D;. Hence we need to prove that there is a
universal constant ¢y > 0 such that

(6.6) P, (X (t) exits Qg N By, through D) > ¢a , x € Dy .

To see this let By, Bo,..., By be balls with radius ~ R having the
following properties:
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a) B, C Qg N B,,, 1 <i < N —1, By is centered at ag, B; is
centered at x.

b) |[0B; N Bip1| ~ R?, 1 <i< N —1.
Now for 1 < i < N let S; be the sets

Si:{yeaBi: y € Bit1, d(y,aBi+1)>CR}, 1<:<N-1,
SN:aBNﬂ(Rg\QRﬂBTZ).

It is clear from a), b) that we may choose ¢ > 0 such that |S;| ~ R?,
1 <4 < N. Next define pg,...,pn_1 by

po = P (BM started at z exits By through S),

P = ing P (BM started at y € S; exits B;y; through S;41),
Yyeo;
with 1 < ¢ < N — 1. It is clear from the Poisson formula that there is
a constant ¢ > 0 such that p; > ¢, 0 <7 < N — 1. Hence we have

P, (X (t) exits Qg N B,., through Dy) > pop1 - -py—1 > .

Since we can choose N to be an absolute constant the inequality (6.6)
follows.
Next, to show that ||p2||p,,q < C2 Avp,ps2, we can prove that

|<p27 f>D2| < 02 AVD2p2 HfHDz,q’ ’

where 1/q+1/q" = 1. Since (p2, f)p, = (p1, Pf)p, and we have already
proved that Avp,ps > ca Avp, p1, it is sufficient to show that

(6.7) I1PflID100 < Cll Dy s

for some universal constant C'. We can prove this last inequality by
observing that |Pf(x)| < P|f|(x), where P is the Poisson kernel for
the ball B,.,.

Lemma 6.2. Let p; be a density on Dy with Avp, p1 < oo and ps the
density induced on Dy by Brownian paths X (t) started on Dy which
exit QQp N By, through Dy and satisfy

3
lt,v’a 1§T§t,t>§.

/0 CIFIX (W) di < Oy R | 5
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Then there exist universal constants cy, Cy such that for1 < ¢ < oo and
sufficiently large C4, depending only on r,t, one has the inequalities

P2l Dy, < C2 Avp,p2 Avp,p2 > ca Avp, p1 -

PROOF. Suppose g is a function defined on Dy and extend g to d(QrN
B,.,) by setting g to be zero on the rest of the boundary. Then Pg(x)

is defined for z € Qg N B,, by
- [y ).
0

where H is the Heaviside function H(z) =1, z > 0, H(z) =0, z < 0.
Then just as in Lemma 6.1 we have po = P*p;. It is furthermore clear
that the inequality (6.7) continues to hold. Hence we need only prove
that Avp,p2 > c2 Avp, p1. This follows if we can show that

Pg(z) = E, [g(X(T))H(Cl R%-3/

P, (X(t) exits Qg N B,, through Dy
(6.8)
wd [1| (K@) e < R f) 2o, €D

Evidently from the Chebyshev inequality the left hand side of the pre-
vious inequality is bounded below by
CAYAEC:

P, (X(t ts Qr N By, th h D5)
(X(0) exits S (0 B, through D2) = 5 o= 3/t||f||tr

If we use now the fact that

e [ s UL g, < e

T 4 yl

for some constant K depending on ¢, then it is clear that (6.8) holds
and hence the result.

Lemma 6.3. Let S be a set of dyadic cubes and suppose V;, is defined
by (6.2). Let p1 be a density on D1 and py the density induced on Do
as in Theorem 6.1. Then if b = 0 the conclusion of Theorem 6.1 holds.
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PrROOF. As in Lemma 6.2 we may confine ourselves to proving that
Avp,p2 > ca Avp, p1. Thus we need to show

/D p1(z) Py (X(t) exits Qg N B,, through Dy, avoids
1 cubes Q € S with |Q] < 27" and
[ is0e) e < €0 R ) dute)
> c2 Avp, p1

where p is the surface measure on D; normalized so that p(D;) = 1.
From Lemmas 6.1, 6.2 it will be sufficient to show that

/ p1(z) Py (X(t) hits U @ before exiting Qg N Br2) du(x)
D,

Qes
Q<27

(6.9) <7vAvp,p1,

where v is a number which can be chosen arbitrarily small depending
on . Let O, be a cube in § with side of length 27, m > n. In view
of the inequality (6.3) m must satisfy the inequality

(6.10) 9(l=m)(m=—n) 5 ¢—1 2(7]—7]')(n—n0)7

whence m — n is larger than a constant times n — ng plus a constant
which may be made arbitrarily large depending on . Let d(x,@,,) be
defined by d(z, Q) = 27™ if € Qu, d(z, Q) = distance from z to
the center of Q,, if x € Q). Then as in Section 5 we have

/ p1(2) Po(X (£) hits Qy, before exiting Qp N By, ) du(z)
D,

27" pi(z)

< S e S/
- ¢ D d(l'? Qm) dN(-T)
2—mq' 1/q’
< _ /
<o a7 @) el

where 1/¢+ 1/¢' = 1. We have now that

9—mdq’
— . du(z) < C2(mm) 1<¢ < oo,
/Dldem)q () < <q <
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for some constant C. Hence by the assumption (6.4) we conclude that
there is a constant C' such that

/D p1(2) Po(X (£) hits Qy, before exiting Qr N By, ) dyu(x)
1
< Co-mm/d gremo Ay
It is clear now from (6.10) that if « satisfied the inequality
(6.11) 1< a<20=10/a0-m

then for any v > 0, £ can be chosen sufficiently small so that

/ p1(z) Py (X (t) hits @, before exiting Qg N B,.,) du(x)
D,
< ,YAVDl PL -

Suppose now that m satisfies (6.10) and N, is the number of cubes @,
in § with side of length 27™. Then from (6.3) it follows that

N,y < & 20=m(m=n)=(n—n")(n-no)
Let g,, be the function defined by

gm(z) = P, (X(t) hits U Qm before exiting Qg N Br2> :
QmES

Then we have

2~ md,u
lgmlpr< 3 o/ i Qm

Qm€ES

< CN,, 2~ (m=m) < ¢ ¢ g—nm=—mn)=(n-n")(n-no)

Now, using the obvious fact that g,,(z) < 1, we have that

/D $1() (@) dps(2) < gl D1 101]1 D1
1 1
< gl 5% 11l Dy g
< ¢ ¢V gmntm=n)/d' = (n=n")(n—no)/d’

-t 1AVD1 pP1 -
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Letting mg be the minimum integer m such that (6.10) holds we con-
clude that

/ p1(z) Py (X(t) hits U () before exiting 2z N BTQ) du(x)
D,

QeS
lQ|<272"

< Z C €/ gmnlm=m)/d' =(n=n"Y(n=no)/d' yn=rio Ay 5
m=myq

< ¢ gMa gmnlmo=n)/a'=(n=n")(n=n0)/d' yr=no Ay,
If we use the inequality (6.11) we have that

2—7I(m0—n)/q,—(ﬂ—ﬂl)("—no)/qlan—no :

(2= (A=m(mo—n)+(n=n")(n—no)yn/a'(1=n) < ¢n/a'(1=n)

from the definition of mg and (6.10). The inequality (6.9) immediately
follows from this.

Next we wish to consider the case of nontrivial drift b with £ = 0.

Lemma 6.4. Let p; be a density on Dy with Avp, p1 < oo and ps the
density induced on the sphere 0B(ay1, R/3) by paths of the drift process
Xy (t) started on Dy. Suppose that b € M3} and ||bl|s, < e. Then for
any q, 1 < q < 0o, and sufficiently small €, depending only on p,q one
has, with D3 = 0B(a, R/3),

Avp,p1 = Avp,ps,  ||psllps,g < Cs Avp,ps,
where Cs depends only on p,q,c.
Proor. For y € D, let ¢, be the Dirac ¢ function concentrated at
y. Then it follows from Corollary 4.1 that if h, is the density induced

on D3 by §, then ||hy|/p,,q < Cs, for some constant Cs, provided ¢ is
sufficiently small. Since

PlZ/D p(y) 0y du(y) ,
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it follows that

) oy dis(y)|
leallona = | ot gt

smemmmww
<C3Avp,p; .

The fact that Avp, p1 = Avp,ps follows simply from the observation
that u(x) = 1 is a solution of the equation Au(z) + b(z) - Vu(z) = 0.

Next let Gp(x,y) be the Dirichlet kernel for —A on the domain
Qr N By,. As in Section 4 we shall be concerned with the integral
operator 7' on functions with domain 2z N B,, which has kernel kr
given by

(612) kT('Tay):b(‘r) 'VwGD(xvy)v T,y € QRHBT‘Q .

Lemma 6.5. There is a universal constant C' such that

(6.13) IVoGp(2,y)| <

_m, x,yEQRﬂBm.

PRrROOF. Let u(x) = Gp(x,y). We shall show that there is a universal
constant C such that

a(QRﬂBrz)>}

C
6.14 u(r) < —— min< 1,d| z,
(614 ()_|x—y| { ( |z —y|

where © € Qr N B,,\{y}. The estimate (6.13) follows from (6.14) by
using the fact that u is harmonic in Qr N B,, — {y} and the Poisson
formula. One can easily prove (6.14) by constructing a barrier function.
Thus let us suppose that d(x,d(Qr N B,,)) < |z — y|/4 and that z¢ is
the nearest point on 9(Qg N B,,) to x. Let z1 be the point 1 = xo +
cle—y|(xo—x)/|xo—2z| where ¢ > 0. Let U, = {2z : |z—x1| > c|lz—y|}.
Then it is clear that we may choose ¢ < 1/8 in a universal way so that
QrNB,, CU; and |z — 21| > |z —y|/4 if |z —y| = | — y|/4. Let v(2)
be the function

w0 — @1

v(z)=1-—

, ze U, .
|z — 1]
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Thus v is harmonic in the region Qz N B,,\B(y, |z —y|/4) and satisfies
the boundary conditions

v(z) >0, z € 0(QrNB,,),
1 1
v(z)21—4c>§, zeaB<y71|$—y|)-

On the other hand u(z) is also harmonic in the region

Qp N Bw\B(y, [ - y|)

and satisfies the boundary conditions

u(z) =0, z€ 0(QrNB,,),

C
lz—y|’

u(z) < zE@B(y,i|x—y|>,

where C' is a universal constant. It follows then by the maximum prin-
ciple that

v(2) 1
. < Sz —ul).
(6.15) u(z) _2C|x—y| , zEQRﬂBrz\B(y,4 |z y|>

Observing now that

[0 — 21|

v(r)=1—- ———

() ——
[0 — 21|

B |z — 0| + |20 — 21|
|z — x|
|z — xo| + |xo — 21|

|z — x|
= |wo — 2
_ |z — 20|
cle—yl’

the inequality (6.14) follows from (6.15) on setting z = z.
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The estimates in Lemma 6.5 can be improved when y is close to
J(2rN B,,) but a distance from 0Qr NIB,, In fact one can see this by
using the Kelvin transform just as in the proof of Lemma 5.5. In par-
ticular we have an estimate similar to Proposition 2.1 for V,Gp(z,y)
when y is close to Ds.

Lemma 6.6. There exist universal constants, ¢, C such that if d(y, D)
< cR then

VoG (2, y)| < 5

d(y, 0B,
M}, z,y € QrN By, .

[z — y|

PROOF. Suppose d(y,D2) < cR. Then if ¢ is sufficiently small one
can choose v, 0 < v < 1/2, in a universal way such that the harmonic
function u(z) = V,Gp(z, z) extends to the entire ball B(y,y|z — yl).
This follows by using the Kelvin transform. Furthermore, by Lemma
6.5 there is a universal constant C' such that

C
(6.16) sup lu(z)| < —— .
z€B(y,v|z—yl) |z —y[?

Let yo be the closest point on 0B,, to y and suppose that |y — yo| <
v |z — y|/2. Then from the Poisson integral formula and (6.16) one has
that |Vu(z)| < Ci/|z — y|® for all z on the line segment joining y to
Yo, where C] is a constant. Since u(yp) = 0 if follows from this that
lu(y)| < C1d(y,dB,,)/|x — y|®. The result easily follows.

We use Lemmas 6.5 and 6.6 to show that the operator 71" with
kernel kr given by (6.12) is a bounded operator on a weighted Morrey
space. Let A > 0 be a parameter and define the weight function w) on
Qr N B,, by

d(y,0B,) .
AL IPra) it d(y, Dy) < AR,
w}\(y) _ R 1 (y 2)

1, if d(y, Ds) > 2AR,

and

ot = (2 DD IRO) (D) )

if A\R < d(y,Ds) < 2AR.
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Lemma 6.7. Let () be an arbitrary cube which intersects QN B,, and
suppose

d(Q) = sup{d(z,0B,,): ©z€Q}.

Then there exists a constant C depending only on A such that

d(y,0Br,) _ Crwa(y)
dQ) T lwrllo,

yEQmQRmBT‘27

where ||wy||co,o denotes the L norm of wy on Q.

PROOF. Suppose |Q|Y3 > ¢R for some constant ¢ > 0. Hence there are
constants C1, Cy, Cs such that d(Q) > CiR, [|walleo,@ < Ca, wa(y) >
Csd(y,0B,,)/R. The inequality (6.17) clearly follows from this and
so we may assume from here on that |Q|Y/3 < ¢R where ¢ > 0 is an
arbitrarily small universal constant.

Next suppose that for all y € @ one has d(y, D2) < AR. In view
of the definition of wy(y) for d(y, D2) < AR the inequality (6.17) im-
mediately follows. Similarly (6.17) follows if for all y € @ one has
d(y,D2) > 2 X R. Hence we may assume that there exists y € @) such
that AR < d(y,D2) < 2AR. We put v = d(y,D2)/AR — 1, whence
0 <~y <1. Let 6 = |Q[3/AR. Then if |Q|'/3 < cR and ¢ > 0 is small
we have 0 < § < 1. One has the inequalities

d
sl < (0= +0) 2D 4 g 15,
way) = (1 —0) W00Be) 5

Suppose now that 20 < v <1 —24. Then

uay) o 2R 2  1dly,0B,)
[orloe = 30-2)d@ 37 ~3 @)
2R 2

since d(y,0B,,) < d(Q). Next suppose 0 < v < 24. Since § <
C d(Q)/R for some constant C' > 0 we have that

sl < (1 +30) 2
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On the other hand one also has wy(y) > d(y,0B,,)/(2R) if § is suffi-
ciently small. Hence (6.17) holds again. Finally, for 1 —2§ < v < 1 one
has wy(y) > 1/2 for sufficiently small § and hence (6.17) holds in this
case also.

For 1 < r < ¢ < oo we define the weighted Morrey space M? (Qr
N B,,) as follows: a measurable function g : Qp N B,, — C is in
M2, (Q2r N B,,) if wx(y)" |g(y)|" is integrable on Qg N B,., and there

T, W)
is a constant C such that

(6.18) / wr(y)" lg(w)I" dy < C7 Q|74
QHQRHBTZ

for all cubes @ C R3. The norm of g, ||g/q.rw, is defined as

gllg,rwy, =Inf{C : (6.18) holds for all cubes Q} .

Lemma 6.8. Suppose b € Mg, 1<p<3, andr,q satisfy 1 <r < p,
r < q < 3. Then there exists a universal constant A > 0 such that
the operator T with kernel kr given by (6.12) is a bounded operator
on the space M, (Qr N B,.,). The norm of T satisfies the inequality

IT|| < C||bl|3,p, where the constant C depends only on ,p,q.

Proor. We follow the same lines as the proof of Proposition 2.1.
Define an integer ng by 27" ~1 < 8R < 27" and let Qo (&) be the cube
centered at £ with side of length 27 "0, It is clear that for £ € Qr N B,
then Qr N B,, C Qo(§). We define an operator Tx on functions u :
Qpr N B,, — C which have the property that wy(z) u(x) is integrable.
To do this we decompose K into a dyadic decomposition of cubes @,
with sides of length 27, n > ng. For any dyadic cube Q C K with
volume |Q)| let ug be defined by

ug = |Q|_1/ wy(z) u(z) de .
QﬂQRﬂBrz

For n > ng define the operator S, by

Spu(z)=27" . , r € Q.
[walloo.n
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The operator Tk is then given by

TKU Z|b |S’LL ) r€QrNDB,, .

n=ngo

It follows now from Lemmas 6.5, 6.6, 6.7 and Jensen’s inequality that
one can choose A in a universal way such that for every cube @)

/ wy(z)" |Tu(x)|" dz
QﬂQRﬂBTQ

C?"
< —— d& wy ()" |T, u(x)|" dx,
QR N Br,| Jagns,, QNQRNB,, () Taueui@)

for some universal constant C. Hence it is sufficient to prove the result
of the lemma for the operator T'kx.

Next we have the analogue of Lemma 2.1. Thus let Q' C K be an
arbitrary dyadic subcube of K with side of length 27"e’. Suppose r,p
satisfy the inequality 1 < r < p. Then there are constants ¢, C' > 0
depending only on r,p such that |Q|Y3+ug < |Q'|Y/3+ ug: for all
dyadic subcubes @) of Q" implies the inequality

[ oy (X @) Suu@) de < € bl @'l
TL:TLQI

The analogue of Corollary 2.1 follows from this last inequality. Thus
we have for any dyadic subcube Q' C K,

/ 2y ( Z [b(x)| Snu(z ))rdasgmnbng,pL’wx(g;)wu(g;)rdg;,

To complete the proof of the lemma we need to show that for any dyadic
subcube ) C K one has

nQ/ —

| e ( S bt St 0)) dr < " b5, ul]

n=no

q,r,wy |Ql|1—r/q ’

for some constant C'. This inequality is clear.

Next we prove the analogue of Lemma 4.1.
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Lemma 6.9. Suppose g is a function defined on D2 and let Pg(z),
x € Qr N B,,, be the function given by the solution of the Dirichlet
problem (6.5). Let r,p,q,q1 be as in Lemma 4.1. Then if g € LI(D>)
the function b -V Pg is in the Morrey space M,ﬁ{lm(QR N B,.,) for some
universal A > 0 and

b VPglgrroun < CEZ* bl llgllas -

PrOOF. The inequality will follow just as in Lemma 4.1 if we can show
that

(6.19) wa(z) [VPg(2)] < CR™'(Plgl(z) + llgllp.1), = €QrN By,

where C'is a constant depending only on A. To prove (6.19) first con-
sider the case where d(z, D2) < AR. Since the Harnack principle implies
that

d(z,0B,,) [VPg(z)| < CP|g|(x),

the inequality follows. Next suppose d(z,Ds2) > vR. If d(z,0(Qgr N
B,,)) > c¢R for an arbitrary constant ¢ > 0 then the Harnack principle
again implies that

w(2) |[VPg(2)] < CL|VPy(2)| < C2 R ||g]l .1

where Cy depends on c. Hence we may assume that d(x, Dy) > AR
and d(xz,0(Qr N By,)) < cR where ¢ > 0 can be arbitrarily small. We
proceed now as in the argument of Lemma 6.5. Thus let zy be the
nearest point on 0(Q2r N B,.,) to z and ©1 = 2o + YR (zo — x)/|z0 — x|,
where v is to be chosen depending on A,c. Let U, = {z : |z — z1| >
vR}. Then it is clear that we may choose v sufficiently small so that
Qr N B,, C U, and |z — x1] > 3yR if z € Dy. Next let v(z) =
1—|zo—x1]/|z—2x1|, z € U, and W be the region W = {z € QrNB,, :
|z—x1| < 27 R}. Evidently the functions P|g|(z) and v(z) are harmonic
in W and there is a constant C' depending on v such that

Plgl(z) < Cligllp,, v(z),  z€dW.

Hence by the maximum principle this last inequality holds for all z € W.
For ¢ sufficiently small x € W and hence there is a constant C such
that

d(x, G(QR N Br2))

Plg|(z) < Clg|lps .1 D
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Using the Harnack principle we immediately conclude that
vPy(@) < ¢ 1loat
R
for some constant C. Hence (6.19) holds in all cases.

Lemma 6.10. Let p3 be a density on D3 = 0B(a1, R/3) which satisfies
lpsllDy,g < C3 Avp,ps. Let pa be the density induced on Dy by the paths
of the drift process Xp(t) which start on D3 with density ps and exit
the region Qg N By, through Dy. Then if b € M7, ||blls, <& and € is
suffictently small there are constants Ca, co such that

|p2||Ds,qg £ C2 Avp,pa , Avp,p2 > c2 Avp,p3 .

PROOF. Let g € L1(D32). We consider the operator () analogous to
(3.3), defined by

Qg(ﬂrt)=/Q . Gp(z,y) I-T)"'b-VPg(y)dy, x¢€Ds.

Then ps = P*ps + Q*p3. We shall show just as in Proposition 4.1 that
for any ¢, 1 < ¢ < oo, and ¢ sufficiently small ) is a bounded operator
from L4(D3) to L4(D3) and ||Q| < C||b||3,p. The result follows from
this by the same argument as in Section 4.

To prove that () is bounded we use Lemmas 6.8, 6.9. Thus if ¢ is
sufficiently small the function

My)=(I-T)"'b-VPg(y), y€QrNDB,,

is in the weighted Morrey space M7, (Qr N B,,) where ¢ is given by
(3.5) and A > 0 is universal. Furthermore by Lemma 6.9 there is the
bound

17llgy s < CRY 4l l9llDs g -

For v > 0 let Wy = {y € Qr N B,, : d(y,0B,,) > YR} and Wy =
Qr N B,,\Wi. It is clear that for v and A sufficiently small there is a
constant C such that

GD('Tay)SC|1;)A_(y)| 9 yera .TED?,,
Gp(x,y)ngA(y) ye Wy, x€Ds.
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Hence we have

w h C
Qo) <0 [ By [ )y, o€ Ds.

Now we argue exactly as in Proposition 4.1 to see that ||Q|| < C'||b

|3,p-

PrOOF OF THEOREM 6.1. If & = 0 and C; = oo the result is a
consequence of Lemmas 6.4 and 6.10. Hence it is sufficient for us to
prove that for £ > 0 small and C; < oo large then Avp,p2 > cAvp, p;
for some constant ¢ > 0. For C; < oo we argue as in Lemma 6.2
using [5, Theorem 1.1]. For £ > 0 we argue as in Lemma 6.3 and use
Proposition 5.3.

7. Nonperturbative estimates on the exit probabilities from a
spherical shell.

In this section we shall generalize Corollary 4.2 to the nonpertur-
bative case. The main tool we use to do this is the following nonper-
turbative version of Theorem 6.1:

Theorem 7.1. Let R = 27", n an integer, n > ng, and p; be a density
on Dy. Suppose f € ME(R3) with 1 <r <t,r<p, 3/2 <t <3. Let
Dy be the density induced on Do by the paths of the drift process Xy (t)
which start on Dy, exit the region g N B,., through Dy, and satisfy the
inequality

/0 (X () de < Cy B3| £,

where Cy is a constant. Then forn >0, 1 < g < o and Cy sufficiently
large there exist constants o > 1, 3, Cy, ca > 0 such that

n—no
1, —_
1p1llD1,q £ C2a™ " Avp, p1

implies that there is a function pa on Do such that py(z) > pa(z) > 0,
x € Do, and

1p2]|Dy,q < C2 Avp,p2

Avp,pa > co Avp, p1exp ( — % ) V() dx) .
R
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REMARK. Theorem 6.1 implies Theorem 7.1 when (6.3) holds by taking
B > 0. We can prove Theorem 7.1 under the assumption that b € L
since none of the constants depend on b. In that case when R =
27" and n is sufficiently large we are in the perturbative case and the
theorem follows again from Theorem 6.1.

We shall prove Theorem 7.1 by induction. In particular we will
prove that if m is an integer, m > ny and if Theorem 7.1 holds for
R = 27" n > m, then it also holds for R = 27". The key fact
in reducing the R = 27™ case to the case R = 27", n > m, is the
following;:

Lemma 7.1. Forx € Dy, z € D, let L'y , i be the cylinder whose axis
is the line joining x to z and with radius 27 %. Let V : Qr — R be a
nonnegative potential. Then there is a universal constant C' such that

/Dl dp(z) /D dp(2) /rm,z,ka V(y)dy < 0(2;k> /QR V(y)dy,

where dy denotes the normalized euclidean measures on D1, Ds.

PROOF. Let x . be the characteristic function of the set I'; , x N Qg.
For any y € Qpg either |y — a1| > R/2 or |y — aa| > R/2. Suppose
ly — a1| > R/2. Then there is a universal constant C' such that

—2k

[ v <o(%). eens

Similarly if |y — az| > R/2 we have

—2k

[ v <o), zep.

The lemma follows easily from these last two inequalities.

Lemma 7.2. Forz € Dy and 6 >0 let D, ={y € Dy : |y — x| < 0}.
Suppose v,q > 1 and || f||p, ¢ < K Avp, f. Let G be the set

G={zxeDy: d(x,0D1) > 20, ||fllp,,q <KvAvp, f}.

Then there is a universal constant C such that

J

/GAVDwde(x) > (1 — % — C(E)l/qllC)Alef '
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Proor. We have

1
|D1] Jp,
1
= o1 |, 9 s /D o, W),

Avp, f = fy) dy

where X, is the characteristic function of D,. Letting H; = {x € D :

d(x,0D1) >id},i=1,2,..., we can rewrite this last expression as
Avp,f = — 1O g [ xo, )
VD, J = Y) 19~ o Y X Yy)ax
[ Dy DI\H, D1 N B(y,0)] p, Pe
(7.1)
T A (v)d
— X y) dx .
D1 Ja, 1Ds| Jp, P

Next observe that

1 dy
fly y) dx
D1l Lo, W 1]/, X0
1 dy
(7.2) =— [ f(y) Xp, (y) dz
|D1| H]_ |D$| D]_\H2 DI
AVD fd.’L'
|D1| H

We can bound the first term in (7.1) as

1 |D\H|'9 /1
dy < , (
f(?/) Y= |D1|1/q |D1| D,

/
(3

Flu)tay)

D1l Jpy\

!
1£1D1,q

%C(%)l/q’ICAlef,

for some universal constant C. Similarly we can bound the first term
in (7.2) by
1

1 /6
_— dy < = C(= ICAV .
Dy Dl\Hsf(y) Vs (R) vf
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We conclude from these last two inequalities that

il / Avp, fdz > (1—0(%)1/q’IC)Avf.

Next observe that

1

— Avp fdx <
D1l Jm\c

1 /
f D,, d.Z‘
|D |IC’)/ HA\G || || q

1 1 1/q
__ q
Dk /HQ\G(|Dm|/Dw f@dy) " do

<|H2\G|1/q / /f qdy l/q
— D1k Ho\G |D|

(|H2\G|>1/q 1 ( 1 f(y)qdy>1/q

IN

D) KD o,
Ho\G|
= (", )" — 1151
1

S—AVle.
.

The lemma follows from this last inequality and (7.3).

Let us assume now that Theorem 7.1 holds for R = 27" with
n > m, m > ng, and consider the case R = 2=™. If (6.3) holds the
theorem is correct so we shall assume that (6.3) is violated. Put kg = m
and define an integer k; > ko by

1/3

1
(7.4) 2 2 (R ‘/QR Vo (v) dy) ,

where \g > 0 is a fixed integer to be chosen later. Since we are assuming
that

1

(7.5) 1 / Vi () dy > € 27 (m=no)
R Qn

and m > ng we should choose )\ to satisfy 2*0 ¢1/3 > 2 to ensure
k1 > ko.
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Proposition 7.1. Suppose that Theorem 7.1 holds for n > m > ny
and that for every z € Do the following inequality holds

1 e
(7.6) o / V, (y) dy < g2 kr=no),
B(z,27F1)

Then Theorem 7.1 holds for R =27™.

PROOF. From Lemma 7.1 we have that

1
[ @) [ane) g [ Vi
Dl -D2 Pz,z,klﬂQR

1
(7'7) < 02—(k1—k0) _/ Vn(y) dy
R Qn

< 2—)\0 22(k1—k0—>\0) )

Next for x € D; and f a function on Dy let Av, g, f be the average of
f on the set D1 N B(z,27%~*) and || f||z.k,.¢ be the corresponding L4
norm normalized so that ||1||lzx, 4 = 1. Let D; be the set of 2 € D,
which satisfy the following properties:

a) d(x,0D1) > 27k
b) {lp1]

d
c)_/ 2@(:1)/ Viy(y) dy < 2720/2 25 (i =ko=20)/2
D, Pz,z,klﬁQR

In view of Lemma 7.2 we have that

/~ Avw,kl P1 dﬂ(l")

D,

k1+4—
z,k1,q9 S C’2 o LHa=no Avm,klpl ’

(7.8)

1 (e 1 _
> (1_W_C2 (k1 ko)/qako o (),

_ C (2—A0/22—(k1—k0—)\0)/2)l/q’ ako—no CQ)AVDlp]_ .

Observe that the last term in the previous expression is a consequence
of the restriction c). In fact, in view of (7.7) one has

meas{z € Dy : ¢) is violated} < 9Xo/2 9= (ki—ko=X0)/2
2 B
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Now from (7.4), (7.5) it follows that

2—(k1—k0)/q’ak0—n0 < 2—)\0/q' é— 1/3 2—7]’(](70—710)/3 ako—no .

Hence if we choose a < 27/3 and A sufficiently large depending on
&, Cy we can have

1
(7.9)  Ave prdp(z) 2 5 Avp,pr .
D,

For x € Dl we define a subset l~)2 C D5 as the set of z € Dy which
satisfy

d) d(z,0D5) > 2%

&) / Vi, (y) dy < 2720/ g1 ki—Fko—2)/4
Fz,z,klmQR

21

From c), e) and the Chebyshev inequality we have that

(7.10) % > 1 — 27 ro/4g=(ki—ko=X0)/4 _ rg=(ki—ko)
2

for some universal constant C'. Evidently the set [?2 depends on x € l~?1.

Let z € 151, z € Dy. Then we can use the induction hypothesis to
propagate the density p; restricted to Dy N B(z,27%~%) through the
cylinder I';, , x,. To implement it we choose points xg,z1,...,2n with
the property that o =z, 15 = 2, |7; —wi41| =272 0<i< N -1,
such that the balls centered at (x; + x;,1)/2 with radius 2-*1+2) are
contained in I'y , p,. Finally we insist that N < C 2F1=Fko for some
universal constant C'.

Consider the ball By centered at (x4 x,)/2 with radius 2~ (*1+2),
Letting D, = Dy N B(x,27%17%) then from b) and the induction hy-
pothesis p; restricted to D, can be propagated to a density pgl) on
D,, = 0B, N B(xy,27%"~%) where B, is a ball of radius r > 102712

such that 1 € 0B,. Furthermore pgl) satisfies the conditions

1 1
1PV lIp,,.q < CaAvp, PV,

AVDzlpgl) > co Avp, p1exp (2_;%/ V() dx) .
B

0
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In view of the above inequalities and the induction assumption we may

propagate pgl) to a density pgz) on D,, = 0B, N B(x2,2_k1—4) and

continue to do this until we obtain a density pgN_l) onD,;, , =0B,.N

B(zn_1, 27%~%) with the properties

(7.11) 165 by, < CoAvp, 9y
N-1
Avp, . pi Y
_ -3
(7.12) > " texp (2—k1—1 / V() dy)Aszpl :

x,2,k1

In the inequalities (7.11), (7.12) the constants Cs, ¢a, B are from The-
orem 7.1. They are therefore part of the induction hypothesis. To
ensure that these constants continue to hold on the next level up we
use the assumption (7.6). Hence in propagating pgN_l) to pgN) we may
use the perturbative Theorem 6.1. Let us denote the constants Cs, ¢y
in Theorem 6.1 by Cs perturb and €2 perturb to distinguish them from
the corresponding constants Cs, cy in Theorem 7.1. It is clear that by

choosing A large enough we have

(713) 02 < C2,perturb ak1—|—2—n0 .

Hence by Theorem 6.1 pgN_l) propagates to a density pgN) on Dy, =

Dy N B(z,27%~%) which has the properties

(7.14) 1 b,y < Cs persurs Avp, Y
AVDZN pgN) Z CZ,perturb Cév_l
—p
(7.15) " €Xp (m Va(y) dy) Avp,p1 -

Fz,z,klﬂQR

Evidently we can assume cp < 1 and ¢2 < ¢2 perturb. Hence the inequal-
ity (7.15) yields

1 p
AvaNpgN) > exp ( — Nlog (22) Tkt Vi (y) dy)
z,2,k1NQR
. AVszl
> exp ( _ C2k1—k0 10g (i) _ 252—A0/4 211(k1—k0—)\0)/4)
C2

-Avp, p1,



ESTIMATES ON THE SOLUTION OF AN ELLIPTIC EQUATION 671

upon using e) and the fact that N < C 2F1=%0_ Observe now that

O 2F1=H0 Jog (i) + 9 g2 No/4 1k —ko—0) /4
C2

— g 23(ki—ko—Xo)

C 2% log (i>
C2 2—2(k1—k0—>\0) + 21—>\0/4 2—(k1—k0—>\0)/4 .
B

In view of the assumption (7.5) we can choose Ay dependent only on ¢
such that

1

91=2o/4 9—(ki—ko—Xo)/4

With this choice of \g and arbitrary cs, 0 < ¢co < 1 we can choose 3 > 0
such that

1 1
-1 2)\0 1 - 2—2(k1—k0—)\0) -
/B C Og (Cz) < 4
Hence it follows that
(V) p
(7.16) Avp, pi ~ > exp ( ~ 53R o Vo (y) dy)AVszl .

We wish to define the density ps on Ds. For x € l~)1 let
’Y(kl) = |D1 N B(x, 2_k1_4)| .

Evidently v(k1) is independent of z and ~(k;) ~ 272%, Also
T )z [ ) a@x, e, ye D,
D,

where x, is the characteristic function of D, = Dy N B(z,27%~4).

For z € Dy, z € Dy let p®* be the density p{" defined above. Thus
N
5 () = PN (y), Y€ Day
' 0, y € Do\D,,, .

It follows then from (7.17) that the density p, induced on D5 by p; as
in Theorem 7.1 satisfies

dx
(7.18) 7, () 2/ _ Y[ o y)dz, yeD,.
2 D, ’Y(kl) |D2| Dy '
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From (7.16) and the above we have that

1

AVD2p2>eXp(2£/ V( )dy>|D2| 5

Avp_pidzx.

Now if we use the inequality (7.9) we conclude that
_ —B
Avp,py 2 czexp (- | Vy(y) dy JAvp, p1
Qr

provided ¢ is sufficiently small. This last inequality is consistent with
the lower bound on Avp,ps in Theorem 7.1.

It seems reasonable from the previous argument that we shall define
p2 by the right hand side of (7.18). We need to be more subtle than
this in order to keep control of ||p2||p,,q as required by Theorem 7.1.
We accomplish this by insisting that the integral of p** is independent
of z € Dy. In view of (7.16) we may insist that

(7.19) Avp_ p]”® = exp / Vi dy)AvD P1 s z€ D, .
Then the density py is defined like the right hand side of (7.18) by

dx
(7.20) p2:/ LR R
by (k1) [Da2| Jp,

Evidently Avp, ps satisfies the lower bound of Theorem 7.1. To estimate
lp2]lD,,q We use the Minkowski inequality. Thus

(7.21) IlszDz,q—/D ~(k1) H|D2|/

Now we have

D27q

q 1 1 q
p1*dz =Dl /s (N— P17 (y) dz) dy .
2

H|D2| D, Ds,q |D2 |D2| D,

Observe next that p7"*(y) = 0 if |z — y| > 27%, whence

T, q —2k1(g— T,z
([ 1 (y) dZ) < C12 2k (g 1)/~ P1 (y)qdza
D Ds



ESTIMATES ON THE SOLUTION OF AN ELLIPTIC EQUATION 673

for some universal constant C. Hence

. q C1 9—2k1(q—1) -
Py dzH < ———dy | p17(y)"dz
! D> ,q |D2| D» |D2|q D, '

- Y A
|D2| Dot )b, Jp,

C192—2ki1(a—1)
| Da| | Dy

q
_2k1 q €T,z
/D 2 Cé,perturb(lAVszl ) dz.
2

H |D2| D,
(7.22)

If we use now this last inequality together with (7.19) and (7.21) we
can conclude that

Avp_pidx

I3 D
— Vi (y) dy L .
32 Joy, V1) ) (DB

HpZHDz,q < CC2,perturb exp < -

It follows from (7.10) that we can choose Ay sufficiently large depending
only on ¢ so that (|Da| | D9~ 1)/ > |Dy|/2. In view of (7.19) we have
that
A > ( B[ v ) ) = A dz
exp | — == v .
VD2p2 - p 2R . y |D2| Dl szl

We conclude therefore that

(723) ||P2||D2,q <C C12,perturb AVDz P2,

where C is a universal constant. Theorem 7.1 follows then if we have
C O perturb < Ca. This inequality is consistent with the inequality
(7.13) provided we choose A\ large enough.

REMARK 7.2. The assumption (7.6) is only used in concluding (7.23).
If we did not assume (7.6) then the constant in (7.23) would be C Cs
and we obviously cannot conclude that C'Cy < C5 if C' > 1.

PrROOF OF THEOREM 7.1. The idea is to extend the argument of
Proposition 7.1 until a perturbative situation holds at the boundary of
D5. This will require introduction of further cylindrical decompositions
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until we are in a situation where (7.6) holds. We begin as in Proposition
7.1 by defining ko = m, k1 by (7.4) and assume that (7.5) holds. To
simplify notation we shall refer to the set Ds from here on in this proof
as I1, and the density p; on D; as p.

The set D; is defined exactly as in Proposition 7.1 by a), b), ¢)
following (7.7). For 1 € D; we define a subset F; C E; which depends
on x similarly to the set Dy of Proposition 7.1. Thus we define it by
the conditions d), e) following (7.9) but we also impose the requirement

(7.6). Thus z; € E; if
dM) d(z,0E;) > 27k |

1 —_ — —
e(l)) 2——kl‘/l_‘ Vn(y)dy§2 )\0/4211(1(}1 ko )\0)/4,

z1,21,k1NQ2R

1 _—
£D) 2_—kl/ Vi (y) dy < £27 Fmmo),
B(Zl,2_k1)

The set Fl C FE; is defined as the set of z; € E; for which d(l)),
e(!)) above hold but not f(!)). The inequality (7.10) yields therefore the
inequality

(7.24) % > 1 — 2 ro/49=(ki—ko—X0)/4 _ (rg—(ki—ko)
1

Evidently if A\ is sufficiently large depending on ¢ the right hand side
of the above inequality is strictly positive.

Now for z1 € 151, zZ1 € El we can as in Proposition 7.1 propagate
the density p restricted to D1NB(z1,27%7%) to a density p,, ,, on E1N
B(z1,27%~%) whose average value and fluctuation we can control ex-
actly as in Proposition 7.1. Next suppose z; € Fi. Then we may use the
induction hypothesis to propagate p restricted to E1NB(z1,2 % 74) to a
density pg, », which is concentrated on a set Dy = B, N B(z,27"~%)
and T has the property that B(Z,27%7%) C B(z1,27%71) N Qg but

has no intersection with B(z1,27%172). The density p,, ., on Ds cor-
responds to pgN_l) in Proposition 7.1 and can be controlled by the

inequalities (7.11) and (7.12).
For z; € F; we define ks by

1 1/3
2k2=h1 g% —/ Vi, (y) d :
(575 f, o) Vi@ )
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Thus ky has the same relationship to k1 as k1 has to ko, but now it
depends on the variable z; € Fi. Let Ep = B(z1,2_k1~_4) N E; and
define D5 in analogy with D;. Thus Dy C Dy and x5 € D> if

a®) d(xy,0Dy) > 27F2
b(z)) Hp:l?l,Zl ||$2,k27q < Cy a2 =m0 AV$2,k2p$1:Z1 )

)

1 / de/
= Vo (y) dy
Bl )i, 2% Joe o omean, 1Y

z2,22,k2
< 2—)\0/2 25(k2—k1—)\0)/2 .

By (7.11) we have that ||pg, 2 ||Dy.qg < C2 Avp, ps, .- In analogy
to the derivation of (7.8) we have that

1
D / Avavmkz Pz, dm? > AVDz Pz .,z
|D2| Jp,

(7.25) — 2 ke=k)/d ¢,

(-
— ¢ 9 (k2=F1)/2q' Cz) )

For x5 € Dz we define a subset Ez C Es in analogy to F1. Thus z, € Ez
if

d@) d(zy,0F,) > 272 |

6(2)) _]'k / V’r](y) dy S 2—>\0/4 211(k2—k1—)\0)/4,
27 Jp NB(z1,2%1)

zp,29,k2

1 / V77 (y) dy < £2n'(k2—no) )
B(z2,2—k2)

2~k

f(2))

The subset Fy C Ej is the set of zo € Fy for which d®)) and e(®)
hold but not f(?)). In analogy with (7.24) we have the inequality

|Ey U F|

S 1 _ 9 to/dg—(ka—ki—Xo)/4 _ (1o—(ka—k1)
|Eo|  —

For x5 € 152, 29 € Ey we use Proposition 7.1 to propagate the density
Pz, 2, Testricted to DaNB(xa, 27%27%) to a density on FaNB(zg,27%27%)
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whose average value and fluctuation we can control. This density is de-
noted by puz, 2, 2.,2,. Just as previously if zo € F, we use the induction
hypothesis to propagate p,, ,, restricted to Da N B(xa,27%274) to a
density pu, z,.z..2, concentrated on a set D3 = B(%,27%~%) N 0B,.
The point T is to be chosen similarly to before. Thus we require that
B(m,27%271) is contained in B(z2,27%271)N Qg but has no intersection
with B(zp,27%272),

Evidently we may continue this process by induction. Thus we ob-
tain densities prlyZl? pw1,21,$2,227 T pil?l721,1172,22,---7%“2”...7 where pfnlyzl is
defined for z; € D; C Dy, 2z, € E; (z1) C Eq. The function pg, 2, 9,2
is defined for ;1 € D; C Dy, 21 € ﬁ’l(xl) C Ei,z9 € [?z(azl,zl) C
Dy(x1,21), 22 € Eg(xl,z1,$2) C E3(z1). Here we have shown the de-
pendence of the sets E’l, Eg etc. on the variables z1,x3, 21, 22. More
generally the density pg, ;. .4, .. is defined for z; € l~)1 C Dq, z1 €
Fl('rl) C Ela"'v

Tr—1 € Dr—l(xla 21y @pe2,2r—2) C Dp_q1(z1, 21, .., Tr_2, 2r—2),
Zr 1 € Frq(21,21, -y Tr_2y Zr_2, 1) C Er_1(20_2),
T, € lN?r(xl, Zlyee oy Tp_1,2r—1) C Dp(21, 21, oy Tr1, Zr—1)
Zy € EN'r(xl,zl, ey Tpe1y 2p—1,Tyr) C Ep(2p-1) .

Letting p be the density p propagated to Ey, it is clear by analogy with
(7.18) that we have

_ d.Tl le
pZ _ _ ~ ~ pwl,zl
by (k1) JE, |ELU Fy|
/ dl’l / le dxz
+ = =
b, (k1) JE |EvU Fy| b, v(k2)
d
(7.26) / #pm,zhwz,m
B [E2 U Py

L +/ dz; / dzy / dz,
by Y(k1) Jg |ELUF| Jp, v(Er)

/ dz,
. ~ ~— Px1,21,0. T, 20
5 |E. UF,]
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where v(k) ~ 272%. Observe that the previous sum is finite. In fact k,
is defined by

1 1/3
7.27 ofir=kr—1 , 9o / Vo (y) dy ;
ran (e [ i)

and one also has the inequality

1 / e
Vyy) dy > €27 (Froimmo),
2—kr71 B(zril,szrfl) 7]( )

Since we may assume b € L% (R3) this last inequality cannot hold for
arbitrarily large k,_;, whence r is bounded since k, > k._1 + 1. The
last two inequalities imply that

2kr—kr_1 Z 2)\0 (é. 27I’(k’"_1_n0))1/3 7

and hence

/

(7.28) Ky — g > (1 n %)(kr_1 “ng) +1,

if we choose A\ to satisfy 2*¢1/3 > 2. Thus k, — ng is increasing
exponentially fast as a function of r. Next we shall show that the
difference k, — k,._1 actually decreases. To see this observe that

&)
Vo (y) dy
2~k B(z2-kr) n
<o )| V(y) d
27 y)dy
92—k, Fzr,zr,krﬂB(Zr—1,2_kr—1) n
1 11/12
<2 (s / Vo (y) dy)
2_kr—1 B(Zr,172_k1"—1) n

: /
_ V. (y) dy.
2—kr—1 B(Zr_l,Q_kT—l) 7]( )

Here we have used the definition (7.27) of k, and the condition e()
corresponding to e(?)). Hence from (7.27) we have the inequality

< 2—>\0/4(£ 27]'(kr_1—n0))—1/12

23(kr+1—kr—>\0) S 2—>\0/4(€ 2n’(kr71_n0))_1/12 23(kr—kr71—>\0) .
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It follows that we may choose A\g large enough depending only on & such
that

_ 1 _
(7.29) 2kr=kr-1 < o k1—ko,

We shall use (7.26), (7.28), (7.29) to get a lower bound on Avg,p.
Suppose z1 € Dl, z1 € Fl, Ty € 132, Z9 € FQ"'xr_l € ET_l, Zp_1 €
F._1, z; € D,. Then in analogy to (7.12) we have from the induction
hypothesis that if z, € E,.,

/ pwl,zl,...,wr,zr (y) dy
D,

Z / pwl,zl,...wr_l,zr—1(y) dy
D,.NB(x,,2=kr—4)

- exp ( — C 2kr=kr-1]0g (l)
C2
p

T 99—k, _
2 " er,zr,krmB(zr7172 kril)

Vn (y) dy) .

Using now the condition e(") corresponding to e(*)) we conclude

/ piE]_,Z]_,...,CBT,Zr (y) dy
D,

Z / p$1731,---$r71,2r71(y) dy
D,NB(z,,2=kr—14)

1
. exp ( _ ¢ okrFr-1 Jog (a) _ goo/4 211(kr—k,,_1—>\0)/4) .

(7.30)

Similarly if z,. € EN'T then

/ Py 2y s amzn (Y) AY
E,

Z / pwl,zl,...wr_l,zr—1(y) dy
D,.NB(x,,2=kr—4)

. exp ( _ ¢ 2krhr1 Jog (l) _ g Ho/4 211(kr—kr,1—>\0)/4) .
€2
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Consequently we have that

/ dx, (/ dz, / (y)d
= = Pxy,z1,....x,.,2,\Y) AY
5, Y k)N g |E.UE| B,

dz,
+/~ = 4 pwlvzla"'waaZT (y) dy>

Er |E’V’UF~1’I’| El

dx
> [ . / pthh---,wr—hzr—l(?J) dy
b, V(kr) D.NB(z,,2—kr—1)

- exp ( _ ¢kt Jog (i) _ goro/4 211(1%—1%_1_%)/4) _

C2

Next observe that in analogy to (7.25) we have

dz, /
pah 3 @1y Lp—1,8r—1 (y) dy
/f)r Y(kr) D, B, 2~ ke -1

Z / p$1,21,~~~7$r—1,2r—1(y) dy
D

I

- kr_kr—l ! - kr_kr—l 2 !
.(1_m_02 ( /a0y —C2( )/qcvz).

It is clear from (7.28) that there is a constant a > 1 such that

/ ' 1
- kr_kr—l - kr_kr—l 2
(731) g + 027 NaCy+ 2 PaCy < — |
r = 1,2,.... From the last three inequalities and (7.29) we conclude
that

/ dz, (/ dz, / (v)d
= = Pxy,z1,....x,,2,\Y) AY
D, ’Y(kr) F, |Er U Fr| D, v
dz,
+/_ pwlyzla"'waaZT(y) dy>

Er |E’V’UF~1’I’| El

1
Z (]_ - —> / pml,zl,...,:nrfhzrfl (y) dy
D

T

C ki—ko 1 Caoza O e —ko—20)/4
exp (= g 27 g () — g2 o2 ).
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for some constant C' depending only on £&. We may apply the previous
inequality inductively to (7.26) to obtain

[ wwa=TI (- %) [ s

1\ s 1
- exp ( — 2k =hoJog (—)

c A
2 r=1

1
—Xo/4 11/4 911(k1—ko—Xo)/4
— B2 /4 C1L/4 911 (ki —ko—0)/ §:211T/4).
r=1

Now we argue exactly as in Proposition 7.1 to verify that Avg, p is
bounded below as the induction hypothesis requires.

Just as in Proposition 7.1 we cannot define py by the right hand side
of (7.26) since we cannot then control the fluctuation of py in terms of its
average value. We proceed as in Proposition 7.1 by generalizing (7.19).
Thus we prescribe the averages of the densities py, .., Pz 21 ,20,20,... -
First we modify (7.19) by insisting that

/ Pay,z (Y) dy = e ™ / p(y)dy, = € Er,
E; DlmB(:Bl,Z*kl*‘l)

/ Pay,z (y) dy = e ™ / py)dy, = €Fy,
D> DiNB(x1,2=k1—1)

where 77 is a constant which satisfies

(7.32)

> C 28— Jog (i) + B 2P0/4 9110k —ko=Xo)/4
> o

In view of (7.30) this is clearly possible. More generally, let x; € Dy,
21 € Fi, 29 € Do, 29 € Fy,...,x, € D, Then from (7.30) we can insist
that

/ p:B]_,Z]_,...,iET,ZT (y) dy
Ey

=e / piEl:zlr--)mrfl:zrfl(y) dyv zr € By ’
D,NB(z,,2-kr—14)

(7.33)

/ pwl,zl,...,wr,zr (y) dy
Dr+1

=e / piEl:zlr--)mrfl:zrfl(y) dyv zr € Fy ’
D,.NB(x,,2=kr—4)
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where 7, is a constant satisfying the inequality

C 1 cii/4
> > ok1—ko log(c >+[5’2 /e b G 9U1(ki—ko—X0)/4

for some constant C' depending only on £. Now we define ps by altering
the right hand side of (7.26) to

d:):l / le >
p2 - / ~ ~ pwl,zl eXp - 77
by V(k1) Jiy | By U B ( ; )
n +/ dx / dzy / dx,
b, Y(k1) Jp |EyU R U, v(kr)

/ = ( > )
. —_— ex — 1
ET |ET U FT| p:B]_,Zl,---,iET,ZT p 77.7

j=r+1

We consider the problem of estimating ||p2|| g, ,q by writing ps as

/ dz; / dzy _da
P2 = 7N T1,21 )
’ D, ry(kl) E\UFR, |E1 U F1| P

in analogy with the representation (7.20) of proposition 7.1. We argue
now as in Proposition 7.1, using the Minkowski inequality to obtain the
bound

d:):l le
(7.34) 192|514 5, 700 | om B OBy

Since 1z, 2, (y) = 0 if |21 — y| > 27% we have just as in (7.22) the
inequality

dzy
H/ wiﬁl,zl
Bk | By U F|

C 2—2k1/d 1/q
< ([ Waalgdn)
|E1UF1| E,UF,

where 1/¢ 4+ 1/¢" = 1, C is a universal constant and |[|¢)g, ., [/ is the
unnormalized LY norm on E;. Now

El;q

E1,q
(7.35)

oo
w$1721 :exp<_znj>Pw1,z1 9 al GE]_ 9
=2
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whence

oo
s 12 = exp (= 0> 1) 1w 2
j=2

< exp ( —q i nj)22’“(q‘” C1C3 perturd ( / Py, (Y) dy)q

j=2 £

00
= exp ( —q Z nj) 22k1 (a=1) 1 CYg,per‘curb
=1

q
: ( / p(y) dy) :
D]_ﬂB(iE]_,z_kl_‘l)

by (7.32) where C' is a universal constant. Let us assume now that for
z1 € Fy there is a universal constant C' such that

oo
“",bml,zl ||g < exp ( o qzn )22k1(q Y 1 Cgperturb
j=2

. </02 Py (Y) dy)q

00
= €Xp ( - q Z Uj) 22k1(q—1) e C2q,perturb
j=1

q
: ( / p(y) dy) :
D]_ﬁB({B]_,z_kl_‘l)
Then we have that

(Jy, Mli) ™

<|E1UF1 l/lep< Z )

(7.36)

* 22k1/q CC2,perturb/ P(y) dy
DlﬂB($1,2ik174)

It follows now from (7.34), that

oo

1 dzq
< ——=— €X - N I
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(737) -C C’2,perturb / p(y) dy
DlﬂB($1,2_k1_4)

2C C2,perturb -
< Dy exp (— an) /D p(y) dy ,
=1 L

by making the ratio of |Dy| to |E; U Fi| close to unity. This can be
arranged in view of d(1)), e()) by choosing Ao large. It follows from
this last inequality that

(7.33)  lp2llmig < CCopornuexp (= 1) Avp,p,
j=1

where C' is a universal constant.

We shall show now that the inequality (7.38) holds in general. To
do this we shall prove by induction that (7.36) holds. Thus for z; € D;,
21 Eﬁ’l,...,xr GET, 2y EET,

oo
wwlazla"'wa;ZT = eXp ( - : : nj>pw17z17"'7w1"7z1" *
j=r+1

For z, €l~)1, Z1 Eﬁ’l,...,xr eD,,, Zy. EFT,

d-Tr—f—l
wxlazly"wmryzr = - k
(7.39) D1 Y (kry1)
. / er_H 7,b
~ ~ T1,21 s Lprt120 .
ET+1UFT+1 |Er+1 U FT+1| n o o

We now make the inductive assumption that for 2z, € }3}_1_1,

0
|lww1,217---$r+1,2r+1 Hg S exp ( —4q Z nj>7(k7“+1)_(q_1) Cq C'Zq,perturb
j=r+2
q 1
(7-40) : (/ Pz1,21, @120 41 (y) dy) (1 + r+1> !
Dr+2 a

where a > 1 is some number to be specified and C is universal. To
verify the assumption for ¢, ., . 4. .., 2r € Fy, we argue as before
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using (7.39). Thus

dx, 1
[

dzr—l—l
) ~ ¢$1721,...,$r+172r+1

E,  UF. |Er+1 U Fr+1|

J

< / dxr—i—l
" N bgy Yk )Y By U Fpyy|
q 1/a\a
(/:, - ||¢$1,21,...,$r+1,zr+1||qdzr+1) ) .
E,+1UF; 41

Now for 2,41 € E,41 we have

oo

||¢$1;217"'7mr+lyzr+l ||3 S exp ( —q Z Uj> ||pm1,21:---:$r+1yzr+1 ||3
j=r+2

< exp ( —q Z nj)V(kT-i—l)_(q_l) C'Zq,perturb

j=r+2
q
: ( pw17217---,$r+1,2r+1 (y) dy)
E,
00
= €xXp ( —4q Z nj)’Y(kT-i—l)_(q_l) C'Zq,perturb
j=r+1

q
' (/ pwl,zl,...,wr,zr(y) dy) )
Dyy1NB(wpg1,27 Fre1—?)

by (7.33) and Theorem 6.1. From the induction assumption (7.40) and
(7.33) we have that if 2,11 € F,47 then

o0

||77bw1,217---,$r+1,2r+1 Hg S exp ( -4 Z nj)’Y(kTﬁ-l)_(q_l) ! C2q,perturb
j=r+1

q
/ Parzrsesor e (Y) dy)
Dy 1NB(mpy1,27 Fr+174)

1
1+ 7))
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It follows then from these last three inequalities that

oo

1
|lww1,zhm,wr,zr|lg S exp < - q Z 77j>Cq C2q,perturb (1 + ar+1)
j=r+1

/ dmv’-{—l
Dr+1 'Y(kv’-i-l) |Er+1 U FT+1|1/qI

q
' / pwlazly"wa;ZT (y) dy> *
Dy 1 NB(mpg1,27 Fr+174)

We have now that

/ dxr—l—l
D1 V(krt1) |Er+1 U Fr—|—1|1/q’

' / pwlyzly"':wryzr (y) dy
Dy 1NB(mpg,27 Fr+174)

< Cy (k)M / Per e () dy
Dr+1

where we need

k. 1/q' .
Cr 2 (#> ) Tr41 S Dr—f—l .
|Er 1 U Frg]

From d("+1)) e("+1)) it is clear we can choose a > 1 so that

1
_ 1+ —
(Bl e e
|Er+1UFr+1| B 1+ 1 "
ar—i—l
We conclude that
oo
walyzlrn;wmerg S exp < -9 Z nj>7(kT)_(q_1)Cq C'Zq,perturb
j=r+1

1 1
. (/ p$1,21,...,w,ﬂ7zr(y) dy) (1 + _T> ,
Dr+1 a

Thus we have verified the induction hypothesis (7.40) at the next level
down. Setting 7 = 1 in this last inequality yields (7.36).
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The proof of the theorem will be complete if we can show that
(7.41) Avg, p2 > cexp ( — Zm)Alep,
j=1

where the constant c is independent of the constant Cs in the statement
of Theorem 7.1. We can prove this in an exactly similar way to the proof
of (7.37). Our induction assumption here is that for z,11 € Fy41,

¢$1721,~~~7$r+172r+1 (y) dy

)
1
Z €xXp ( - Z 771) <1 - a”'*’l) /D p$1;217"'7mr+1yzr+1 (y) dy

Jj=r+2 r+1

E,

If we use now (7.39), (7.33) and (7.31) we can verify the induction
hypothesis on the next level down. The fluctuation bound on py in
Theorem 7.1 follows from (7.37) and (7.41) if we choose the constant
(5 in the induction assumption sufficiently large.

We will use Theorem 7.1 to obtain estimates on the exit proba-
bility from a spherical shell. To do this we use the function ac ,, 5 p(z)
defined in (1.7) in terms of the number of nonperturbative cubes in-
side the sphere of radius 27" centered at x. Let us suppose now that
e n—1,5,p(0) > 1 so that we are in the nonperturbative situation and
e n—1,5,p(0) ~ 207" ng > n. If we define V;, by (6.2) then we have:

Lemma 7.3. Suppose 0 < n < s — 2. Then there is a constant C,
depending only on n such that

1

— V() dz < Cpacn—1,5p(0)%.
27" JB(0,2-)

Proor. Clearly there is a universal constant C' such that

Vi(x) de < gn(m=no) g—mp
/ NERCCITEDS

m=ngo

where N,, is the number of dyadic cubes with side of length 2™ con-
tained in the ball B(0,27"%1) such that (6.1) holds. In view of the fact
that

N,, < 9(m—n)(3—s) Qe n—1.s p(O)s ~ 9(m=n)(3=s) 9(no—n)s :
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it follows that

V, (z) dw < 27" 22(mo—n) 9(m—no)(n+2—s)
L Vol 5

m=no

S 077 2_n as)n_17syp(0)s7

since ) < s — 2.

Theorem 7.2. Let f be a density on the sphere |x| = 27™. Suppose the
drift process started on |x| = 27" with density f induces a density fo on
the sphere |x| = 27" when it exits the spherical shell {27771 < |y| <
27"y Then there exist constants Cy, Cy such that if 1 < q < oo and
1 fllg < C1 Av f there is a density fa on |z| = 27" with 0 < fo < f,
such that || f2]|lq < C1 Av f2 and

Av fo > exp (—Cy ag,n—Z,s,p(O)) Avf,

provided Gen—2p,(0) > 1. The L? norm here is normalized so that
1]l =1.

PrOOF. For |z| = 27", |z| = 27"*! we consider cylinders 'y, , j with
k defined by
Defining ng by acp_25,(0) ~ 277" it follows that £k = Ao + no.
Letting Dy = {|z| = 27"}, Fy = {|z| = 271} it follows from Lemma
7.1, 7.3 that
1 dx ﬁ/
|D1| D, |E1| E, 2_k Fwyz,kﬂB(0,2_"+2)

1
<Con Rkl — d
<C (2_n /}3(072_n+2)Vn(y) y)

< C2n—k 22(n0—n) — 02—2)\0 2k—n )

Vi (y) dy

We follow now the lines of the proof of Proposition 7.1 and use Theorem
7.1 to propagate the drift process through the cylinder. Let D) be the
set of x € D7 such that
1 dz /
= % Va(y) dy
(7.42) |Ey| JE, 27F ... xNB(0,2-n+2) !
< 2—)\0/2 2(k—n—)\0) )
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It follows by Chebyshev from the last two inequalities that

| D1 “xo/2
>1—(C2 M/2,
| D1

Next we have by the argument of Lemma 7.2 that

/ e / Fly)dy < (C272/%)V4 Oy Avp, f .
Di\D} 2—2k DyNB(z,2-k=1)

For x € Dy let ||f]|zx be the LY norm on Dy N B(x,27%~*) normalized
so that ||1||; x = 1. Let D be the set of € D; such that

Hf“w,k S C2,thm ak—no AVm,kfv

where Cy thn denotes the constant Cy of Theorem 7.1 and « is the same
constant as in the statement of the theorem. We choose Ay sufficiently
large so that 2C'; < Czythmak_"o. Since A\g = k — ng this is certainly
possible. Setting D; = D} N DY, we conclude on taking v = 1/2 in
Lemma 7.2 that

dx 1
— dy > - A
/fn 52k /JDIHB(z,z_k_4)f(y) y= A f,

provided Ag is sufficiently large.
Next for x € D; let E; be the set of z € E; such that

1

_k Vn(y) dy S 2—>\0/4 2(k—n—>\0) .
277 Jr, . xnB(0,2-n+2)

It follows from (7.42) that

|| “o/d
— > 1 =2 "0/,
| £

Now we use Theorem 7.1 to propagate the density f restricted to DN
B(x,27%=%) through the cylinder Iy k to E1N B(z, 27F=4). Let [z,
be this propagated density. In view of (7.43) we can arrange for this
density to satisfy

/ fe,2(y) dy = 6‘"/ f(y)dy,
E\NB(z,2-k—1) DiNB(z,27k~1)
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where = C'2F~" for some constant C. Theorem 7.1 also yields an
estimate on the fluctuation of f, ,. Thus

1 fe.z

lq S C2,thm Av fm,z .

The propagated density fo is defined now by

dx
fa = / 5= | Ju,zdz.
Dy B
We can argue now exactly as in Proposition 7.1 to conclude that

Avg, fo > exp (—=C 2’“‘") Avp, f,
| f2llg £2C% thm AvE, f2 -

The result follows by taking C1 = 2 C2 thm-

8. Proof of Theorem 1.3.

Here we follow closely the argument of [5, Section 6]. In fact we
shall repeat the entire argument of [5, Section 6] with the function
an p(x) given in (1.4) replaced by the function a. ,, 5 p(z), s > 2 defined
in (1.7). Our first lemma is identical to [5, Lemma 6.1]. In the following
we shall denote the function ac ,, s, simply by a,.

Lemma 8.1. Let Qg be a cube containing Qg with side of length 27™° ~
R. Suppose for some integer m > 0, the drift b satisfies the inequality

(8.1) / bJP da < & Q1713
Q

on all dyadic subcubes Q C Qo with side of length 27", n > m + ny.
Let u be the solution of the Dirichlet problem (1.1), (1.2). Then if € is
sufficiently small, depending on p > 1, s > 2, there exist constants Cy
depending only on p,q,r and Cy depending only on p > 1, s > 2, such
that

lulloo < CLRZ/ | fllgr sup exp (C2 Y angs(a) ) -
TEQR

J=0
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PrROOF. We consider the function &(x), x € Qp, given by

6) = £ [oxp (= - [ 17100 ar)].

where 7 is the time for the drift process Xp(t) to exit Qp. By (8.1)
the ball B(z,27™) is perturbative for the drift b. We need now an
obvious generalization of Theorem 7.2. Thus let p,, be a density on the
sphere |z — y| = 27" and p,,_; be the density induced on the sphere
|z — y| = 27" by paths of the drift process which satisfy

(8.2) /0 (X (1)) dt < C 27 @3/ a=D gmmad |

where 7,,_; is the first hitting time on |y — x| = 2771, C is a positive
constant and 0 < § < 2 — 3/q. Suppose now that a,_s(z) > n > 0.
It follows from Section 7 that for any ¢, 1 < t < oo, C' can be chosen
sufficiently large so that ||p,||: < CAv p,, implies that p,,_; > pn—1 >0,
lpn-1llt < CAvp,_1 and

(8.3) Av pp_1 > Avp,exp (—Kyan—2(2)),

where K, is a constant depending on 7. If a,_2(z) < 7 and 7 is
sufficiently small then we are in the perturbative situation described
in Section 5. Now p,_1 is the density induced on |z — y| = 27" by
paths which avoid nonperturbative cubes and such that (8.2) holds. By
examining the proofs of Proposition 5.2, Proposition 5.6 and Lemma
7.3 we see that on choosing q sufficiently close to 2, depending on s > 2,
one has

(8.4) Avp,_1 > (1—v27 7m0 (1 — ) ay_s(z)) AV py,

where the constant ¥ > 0 can be made arbitrarily small and C; is
independent of 7. It follows from (8.2), (8.3), (8.4) that

3 1 = —n(2— — —n
) 2 Jo (= Do CaE el )

n=ngo

- exXp ( - Kianoﬂ(m)) .
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If we choose now p ~ 270(2=3/4) || ||, - we can conclude that
1 m
E(z) > 5 eXP ( — KZan0+j(a:)> .
j=0

The result follows from this last inequality and [4, Lemma 5.1].
Next we consider the analogue of [5, Lemma 6.2].

Lemma 8.2. For n € Z let §,, be the spherical shell Q,, = {z € R3 :
27l < x| < 27 For @ € Q,, let P, be the probability that the
drift process started at x ewits 0, through the sphere |y| = 27" %L, Let
d be a number satisfying 0 < 6 < 2/3. Then if |x| = 27™ there is a
constant C depending only on 6 <2/3,p>1, s > 2 and ¢ such that

P, > dexp (—Cay,—2(0)).

PROOF. Observe that if b = 0 then

4 2—n—1
P, = —(1 — ) .
3 |z|

Hence if |z| = 27" then P, = 2/3. It follows that for fixed z( with
|zo| = 27™ then

(8.5) P, > %(H 2) ,

for x in the set

‘ 2-7(2 — 36)
(8.6) B—{a:.|:1: wl < =557 }
Consider next the case when b # 0, and let us first assume that we
are in the perturbative case so that a,_2(0) < n and 7 is small. For
z € R3, m, k integers with k& > m let Ny, x(z) be the number of dyadic
cubes with side of length 27% contained in the ball {y : |z — y| < 27"}
which satisfy (6.1). Then from the definition of a,,_2(0) we have that

(8.7) Np_am(0) < pf 2mF2=mB=9) =y > — 2,
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Let X(t) be an arbitrary continuous path with X (0) = zy, X(t) € B,
t < 7, and X(7) € 0B. Let s satisfy 2 < s/ < s, We claim that
there are constants C4, 3 depending only on s,s’, such that C; > 0,
0 < B <1, and a point z = X (¢) for some ¢, 0 < t < 7, satisfying

(8.8.) Ny () < Cyp?p™™" g(k—m)(3=s") , k>m>n.

To prove this inequality we assume its negation and obtain a contradic-
tion. Thus for each x on the path X there exists integers m(z), k(x)
such that (8.8) is violated when m = m(z), k = k(z). Now the balls
B(x,27™®)) form an open cover for the compact set X. Hence there
exists a finite subcover I' = {D; : 1 < j < N} for some integer N. For
each integer m > n, let I',,, be the subset of I' consisting of balls with
radius 27", Let D be an arbitrary ball and D the ball concentric with
D but with three times the radius. Then there exists a subset I';,, C I'y,
of disjoint balls such that

U pc Y D.

DeTl,, Def‘m

For £ > m let f‘myk be the subset of f‘m consisting of balls D =
B(z,27™) such that k(xz) = k. Since the balls in I',, ; are disjoint
it follows from (8.8), (8.7) that

|f‘m,k| Cs nsﬁm—n 2(k—m)(3—s') < 77s 9(k+2-n)(3—s) :

whence

|fm| < Z |fm,k| < CCl—lﬁ—(m—n) 2(m—n)(3—s)7

k=m

for some constant C' depending on s’ < s. We choose < 1 now so
that
23—5
p

This is possible since s > 2. It is clear that for any point x on the path
X(t), 0 <t <7, one must have the inequality

< 2.

2—n

— x| <6 27T, < A ,
|z — o] <6 L | < c

m=n
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for some constant A depending on s, s’. Since X (7) lies on the boundary
of the ball B in (8.6) this last inequality is violated for x = X(7)
provided (' is chosen sufficiently large. Hence we have a contradiction.

We may therefore assume that an z = X (¢) exists such that (8.8)
holds. Now from Section 5 it follows that the Brownian particle at x
can be propagated to the sphere of radius 27" centered at x with a
loss of density which can be made arbitrarily small as n — 0. The
density on the sphere of radius 27" is approximately uniform. Again
from Section 5 the probability of exiting the outer sphere {|y| = 2771}
starting from 0B(z,27") with approximately uniform density can be
made arbitrarily close to the probability for Brownian motion b = 0 by
choosing 7 sufficiently small. In view of (8.5) the result of the lemma
follows if a,—2(0) < n and 7 is sufficiently small.

Next we turn to the nonperturbative case. We can assume now
that there exists n > 0 and a,,_2(0) > 7. Let ny be the unique integer
such that

2n1—|—1 > Cln_z(O) > 2n1 )
n

Hence, analogously to (8.7) we have
(8.9) Np_a.m(0) < p 28 25m 2(m+2=n)(3=s) m>n-—2.

We shall show, in analogy to (8.8), that there exists z = X (¢) for some
t, 0 <t <1, satistying

(810) Nm,k(ZE) < Cl ns 23’17,1 ﬁm—n 2(k_m)(3—s') 7

with £ > m + ny, m > n. To see this we argue exactly as in the
perturbative case. Thus from (8.10), (8.9) the cardinality of the set
Iy, 1 satisfies

|fm,k| Cin?® ZSlnlﬂm_"z(k_m)(:”—S') < gt 2% 2™ 9(k+2—n)(3—s) :

whence

|f\m| < Z |f‘m,k| < CCl_lﬁ_(m_n) 2(m—n)(3—s) :

k=m+n1

for some constant C' depending on s’ < s.
Now for = which satisfies (8.10) we see from the argument of
Lemma 7.3 and Theorem 7.2 that the Brownian particle at = can be
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propagated to the sphere of radius 27" centered at z with a decrease
in density by a factor

exp ( — A i g 2"1> ,

for some constant A. Now this density on the sphere of radius 27"
centered at x can be propagated to the outer sphere {|y| = 27"+1}
with a further decrease in density by at most a factor

exp (—A'2™),

for some constant A’. Hence the total decrease in density from xg to
the outer sphere is by a factor

exp (—A" 2",

for some constant A”.

The proof of the theorem follows now exactly as in [5, Section 6.
To prove (1.9) we need to prove the analogue of [5, Proposition 6.6].

Proposition 8.1. Suppose n > 0. Then there exists a constant C
depending on n, p and a universal constant c such that

oo

> an(z) H(an(x) = n) < CNee(b),

n=—oo

where H(t) is the Heaviside function,

1, ift>0,
H(t>={ U
0, #ft<O.

Proor. We have

oo oo

S n(w) Hlan(z) — 1) < nj_l S an(@).

n=—oo n=—oo

Letting Ny, » () be the number of non perturbative dyadic cubes with
side of length 2=, m > n, contained in the ball |x — y| < 27" we have
from the definition of a,(z) that

o0

Z Z Z (m n)(3 s) Z Z (m n)(3 s)

n=-—oo n=—oo m=n m=—0o0 N=—0o0
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Let N,, be the number of nonperturbative cubes with side of length
2™ in R®. Then it is clear there is a constant C such that

m

Ny o (2)
Z 2(m—n)(3—s) < CNp -

n=-—oo

It follows that

oo

Z an(z)® < C i N, =N,

n=—oo m=—0o0

where N is the total number of nonperturbative cubes in R®. Finally, we
use the result of Fefferman [9] that N < C N,.(b) for suitable universal
constants C, c.

Appendix A. Brownian motion confined to a cylinder.

In this section we give a new proof of [4, Theorem 1.1.a)]. To do

this we shall use a result concerning Brownian motion confined to a
cylinder. For A > 0 let Dy be the disc of radius A in R2,

Dy ={z = (z1,22) : 7* = 2% + 23 < \?}.
Then for m > 0 the set
Dy x (—=mA,m\) = {x = (1,22, x3) : (x1,22) € Dy, 3 € (—mA, mA)}

is a cylinder in R3>. We are interested in studying Brownian motion
confined to the cylinder when m > 1. In particular let X (¢) be Brown-
ian motion in R3 started at the origin and 7 be the first exit time from
the cylinder. We shall consider Brownian motion under the constraint
that | X (7)3] = mA. Thus the paths must exit the cylinder through one
of the discs Dy x {mA} or Dy x {—mA}. For m > 1 this is an unlikely
event. Hence Brownian motion under this constraint behaves very dif-
ferently to the standard Brownian motion. In fact it appears to behave
ballistically on length scales much larger than A. As a consequence one
has

(A.1) E[r:|X(7)3] = mA] ~ mA\?, m>1.
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One of our main goals here will be to prove (A.1). We shall need
something more general to prove [4, Theorem 1.1.a)]. In fact we have
the following:

Theorem A.1. Let V' be a nonnegative potential on Dy X (—mA, mA).
Then if m > 1 there is a universal constant C such that if X (0) is
uniformly distributed on a crosssection Dy x {{},

E[/OTV(X(t))dt: X ()] :m)\] < %/D V(y)dy.

AX(—mA,mA)

We recall [4, Theorem 1.1.a)]. Thus let V' be a nonnegative poten-
tial on the ball Qp and for n = 0,+1,£2,..., 2 € Qg let a,(z) be the
functions

an(z) = 2"/ Viy)dy.
lz—y[<2="
[4, Theorem 1.1.a)] is then given by:

Theorem A.2. For x € Qg and Brownian motion X (t) started at z,
let T be the first exit time from Qg. Then there s a universal constant
C > 0 such that

Em[exp (—/OT V(X(t))dt)] > exp (—C i min{an(a:),an(x)l/2}> 7

n=ngo

x € Qpg, where ng is the unique integer which satisfies the inequality
2R < 27™ < 4R.

PrRoOOF. We define a subset S of Brownian paths started at x. For
n > ng define m,,, A\, by

My = an(x)l/z, My =27 7.

For a Brownian path X (¢) started at x let 7,, be the first hitting time
on the sphere |x — y| = 27™. Thus 7,41 < 7,. The set S is then all
Brownian paths started at x which for 7,47 < t < 7, are contained
within the cylinder centered at X (7,,41) with axis given by the vector
X (7ps1) — « and with radius A,, n > ng. It is clear that there is a
universal constant ¢ > 0 such that if m,, < ¢ there is no constraint on
the Brownian path for 7,41 <t < 7,.
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We have now from Jensen’s inequality that

Ew[exp(—/OTV(X(t))dtﬂ
(A.2) A /OTV(X(t))dt), |

> P(S)exp(—E[/OTV(X(t))dt:SD.

It is obvious from the proof of Theorem A.1 that

(A.3) P(S) > exp ( -C i My, H(my, — C)) ;

n=ngo

where C,c¢ are universal constants and H is the Heaviside function,
H(t)=1,t>0,H(t)=0,t < 0. We can write now

E[/OTV(X(t))dt:S] _ i E[/T VX(0)di: 8],

By symmetry X (7,41) is uniformly distributed on the sphere |y — z| =
2-7=1 Hence if m,, < ¢ one has

B| " VX)) de |

Tn41

(A4) < 1 / dy V(z)dz

T 4 2—2n-2 |z—y|=2—n—1 47 |z—z|<2—7 |y — Z|
< Kay(z),

for some universal constant K. For m,, > ¢ we use Theorem A.1 . Thus

B| "X () dt |

Tn+4+1

1 Cdy
< _ V(2)d

y,AnN{lz—2|<27 7}

where I'y 5, is the cylinder centered at y with axis y —x and radius A,,.
Arguing now as in Lemma 7.1 we have that

),
— dy/ Vi(z)dz
4 2—2n—2 |z —y|=2-n—1 r ( )

yoAnN{le—z|<27 "}

< O (A2 / Viy)dy,
{lz—z|<2—n}
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for some universal constant C'. Hence by the previous two inequalities
we have

as) B[ VX@)dt: 5| < Or2" au(e) = Can(@)2,

Tn+1

for some universal constant C. The result follows now from (A.2), (A.3),

(A.4), (A.5).

REMARK. It is possible to prove Theorem A.2 after the fashion of the
proof of Proposition 7.1, avoiding the use of the Jensen inequality in
(A.2) and Theorem A.1. This would on a technical level be a simpler
proof. Our main purpose here is to draw a comparison between the
proof of Theorem A.2 above and the proof in [4]. In the latter proof
Jensen’s inequality was combined with restricting to Brownian paths
under a time constraint. In the former, Jensen is combined with re-
stricting to Brownian paths under a topological constraint. Thus in
some sense time constraints on Brownian paths are equivalent to topo-
logical constraints.

Next we turn our attention to the proof of Theorem A.1. First we
shall prove (A.1). In order to do this we need to examine the behavior
of 2-dimensional Brownian motion on D, at large time.

Lemma A.l1. For z,y € Dy, t > 0, let Gp(z,y,t) be the Green’s
function for the heat equation Dy with Dirichlet boundary conditions.
Then there is a universal constant C > 0 such that

(A.6) / Gp(z,y,t)dy <C Gp(z,y,t)dy,
ly|<A ly|<A/2

for all x € Dy, t > )\2.

Proor. It follows easily from the semi-group property of Gp that it
will be sufficient to prove (A.6) when ¢ = A\2. Evidently one has

(A7) / Gy, \2) dy = P > A?),
ly|<A

where 7y is the first exit time from D) of 2-dimensional Brownian mo-
tion Y (t) started at x € D). By the Chebyshev inequality we have
that

(A.8) Po(1y > A2 < A2 E ] = A 2u(x),
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where u(z) satisfies the equation

{ —Au(z) =1, |z| <A,
u(z) =0, lz] = X.

It is easy to see that the solution of this equation is given by

(A.9) u@)= T =), r=lal.

Hence (A.7), (A.8), (A.9) yield an upper bound on the left hand side
of (A.6).

Next we look for a lower bound on the right hand side of (A.6).
Let a satisfy 0 < a < 1. We shall show that there is a positive constant
C,, depending only on « such that

A1) [ GplwN)dy=Co el <ar.
lyl<A/2
To see this let G(z,w,t) be the heat kernel in R?,

1 o 2
G(z,w,t) = 7exp(—%>.

Then for |z], |w| < e\, € > 0 there is a density p(t,2), 0 < t < e\,
|z'| = A such that

G(z,w,e\?) = Gp(z,w,e\?) +/

ex
o )\dz'/o p(t,2")G(Z' w,t)dt.

The density p(t,z’) evidently satisfies the inequality

eA?
/ dz'/ p(t,2)dt < 1.
DN 0

Suppose now that |z|, jw| < @), |z — w| < (1 — a)A/2. Then it is clear
that for ¢ sufficiently small, depending only on « one has

G(7,w,t) < = G(z,w,e\?), 2] = X, 0<t<eA.

(NSRS
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Hence from the last three inequalities we have that

(1—a)X

GD(vavg)‘z) 2 9 3

Gzw,eX?), 2, Jwl < @, |z —w] <

NN

provided € > 0 is sufficiently small. The inequality (A.10) follows from
this last inequality by constructing paths from x to |y| < A/2 in time
steps of length eA? and using the semi-group property of Gp.

In view of the fact that the left hand side of (A.6) is bounded
above by 1, the inequality (A.6) follows for t = A% and all z satisfying
|z] < aX, a < 1, from (A.10). Our main problem then is to deal with
the case |z| — A since the right hand side of (A.10) converges to zero
as « —> 1. Let U, be the set

Uy ={y € Dy:Aa< |yl <A}.

Then for x € U, we have

=P, [Y(t) exits U, through the boundary {y : |y| = Aa},

A
Y@l <A, 0<t <X, [Y(W) <3

> P, [Y(t) exits U, through the boundary {|y| = aA}
(A.11)

/\2
it < _]
1 time )

A
inf Py[|Y(t)| <A 0<E<A s, YN —s)< T
lyl|=Aa

0<s<A?/2

It is clear from what we have just done that

A
inf P, l|lY(#)] <A, 0<t< A —s, |Y(A2—s)|g5 > o >0,
ly|=Aax
0<s<A?/2

where ¢, is a constant depending only on a < 1. Thus we are left to
estimate the first probability in the final expression of (A.11).
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We do this by using the inequality

)\2
P, |Y () exits U, through the boundary {|y| = aA} in time < 5

2
> P,[Y (t) exits U, through the boundary {|y| = aA}] — 2 E.[7],
where 7 is the first exit time from U,. If we put w(r) = E,[7], |z| = r,
then w satisfies the boundary value problem

—d?w 1 dw _1
dr? rodr

w(ad) =w(A) =0.

, a\ <r <A,

The solution of this boundary value problem is given by

A
)
w(r) = —()\2—7"2)—1)\2(1—042)771“.
g ()

If we put v(r) to be the probability that Brownian motion started at x,
|z| = r, exits U, through the boundary {y : |y| = aA} then v satisfies
the boundary value problem,

—d?v 1 dv
W—;%—O, O[)\<’I"<)\,
v(iad) =1, v(A) =0.

The solution of this last boundary value problem is given by the formula

ox (1)

v(r)

Now consider the expression,
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It is clear that if « is sufficiently close to 1 there is a constant ko, > 0

such that )

v(r)—%w(r)Z%(l—%) :ka$.

Thus by (A.7), (A.8), (A.9) we conclude that (A.6) holds with ¢t = \?
if |x] > ) with constant C' = (kyc) ™! provided « is sufficiently close
to 1.

We have proved therefore that (A.6) holds for all x € Dy and
t = A2. The result follows.

Lemma A.2. Let kg > 0 be the minimum eigenvalue of —A on the
unit disc with Dirichlet boundary conditions. Let Gp(x,y,t) be the
Dirichlet Green’s function for the heat equation on Dy. Then for any
a,0 < a <1, there exist positive constants c,,Cy depending only on «
such that

t t
(A.12) caexp(—%>§/D GD(x,y,t)dngaexp(—%>,
A

with t > 0, provided |z| < aA.

PROOF. Let @p(z) be the eigenfunction on the unit disc corresponding
to the eigenvalue ko of —A. Then @o(z) is a positive C*° function for
|z| < 1, and continuous on |z| < 1 with ¢o(z) = 0, || = 1. By scaling
we have that

Y Kot T
A3 o000 L) dy = exp (220 (2).
(A.13) . p(@,y,t) ol 3 ) dy =exp | = =5 Jeol §
Hence it follows that

ﬁot) (’OOG)

Gp(z,y,t)dy > exp| — — .
/m p(z,y,t)dy p( 3 ) Tl

Now the first inequality in (A.12) follows from this last inequality by
taking

Co = inf{ ||ioo(||zjo Hz] < a} > 0.

We use Lemma A.1 to prove the upper bound in (A.12). Thus from
(A.13) we have

o (- )5z (B) <3} [ Goter

ZC/ GD('Tvyvt)dyv
lyl<A
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for some universal constant ¢ > 0 provided ¢ > A%2. The upper bound
in (A.12) clearly follows from this last inequality provided ¢ > A%, The
inequality for ¢ < A2 is trivial by choosing C,, to satisfy C, exp (—kg) >
1.

REMARK. The inequality (A.12) has already been proved in a much
more general context [2], [8], for divergence form operators in domains
with Lipschitz boundary.

Next we wish to prove the formula (A.1).

Proposition A.1. Let 7 be the time taken for 3-dimensional Brownian
motion X (t) = (X1(t), Xa(t), X5(t)) started at the origin to exit the
cylinder Dy x (—mA, mM\). There are universal constants C,c > 0 such
that

cmA? < E[r: |X3(7)| = mA] < CmA?,

provided m > 1.

Consider one-dimensional Brownian motion X3(t) starting at the
origin and let 71 be the first hitting time on the boundary of the interval
[—mA, mA], and p(t), ¢ > 0, be the probability density for 7. Next
consider 2-dimensional Brownian motion starting at the origin and let
7o be the first hitting time on the boundary of D). Then

/ Plrs > ) p(t) dt

(A.14) Elr:|X5(7)| = mA| = )
/ P(rs > 1) plt) dt

Now from Lemma A.2 it follows that there are universal constants
C,c > 0 such that

(A.15) cly, < E[r:|X3(7)] =mA] < CI,,

where

‘/000 exp(— %)tp(t) dt
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We have now that for n > 0,

1

/Ooo e Mp(t) dt = Ey[exp (—nm1)] = W .

Differentiating this last expression with respect to n we obtain

/oo 4 () dt = mA sinh (2\/77 mA) '
0 2 /1 cosh”(\/n mM)

If we take now 1 = ko/A? and we use the last two formulas it follows

that )
I, = 2m/>;0 tanh (m+/Ko) .

The result follows from this last formula and (A.15).

PrROOF OF THEOREM A.l. Let G, (&, (,t) be the Dirichlet Green’s
function of the interval [=mA, mA]. Then if Gp is the Green’s function
for Dy as in Lemma A.2 it follows that the Dirichlet Green’s function
for the cylinder Dy x (—mA, mA) is given by

GD(xayat)Gm(§7<7t)7 xvyeDA7 _mA<£7C<m)‘7t>0

For z € Dy, & € (—mA, mA) let u(x, §) be the probability that Brownian
motion started at (x, ) exits Dy x (—mA, mA) through Dy x {mA} or
Dy x {—mA}. If we define w(&) by

1

= GNEA u(z, &) de, £ € (—mA,mA),

w(§)

it follows from the argument of Proposition A.1 that there are positive
universal constants C, ¢ > 0 such that

RoT1

A2

(A.16) cEg[exp ( — )] <w(é) < C’Eg[exp ( — K;Oﬁ)] ,

)\2

where 77 is the first exit time of Brownian motion started at £ from the
interval (—mA, mA). Furthermore there is the identity

KoTi\] cosh (@)
\2 )] T coshmy/rg

(A.17) E [exp ( -
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We have now that if X (¢) denotes Brownian motion started uniformly
on the cross section Dy x {{}, then

E[/OTV(X(t)) dt: X (7)s] = mA]

(A.18) m D dx/ dt/ GD (@, 1) Gm (&, €, 1)
dy d¢

It follows from Lemma A.2 that
o0 Kot
[ @ ["GnaanGuecod=c | o (- )G
D, 0
(A.19) =CG(¢,Q),

where G is the Green’s function which satisfies

d2 Iio
{( d§2 ) (£,Q)=0(£=¢), —mA<E{<mA,
We can solve this boundary value problem to obtain the explicit formula
NG
sinh (—)\ (mA + C))

Ge.Q) = )\s1nh<\/_( )

A V/Fo sinh (2 m/Ko)

it &> (¢, and
sinh (@ (mA — C))
VKo sinh (2m./kKo)

if € < (. It follows now from this last identity and (A.16), (A.17) that
there is a universal constant C such that

G(£,¢) = Asinh (@ (mA + 5))

Hence from this last inequality and (A.18), (A.19) we have that

ol [veswyars e = m] <§ [ [ 1D v ayac
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for some universal constant C'.

It is obvious from Lemima A.2 that there is a universal constant C
such that u(y, () < Cw((), y € Dy, ¢ € (—mA,mA). The result follows
from this and the last inequality.

Appendix B. A differential inequality.

Here we prove the inequality (5.33). Consider the solution wu(r,n)
to the Sturm-Liouville problem,

d?u ,, du
plr) o5 o' (r) = =np(r)u,  1<r<R,
(-1 u(l) = 1,
u(R) =0,

where p(r) > 0,p/'(r) > 0, 1 <r < R. We shall show that

0 0 (u(r,n)
B.2 —_— 1 .
(B.2) 07"87]( w_])>0, <r<R,n>0

This implies the inequality (5.33) on taking p(r) = r. The inequality
(B.2) is sharp in the sense that the power of 7, i.e. 1'/? in the de-
nominator cannot be improved. To see this consider for o > 0, the

function 9 uy 1 o "
w00 =5, Ge) =3 (G =)

Now it follows easily from the maximum principle that the function u
decreases as a function of 7. The function wy(r) = du/dn satisfies the
boundary conditions wg(1) = wo(R) = 0. It follows from the maximum
principle again that wo(r) < 0, 1 < r < R. Hence there exists a
minimum «g > 0 such that

d
&ZO, 1<r<R, a>«q.
dr

We can explicitly compute o in the exactly solvable case when p = 1.
Thus for p = 1, we have

sinh \/n (R — )
sinh /n (R—1)’

u('r, 71) =
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whence

L@_—cosh\/ﬁ(}%—r)

V1 Or  sinhp(R-1) ’
2<L@)_ 1 (r—=1)+ (R—r)cosh/n(r—1)
on\ym or) — 2q sinh® \/n(R — 1) '

Hence if 0 < a < 1/2 we have

dw, 1 ((r —1)cosh/n (R — 1) cosh /i (R —r)
dr — 2n“ sinh? /77 (R — 1)
N (R - r)zcosh\/r_](r - 1))
sinh” /7 (R — 1)

1
(5 - cv) cosh /1 (R —1)
net1/2 sinh /M (R—-1)

It is clear from this last identity that by choosing » = 1 and R large
we will have dw,/dr < 0 at 7 =1 for any o < 1/2. Thus g = 1/2 is
optimal in this case.

To prove (B.2) we first construct the Dirichlet Green’s function for
(B.1). Let v(r) be the solution of the equation (B.1) with the boundary
conditions v(1l) = 0, v(R) = 1. Then the Dirichlet Green’s function
G(r,r'), 1 <r,r" < R, can be written as

c(rYu(r)o(r'), 1<r' <r,
c(rYu(rv(r), r<r <R.

(B.3) G(r,r') = {

The constant ¢(r’) is determined by the jump discontinuity of 0G/0r
at r =1/,
oG 0G 1

lim —(r, ') — lim —(r,7") =
i, o, () = tim 5o ()

Thus if W(r’) denotes the Wronskian,
W'y =d' (r)v(r') — ulr)o'(r), 1<r'<R,

we have that
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Now using the fact that

W(T/) — _p(]') ’Ul(].) 1 < T/ < R
p(r') ’
we conclude that
1
B.4 c(r')y = ————-——, 1<7 <R.
B4 "= mem

It is clear that the function w(r) = wy/(r) satisfies the equation

( d?w dw

Wy Y ruw
p(r) e +p'(r) = np(r)w+ N
1
w(]‘):_zn—s/27
\U)(R):O.

Hence w has the representation

—u(r R ") u(r’
w(r) = 277:5/2) +‘/0 G(r,r") 7/)( \)/ﬁ( )dr'.

Using the formulas (B.3), (B.4) we have then

—u(r) 1 ') u(r’)

= - TUTUT/ p(
w(r) @ [, e

2932 p()w
p(l)v'u)/r (ulr) == —ar-

On differentiating the above identity we have then

dw  —u'(r) u'(r) oo per)u(’)
5 [ oo B

dr’

dr T 2l p(1) v i
RN T
e ), e

It follows that dw/dr > 0,1 < r < R, if we can show that

R
(B.5) 2771)'(7")/ p(r) u(r)2 dr’ < —p(1)v'(1) (), l<r<R.
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We have now that
R R
d du
2
0 [ = [ (o) G

= [ o — ot ) ),
Next we show that
(B.7) nu(r)? < (r')?, 1<r'<R.
To see that (B.7) holds observe that

) (1)) = 20 () () — (7))

We conclude from this that
nu(r’)? —u'(r')> <nu(R)? —u/(R)* = —u'(R)> <0,
whence (B.7) follows.
From (B.6), (B.7) it follows that

R
2 [ o) ule')? ' < ~plr) ulr) ol ().
Hence the left hand side of (B.5) is bounded above by
=v'(r) p(r) u(r) u'(r).
Thus (B.5) holds if we can show
p(1)v' (1) > o' (r) p(r) u(r), 1<r<R,

since u/(r) < 0, 1 < r < R. This last inequality follows from the fact
that
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since u'(r) < 0, v(r) >0,1 <r < R.
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