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Abstract. Xia proves in [9] that a pure subnormal operator S is com-
pletely determined by its self-commutator C' = §*S — SS5*, restricted
to the closure M of its range and the operator A = (S*|M)*. In [9],
[10], [11], he constructs a model for S that involves these two operators
and the so-called mosaic, which is a projection-valued function, ana-
lytic outside the spectrum of the minimal normal extension of S. He
finds all pure subnormals S with rank C' = 2. We will give a complete
description of pairs of matrices (C,A) that correspond to some S for
the case of the self-commutator C' of arbitrary finite rank. It is given
in terms of a topological property of a certain algebraic curve, asso-
ciated with C and A. We also give a new explicit formula for Xia’s
mosaic.

0. Introduction.

One of the modern approaches to the spectral theory of a nonselfad-
joint operator consists in constructing its functional model. The most
developed theory of this kind is the Sz.-Nagy-Foiag theory of Hilbert
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space contractions. Recently, several attempts have been made to con-
struct functional models for other classes of operators. This paper con-
cerns some questions that arise in connection with Xia’s analytic model
of subnormal operators.

A (bounded) linear operator S acting on a (complex) Hilbert space
H is called subnormal if there exists a larger Hilbert space K, K D H,
and a normal operator N: K — K such that NH C H and S = N|H.
The operator S is called pure if it has no nonzero reducing subspace
on which it is normal. We will always assume S to be pure and the
normal extension N of S to be minimal; the latter means that there
is no subspace K', H C K' G K, such that NK' C K" and N|K' is
normal.

This class of operators has been much investigated; we refer to [1]
for a background.

It is known that for a subnormal operator S, if we put

C'd:efS*S—SS*, Md:efclosRangeC,
then S*M C M. In [9], [10], [11], Xia constructs and studies an ana-
lytic model of a subnormal operator. He defines two functional model
spaces that consist, respectively, of analytic and antianalytic M-valued
functions on C\ o(N) and gives formulas for the trancription of S and
S* in each of these two models (here o(N) is the spectrum of N).
One of the consequences of Xia’s results is that if we put

A= (S* M),

then the pair (C,A) of operators on M completely determines a pure
subnormal operator S. If M is one-dimensional, then C, A are, essen-
tially, complex numbers, and the spectrum of S is the closed disk with
center in A and radius C*/2. Therefore, by analogy, A and C'/? can be
called the matriz center and the matrix radius of S.

The following question arises: which pairs (C,A) can appear in
this way? The main result of this paper is a complete answer to this
question in the case dim M < oco. It is given in terms of the algebraic
curve

A= {(z,w): det(C — (w—A*)(z—A)) =0}

in CP2. A crucial topological condition is that A has to be separated,
that is, that A N {(z,2) : z € C} divides each of the (nondegener-
ate) irreducible components of A into two connected components (see
Theorem 1 below).
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One of the main objects in Xia’s model is Xia’s mosaic
u(z) = Py (N — SPg) (N — 2)7 M, z€C\a(N),

here N is the minimal normal extension of S and Py is the orthogonal
projection onto a subspace W. We will give an explicit formula for p(z)
in terms of C', A and the curve A.

Sections 1-3 are devoted to preliminaries. Main results are formu-
lated in Section 4; in Section 5, proofs are given. Section 6 collects some
additional facts and examples. In the subsequent publication [12], we
are going to continue the analysis of Xia’s model.

The form of the main result resembles some results in the theory of
commuting nonselfadjoint operators by Livsic, Vinnikov and others (see
[5]). The connection between this theory and the topic of the present
paper may exist, but does not seem to be obvious.

1. Xia’s results.

We reproduce only those results by Xia that will be necessary for
our exposition.

Let S be a pure subnormal operator, and define M, C, A as above.
We will write C' = C(S), A = A(S). Let us say that S is of finite type
if dim M < oo. Denote by £(M) the space of bounded linear operators
on M. Following Xia [9], define a £(M)-valued measure e( - ) by

(1.1) e(+)=PyE(-)Pu,

where E(-) is the spectral measure of N. Xia shows that o(NV) is
contained in the set

(1.2) y={ueC: det(C — (u—A*) (u—A)) =0}
and that
(1.3) (C—(@—A*)(u—A))de(u) =0.

He also proves that the values of the function

u— A

u—=z

de(u) = Pyy(N—SPy) (N—2)"' M, z¢eC\y

(14) u2) = [
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are parallel projections on M (that is, p(2)? = pu(z)). We will call this
function Xia’s mosaic of S. Xia proves that

(1.5) [1(2), C(z — AP+ A*] =0, zeC\7y,

where [A, B| = AB — BA.
For any non-negative £(M)-valued measure e, we put £2(e) to be
the space of all measurable M-valued functions f satisfying

2 def

12 / (de(u)f (u), f(w)) < o,

factorized by the linear manifold {f : ||f]|* = 0}. It is easy to see that
L2 (e) is a Hilbert space.
The following result is part of [9, Theorems 1 and 2.

Theorem A (Xia [9]). Let C,A € L(M) and C > 0. Suppose that
there exists an L(M)-valued positive measure e on a compact subset vy
of C such that

(1.6) /U_Ade(u)zo,

u—=z

for z in the unbounded component of C\ v and (1.3) holds. Let D be
the set of all z € C\ v for which (1.6) holds, and H the closure in L*(e)
of all linear combinations of functions (A — (-))"tm, A€ D, m € M.
Then the operator

(1.7) (SH)(w)=uf(w), feH,

18 pure subnormal,

(1.8) (NA)(w)=uf(u),  feLe),
is its minimal normal extension, C = C(S), A = A(S), and e(-) is
connected with N in the same way as in formula (1.1). We imbed M
into L2(e) via the formula ¢ — |c|, where [c](z) = c.

Conversely, if S s a subnormal operator of finite type and C =
C(S), A = A(S), then the measure e(-), given by (1.1), enjoys the
above properties, and (1.7), (1.8) define operators, unitarily equivalent
to S and N, respectively.
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The statements C' = C(S), A = A(S) are not stated explicitly in
[9, Theorem 2], but they follow at once from (1.7) and [9, formula (42)].

Theorem A gives a criterion for existence of a pure subnormal §
with given matrices C = C(S) and A = A(S) in terms of the existence
of a L(M)-valued measure with certain properties. Our aim is to give
a more explicit criterion.

2. The discriminant curve and its geometry.

Let M be a finite-dimensional Hilbert space and C' > 0 and A
operators on M. We associate with C, A the polynomial

(2.1) 7(z,w) = det(C — (w — A*) (z — A))
and the algebraic curve
A={(z,w) € C*: 7(z,w) =0},

which will be called the discriminant curve of S. As usual, we pass
to homogeneous coordinates ((,w, ) in the complex projective plane
CP? by putting z = (97!, w = wd~! and consider A as an alge-
braic curve in C P2, defined by the homogeneous polynomial equation
Y2am Mo (cy9=1 ,9=1) = 0. Since

(2.2) T(w,z) = 1(z,w),

A possesses an antianalytic involution given by

§ = (z,w) — &* & (w,7).

If we substitute z = x+1y, w = r—1iy, then 7 becomes a real polynomial
in variables z,y. In this sense, A is a real algebraic curve. In terms
of the coordinates (z,y) in C?, the map § — §* is the usual complex
conjugation (x,y) — (T,7), that is, the reflexion with respect to the
linear submanifold R? = {# = 7, y = y} = {w = Z} of real points of
C?. In what follows, only the coordinates (z,w) will be used.

We observe that

a) 0 € A, w(d) = oo implies z(0) € o(A);
b) 0 € A, z(d) = oo implies w(d) € o(A*).
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For instance, to prove a), it suffices to rewrite the equation 7(z, w)
=0 as
det(Cw ™' — (1 —w™"A*) (z = A)) =0

and to put here w=! = 0.
Let

(2.3) T(z,w) = HTj(Z,w)O‘j

be the decomposition of 7 into irreducible factors [3]; associated is a
decomposition

T
(2.4) A=]a;,
j=1

where A; = {(z,w) : 7j(z,w) = 0}. We will call algebraic curves A;
the components of A.

A component Ay will be called degenerate if it has the form z =
const or w = const and nondegenerate in the opposite case. Let Ageg
be the union of degenerate components of A and ﬁndeg the union of
nondegenerate components.

Consider the following example. Let S be the shift operator

SF-) =) 7)),

acting of the Hardy space H?, equipped with the modified norm || f||? =
1132 + a]f(0)|?, where @ > 0. It is easy to see that S is simple
subnormal and that its discriminant surface is

{zw=1}U{z=0} U{w=0}.

This shows that degenerate surfaces really can appear.
We put

oc(A)={z€C: det(C— (w—A*)(z—A)) =0, forallweC},
so that the degenerate components in the decomposition (2.4) are ex-

actly the surfaces 2 = A and w = X\, A € o¢(A). It is immediate that
oc(A) Co(A) and oc(A) C 7.
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A point 0 of A will be called regular if it belongs to only one A;

and either . .
5, O #0  or —(8) #0,

and singular in all other cases. The set Ay of singular points of A is
finite. Put Ay = A\Ag; then the sets A;NA are pairwise disjoint. The
blow-up A of A can be defined as a unique abstract compact Riemann
surface that consists of exactly T' connected components A, where each
ﬁj is compact and is obtained by adding a finite number of points to
A; N Ag. There is a natural projection of A onto A which is identical
on Ag. If § € A and (z,w) is its image on A, we will write § ~ (2, w).
We refer to [3] for the background on the blow-up.

The functions § — z(d), 0 — w(d) extend to meromorphic func-
tions on A. The conjugation 0 — ¢* also extends to A.

The function

dz
2.5 =——)
(2.5) n=-—a
defined initially on regular points § = (z,w) € ﬁndeg, can be continued
to a meromorphic function on A. This function will play an important
role in the sequel.
It is easy to check, using a) and b), that

(2.6) 2(0) — o0 implies n(6) — oo,
. w(d) — oo implies n0) — 0.

Since both z-projection and w-projection of each nondegenerate com-
ponent A; is the whole sphere C, it follows that 7 is non-constant on
each nondegenerate component of A.

By (2.2), n has the following symmetry property

(2.7) n(d%) = (7(6)) .
Put
Ap={0€Bpaeg: M) <1}, A_={6€Apaeg: |n(6)| >1},

then R R R
OAL =0A_={6 ¢ Apdeg : In(6)| =1}.
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Let R R
Ar ={0 € Apdeg : d=46%}

be the set of real points of A, then Ag N Ag = Ay N {(#,2) : z € C}.
By (2.7),
Ar C 8A+ .

Definition. The algebraic curve A is called separated if for any non-
degenerate component Ak ofA ARﬂAk separates Ak into at least two
connected components.

Let A be separated. Then the set KR N Ek is infinite for each
nondegenerate Ay (and contains a continuous curve). In particular, it
contains points of Ag. It follows that (ﬁk)* = ﬁk for each nondegener-
ate component Ek The conjugation transforms degenerate components
z = const into the components w = const, and vice versa. The general
theory of Riemann surfaces with antianalytic convolution (see [6]) says

that for each nondegenerate Ak, ARﬂAk separates Ak into exactly two
connected components.

Proposition 1. A is separated if and only if AR = 83+.

Proor. Clearly, 83+ N A separates Ay, into at least two connected
components for all nondegenerate ﬁk; this proves the “if” part.

R To prove thi converse, suppose that A is separated,/\but KR,\;
OA,. The set A has no isolated points. Since both 0A and Ag
are closed, 8£+ \ KR contains an arc, say, . Then « is contained in
a nondegenerate component ﬁk Therefore ﬁk \ KR can be obtained
from the connected set (A \ OAL) U« by adding part of its boundary.
Hence Ay, \ Ar is connected, a contradiction.

Suppose A is separated. Put

-~

(2.8) Ye — 2 (aA-l-) )

it is a finite union of piecewise analytic curves. We have that v. C 7y
(see (1.2)), and v \ 7. is a finite set.
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3. The projection-valued function Q).

Let A be a square matrix. Then ¢(A) is defined by means of the
Riesz-Dunford calculus for any function ¢, analytic in a neighbourhood
of 0(A). It is easy to see that

(3.1) p(A|R) = p(A)|R,

for any invariant subspace R of A.
For A € 0(A), we put

I\ (4) = x, (4),

where X, is a locally constant function on a neighbourhood of o(A) such
that x, =1 in a neighbourhood of A and x, = 0 in a neighbourhood
of d(A) \ {A}. We put IIy(A) =0 if A ¢ o(A). The operator I1x(A) is
a parallel projection; it is called the Riesz projection corresponding to
the eigenvalue X of A.

Let R R

A =AnegU  |J {(zw): w=mwo}
woEoc(A)

be the algebraic curve obtained from A by excluding from it the “ver-
tical” degenerate components z = zg. For z ¢ o(A), a point (z,w) is in
A if and only if w belongs to o(C(z — A)~! + A*). Therefore for any
§ = (z,w) € Ao\ 27 (a(A)),

(3.2) Q(0) = Iu(C (2 = A) T+ A7)

is a non-zero parallel projection in M. The function () is a projection-
valued meromorphic function on A’. The well-known properties of the
functional calculus imply that

l) Q(él) Q(ég) =0if 51, 52 € Ao, 2(51) = 2(52) g_'( O'(A), 51 75 52,
ii) 37, (5)=z @(6) = I for any zo such that 27 Y(z0) C Ay.
It follows from (1.5) that

(3.3) [Q((z,w)), u(z)] =0, for (z,w) € Ag \ 27 (o (A)).
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4. Main results.

Theorem 1. Let M be a finite-dimensional Hilbert space and C, A
operators on M with C > 0. Define A, A4, @@ as above, and put

41) piz) = D QUzw), zeC\(s(A)Uyuz(A,).

w:(z,w)EAL

Then there exists a subnormal operator S satisfying C = C(S) and
A = A(S) if and only if the following conditions hold:

i) A is separated.

ii) There exists a positive L(M )-valued measure de(-) such that

(4.2) (A—z)—1(1—u(z)):/z%(@2, 2 € C\ (o(A) Uy U(Ay))
and
(4.3) (C— (@— A%) (u— A))de(u) = 0.

If i), ii) hold, then the measure de(-) is connected with the operator S
by the formula (1.1), and p is Xia’s mosaic of S.

It follows, in particular, that (4.1) expresses the mosaic of any
subnormal operator S of finite type in terms of matrices C' = C(S5),
A =A(S).

By (1.4), the set of singularities of the function (A — 2z)~'(1 —
p(z)) is contained in the set o(A) Uy, which has zero area. By the
Hartogs-Rosenthal theorem (see [4]), e(:) is uniquely determined by
(4.2), whenever it exists.

The next Theorem 2 is a more detailed version of Theorem 1.
Before formulating it, we need to introduce a few more notions.

Definition. The pair (C, A) will be called non-exceptional if there exists
a finite subset Z of C such that for z € C\ Z, all Jordan blocks of the
matriz C(z—A)~1 + A* corresponding to eigenvalues w withw ¢ oc(A)
are sitmple.

In fact, the author does not know whether exceptional pairs (C, A)
exist.
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Suppose that A is separated, that is, BAJF = AR. Let yens be the
set of all nonsingular points of the curve v, (see (2.8)), then 7. \ Yens is
finite. If (z,Zz) € A and 7.(2,%) # 0, 7,(2,Z) # 0, then (2,Z) € Ap and

Z € Yens-
Let us orient the curve v, according to the positive orientation of

83_1_ as a boundary of 3-1—- There is a continuous function £ : yeps — C
with |[¢] = 1 such that dz = i £(2) |dz| on vyens. Then 1((z,7)) = £(2)?,
Z € Yens-

Theorem 2. In the above Theorem 1, conditions i)-ii) can be replaced
by the following conditions.

i) A is separated.

ii’) The pair (C, A) is non-exceptional.

iii’) The matriz-valued measure £(z) (z — N)71Q((2,7)) |dz| ‘7 is

positive and finite.

iv’) There exists a finite subset R of C such that a representation

(A~ 27 (1 (2)
(1.9 e IR D

Y U — z
v CER

holds for some non-negative matrices A¢, ¢ € R.
V) (C—=(C—A*)((—A)Ac =0 for all € R.

If V)-v’) hold, the measure de(-) that corresponds to the (unique)
subnormal operator S such that C = C(S), A = A(S) is given by

(45)  de(w) = = (u— )" Q(w, 1) () |du] |, + 3 Ac oc(u),

2
C(ER

where d¢ is the delta-measure concentrated in (.

In fact, the difference between the left-hand side and the integral
in the right-hand side in (4.4) is always a rational matrix function. So
iv’) is only a restriction on the form of this function.

We remark that if i’), ii’) hold, then, by [10, formula (57)], the
matrix &(u) (u — A)71Q((u,w)) is self-adjoint for u € v.. It seems that
Xia uses ii’) implicitly in some of his arguments. In Section 6 below, we
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give an example of a non-exceptional pair (C, A) such that this matrix
fails to be positive on certain arcs of .. It would be interesting to know
whether i) and ii’) imply iii’).

Theorem 2 and the above Theorem A by Xia permit one to con-
struct the operator S from matrices C' = C(S), A = A(S) (whenever it
is possible). In [12], we will discuss this construction in detail.

5. Proofs of Theorems 1 and 2.

Lemma 1. Let S be a subnormal operator of finite type, and put C =
C(S), A = A(S). Let A be the discriminant surface of S and pu its
mosaic. Let U be an open connected set contained in A \ AR, and let
(50,(51 € U with Z((S()) (51) eC \ .

If z((50) € C\o(9), then

(5.1 1(2(01)) Q(61) =
If w(dp) € C\ a(95), then
(5.2) p(2(01)) Q(01) = Q(d1) -

ProOOF. We remind that for a domain G with piecewise smooth bound-
ary, the Smirnov class EP(G) consists of functions f analytic in G' such
that

n

sup / F()IPdz] < o0,
oG,

for some increasing sequence {G,} of domains with smooth boundaries
such that UG,, = G; here 0 < p < co. We refer to [2], [6] for basic
properties of Smirnov classes. The Cauchy integral of any finite measure
supported in C\ G belongs to EP(G) for any p < 1. So it follows from
(1.4) that for each p < 1 and each connected component Q of C\ v, p
belongs to EP(2 — L(M)). By (1.4) and the Plemelj “jump” formula
[7], the interior and exterior boundary values p;, pe of p satisty

de(z) |dz|
|dz| dz "’

almost everywhere on «,. with respect to the arc length measure. Here
de(z)/|dz| is the Radon-Nikodim density of the absolutely continuous
part of de(z) with respect to |dz|. By (1.3), it follows that

(5.3) (Clz = M) 7H 4+ A" = 2) (i(2) = pe(2)) = 0,

i) — pe(z) = 2 (2 — A)
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almost everywhere on .. We may assume that U \ 27!(v.) consists
of a finite number of connected components €y, ..., {2, that 0€2; and
0€2j+1 have a common arc for j = 0,...,k — 1 and 9 € g, 01 € Q.
Take any €2; and any 0 = (z,w) € 092; N 0241 N Ay. Then we have
w # Z by the hypothesis.

Let 15 be an analytic function in a neighbourhood of o(C(z —
A)~1+ A*) such that ¢s(u) = (u—2z)~! on a small neighbourhood of w
and 1s(u) = 0 outside this neighbourhood. Putting ¥(9) = 15(C(z —
A)~1 + A*), we obtain from the Riesz-Dunford calculus that

U (C(z—A) T+ A —2) =Q(9),
so that (5.3) and (3.3) give

(5.4) (1i(2) = pe(2)) Q(0) = Q) (pi(2) — pe(2)) =0,

almost everywhere on .. Consider first the case z(dg) € C\ o(S5). Put

p(0) = u(2(0))Q), d€U.

Since u(z) = 0 in a neighbourhood of z(dy), it follows that ¢ = 0 in €.
Then (5.4) implies that ¢|{2; has zero boundary values on 9€; N 9.
By the Privalov uniqueness theorem [7], ¢|{2; = 0. Continuing in the
same way, we see that ¢ = 0 in U, and this implies (5.1).

Now assume that w(dy) € C\ o(S) and let us prove (5.2). Our
arguments are motivated by the proof of [10, Lemma 7.8]. Xia proves
in [9] that the function

de(u)

u—z)(u—w)

Y

(5.5) Sz, w) = / :
defined for z,w € C\ v, for (z,w) ¢ A has a representation

S(zw) = =(C' = (w = A") (= A)) " (1 = p(2))
+ (@) (C = (w—=A") (= A))

(5.6) 1

It follows that if (z,w) € C* \ A is such that u(w) = 0, then

(5.7) (C(z—AN)"P+ A —w)(z—A) S(z,w) = —(1 — pu(2)).

By continuity, we can assert that this equality also holds for (z,w) € A
if z€ C\(yUo(A)), w e C\ v and p(w) = 0. In particular, (5.7) holds
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por points (z,w), (z,w) € Ay, in a neighbourhood of §y. By (1.5), the
operator C (z — A)~! + A* has an invariant subspace (1 — p(z))M. It
follows from (3.1) that

(5.8) Mo (C (# = M)+ A" —w|(1 = p(2)) M) = (1 - u(2)) Q((z,w))
On the other hand, by (5.7) and (1.5),
(C(z = M) A —w) (1= p(2) (2 = A) S(2,w) = (1 — p(2)) ,

which shows that C' (z — A)™' + A* — w|(1 — p(2))M is invertible. By
(5.8),
(1—pu(2) Q(z,w)) =0,

for points (z,w) € Ag in a neighbourhood of §y. Putting ¢(6) = (1 —
w(z(0)) Q(6), 6 € U and proceeding as above, we obtain (5.2) in the
same way as (5.1). The proof of the Lemma is complete.

PrROOF OF THEOREM 1. SUFFICIENCY. This follows from the above
Theorem A by Xia. Indeed, (4.1) and (2.6) imply that p(z) = 0 in the
unbounded component of C\ (yU o (A)). Therefore, letting z — oo in
(4.2) we get ¢(C) = I. Now one gets that (4.2) is equivalent to

u—A
= d , eC .
ue) = [T dew),  zeChy
So all the hypotheses of Theorem A are satisfied. In the model for S,
given by this theorem,

(5.9) Py f = /de(u) f(u), feLe).
Formulas (5.9) and (1.8) imply that representation (1.1) of e holds.

NECESsITY. Now we start with a subnormal operator S of finite type
and put C = C(S), A = A(S). If A is not separated, then there is

a nondegenerate component ﬁk of A such that ﬁk \ KR is connected.
Take U = Ay \ Ag; then U has points dp with z(dp) € C\ o(S) and
points g with w(dp) € C\ o(5). We conclude from Lemma 1 that
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for all § in U, which is a contradiction.

So we may assume A to be separated. For any nondegenerate
component A; of A, A; N A, is the connected component of A; \ Ag
containing (all) points dp ~ (z,00), where z € o(A). This follows from

(2.6) and the fact that A; \ Agr has only two connected components.
Moreover, 31 N 3_4_ contains neighbourhoods of the points of the above
type. A similar fact about ﬁl NA_ takes place. By applying Lemma 1
to connected sets 31 N 3+ and 31 N 3_, we see that for § € ﬁl,

0 se A
5.10 n(z(0)) Q) = ’ P
(5.10) (2(9)) Q(3) {Q((S% SR,
Now let A; be a degenerate component of A’: A; = {w = wp}. Then

there is a point dy € 31 with dp ~ (00, wp). We conclude from Lemma 1
that pu(2(0)) Q(0) = 0 on A; in this case. Therefore for z ¢ o(A)Uz(As)

pz)=nz) Y, Qrw)= Y  Qzw).

w:(z,w)eA! w:(z,w)EA L

So the righthand part of (4.1) coincides with Xia’s mosaic of S. Let
e(-) be defined by (1.1), then (4.3) follows from Theorem A, and (4.2)
from (1.4).

PROOF OF THEOREM 2. First we remark that conditions i’)-v’) of
Theorem 2 imply conditions i), ii) of Theorem 1. Indeed, if i’)-v’) hold,
then the measure de, defined by (4.5), is finite, positive-valued, and
(4.2) holds. Condition v’) implies (4.2) for the discrete part of de(-).
Since the pair (C, A) is non-exceptional, one has

(C(z =AM+ A)Q((z,w) =0

identically for (z,w) € ﬁndeg. This and v’) give (4.3).

Conversely, let us suppose that i), ii) hold, so that C' = C(95),
A = A(S) for an operator S of finite type. First we observe that (4.1)
and (1.4) imply

de(u)

u—z

A-27 Y Qew) == ) = [

(z;w)eAN\AL



110 D. V. YAKUBOVICH

It follows that there exists a finite subset F' of 7. such that

ey = 5 (=27 Q) du = 5 €(u) (=)~ Q((w, ) .

Therefore iii’) holds.
Put R = FUoc(A). Then there exist positive matrices A¢, ¢ € R,
such that (4.5) holds. By (4.3),

(Cu—AN"r+A —7)Q((u,m) =0,

for all u € . \ R. By the definition of @, the matrix C (u — A)~1 + A*
for these u has no non-trivial Jordan blocks corresponding to eigenvalue
.

Fix any nondegenerate component Ay of A. Then, since Ag N Ag
contains an arc, there are infinitely many points (z,w) € Ay such that
all Jordan blocks of C(z — A)~! + A* that correspond to the eigenvalue
w are trivial. From a simple algebraic argument one sees that this
property holds for all but a finite number of points (z,w) in Ag. Thus
(C,A) is not exceptional. We conclude that all properties i’)-v’) take
place.

6. Some additional results.

Proposition 2. Let C' > 0 and A be two operators on a finite-
dimensional space M. Then there exists an operator S with C = C(S),
A = A(S) if and ony if there exist a two-sided sequence of spaces
{M,,}nez and operators A,, € L(M,,), Ry, : M,,_1 — M, such that

1) My = M,

2) Range R,, = M,, for n > 0 and Range R, = M,,_1 for n <0,
3) Ry yy Rugt = Ru B + A A% — A% A,

9
5) Ao = A, and C = Ry R},

R
R:L-l—]. An—l—l = Ay R;-H;'

6) sup,cz [|[An]| < 00 and sup,, ¢y | Rn|| < oo.

For any such operators, put

K= é M, , H:éMn,
n=0

n=-—oo
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and define N, S, S" by the following two-diagonal block matriz
S™ 0
N =
ol s

0 R_, —2
0 1

A
R_

R_l A_l 0
= 0 Ro| Ao O ,
0 R, Ay O

0 Ry Ay O

so that S = N|H. Then S is pure subnormal, N is its minimal normal
extension, and C(S) = C, A(S) = A.

This proposition may be known to specialists. A similar fact about
hyponormal operators is contained in [8]. Therefore we omit the proof,
and make only the following observations.

If N, S, S" are defined in the above way, then S’ is also subnormal;
it is called dual to S. Conditions 3), 4) comprise to the equality N*N =
NN*, and 5) follows from the definition of C(S) and A(S). Without
loss of generality, one can assume that M, C M for all n € Z, and
that R, = R,|M,, with R, € L(M) and R} = R,, > 0. Then 3),
4) permit one to define én, A,, by forward and backward inductive
processes in a unique way. Namely, if n > 0 and (én,An) have been
determined, then EZH is defined by 3) and Ayq1: Mpt1 — Mpia
is uniquely determined from 4), because Ker(§n+1|Mn+1) = 0. On

each inductive step, either 3) or 4) may fail to produce R,41,An41
(for instance, if the R2; obtained fails to be non-negative). One has
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similar inductive definitions for n < 0. The subnormal S exists if and
only if this two-sided inductive process fails nowhere and additionally,
6) holds.

For a point § € A, define the index 5(8) by #(8) = aj if 6 € Ej;
here ﬁj are the components of A and a; the corresponding multiplici-

ties, see (2.3), (2.4). Let ¢ € C\ v be such that A as a Riemann surface
over the z-plane has no branching points that project into . Define
the index s(¢) at ¢ by

(6.1) 2(C) =) {5(0): 2(6)=¢, d€ AL},

Proposition 3. For any z € C\ v,

dim Ker (S* — Z I) = (the number of positive eigenvalues

(6.2) of C—(z—A")(z—A)).

If z s not a projection of a branching point of 3, then the above two
quantities also coincide with »(z).

PrOOF. We have (0/0w) 7j(z,w) # 0 for (z,w) € Aj, except for
a finite number of points (z,w), by virtue of the irreducibility of ;.
Therefore det(C (z — A) ™! + A* — w) has an a;-th order zero at w = w
for (z,w) € A; for all but a finite number of points (z,w). For these
points (z,w), rankQ((z,w)) = f{((z,w)), and we conclude that

dim Ker (S* —ZI) = rank p(z) = rank Z Q((z,w)) = »(z),
(z’w)ezﬂ-

the first equality is from Xia’s work [9, p. 277].
Let z € C\ 7, then by substituting w = Z in (5.6), one gets

S(2,7) = A — u(2)) + p(2)" A4,
where A = (C — (z — A*) (2 — A))_l. Therefore

w(2)*5(2,2) w(z) = pu(2)" Ap(z) .

Set n = dim M, and let k£ be the number of the positive eigenvalues of
A (which equals to the right hand part of (6.2)). Since S(z,Z) > 0 by
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(5.5), we obtain that the quadratic form (Az,x) on M is positive on
p(z)M. It follows that dim pu(z)M < k.
Similarly,

(1= pu(2)7) S(2,2) (1 = p(2)) = —=(1 — u(2)") A(L = p(2)) ,
gives dim (1 — p(2)) M < n — k. These two inequalities imply (6.2).

REMARK. If S, S’ are subnormals of finite type and their essential
spectra coincide, then the nondegenerate parts of their discriminant
curves A, A" also coincide (we do not assert anything here about the
corresponding multiplicities o).

Indeed, let ., v, etc. correspond to S and 7., v/, etc. to S’. Two
subarcs of 83_4_ cannot project into the same arc in the z-plane. It
follows from the last statement of Proposition 3 that v. C 0ess(S) C
o(N) C 7. Since v\ 7, 7'\ 7. are finite and 0egs(S) = 0ess(S),
we conclude that v. = 7.. Take any nondegenerate component A;
of A. By Theorem 1, there is an arc 3 of 7. such that A; contains
p#* = {(2,Z) : = € B}. Since B C 7., p#* C A; N A’. By standard
algebraic geometry, this implies A; C A,

If 0ess(S) = 0ess(S’) and, moreover,
dim Ker (S* — X) = dim Ker (S"* — ),

for A ¢ 0ess(S), then Proposition 3 and (6.1) imply that nondegenerate
parts of A, A’ coincide, and the multiplicities c; of nondegenerate
components also coincide.

AN EXAMPLE. The choice of the orientation of 7., made before Theorem
2, does not guarantee automatically that the matrix-valued function
£(2) (z — A)7'Q((#,2)) is non-negative on .. To see this, set C =

26 5 _(1-5 .
( s 15) > 0and A = (5 o ) The polynomial (2.1) takes the form

T(z,w) = (w+ 2z — zw) (=10 — zw) + (52 — 5w)?.
Since 7.(0,0) = 7,,(0,0) = —10 # 0, z = 0 is a nonsingular point of

Ye- The implicit function w = w(z), whose graph near (0,0) is given
by equation 7(z,w) = 0, has the form w = —z + 922 +0(2?). In
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particular, |w'(z)| > 1 for negative z with small |z| and |w'(z)| < 1
for small positive z. Comparing with our choice of the orientation of
Ve, we conclude that £((0,0)) = 1. But from (3.2) one calculates that

Q((0,0)) = (; g), so that the matrix £((0,0)) (0 — A)~1Q((0,0)) =

(_01 8) fails to be non-negative.
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