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A proof of the smoothing
properties of the positive

part of Boltzmann’s kernel

Francois Bouchut and Laurent Desvillettes

Abstract. We give two direct proofs of Sobolev estimates for the
positive part of Boltzmann’s kernel. The first deals with a cross section
with separated variables; no derivative is needed in this case. The
second is concerned with a general cross section having one derivative
in the angular variable.

Résumé. Nous donnons deux preuves directes des estimations de
Sobolev pour la partie positive du noyau de Boltzmann. La premiere
concerne les sections efficaces a variables séparées; aucune dérivée n’est
nécessaire dans ce cas. La deuxieme traite des sections efficaces généra-
les ayant une dérivée dans la variable angulaire.

1. Introduction.
The Boltzmann quadratic kernel ) models binary collisions occur-

ring in a rarefied monatomic gas (c¢f. [3], [4], [9]). It can be written
under the form

(1.1) Q(N)(v) = QT (f)(v) = f(v) Lf(v),
where Lf is a linear convolution operator, and Q% is the positive part
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of ), defined by

=[] (g )

vy ERN
cesN-1

L -a) do dv, .

1.2 -B ( v—0
( ) | *|7 | v — U*|
The nonnegative cross section B depends on the type of interaction
between the particles of the gas.

In a gas in which particles interact with respect to forces propor-

tional to =%, s > 2, the cross section B writes
(1.3) B(z,u) = b(z) B(u)
where

(1.4) b(z) = g(8=5)/(s=1)

and [ has a strong singularity near u = 1.

The classical assumption of angular cutoff of Grad [6] (that is 8 €
LY(]—1,1])) is used to remove this singularity. It will always be made in
this paper. To get an idea of the properties of () when this assumption
is not made, we refer the reader for example to [5] or [8].

The properties of Q1 (with the assumption of angular cutoff of
Grad) have first been investigated by P.-L. Lions in [7]. In this work,
it is proved that if B is a very smooth function with support avoiding
certain points, then there exists Cy g such that

(1.5) 1QF (Pl grv-vr2@yy < Onp I f ey 1 fllL2 )

for any f € L n LARY).

The proof of this estimate used the theory of Fourier integral op-
erators. The very restricting conditions on B were not a serious in-
convenience since in the application to the inhomogeneous Boltzmann
equation, only the strong compactness in L' of QF(f) was used, and
not the estimate itself, so that these smoothness assumptions could be
relaxed by suitable approximations of B. Notice that the use of the
Fourier transform in the velocity variable in the context of the Boltz-
mann equation was already used by Bobylev in [2].



A PROOF OF THE SMOOTHING PROPERTIES 49

An extension of this work to the case of the relativistic Boltzmann
kernel can be found in [1].

Then, another proof of (1.5) was given by Wennberg [10] with the
help of the regularizing properties of the (generalized) Radon trans-
form. The hypothesis on B were considerably diminished, so that for
example forces in r—% with angular cutoff and s > 9 were included.
Considerations on related kernels (for example the relativistic kernel)
can also be found in [11].

This work is intended to give yet another proof of (1.5)-like esti-
mates, using only elementary properties of the Fourier transform. More-
over, we prove that the estimate holds for a large class of cross sections
B, including all hard potentials with cutoff (that is when s > 5) and
also soft potentials up to s > 13/5.

One of the drawbacks of our proof is that instead of having a L?
norm times a L2 norm in the right-hand side of (1.5), we only get a L?
norm to the square.

In Section 2, we deal with the case when B is a tensor product
(that is of the form (1.3)). Then, we present in Section 3 the case of
general dependence for B with a reasonable smoothness assumption.

The following notations will be used throughout the paper. For
any p > 1, ¢ > 0, LQ(RN) is the weighted space embedded with the
norm

) Wl = ([ 1@ @+ lolyran) ™.

and if 0 < s < N/2, H*(RY) is the homogeneous Sobolev space of
functions f of L2N/(N=25)(RN) such that

FeLL(RY) and  |€]*f(¢) € LARY).

Its norm is given by

(17) ey = ([ F@PIeRac) ™

We shall use the two following formulas to compute some integrals on
the sphere SV—1 (N > 2). The first deals with functions which only
depend on one component: for any function  defined on | — 1,1[,

(N-1)/
(1.8) /SN_lﬂ(wN)dw 2”N 1 2/ Blu) (1 — ) V=72 gy
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The second is concerned with the change of variables 0 = 2 (- w) w —¢,
for a fixed £ € SN¥~1. We have for any function ¢ defined on SV—!

19 [ ewde= [ e we-9ze o .

Finally, constants will be denoted by C', or Cy when they depend on
the dimension N.

2. The case of separated variables.

We investigate here the properties of Q* when

U — Uy

_:FTJ):uw—vmﬂ(”_m.ay

v —v. [ = v.]

(2.1) BQU—WL

where b and  are Borel functions defined on ]0, oo[ and | — 1, 1] respec-
tively. We consider the multidimensional case N > 2. Let us state the
main result of this section.

Theorem 2.1. Assume that there exists K > 0, o > 0 such that

(2.2) b(z)] < K(1+2)*, for all z >0,
and that
(2.3) BelLl?]-1,1],1—u®)PV=32qy) .

Then for any f € L2, ,(RY), Q1 (f) € HWN=-D/2(RN) and
1QF (Pl -2y

<CnK ||5||L2(]_1,1[,(1_u2)<N—s>/2du)||f||%§+a(RN) :

In order to prove Theorem 2.1, let us define the operator é+ for
functions of two variables F(vy,vs), vy, v2 € RY by

GH(F)(w) = // F<v+v* B |v—v*|a,v+v*+ |v—v*|a>

2 2 2 2
v. ERN
aesN—l
(2.5) -B(|U_U*|-J)dadv*.
v — U
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Proposition 2.2. For the linear operator (2.5), we have

i) If g € LY(]—1,1], A—u?)N=3)/2 du), then for any F € L*(RN x
RY), Qt(F) € LY(RN) and

1QF (F)|| 1 @)
(2.6)
or(N—1)/2

()

181 Lrg=1,10,(1—u2) ¥ 5172 quy 1|21 @V xrN) -

Moreover, (2.6) is an equality if # and F are nonnegative.

i) If g € L2(]-1,1[, 1—u®)NN=3)/2 du), then for any F € L?(RN x
RY) such that (va—v1)F € LERY xRYN), the integral (2.5) is absolutely
convergent for almost every v, QT (F) € HN-D/2(RN) and

1QF (Bl o172 vy

(2.7)

1/2 1/2
< CNIIBI L2 =110, (1=t 972 auy 1N 157 | (02 — 01) |47 .

Let us postpone the proof of Proposition 2.2 and deduce Theorem
2.1.
PROOF OF THEOREM 2.1. Let us define
(2.8) F(v1,v2) = f(v1) f(v2) b(Juz — 1) .

Then, definitions (1.2), (1.3) and (2.5) yield Q*(f) = Q*(F). Now, by
(2.2) we have

|F'(v1,02)] < |f(v)][f(v2)| K (1 + [vg — v1])*
(2.9) < K |f(on)][f(v2)[ (1 + |o1| + [va])®
< KL+ )™ fon)] [(1+ [ve])* f(v2)] -

Therefore,

(2.10) 1Pl < KNfIZ . IFlee < KIFIZ:
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and since

[(v2 = v1)F'(v1,02)] < |oi| [F'(v1,02)] + |v2] |[F (v, 02)]
< K[(1+ [or )M f () [[(1+ v2])* f (v2)]
+ K|(1+ ol )*F(on) | 11+ |2 f (v2)],

we have also

(2.11) [(v2 = v1) Fllze < 2K fllzz 1 Flz2

T4a *

Therefore, we can apply Proposition 2.2.ii), and we get Q (f) = Q*(F)
€ IN-1/2,

(2.12) 1QF (P lzrowv-vz < Cw 1Bl KIFIZE WAL
Finally, (2.4) follows since

I fllz < I fllz2

T4a

PROOF OF PROPOSITION 2.2. Estimate i) is easy with (1.8), and we
only prove ii). Let us first assume that F' € L1(RY x RY). We perform
the change of variables

(2.13) 0:2(“_”* -w)w—v_v*

v = 0.]

According to (1.9),

0% (F)(v) = // Flo—(v— 1) ww,vs+ (v —0,)  ww)

v*ERN
(AJESN71

(2.14) B(2(— -w>2—1>‘2 v -w‘N_zd’v*dw.

v —v.] v —v.]

Since by 1) Q+t (F) € L', we can compute its Fourier transform, which
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is given by
QT (F)(©)
= /// eTEVE(v— (v —vy)  ww, v, + (V—1y)  WW)
v,v*ERN
WGSN_l
_ N-2
-ﬂ(Z(v U -w) )‘2 L dv dv, dw
[0 — ] v — v.]
= JJ[ e rw
11171)2€RN
UJESN71

_ N—2
-ﬁ(2(u-w> )‘27@2 w dv dvg dw
[v1 — v2| [v1 — vz

by the usual pre-post collisional change of variables. Next we perform a
change of variables in w, given by an orthogonal hyperplane symmetry
which exchanges the unitary vectors

v &
[v1 — v2| 9
We obtain

/// —i(§vi—(vi—v2)wk- w)F(,Ul ,02)

’U]_,’UzER

L«JESN71

2 N-2
-ﬁ(2(%-w> —1)‘2%-w‘ dvy dvs dw
= [ Fe-guwgow
WESN 1

-ﬁ(2(% -w>2 — 1)‘2£ -w‘N_2 dw,

with F' the Fourier transform of F' in both variables. Finally, we make
the change of variables

022(%-w)w—%,
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and get according to (1.9)

(215)  Qr(F)(E) = / ( 2|§|Jv£+2|£|0)5(|§| )da

O'ESN71

Now, in order to estimate (2.15) we assume that F € C (RN x RY),
so that F is smooth. This assumption can easily be relaxed by cutoff
and convolution of F' to get (2.7) in the general case.

We have by Cauchy-Schwarz’s inequality

amers [ |FEEEEE N w

O'ESN71

[ 1) e

O'ESN71

(2.16)

and the last integral can be computed using (1.8),

/ ‘5(|g| “)‘2‘1"

(2 17) O-GSN—I
' 27T(N_1)/2/
= — Blu)|? (1 —u?)N=3/2 gy,
N — 1 _1| (u) ] ( )

r(~5-)
Then,

[ e

O'ESN71
A(g—'ra §+ro

S
- / /r=|s|_EF 272

ESN 1

/ /m‘F —ro §+ra>‘

GSN 1

)‘2dadr

: ‘(vzﬁ—vlﬁ)(f 2”,“"”")@ dr

56— §
:/|n|>|§| )

§— n£+n) dn
2 7 2 | N-17

‘(sz VlF)(
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where Vlﬁ’ and Vzﬁ' denote the gradients of F with respect to the first
and second variables. Therefore,

/|§|N—1d£ / ‘ﬁ(£—2|6|07§+2|§|0>‘2d

geRN O-GSN—I

< ] PR e (5

§,nERN

= 2N|||F||VoF — Vi F ||| 11 @~ xmm

< 2N||F| 2@ xamy V2 F = ViF| L2 v )

= 2V 2m)*N||F || 2 v xiw) 1(v2 = v1) Fll g2 xiny
and together with (2.16)-(2.17), we obtain (2.7).
REMARK 2.1. A slightly weaker version of Theorem 2.1 is still true
when one deals with (not too) soft potentials (with the angular cutoff

of Grad).
Namely, for a cross section satisfying assumption (2.1) with

/B € L2(] - 17 1[7 (1 - u2)(N—3)/2 du)
and

N
(2.18) b(x) =27, 0<ac< 5

for any f € LZN/(N O‘)(RN) we have that
QF(f) e HN-V2(RY)
with

1Q*(f >||H<N_1)/2(RN)

—1,1[,(1—u?)(N - 3>/2du)||f|| 2N/(N=a)

Actually, defining

F(vi,v2) = f(v1) f(va) [va — 01|77,
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we have

By = [ [ 0P 1£@)] oz = 02| doy oy
<A g (112 5 022 1
We choose 7 = N/, so that
1A% 102 e < Cnva L1 lorcvmen

and we obtain
1FN7: < Ona 1P 17 a0/ —a) -

Therefore,
1 F'[| 2 &y xgrvy < CNa [Fi .

and similarly

[(v2 = v1) Fll 2@~ xzyy < Onallofl|ev/ov-a [ fllp2vsov-a)

We conclude by applying Proposition 2.2.ii).

3. The general case.

We now concentrate on the case when B is not a tensor product.
The estimate is not as straightforward as in Section 2, and we have to
make a regularity assumption on B. Moreover, we only treat here the
three-dimensional case.

Theorem 3.1. Let B be a continuous function from ]0,00[x[—1,1] to
R, admitting a continuous derivative in the second variable. We assume
that

(3.1) |B(a, u)| + ‘g—lj(x,u)‘ < K(1+1),

for all x > 0 and uw € [—1,1]. Then, for any € > 0, there exists a
constant C. only depending on ¢ such that for any

f € Li(R%) N Lz 2(R),
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Q1 (f) € HY(R®) with
(3.2) 1Q (Nl ey < CK |12

(3+e)/2

PROOF. Since
|B(z,u)] < K (1+2),

the result of Proposition 2.2.1) ensures that the integral (1.2) defining
Q7 (f) is absolutely convergent for almost every v, and that QT (f) €
L(R%),

(3-3) 1QF (Nl < 4rK||fII7s -

Therefore, we can compute the Fourier transform of QT (f),

] g

’U,U*ERS
ceS?
Bl l|lv— v, ,u-a do dv dv,
| |
U — Uy
(3.4) = /// e—iﬁ'(v+v*—|v—v*IU)/2f(U)f(U*)
v,v*ERS
oceS?

B(|U—U*|, R -0) do dv dv,, ,

v = v.]

according to the pre-post collisional change of variables. Thus we obtain

(35) Q*(F // L (0) ) Do, ) dvd

where for any w, & € R\ {0}
D(w,¢)

= / ei|w|”'£/2B(|w|, |UJ—| -0) do
w

oeS2
(3.6)

+1 ]
_ / pilwll€ls/2
s=—1

2w 2
/ B(|w|, — —+\/ — cosgo) dpds,
p=0 |€| w
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with spherical coordinates and
(3.7) s=o0-—=.

Integrating by parts, we get

+1 ilwl||€|s/2
2e
D = — -
(w,) /s:—l i|wl [¢]

./2" (i.l_ s 1_(3.1>2cow>
o=0 \[&] Jw|  V1-—4s2 ISy

9 gilwllEl/2 ¢ w
+2 9B(|w|, > - —
iJw| €] ( H |w|>

9 e—ilwll¢]/2
2 (- &)
i|wl €] &l fw)

and therefore

A + |s]
D&)< g K+l [ (14 =2 ) ds
8T

3.9 K(1
(3.9 ot K1+ )

24m 1

— K1+ —).

< Ty X0 )

Coming back to (3.5) and using the variables
(3.10) z:v—;v*, w=0v— v,
we get
(3.11) QT (NO= | W) (wDw,E) dw,

weR3
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where
(3.12) W (f)(w,€) = / e—isz(z + %)f(z - —) dz

is a Wigner-type transform of f. Then, according to Cauchy-Schwarz’s
inequality, we get for any € > 0

QDO < / W () (w, )P + |w])** duw
9 dw
(3.13) ' / | D(w, )] 1+ [w])?+

K2
<Coigr [ WO+ ).

weERS3

Finally, using Plancherel’s identity, we obtain

/ €210 (€) 2 de

¢ER?
<cx® [ ([ W orde) s ) du
weER3  ¢ER3
= C. K?(2n)
(3.14)
e e D s
weR3  zeR3
=@ [ [ 1@ F@IP Q-+ o= ul)* dvdn,
™ v,Z{RS v v v v v av
< CK @ I

by the same estimate as in (2.9) and the proof is complete.

REMARK 3.1. As in Section 2, one could here also treat singular B (in
the first variable) if one allowed to replace the weighted L? norms of f
in (3.2) by suitable (weighted) L?P norms, with p > 2.
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REMARK 3.2. As in [10], one could deduce from Theorems 2.1 and 3.1
regularity properties for the homogeneous Boltzmann equation. Notice
that such properties give also counterexamples. For example one can
prove that if f is the solution of the homogeneous Boltzmann equation
and if f(0) is not smooth (the exact smoothness considered here de-
pends on the properties of B), then for any ¢t > 0, f(¢) will also not be
smooth.

This behavior is completely opposite to that of the Boltzmann

equation without angular cutoff (¢f. [5], [8]).
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