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Some generalized Coxeter

groups and their orbifolds

Marcel Hagelberg and Rubén A. Hidalgo

Abstract. In this note we construct examples of geometric 3-orbifolds
with (orbifold) fundamental group isomorphic to a (Z-extension of a)
generalized Coxeter group. Some of these orbifolds have either eu-
clidean, spherical or hyperbolic structure. As an application, we ob-
tain an alternative proof of theorem 1 of Hagelberg, Maclaughlan and
Rosenberg in [5]. We also obtain a similar result for generalized Coxeter
groups.

1. Introduction.

A group with presentation

(alv <oy Qp a;,l'“ = (ai+1a1l_1)vi> y

where u;, v; are integers greater or equal to two, is called a generalized
Coxeter group. In the particular case u; = v; = 2, the above is a
Coxeter group with Coxeter diagram (see [1, p. 110]) as shown in figure
1.

A group having presentation
D= (zy,... an, bl = (zgaay )l = (zt)™ =1),

where k;,[;, m; are integers greater or equal to 2, is called a Z-extension
of a generalized Coxeter group. The reason for the name is the following;:
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if H denotes the smallest normal subgroup of I" containing the generator
t, then the quotient group J = I'/H has presentation

J = (T1,eeny By B0 = (T3, Y = 1),

where l;:\z = mcd (k;, m;), that is, J turns out to be a generalized Coxeter
group.

Figure 1.

Triangle and generalized tetrahedron groups are some examples of
generalized Coxeter groups.

The main problem of three-orbifolds is their classification. As ob-
served by W. Thurston in his project, geometry and topology are very
well related, there are exactly eight geometries and essentially the con-
jecture is that all 3-orbifolds can be obtained by gluing a finite number
of geometric orbifolds (that is, orbifolds of the form X/G, where X is
one of the eight geometries and G is a discrete group of isometries of
X). The main geometry is given by the hyperbolic one.

To understand this classification problem is good to have examples
of geometric orbifolds, which are the parts to be glued to form the more
general ones. For it, triangle and Coxeter groups have been of great
interest (see, for instance, in Coxeter-Moser [2]).

Another (hyperbolic) orbifolds, with generalized triangle groups as
(orbifold) fundamental groups, were studied in [7], [4], [5] and [6], where
results concerning their discreteness and arithmeticity were obtained.

Generalized Coxeter groups were studied from the group theorical
perspective in [12] and [13].
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The main idea of this paper is roughly speaking the following. We
first describe some graphs in the 3-sphere (perhaps with some deleted
vertices) together a data given by some integers. Secondly, we try
to figure out which kind of geometric orbifolds can be obtained with
these objects. For it, we construct certain planes intersecting in a very
special fashion and we consider the reflections on these planes. We
apply Poincare’s polygon theorem to obtain that the group generated
by those reflection is discrete and has the desired presentation (e.g.
generators and relations).

More technically, we construct explicit embeddings of some (Z-
extension of) generalized Coxeter groups as group of isometries of some
3-dimensional geometry. The orbifolds obtained are then geometric 3-
orbifolds whose (orbifold) fundamental group is a (Z-extension of a)
generalized Coxeter group.

The presented geometries in these constructions are S? x R, R3,
H? x R and H3, where S?, H?> and H? denote the 2-sphere, the hyper-
bolic plane and the hyperbolic three space, respectively. Some of these
orbifolds were obtained in the paper of Dunbar [3].

This paper is organized as follows. We start in Section 2 with some
basics definitions and the description of a particular type of 3-orbifolds
denoted by O(n,K,L,M). The essential property of these orbifolds
is the fact that their (orbifold) fundamental groups are Z-extension of
generalized Coxeter groups.

In Section 3 we produce geometries of type Z x R, for the orbifolds
O(n,K,L,K) with K = (2,...,2), where Z € {H?,R?, 5?}. More
precisely, we obtain the following

Theorem 1. Forn > 3, K = (2,...,2) and L = (ly,...,l,), let
k=n—2-=>Y " 1/l;. Then the orbifold O(n,K, L, K) has geometry:

a) H2 x R, if K > 0,
b) S2 xR, if k <0,

¢) R®, ifk=0.

We also obtain some generalized triangle groups, yielding part i)
of Theorem 1 in [5]. More precisely, we prove that the group (z,r :
2?2 = 7" = (r~lzrwz)! = 1) can be embedded as group of isometries of
H? x R, S? x R and R3 (respectively) if (I — 1) n — 21 is bigger, less and

equal to zero (respectively).
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In Section 4 we construct generalized Coxeter groups, represented
as Zo-extensions of Fuchsian groups of the first kind, that uniformize
orbifolds O(n,K,L,K) with K = (2,...,2), n > 3 and n — 2 >
S 1 1/1;. We also construct the generalized triangle group (z,r : 2% =
r" = (r~lzrax)l = 1) as a Z-extension of a Fuchsian group of the first
kind for (I —1)n —21 > 0.

In Section 5 we generalize the construction of Section 4 to obtain
Zy-extensions of Fuchsian groups (maybe of the second kind).

In Section 6 we produce hyperbolic structures for the orbifolds
O(n,K,L,K), where n > 5, K = (3,...,3) and L = (2,...,2); more
precisely, we prove the following.

Theorem 2. Ifn > 5, K = (3,...,3) and L = (2,...,2), then the
orbifold O(n, K, L, K) has a hyperbolic structure.

We also show that for n > 5 the generalized triangle group (z,r :
3 =" = (r~1z71rz)? = 1), can be realized as a group of hyperbolic
isometries of H3.

In Section 7 we discuss the excluded cases n € {3,4} of Theorem

In Section 8 we generalize the constructions of the sections 3-6. In
this way, we can obtain a many generalized Coxeter groups as group
of isometries of the hyperbolic three space. In some of these cases,
one may proceed as in Section 6 to produce Z-extensions of generalized
Coxeter groups as groups of isometries of H3.

In Section 9 we use the construction done in Section 8 to obtain a
simple alternative proof of [5, Theorem 1]. We obtain a similar result
for generalized Coxeter groups. Namely, we have the following.

Theorem 3. Let n,k,l be integers with n > 2, 1 > 2 and k > 2 and
(n,k,l) # (3,3,2). There is a discrete and faithful representation of the
generalized Coxeter group

G = (1, . 02l = (xipwi 1) = 1),

as group of isometries in one of the geometries R®, H?> x R, S? x R,
H3. The geometry is H® except when

(n,k, 1) € {(3,2,2),(3,2,3),(3,3,2), (4,2,2)} .
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Part of this paper was written while the second author was visiting
the Université Paul Sabatier.

2. Some basic definitions.

A n-orbifold O consists of a Hausdorff space X (the underlying
topological space of the orbifold) and a collection

{(UaavavGavfcx tUo — Va/Ga), (OAS .A},

satisfying the following properties:
1) The collection {U, : @ € A} is an open covering of X.

2) G, is a finite group of homeomorphisms of the open subset
Vo CR™.

3) The map f, : Uy —> Vi /Gy is a homeomorphism.

4) If Uy NUg # @, and if ny : Vo — V,/G, is the natural
(branched) covering induced by the action of G on Vj, then the map

fao f;l : fa(Ua N Uﬁ) — fg(Ua N Ug)

can be lifted to a homeomorphism

hap 7o (fa(Ua NUp)) — 75 (f3(Ua N Up)) .-

Figure 2.
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Some Z-extensions of generalized Coxeter groups appear as (ap-
plying the Wirtinger algorithm and Haeflieger and Quach [8]) orbifold
fundamental groups for orbifolds O(n, K, L, M) having the three sphere
S3 as underlying topological space and the planar graph 7, (K, L, M)
with the branching indices as shown in figure 2 as branching locus,
where K = (ky,...,k,), L = (l1,...,1l,) and M = (mq,...,m,) are
n-tuples of integers greater or equal to two. It may happen that one
or both vertices of the graph are not there, in which case the underly-
ing topological space is either R® or R® minus a point. Generators X;
and T for the (orbifold) homotopy group of O(n, K, L, M) are given by
(homotopy classes of) the loops shown in figure 3.

Figure 3.

We remark that there are some necessary restrictions on the n-
tuples K, L, M in order to have an orbifold with the vertices included
as described above. These restrictions are

{ki—lv liv kz}v {mi—17 li7 mz} € {{27 27 T}? {27 37 3}7 {27 37 4}7 {27 37 5}} )

where > 2. The above is consequence of the fact that the stabilizer of
a point (to belong to the region of discontinuity of a discrete group) is
a finite group which is either cyclic, dihedral or the group of isometries
of a platonic solid.

A geometry is a simply-connected complete Riemannian manifold
(M, p) with transitive isometry group G, having a co-finite volume sub-
group and such that the stabilizer at a point is compact.
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In dimension three, Thurston has shown that there are exactly
eight geometries: H3, S3, R?, S x R, H? x R, s/(2,R), Nil-geometry
and Sol-geometry ([10], [1] and [11]).

3. First construction: splitting geometries.

We construct geometric structures for some of the above orbifolds
O(n,K,L,K), where K = (2,2,...,2) and n > 3. The geometries
are given by R?, S x R and H x R. In this way, the corresponding
Z-extension generalized Coxeter groups can be realized as a group of
isometries in the respective geometry. The case n = 2 (where necessar-
ily, [y = l2) and some cases for n = 3 were considered by Dunbar in [3].
The above is summarized in the following.

Theorem 1. Forn > 3, K = (2,...,2) and L = (ly,...,l,), let
k=mn—2-=>3 1" 1/l;. Then the orbifold O(n,K,L,K) has geometry:

a) H2 x R, if k > 0,
b) S2 xR, if k < 0,
¢) R®, if k=0.

PROOF. Set Z equal to S?, R? and H? for k negative, positive and zero,
respectively. We consider a geodesic polygon P C Z of n-sides and
internal angles equals to (in cyclic order) n/ly,...,n/l,, respectively.
We label the sides of P as eq,...,en, in such a way that e; connects
the vertices with angles w/l;_1 and 7/l;. Let o; be reflection on the

geodesic line containing the side e;. We define the following isometries
of X xR

zi(p,q) = (o3(p),q)  and  t(p,q) = (p,q+1),

where (p,q) € Z x R.

The group I' generated by z1,...,2, and t is a discrete group
acting on Z x R with fundamental domain given by P x[—1/2,1/2] (the
transformations x1, . .., z, generate a discrete group acting on X x {¢}
with fundamental polygon P x {q} for all ¢ € R, and ¢ is just an
orthogonal translation to X. In fact, this is just Poincare’s Polyhedron
theorem on X x R).

It is evident that the above group is in fact a generalized Cox-
eter group and that the quotient (Z x R)/T" is an orbifold with S® as
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underlying space and as branching set the planar graph m, (K, L, M),
where K = M is the n-tuple formed by 2 at each component and

L=(1....1I).

REMARK 1. Suppose that in the above construction we have the partic-
ular situation /; = [, for some fixed [ > 2. In this case, we may consider
the polygon P to be invariant under an isometry 7 of Z of order n. Set
r(p,q) = (7(p), q). We have that r is an isometry of X x R of order n,
keeping invariant P x [—1/2,1/2]. If we set = = 1, then the group I’
generated by I' and r has the following presentation

U= (x,t,r: 2 =r"=(rt)? = tera) =rtr 7 =1).

The geometric orbifold uniformized by T is shown in figure 4a. The
group G generated by z and r has presentation

G=(z,r;z?=r"=(r"torz) =1),

(a generalized triangle group) and a fundamental domain given by the
infinite volume cylinder P* x R, where P* is the triangle bounded e;
and the two (geodesic) lines connecting the fixed point of 7 with both
ends of e;. It follows that the geometric orbifold uniformized by G has
infinite covolume, underlying topological space S® minus two points and
branching locus has shown in figure 4b. In particular, if Z is either S2
or R?, then we obtain (with the exception of one case) the cases in [5,
Theorem 1.i)].

Figure 4.
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4. Second construction: uniformizations by Zs;-extensions of
Fuchsian groups.

If in Theorem 1 the geometry is H? x R (that is, if n > 3 and
n—2-—>7"1/l; > 0) we can uniformize the orbifolds O(n, K, L, K),
where K = (2,...,2)and L = (4, ...,l,), by the manifold M = S3—R,
where R = RU{o0}. We can construct J so that O(n, K, L, K)= M/J
and J is a group of Mobius transformations, in fact a Z;—extension
of a Fuchsian group. The group J is constructed as follows: in the
hyperbolic three space H> = {(z,t) € C x R, ¢t > 0} we consider the
model of hyperbolic two space H2 = {(z,t) € H*, Im (2) = 0}.

On H2 we consider a geodesic polygon P of n sides and consecutive
angles 7/ly,...,7/l,.

Let e; be the side of P determined by the vertices with angles
7!'/[1;_1 and 7!'/[1,

Set x; the isometry of H® of order two having fixed point axes
containing e;.

Set D to be the common region determined by the geodesic planes
Fi,...,F,, orthogonal to H2, such that F; NH2 contains e;.

As a consequence of Poincare’s Polyhedron theorem [9], the group
J, generated by x1, ..., x,, is a discrete group with D as a fundamental
polyhedron.

The group J also acts as group of isometries of H2 (the transfor-
mations z; are reflections) with P as compact fundamental domain for
its action. It follows that the limit set of .J is the boundary ~ of H2 and,
in particular, the group J is either a Fuchsian group or a Zs-extension
of a Fuchsian group of the first kind. Since each generator z; permutes

both discs on C (the boundary of H?) bounded by -, we have that J is
a Zy-extension of a Fuchsian group of the first kind.

It is not hard to see that J is a generalized Coxeter group (with the
generators x1, ..., T,) and that (83—]1/%)/J is the orbifold O(n, K, L, K).

REMARK 2. As before, by considering I; = [ > n/(n — 2), we may
assume the geodesic polygon to be invariant under a rotation R of order
n. By performing the same construction as in Remark 1, we obtain an
uniformization of the orbifold shown in figure 4a by a group G with

presentation (z = x1)
G=(z,r: 22 =r"=(zrzr H' =1),

that is, a generalized triangle group (compare to [5, Theorem 1]).



552 M. HAGELBERG AND R. A. HIDALGO

5. Generalization of the second construction.

The above construction can be generalized as follows. Let P be
a hyperbolic polygon, maybe with an infinite number of sides, in the
hyperbolic plane H? C H3.

We assume each internal angle §; = x/l;, where [; is an integer
greater or equal to two.

For each side e; of P, we consider the isometry z; of order two,
with fix point set the geodesic containing e;. Set G the group generated
by all the transformations x;.

A geodesic polyhedron @ is defined by the common region bounded
by the geodesic planes Fj;, orthogonal to H2, such that F; NH2 contains
€;.

Poincare’s Polyhedron theorem [9] applied to @ and the side pair-
ings x; asserts that G is a discrete group, @ is a fundamental polyhe-
dron for the action of G, and a minimal set of relations for G' given by
(zj—12;)% = I (if the sides e;_1 and e; meet in H? at the angle 7/l;).

The group G is again a Zs-extension of a Fuchsian group, and is of
the first kind if and only if the polygon P has no sides in the boundary
C. In the case that G is not of the first kind, the orbifold (S® — A)/G,
where A is the limit set of (G, has universal covering S — A. It has
(orbifold) fundamental group isomorphic to G.

6. Third construction: hyperbolic uniformization.

One may think that the type of orbifolds we are considering cannot
have a hyperbolic structure, that is, there is not a discrete group I' of
isometries of H® which is a Z-extension of a generalized Coxeter group.

The following theorem asserts that this is not the case, that is, we
may have hyperbolic structures on some of our orbifolds.

Theorem 2. Ifn>5 K =M = (3,...,3) and L = (2,...,2), then
the orbifold O(n, K, L, M) has a hyperbolic structure.

PrROOF. Set n > 5, K = M = (3,...,3), L = (2,...,2) and choose
as a the angle between two faces of the regular Euclidean tetrahedron
(that is, @ € (0,7) with cosa = 1/3).

We continue to consider the hyperbolic plane in the three space
H2 = {(2,t) € H3, Im (2) = 0}.
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Let 7 be an isometry of H® of order n, keeping invariant the plane

H2.

*

We consider a hyperbolic polygon of n sides P C H which is in-
variant under the action of r. We label the sides of P consecutively in
counterclockwise order by e, ..., e,, respectively.

We may assume all internal angles to be equal to a. This is con-
sequence of the fact that a < /2.

Choose a hyperbolic isometry x; of order three having as its fixed
points set the geodesic line containing e;. Since there are two possible
choices for x1, we take the one for which z1(P) consists of points (z,t)
with Im (2) > 0. Set z;.1 = ra;r— 1.

The choice of the angle « ensures that both x; and z;4; generate
the alternating group A4. Moreover, every relation of A4 is consequence
of the relations 23 = 23, = (zj117; )% = L.

Consider the totally geodesic half-plane F;" containing the side ey,
making an angle of /3 with H? and such that F; = x(F}") also makes
an angle of 7/3 with H2 (see figure 5). The half-planes F}* = r*=1(F}),
for x € {+,—} and i = 1,...,n, determine a hyperbolic polyhedron P3
with 2n sides.

Figure 5.

We have that z; is equal to o oo;, where ¢; is reflection on Ff and
o is reflection on H2.

The transformations x1, . . ., oy, pair the sides by the rule z;(F;") =
F;~. 1t is easy to check that the sides F; and F},; meet at a right

(3
angle: it is a consequence of the fact that the transformation z;4q z; 1
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has order two.

Poincare’s Polyhedron theorem [9] asserts that the group G gen-
erated by these transformations is a Kleinian group with P3 as funda-
mental domain.

Figure 6.

Figure 7.

The intersection of P? with the boundary C of H? cousists of two
right hyperbolic polygons P; and P, each one of n sides, such that
each side of Py is paired by the transformations x; to one side of Py
(see figure 6). Each of these two polygons belongs to some component of
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the region of discontinuity of G which must be a round disc. The (circle)
boundaries of these two components are disjoint, but both components
are equivalent under G. It follows that G' has no invariant component,
each component is a round disc and they are all equivalent under the
action of G. We also have that (H* UQ(G))/G is topologically the unit
three ball with the boundary and branching set the planar graph shown
in figure 7.

We may assume that the polygon P; is the one formed by the faces
Ff,...,FEf. The (circle) boundary of the component of the region of
discontinuity of G containing such a polygon determines a geodesic
plane W on H3. The plane W necessarily cuts P2 orthogonally. Let j
be the reflection on W and set ¢t = jojo.

Set (Q to be the hyperbolic polyhedron determined by the sides of
P3 and the two geodesic planes j(H2) and o (j(H2)), respectively. Side
pairings of ) are given by z1,...,x, and t.

The conditions for Poincare’s polyhedron theorem [9] are satisfied
in this case. In particular, we obtain that the group I' generated by
these transformations is a discrete group, () is a fundamental polyhe-
dron, and G is a Z-extension of a generalized Coxeter group. Moreover,
the orbifold H?/I" is an orbifold with underlying topological space S3
and branching set the planar graph =, (K, L, M) with K, L, M as before.

Figure 8.

REMARK 3. The group I" generated by I' and the elliptic transformation
r is again a hyperbolic group with the presentation

T=(z,t,r: ®=r"=@t)’=0"tera)=t"YrUr=1),
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where x = x;. It uniformizes the orbifold shown in figure 8a. The
group G generated by x and r has the presentation

G={x,r: 2> =r"= "tz lra)>=1),

that is, a generalized triangle group. It uniformizes a hyperbolic orbifold
with S minus a point as underlying topological space, and branch locus
as shown in figure 8b.

7. The excluded cases n = 3 and n = 4 in theorem.
7.1. The case n = 4.

Let us consider the orbifold O(4, K, L, K), where K = (3,3, 3,3),
L = (2,2,2,2). For this, we proceed to construct in the hyperbolic plane
H? C H?® a hyperbolic quadrilateral P, invariant under the rotation r
of order 4 with fixed points axis orthogonal to HZ.

In the same way as in Section 6, we obtain a hyperbolic polyhedron
P3 with 8 sides, labeled F;r and F; and side pairings z; for i =1, ..., 4.
In this case, we have that the sides F{{, F, F] and F}, with ¢ € {+, -},
meet at a point p, € C N A(r), where A(r) is the set of fixed points of
T.

We choose W to be a horosphere centered at py and disjoint from
H2, and denote by j and o the reflections (anticonformal involutions of
S3) across W and HZ2, respectively.

Figure 9.
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Set t = jojo, and consider ) to be the region bounded by pP3
and the spheres j(H?2) and o(j(H2)). Denote by P? the image of the

polyhedron P3 under the reflection on the sphere C.

The group I' generated by z1,...,24 and ¢ is a Kleinian group
acting on S® for which the boundary sphere of H? is contained in its
limit set.

This group has exactly one invariant component A C H® which is
simply connected.

We have (Q C A is a fundamental domain for the action of I on
A. The orbifold A/T" is O(n, K, L, K). The other components are all
equivalent to the complement of the closure of H?® in S3, denoted by
H?3 . The stabilizer of H2 is the group G generated by z1,...,z4. The
orbifold H? /G is shown in figure 9.

REMARK 4.

1) The group I is the analogous to a regular B-group in dimension
2 (a Kleinian group with a simply connected invariant component [9]).

2) The group ' generated by r and T’ uniformizes the orbifolds
shown in figure 10.

Figure 10.

3) The group G generated by x = x7 and r has presentation
G=(v,r: 2®=rt=0"to"ra)? =1),

that is, G is a generalized triangle group. It uniformizes the hyperbolic
orbifold of figure 10b.
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7.2. The Case n = 3.

Let us consider now the orbifold O(3, K, L, K), where K = (3, 3,3),
L = (2,2,2). In this case the orbifold fundamental group has the rep-
resentation

I' = <.T1,$2,333,t; .Tf = ('Ti+1 xi_l)2 — (xz t)3 — 1> )

In this case, the subgroup G generated by the transformations z1, xo
and z3 is a finite group of order 60. Moreover, it has the representation

G = <.T1,$2,$3 : .Tf = (371'4_1 xi)z = 1> .

It follows that G has no elements of order 5. In particular, we can-
not have an embedding of the group G (so neither of I') as group of
isometries of S3, H?, R®, S? x R, H? x R, s/(2,R).

Theorem 1 (parts (2.a) and (3)) in [3] asserts that our orbifold
cannot have neither Nil nor Sol geometry and, in particular, the group
[' cannot be embedded as group of isometries of any of these two ge-
ometries.

8. Generalization of the Constructions.

In this section, we generalize the previous constructions. These
generalizations give embeddings of generalized Coxeter groups as group
of isometries of the hyperbolic three space. In many of the cases, they
also produce embeddings of Z-extensions of generalized Coxeter groups
as isometries of H?.

We use the unit three ball in R® as model of the hyperbolic three
space, that is, H> = {(x,y,2) € R® : 22 + y? + 22 < 1}. We need the
following basic fact:

Lemma. Let Fy, Fy and F3 be three hyperbolic planes in H3. We
assume that the three planes intersect in a point ¢ € H3 U C. Denote
by l; _the intersection between the planes F3 and F;, for i = 1,2. For
q € C, set a = 0, otherwise set o € (0,7) to be the angle between [y
and ly (we use counterclockwise orientation in the plane determined by
those two lines). If B; € (0,7/2) is the angle between F; and Fs, and
0 € [, 7] is the angle between Fy and Fs, then

cos = — cos (31 cos B2 + cos asin 1 sin s .
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Figure 11 shows the situation described in the above lemma.

Figure 11.

Proor. If q € @, then we may assume ¢ = co. In this case, the planes
are orthogonal euclidean planes in R® to the plane {(x,y,2) € R® : 2 =
0}, and the three planes Fi, F5 and F3 determine a euclidean triangle
of internal angles (31, 2 and 6 and, in particular, the above formula
holds trivially.

Let us assume now that ¢ is inside the hyperbolic three space. In
this case, we may assume the model of H® given by the unit three ball
in R3 with center in the origin ¢ = 0. We also may assume that

a) 1 = {(z,y,2) 1 x = 2z =0}, I = {(z,y,2) : 2z = 0,tana =

_x/y}v
b) F3 = {(z,y,2) : z =0},
¢) Fit = (wy), where
wy = (cos (7/2 — (31),0,sin(7/2 — (1)),
d) F5- = (ws), where
wy = (cos acos (m/2 — By), —sinacos (7/2 — (B3), —sin (7/2 — [F3)) .

Now the equality w; - wy = cos @ gives the desired equality.

Now we proceed to the construction. For this, let us consider two
n-tuples K = (k1,...,k,) and L = (l1,...,l,) of integers bigger or
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equal to two, such that

1 1 1
li ki kipa

(i)

>1.

We determine angles «; € [0, 7/l;] by the equation

Co8 (g) + cos (%) Co8 (k:_1>

sin <%> sin (k:_1>

The last equation gives some restrictions on /;, k; and k;41. We assume
that

(ii) cos oy =

(iif) (n—mw>§:%.

On the hyperbolic plane H? = {(z,y,2) € H> : z = 0}, we draw an
n-sided hyperbolic polygon P, where the sides are labeled cyclically as
€1, €2,...,¢€,. We assume that the vertex v;, determined by e; and
ei11, is contained inside H? or on its boundary according as

1+1+ 1
ki ki1

o~
.

is bigger than one or equal to one. The (internal) angle of the vertex
V; is (67

The existence of such a polygon is guaranteed by the inequality
(iii). For each edge e;, we consider a hyperbolic plane F; that contains
e;. Let Fi‘*’ be the part of the above plane contained in the half-space
{z > 0}. We assume that the angle between F;" and P is exactly m/k;.

Set o and o; to be the reflection through H? and Fj, respectively.
Let K be the group generated by the reflections o, 01, ..., 0,. Since the
angle between the planes F;" and Fiil is w/l; (this is a consequence
of the above lemma and the definition of «;), and the polyhedron P3
determined by the faces P, F1+ ,..., FIY has finite number of sides,
Poincare’s polyhedron theorem applies to this case to obtain that:

a) K is a discrete group of isometries.

b) P2 is a fundamental domain for K.
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¢) The generators for K are 0,01, ...,0,.

)
d) A set of maximal relations on these generators are: 02 = 02 =
k,

(coi)ki = (0ip101) = 1.

If we set ©; = 00;, then we have that the group J generated by
Z1,...,T, has the presentation

that is, J is a generalized Coxeter group. A fundamental polyhedron
for J is given by Q = P> U o (P?), and the index of J in K is two.

In the particular cases that @ intersects the boundary of H? in two
polygons (both symmetric by the reflection o), they will have internal
angles equal to m/ly,...,m/l,. If it happens that (n—2)7 > Y"1 w/l;,
and the group J is not Fuchsian group, then we may proceed as in con-
struction of Section 6 to obtain a Z-extension of a generalized Coxeter

group.

9. An application.

In this section we proceed to obtain an alternative and easy proof of
[5, Theorem 1], and an equivalent result for generalized Coxeter groups.

9.1. First construction.

We continue using the notation of Section 8, and assume n > 3,
l; =1 > 2and k; = kK > 2. In this situation the restrictions to the
construction are the following:

i) 1/1+2/k > 1.

ii) The equation

on () 1 2
sin ()

has a solution in the interval [0, 7 /I].

COsS x =

iii) (n—2)7/n> a.
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In this case, the restriction ii) is a consequence of i), and restriction
iii) is equivalent to:

iii.1) If n = 3, then
2 cos (?) > 1 — 3 cos? (%) .
iii.2) If n = 4, then
V2 cos <%> >1— (14 v2)cos? (%) :

iii.3) If n > 5, then there is no restriction.

In particular, the only exceptional cases for (n, k,[) are those with
1/14+2/k <1 and (3,2,2), (3,3,2), (3,2,3) and (4, 2,2).

We may construct the polygon P (as done in Section 8) with n
sides, all internal angles equal to o, and invariant under an isometry R
of order n. The group G generated by x = x; (constructed as in last
section) and r is a group of isometries of H® with presentation

G=(z,r: zF=r"=(r"to"lrz) =1).
Set M+ and M~ the geodesic planes determined by the following prop-
erties:

1) M* and M~ are orthogonal to H?2.

2) MTNH? and M~ NH? are geodesics through the vertices of P
determined by the side e;.

3) The angle between M T and M~ is 27 /n.

Figure 12.
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The hyperbolic polygon determined by the faces F1+ , F{ (as in
last section) and the two hyperbolic planes M+, M~ is a fundamental
polyhedron for G. The orbifold uniformized by G is shown in figure
12, where one or the two vertices may be deleted. The only cases for
which the above orbifolds have finite volume are given when n € {3,4}
(these two are the only cases when such a polyhedron does not meet
the boundary with non-empty interior).

9.2. Second construction.

Now we consider the case (n, k,[) such that

1+2<1
[k '

Let us consider the restrictions
i) If n = 3, then [ > 4.
ii) If n =4, then [ > 3.
iii) If n > 5, then [ > 2.

Draw in the complex plane a ray L, through zero, making an
angle m/n with the positive real axis. Draw a circle C; with center 1

and radius
LT
an (T
n

cos (1> .
21
This implies that the angle between Lq and C; is exactly 7/(21). Choose

A€ (p,(1+R)/(1 —R)), where p > 1 is a solution to the quadratic
equation

R=

p2(1—R2)—2p(1+R2cos (?)) +1-R?*=0.

Set Cy the circle with center A and radius AR. The angle between the
positive real axis and Cy is also w/(21) (this is consequence of the fact
that Cy = A(C1), where A(z) = Az).

The angle between the circles C; and C, varies continuously be-
tween 0 and (I — 1)m/l for A varying continuously between in (p, (1 +

R)/(1 - R)).
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The restriction 1/1+2/k < 1 means that for any £ > 2 we can find
A€ (p,(1+ R)/(1 — R)) such that the angle between the two circles is
exactly 7/(2 k). Moreover, the intersection of the two circles occurs in
the interior of the sector

{ZG(C: %<Arg(z)<%}.

We can find a transformation x in PSL(2,C) of order k£ whose fixed
points are the two intersection points of both circles and mapping C;
onto Cy. The group G generated by x and r (as in the first construction)
has presentation

Figure 13.

and is a Kleinian group. H®/G is the hyperbolic orbifold with
underlying topological space S® minus two points and branch locus as
shown in figure 13 (it has infinite volume since the group G has non-
empty region of discontinuity on the the Riemann sphere).

Using the fact that we can permute the roles of £ and n in our
construction, we have that the only exceptions to this construction is
the one we have stated, that is, 1/l +2/k < 1.
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9.3. Summary.

Both constructions give a faithful representation of the generalized
triangle group

as a discrete group in PSL(2,C), with the exceptions of the following
triples (n,k,l) € {(3,2,2),(3,2,3),(3,3,2),(4,2,2)} (this is [5, theo-
rem 1]). Three of these cases (that is, with the exception of (3,3,2))
can be represented inside the isometry group of S? x R (see remark of
Section 3). The case (3,3,2) is in part discussed in the last part of
Section 7.

Our constructions also permit us to say that we obtain finite co-
volume representations only in the first construction for n € {3,4}.

The group J generated by the transformations z4,...,x,, where
1= and ;41 =175 r~1, has presentation

G=(T1,...,0,: 28 = (w1 2; ) = 1),

that is, it is a generalized Coxeter group. Since a generalized Coxeter

group
G = (w1, 12: 2F = (127 = 1),

is in fact a triangle group, we have the following

Theorem 3. For each triple of integers (n,k,l) withn > 2,1 > 2 and

k > 2 such that (n, k,1) is different from (3, 3,2), there is a discrete and

faithful representation of the generalized Coxeter group
G={(T1,...,0n: o8 = (vip1 ;") = 1),

as group of isometries in one of the geometries R3, H? xR, S? xR, H?>.

Moreover, the geometry is H® if and only if (n,k,1) is different from
(3,2,2), (3,2,3), (3,3,2) and (4,2,2).
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