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1. Introduction.

Let M denote the classical Hardy-Littlewood maximal function

1 h
Mf(z) = sup o | |f(x — )] dt

and H the classical Hilbert transform
o° dt
i@ =pv. [ 1=,

on R!'. The mapping properties of these functions are very well-known
(see for example [S1]), as are those of their higher dimensional analogues
the Hardy-Littlewood-Wiener maximal function and the Calderén-Zyg-
mund singular integral operators. Analogues of M and H associated
to certain submanifolds of positive codimension in R™, n > 2, have also
been extensively studied. These are the so-called maximal functions
and singular integrals along surfaces, or maximal and singular Radon
transforms. See for example [SW], [S2], [Ch], [PS1], [RS2], [CWW1],
[CWW?2]. One approach to these general problems is to model them
on translation-invariant problems in certain homogeneous Lie groups
so that the basic translation operation (z,t) — x — ¢ on R* x R” is
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replaced by (z,t) — xt~! on the Lie group. When written in terms
of canonical coordinates, this multiplication is a polynomial mapping.
Another approach, at least for the singular integral problems, is via
oscillatory integrals and Fourier integral operators. In certain model
cases a partial Fourier transform may be used to reduce the problem
to a less singular one but with the familiar difference or inner prod-
uct replaced by a more general mapping on R® x R™. Once again,
polynomial mappings provide substantial model cases in this setting.
Thus an understanding of the classical operators of harmonic analysis
with translation and inner product replaced by more general polyno-
mial mappings is an important step in the study of higher dimensional
problems associated to submanifolds.

However, very little seems to have been done systematically in this
direction, with the principal exception of [RS1], [RS2], [PS2] and [HP].
In the present paper we take up this point in the context of the most
classical one-dimensional operators of harmonic analysis, the Hardy-
Littlewood maximal function and the Hilbert transform. While we do
not believe our results will have any direct bearing on the higher dimen-
sional problems mentioned above, it nevertheless seems a reasonable
starting point to consider the one-dimensional setting first.

Thus we let p : Rx R — R be a polynomial mapping p : (z,t) —
p(x,t). We shall assume that p has degree n > 1 in the second variable
and that p(z,0) = . (That this condition cannot be entirely dispensed
with is discussed below, and is natural in so far as the averages occurring
in M, below are then concerned with the local behaviour of f near x.)
We define the maximal function and Hilbert transform associated to p

as
h
Myf(e) =smp o [ |f (ol 1)) de
h>0 —h

and

Hyf@) =pav. [ fple) T

when these make sense. (Indeed, as a consequence of Theorem 2.4
below, H, can be realised as a principal-value distribution.) When
p(x,t) = x —p(t) — with p a polynomial of degree n of one real variable
t satisfying p(0) = 0 — we sometimes write these as M, and H,. The
main object of this paper is to begin to study the mapping properties
of these operators.

The principal results are as follows:
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Theorem 1. If p has degree n in t, then M, and H, are bounded
on LP(R) when p > n. M, and H, may not be bounded on L™(R) for

certain p of degree n in t.

Theorem 2. If p is quadratic in t, then the mapping properties of M,
and Hy can be precisely given terms of the behaviour of the coefficients
of t and t? in p. (See Theorem 3.2 for full details.)

Theorem 3. If p(z,t) = x — p(t), then the operators M, and H, are
of weak-type 1-1 with bounds depending only on the degree n of p, and
not otherwise on the coefficients.

These theorems are proved in subsections 3.1, 3.2 and 3.3 respec-
tively of Section 3.

As the conditions of Theorem 1.1 place no constraints on the (poly-
nomial) coefficients of ¢ whatsoever, it is natural to consider the situa-
tion when these coefficients of ¢ are completely arbitrary functions of x.
Thus we are lead to what we term the supermaximal function and su-
perhilbert transform, which seem to be of independent interest. These
are defined as

1 h
My f(x) = sup Myf(xz) = sup o |f(z—p(t))]dt
PEPn h>0 —h
PEPn

and
1, 10) = sw 7] = sw | [~ f-p0)
PEPBy PEPn

where ‘B, is the class of polynomials p of degree at most n in ¢t with
p(0) = 0. The result about these operators, proved in Section 2, is the
following:

Theorem 1.4. M,, and T,, are bounded on LY(R) if and only if ¢ > n.

An interesting lemma that we use to prove these results is that
|H, f ()| is pointwise dominated by M, f(z) plus the maximal Hilbert
transform H* f(z) with constants depending only on the degree of p.
(H* f(z) is defined as

dt
w |[ o
0<a<b<oo ' Ja<|t|<b t
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and it is well-known (see for example [S1]) that this operator is of weak-
type 1-1.)

We comment upon the condition p(x,0) = z. This comes from the
analogues in higher dimensions where one wants to think geometrically
of S(z,t) as, for each fixed z, some surface passing through z when
t = 0. However there is no particular reason to assume p(z,0) = z in
our setting other than that a necessary condition for any LP(p < oo)
boundedness of M, is that p(z,0) have no critical points. (To see this,
suppose p(x,0) has a critical point at say zero. Then for § sufficiently
small, |z| < €62 and |t| < C6 implies |p(x,t)] < C'6. Thus for
F=X_ss):

h
%/ fp(z,t))dt>1,  if|z| <C6Y? and h < C6.
—h

Hence |M, f|l, > C6Y/2P) while | f||, ~ §'/P. This is a contradiction
unless p = o00). If p(x,0) does have no critical points, then one can
in principle change variables to reduce to the case p(z,0) = z, but
for modified maximal functions and Hilbert transforms whose coeffi-
cients are no longer polynomials. It is partly for this reason that we
have stated Theorem 3.2 below for coefficients which are not necessarily
polynomials.

Finally we make some remarks about possible higher-dimensional
analogues of our results. We first note that there is no interesting super-
maximal function or superhilbert transform, even of degree 1, in R?,
d > 2. This is because the putative supermaximal function contains
the universal maximal function associated to averages in arbitrary di-
rections in R?, which is well known to be unbounded on all L?, p < oo,
by the Perron tree example. (See [deG]| for example.) On the other
hand one can study operators such as

h
fr— S:i) % ‘/0 f(z— (at,bt?))dt

h>0

on R? and indeed Marletta and Ricci [MR] have done so. Note that
these operators arise in connection with Stein’s and Bourgain’s circular
maximal function. Secondly, while it may well be true that there is an
analogue of our Theorem 1.3 above in higher dimensions (indeed the
LP, 1 < p < oo, variant is true in all dimensions) there is at present a
serious obstacle to proving it, which is the fact that the weak-type 1-1
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of the Hilbert transform and maximal function along a parabola in R?
are unknown. That is, while the operators

h
f r—)sup%‘/o fz— (t,t))dt

h>0

and

f [ ae-een e

are known to be bounded on LP(R?), 1 < p < oo, it is not known
whether they are of weak-type 1-1. See [SW]. However if p : R* — R”
is a polynomial which satisfies certain nondegeneracy conditions at 0
and oo, then the higher-dimensional versions of M, and H), are of weak-
type 1-1; moreover the same is true if we replace the additive structure
of R"™ by the group structure in any homogeneous Lie group. We plan
to return to this matter in a forthcoming paper.

2. The supermaximal function and the superhilbert trans-
form.

Let B,, be the class of all real polynomials p, of a single real vari-
able, of degree at most n > 1, such that p(0) = 0. Define

1 [k
M, f(z) = sup 5 |f(x —p(t))|dt = sup Myf(z)
h?BO —h PEPB,
pEPn

(the “supermaximal” function of degree n.)

Theorem 2.1. Let 1 < g < co. Then M,, is bounded on L4(R) if and
only if ¢ > n. Moreover M,, is of restricted weak-type n-n.

REMARK. When n = 1, M is the classical Hardy-Littlewood maximal
operator in one variable, and so there is nothing to prove in this case.
We shall appeal to the result for M in the cases of higher n.

The failure of boundedness when ¢ < n may be seen as follows.
Let A > 0 be large and let py(t) = A(1 — (1 —¢t)"). Let fg(t) =



122 A. CARBERY, F. Ricci AND J. WRIGHT

t|=1/™ |log |t] |_ﬁx[0 % Then fg € L™ if B > 1/n. Now for z > 1 we
take A = 2z and h = 1 and observe that

/0 fi( — pa(t)) dt = / fioe (1 —t)") dt

1
— [ sptarya
0
1 ml/n
:W/ fo(s™ds (e > 1)
0
1

1
- / 5~1(log |s"|) =" ds
0

rl/n

=00, if g<1.

Furthermore, for each r > 1 we can find a 8 < 1 such that fg € L™".
Indeed, fg € L™" if and only if # > 1/r. Thus M,, does not map
L™" to any Lebesgue-Lorentz space for any r > 1. (See [StW] for a
discussion of Lorentz spaces and related topics.)

ProOOF OF THEOREM 2.1. We only need consider the restricted weak-
type n — n result as the case ¢ > n follows by interpolation with the
trivial L* result, and the negative result has been established in the
discussion above.

Let S C R be a measurable set, and let f = x.. It suffices to
prove that [|[M,, f|ln.co < Cnllf|n, by standard arguments from Lorentz

spaces. Let p € °B,, and h > 0 and consider

i [ re=sma= [ f@-wgwa.
where Ij, = p([—h, h]),

(1) gu) =+ X, () PRI

where {E;} are the images under p of the intervals upon which p is
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monotonic, and where pj_l is the inverse to p on E;. Then

(@ =) g(u) du

< |If (@ = )llLrrq,) HgHL"'vOO(Ih)

= [1f =y ll9llparer,y  (since f=xg)

1 " 1/n "
<sup (0 [ 1= 0 da) U gl ey -
n>0 N nl J,

Now p(0) =0, so 0 € I, and thus

([ 15—y du) ™"

n| Jin,)

is dominated by (M f™)Y/"(z) where M = M; is the Hardy-Littlewood
maximal function. Since

2
oo (MY (@) > ol = [{z: Mf"(z) > a"}| < J/f”,
the result now follows once we have established the following lemma.

Lemma 2.2. There is an absolute constant C,,, depending only upon
n, such that for all h > 0, all p € B,

1M 9l Lnr oo (1) < Cn s
(Here g is defined as in (1).)

ProoOF. For A > 0 fixed,

{u € In: |g(u)| > A} = /Ih Xu: g(uy>ay

= X du
1, {w s xg, )07 )l >An

h
= /
N /—h Xgt:1/1p' (®)|> AR} p'(t)] dt

! 1
< — o < L ‘
_/\h‘{te[ h, h] |p(t)|_)\h}
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On the other hand,

|1 :/xfh(U)du=/h ()] dt .

—h

Thus, to establish the lemma, it is enough to show

Ht € [=hhl: [p(H)] < i}‘ < Cp Al

~ A\ h 1/(n—-1)
/= / /(0) de)
—h

By scaling we may assume that h = 1 and that f_ll |p'| =1 and so we
are reduced to showing

(2) {te[-1,1]: [p(t)] < a}| < C, /=D

under the normalization condition f_ll Ip'| = 1.
Consider the functional || |- ||| on the class @,,—1 of polynomials of
degree at most n — 1 given by

— inf D).
Hall = | max_ = inf_ |g-""(2)]

This is a continuous function of ¢, positively homogeneous of degree 1,
which does not vanish on the unit sphere of @,,_1, (measured, say, with
respect to the L! norm on [—1,1)). Forif q(t) = ag+ait+- - -+a,_1t"*
and || |q| || = 0, we have successively that a,,_1,a,_2,...,ap are all zero.
Thus there is a constant m,, depending only upon n such that

Halll = ma / g(0)) dt.

-1

Applying this to p’, we see that for some 7,0 < j <n—1, |(p")D(¢)| >
my, for all t € [—1, 1]. The mean-value theorem now yields (2) for small
a.

REMARK. (2) is an endpoint version of a result of Ricci and Stein [RS1]
which states that a polynomial of degree n — 1 (in this case p') is in
the Muckenhoupt A, class, ¢ > n, with constants independent of the
coefficients. Inequalities such as (2) and variants in higher dimensions
are also studied in [CCW].
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We now turn to the superhilbert transform of degree n. Let

Tf@) = s | [ fo—pe) T| = s 1H,f)].
PEPn ' J —o0 ¢ SPUN

Theorem 2.3. Let 1 < ¢ < oco. Then T, is bounded on L1(R) if and
only if ¢ > n. Moreover T,, is of restricted weak-type n-n.

REMARK. Again, when n = 1, T} is the classical Hilbert transform and
so there is nothing to prove.

The negative result can be seen in a similar manner to the cor-
responding result for M,,. Indeed, with the same fg as above, the
nonintegrable singularity of fg when 8 <1 guarantees that

dt
t

/ T fsle 4 a0)

will be +00 when A is taken to be z, at least for large .
The positive part of Theorem 2.3 follows from the following result,
which is also useful in other contexts.

Theorem 2.4. Let p € *B,,. Then there is the pointwise estimate
|Hyf(2)| < Ap My f(2) + Bn H" f(z)

where H* s the maximal Hilbert transform and A, and B, are con-
stants depending only upon n.

PRrOOF. Let p € p,,, and assume without loss of generality that p has
degree n and has leading coefficient 1. We also assume (although this
is not strictly speaking necessary) that all the complex roots of p are
distinct. Let 0 = t1,%2,...,t, be the n complex roots of p ordered so
that

0 < [ta] < Its] < -+ < [t].
The second and third parts of the next lemma say that the zeros of p’

are strongly attracted to the zeros of p.

Lemma 2.5 There are constants C(n) > 1 and €yo(n) depending only
on n, such that if A > C(n) and j and £ are such that £ —j > 3 and
are such that for some k € {1,...,n — 1}

Iti| < A7 < A < |tryq],
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then
a) If AT+ < || < A1,

1\n—1 k
(1_ Z) |t| |tk+1|---|tn| < |p(t)|
1y\n-1
< (1+ z) [t1*[tesa] - [l

b) [tp'(t)/p(t)]| > eo(n) whenever AT+ < |t| < A1,

¢) |p(t)] is strictly increasing on [AI+1, A*=1] and strictly decreasing
on [—A~L — AT,

PROOF. a) This part is trivial since p(¢t) = [[) _;(¢ — t,,) and, when
Aj+1 S |t| S 145—17

(1—%)|t|§|t—tm|§<1+%)|t|, for 2<m <k,
while
(1—%>|tm|§|t—tm|§(1+%)|tm|, for k+1<m<n.

(Note that only A > 1 is required here.)
b) Observe first that

p(t)  At—tm
SO
p’(t)‘>‘zk: 1 ‘_ zn: 1 >‘zk: 1 ‘_ (n — k)
p(t) | = | =t —tn, il t—tm| ~ 1t =t (A=1) "

since |t,,| > At| if m >k + 1 and |t| € [AT+!, A1)
Assume for simplicity that ¢ > 0 and consider, for m < k

e, (3 (-0
S T O )

| =

Re

Y
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since t > A |ty,|.

Therefore
v, (k (1—1%)2 ) n—k) L
p(t) (1 n Z) A-1]t

Now if A is sufficiently large, the coefficient of 1/t is positive, which
implies that |t p'(t)/p(t)| is bounded below by an absolute constant.

¢) We have in fact shown that

>0, fort >0,

that is, log|p(t)] is increasing on [AI+1 A*~1]. Thus, |p(t)| is strict-
ly increasing on [A7+!, A*~1] and similarly is strictly decreasing on
[— AL — AT+,

In particular, if A7 < |t5| < AIFL then |tp/(t)/p(t)| is bounded
below and p is monotonic on [—A47~1, A7=1]. One simply has to observe
that, since 0 is a simple root, p is monotonic through 0.

Furthermore, implicit in the proof of Lemma 2.5 is that if [t, | < A7
and [¢t| > A7=F! then

1\n—1 1\n—1
1- —) t" < Ip(t)] < (1 —) "
(1-2) kol (+5) H
and [¢tp'(t)/p(t)| is bounded below, and [p(t)] is strictly increasing on
[A7=F1 00) and strictly decreasing on (—oo, —A7=+1].
A maximal set of the form [—A*~! —AJ* U [AT+L A1) with
¢ — j > 3 and such that for some k € {2,...,n — 1},

Itr| < A7 < A < |ty

is called a gap. There are at most n — 2 such gaps. In addition
there are two special gaps, [—AI~ AJ71] where A7 < |ty] < AI+L
and (—oo, — AT+ U[ATF1 00), where j, is the least integer such that
|ty < A~

Two consecutive gaps are separated by a pair of “dyadic” intervals,
symmetric with respect to the origin. In fact each of these “dyadic”
intervals can contain at most 3n intervals of the form [A™, A™t!]
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or [-A™T1 —A™]. The idea of the remainder of the proof is that
such dyadic intervals are harmless since the contribution to ffooo fz—
p(t)) dt/t arising from such an interval is clearly controlled by a con-
stant times M, f(x), while on the gaps — where p’ and p (except at
0) have no zeros — one can try to change variables as in the proof of
Theorem 2.1. However this is not entirely straightforward because of
the nature of the cancellation in the problem.

We now indicate how to handle the contribution to ffooo flz —
p(t)) dt/t arising from an (ordinary) gap; the minor changes of detail
required for the special gaps are left to the reader. Suppose the gap is
[— A% —ATJ U [AT) AY] with £ — j > 1 and with |t < 4771 < AL <
ltk+1l, (2 <k <n—1). (Note that there is a slight change of notation
here.) Of course A is chosen so that Lemma 2.5 is valid.

By part a) of Lemma 2.5,

A= (1= )" A% T ol

m=k+1

>(1+%)"_1Aﬂc f[ ol

m=k+1

> [p(=A7)]

(if also A > ((A+1)/(A — 1))*7!) and similarly [p(—A*)| > |p(A%)].
Thus the intervals [|p(A47)], [p(A)|] and [|p(—A%)|, |p(—A%)|] have a
nonempty intersection [a,b], say. Then, by Lemma 2.5.c), there is a
unique o € [A7, A*] such that |p(a)| = a and a unique 8 > «, B €
[A7) A%] such that |[p(8)| = b. Similarly there are unique —6 < —vy €
[—Af, —AT] such that |p(—v)| = a, |p(=d)| = b. Observe that the set

([A7, A\, B]) U ([=A", —AT]\[-6, =)

is the union of two intervals whose logarithmic measure is bounded
above by an absolute constant. (This follows again by Lemma 2.5.a);
we suggest the reader draw a picture.) Therefore the integral over this
set is dominated by M, f(z).

We have thus reduced matters to estimating

B -
[ se=po) G+ [ ra-ne)

t
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We distinguish between two cases:

i) p has the same sign on both intervals [«, 5] and [—d, —v]; say
p>0,
ii) p has opposite signs on the two intervals; say p > 0 for ¢ > 0.

Case i). We observe that

B o (t =Y 2 (¢

o P(t) 5 p(t)
since p(a) = p(—y) and p(B) = p(—6). Thus it is enough to estimate
two similar integrals separately, one of which is

[ 1w-vn (i - L0 a

«

where [tg,]| < 4771 < A < [tgq).
Now, for t € [a, 8] C [AT, AY],

1 Pl |1 1 1
Z_kp(t)‘_ t kzzlt—t‘

k n
1 1 1 1 1
< Z B -
<323 R D Dl ey
m=1 k+1
k
1 [t
Ez|t||t—tm| k Z |t—t
m=1 =k+1
c Al _
where ¢; and co depend upon n and A.
Therefore
P'(t) ) ‘ -/°° dt
- — dt| < c1 A7 —p(t)| =
[ 1 L) < e [ i —n0))

AZ
oA / e —p(t)| dt

S CgMpf(x) .
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Case ii). It is here that we finally use the cancellation in the operator.
Indeed,

[ 1600 % + / -t 2
/ @ dt-l-/ fl@ (Z_ ]f;(tt))>dt
)

v / £ = p(®)) 7; 1} O ® X5 (®) .

The first two integrals are treated exactly as in case i), while for the
third we change variables separately on [«, 5] and [—J, —v] to obtain

1/ du
— flx —u) —,
k Ja<iul<y S

which is controlled by the maximal Hilbert transform as desired. This
concludes the proof of Theorem 2.4.

3. p(z,t) as a polynomial in ¢.

Let p: R x R — R be a polynomial such that p(z,0) = z. Let

M, f —sup—/ (x,t))
& h>0 2h Fp

0= Z 7o, 1))

be the maximal function and Hilbert transform respectively associated
to p. We write

and

p(a,t) =2+ Ar(z)t + Ax(z) 2 + - + A, (2) ™,

so that p has degree at most n as a polynomial in ¢; Ay, ..., A, are for
the moment arbitrary polynomial functions of x.
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3.1. Results with no conditions on the coefficients.

In view of the negative parts of Theorems 2.1 and 2.3, the only
possible general positive result (with no conditions placed on the coef-
ficients) is:

Theorem 3.1. For p(x,t) an arbitrary polynomial of degree n int such
that p(x,0) = x, the operators M, and H, are bounded on L4(R) for
q > n and are of restricted weak-type n-n.

This result is sharp in so far as for each n there exists a p of degree
n in t as in the statement of the theorem with M, and H, unbounded
on L™(R). Indeed, letting p(z,t) = = (1 —1t)™, the proof of the sharpness
of Theorems 2.1 and 2.3 applies here also. When n = 2 we give below
in Corollary 3.7 a complete analysis of the L? boundedness problem for
each p.

3.2. Many coefficients vanishing - the quadratic case.

When all but one of the A;’s is identically zero and the remain-
ing one is a completely arbitrary function of x, then H, and M, are
dominated by the standard Hilbert transform and maximal function re-
spectively and so are of weak-type 1-1 and are L2 bounded, 1 < g < co.
(If j is even and A;(x) is the nonzero coefficient, then H, = 0.)

The situation when all but two of the A;’s are identically zero is
already considerably more complicated; the first special case of this is

p(x,t) =2+ Ay(z)t + Ay() t?

corresponding to polynomials of degree 2 in t.

In Theorem 3.2 we give an analysis of this quadratic case. We
have carried out a similar but much lengthier analysis of the cubic case
which we do not propose to present here; the interested reader is invited
to contact one of the authors for details. (We estimate that merely a
statement of the result would fill several printed pages and so we have
chosen not to unecessarily burden the reader at this moment.)

We set up some notation. Let p and g be arbitrary C! functions
of xz. We write Ay = p and Ay = ¢ so that

p(x,t) =2+ tp(x) +t* q(x).
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We let A(z) = p?(x) — 4z q(x) be the discriminant of p(z,-) as a
quadratic in ¢, and when g(z) # 0 we let ¥(z) = A(x)/4q(z). We
shall require 1 to have some smoothness. It turns out that the critical
points of 9 play a decisive role. We say that 1) has a monotonic critical
point at £oo if lim,_, 1 ¥’ () = 0 and 1)’ is single signed as x — +o0.
We say that v has a critical point of finite order k > 2 at xg € R if

Y(2) = (o) + 8 (x — 20)* + O(|lz — wo|**)
with § # 0.
Theorem 3.2. With the notation as above, let p(x,t) = z + tp(x) +
t2 q(x) with p,q € C such that Z, = {q(x) = 0} is finite.

i) If [¢'| is bounded below on R\Z, then M, and H, are of weak-
type 1-1 and are bounded on L", 1 < r < oo.

ii) If |¢'| is bounded below at too and near Z,, if ¢ has finitely
many critical points of finite order at each of which 1 (x)+x is nonzero,
then M, and Hy are bounded on L" if and only ifr > 2 (k—1)/k, where
k is the maximum of the orders of the critical points. When k = 2 this
must be modified to read as My, and H, are of weak-type 1-1 and bounded
on L", 1 <r < oo.

iii) If either
a) ¥ has a monotonic critical point at £oo, or

b) 9 has a critical point of finite order at x¢ such that
Y(wo) + 20 =0,
then M, and H, are unbounded on L?, and bounded on L" for r > 2.
Before proving this theorem we first give some lemmas.

Lemma 3.3.

1
sw [ Fw+pt+qf)dt < CMf(a),
p,g€R\{0} [h,2R]0{|t+p/(29)|=Ip]/(4la])}
h>0

where M f s the ordinary Hardy-Littlewood maximal function of f.
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PRrROOF. By scaling it is enough to take h = 1. Assume without loss of
generality that ¢ > 0. We split the integral into two pieces, the first

over |p|/(4q) < |t+p/(2q)| < 10 |p|/q, and the second over |t+p/(2q)| >
10 |p|/q. Let u = u(t) = pt + qt; then

W] = lp+2qtl = 24t + 5| ~Ip
in the first case and
W) = lp+2atl = 2q]p + 5 | > alil = g/l
in the second case. Thus,

/ |f(z +pt+qt?)|dt
[1,21n{Ip|/(49)<|t+p/(2¢)|<10|p|/q}

du
</ e+l O
{lu|<C1p?|/q}Nu[l1,2] p
~ 515 [ F(x + )] du
q''p {lv|<Clp?|/q}Null,2]

<CMf(x),

since if 1 < ¢ < 2, we get a nonzero contribution only when |p|/|q| ~ C.
For the second piece

/ \f(z +pt+qt?)|dt
[1,2]n{|t+p/(29)|>10p|/q}

du
SC/UNq|f($+U)|W

< CM f(x)
since if 1 <t < 2 and [t + p/(2¢)| > 10|p|/qthen |u(t)| ~ qt*> ~ q.
Corollary 3.4.

1
sup -

P o+ pt+qt?)|dt < CMf(z).
p,gER\{0} [—h,h]O{|t+p/(2q)|>|p|/4]al}
h>0
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PROOF. Break up [—h, h] into dyadic intervals +[27%h,27%+1h] and
use Lemma 3.3 on each to obtain a convergent geometric series.

Thus for the maximal function problem, all we need consider is

3) My f(x) = sup = /|f:c+p ()t + q(x) 12)| d.,

n>0 h

where

p(z) p(z)|
H=[—hhN ‘t + ‘ < .
{ 2q(x) 1~ 4]q(x)] }
Now when p(z) or ¢(x) (or both) are zero, M, f(x) < CM f(x) and
|Hy f(x)] < C|H f(z)], so that we may assume here and in what follows
that we need consider only z with p(z), ¢(x) # 0. By virtue of Theorem
2.4, we have

|[Hy f ()] < AsMp f () + B2 H* f(w) < C (Mp f () + M f () + H* f ()

and so to control the Hilbert transform we again only need consider
M, f(«). Furthermore it is easily seen (using arguments from Lemma
3.3 and Theorem 2.4) that

[Hy f(x) ~ Hy ()| < C (M f () + Hf (),
where
(1) Hyf(x) = / Fla 4 pla)t 4+ g@) ) &
lt+p(z)/(2q(2))|<|p(x)]/(4lq(x)])

Since for each fixed x, the integral in (4) is over a dyadic interval, there
is no further cancellation in the operator H, p and indeed H p 1s essentially
a contribution to M, where h takes the value 2 |p(x)|/|q(x)|. On the
other hand this value of h is the only interesting one contributing to
M,,, and so the operators M, and H, are both essentially equivalent to

Ry f(z)
®)
- 23] / o+ pla) 4 (o) ) di,
lt+p(x)/(2q(2))|<|p(x)|/4q(z)]
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which therefore governs the behaviour of both M, and H,.

At this point it is appropriate to comment upon the simple aver-
aging operator

(6) S,00) = [ Sl +p(@)t+ala) ) dr

Clearly S, is dominated by M,, and if H, has certain boundedness
property, so does Sy (see for example [CG].) On the other hand, making
the change of variables t = up(x)/q(x) in (5) gives

(M Rpf(x) = /| ey R ) )

where p(z) = p*(x)/q(z) and G(z) = p*(x)/q(x) also. Thus R, arises
essentially as S; where

plx,t) =z +

Thus positive results for S imply corresponding ones for Sy, although
there is no formal invariance property from which this follows. Notice
that if we define A = p? — 4z q(x) and » = A/4q, then 1p = 1 and
p2/4q = p?/4q; that is, the quantities arising in the statement of Theo-
rem 3.2 remain invariant, which is natural since the basic problems for
M, and Hj are invariant under

)

for any h(z) # 0. Indeed, the basic problem for M, is equivalent to
that for SF with arbitrary h(z), as can be seen by linearising M, with
h(z).

Performing the further changes of variables u = v — 1/2 and then
v = {s/p(z)}*/? (assuming that p(x) > 0 without loss of generality)
yields in (7)

2R

(p,q) — (p(x)h(z), q(z)h(z)?) = (b,

0 T51) = sy L o9

as the operator determining the behaviour of M, and H,.
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Lemma 3.5. For 0 <x <1, a>2 and 3 > 0 define

1 2’ ds
Topf(z) = W/o f(s—xa)m-

Then for p < oo, Ty g is bounded from LP(R) to LP(0,1).

1) If =0 forp>2(a—1)/a, except when a = 2, in which case
for p > 1; moreover Ts ¢ is of weak-type 1-1,

i) if0<p <1 forp>2(a—1)/(a—-7p),
iii) if 6 =1 forp > 2.
In all other cases, orif 3 > 1, Ty g is unbounded.

PRrROOF. Let ¢(z) = 2. Then

1 T |
/0 To pf(x)|P de S/o pTETE) (Lo f (¢ ()P da

! 1 » du
= |, e e OO

where I /5 is the standard fractional integral of order 1/2. Now ¢'(z) =
az® 1 and ¢~ (u) = ul/*. So

w—l(u)_Pﬂ/2¢l(¢—l(u))—l — oLy PB/ (), —1+1/a

which belongs to the space L™>°(0,1), 1 < r < oo, precisely when
1<r<2a/(2a+pp —2). Thus

1
/ Tapf (@) do < Cll Ty f P llpra = CllyfI1] 0,
0

provided 1 < r = 2a/(2a + pf — 2). Now, by the Marcinkiewicz
interpolation theorem (see [StW]), Iy /5 : LP'P — L9P for 1/q = 1/p —
1/2,1/2 < 1/p <1, and so T, g is bounded on L? if 1/(r'p) = 1/p—1/2,
i.e. 1/(pr)=1/2,i.e. p=2(a—1)/(a— ) if this number lies in (1,2),
which when 8 = 0 is when a > 2, when 3 € (0,1) is for all « > 2 and
for # = 1 does not occur. We have thus proved the positive assertions of
the lemma with the exception of the case a = 2, = 0 and « arbitrary,
B = 1. The results for p > 1 and p > 2 respectively follow from
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(nonsharp) LP — LY mapping properties of I;,o, while the weak-type
1-1 result for T o follows since

o Ta0f@1 > M= [ X apipon @

B du
_/X{u:lll/zf(U)|>>\} Y (=1 (u))

1
< Hu1/2 ‘ 2,00 HX{U:|Il/2f(u)|>>\}HL2’1
= C{u: |Lyaf (w)] > A}?

_ il

— Y

as I]_/Q . Ll — L2’oo.
Ty is clearly not bounded on L' (test on f = dp). For the other
necessary conditions, first let f = X(_s0° Then, for z¢ < 9,

1o ds [ C, p=a,
Tapl (@) = 575 127 | Cze=P/2 B<q,
and so Ty, gf has LP norm bounded below by

{ §la=B)/Ca+1/(r) < g

Hence, when 8 > «, « is forced to be at most 1, (violating our assump-
tion o > 2) and when g < «, we must have
a—pf3 1 1

+—2_7
2« ap —p

i.e. p>2(a—1)/(a— (). Secondly, to see § < 1 is necessary, assume
B < a (for when 8 > a we have already seen there are no p for which
T, p is bounded on Lp), and observe that, for f > 0,

1 af —a* ds
Top zh/2 / flo—a ﬁ e /0 f(s) (s +a2)t/2 -

Now set f = X (0,6) and observe that for 2 < §,

1o a1 7 ds ~C
Tapf(2) = 55 Gstao/z 282 |, 512~
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Thus ||Twfll, > c6YPP, while ||f|l, ~ 6*/P. Hence indeed 8 < 1.
Finally, to see that T, 1 is not bounded on L?, (nor indeed of weak-
type 2-2), let

X(0,1/2) (s)

v (1)

eL?.

fs) =

Then

1 r— 1 ds
Taaf@) >~ [
rl/2 0 81/210g (1) (S-l-xa)l/z
s

v

v

which is not in LZ2.

T4 1 is also of restricted weak-type 2-2. This follows from the proof
of Theorem 3.2.

Lemma 3.6. Suppose ¢'(x) — 0 as x — o0, and that '(z) > 0 for
sufficiently large x. Let

T'd)f - 1/2/ G t1/2 )
Then Ty is unbounded from L*(R) to L*((0,1)).

PROOF. We may assume that ¢(z) > 0 for sufficiently large x. Then

1 z—y(z) ds
S = [

1 z—1(x) ds
I Sl
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for f > 0. Let f = X(0,4) with A large. Then

1 A ds
T > fi A

since ¢’ — 0 implies

T T T X — Xo

Zo

goes to zero as © — oo. Hence, for such x,

1 Aty (z) d A
wa(‘r)zﬂ/ 182N 1/2 /2
oy s @A+ (@)Y

Therefore, for appropriate constants C'; and Cs,

(/|T¢f($)|2dx)1/2 > CAl/Q(/{ d_x)1/2 >>A1/2,

z:x>C1 A, (z)<CA} T
while || ||z ~ A2

PrROOF OF THEOREM 3.2. By the discussion between Corollary 3.4
and Lemma 3.5, it is sufficient to study the operators given by (8), that
is

1 ~ d
T3(0) = =3 | o JOIE)

where p = § = p?/q, 1 = A/4G, A = j*(z) — 42 (), so that 9(z) =
Y(x) = p(x) /4 — . Thus 9 (z) + 2 vanishes if and only if j(x) vanishes.
(Of course it is neighbourhoods of such points rather than the points
themselves which concern us in obtaining L" estimates.) We change
notation; we replace ¥ by v, p by p and p by p.

i) Let us first assume ¢’ > C' > 0 on R. Then, since we always have
T, f(z)] < CMf(y(z)) where M is the ordinary Hardy-Littlewood
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maximal function, we can write

o T > M < (o MpwE) > 2|

- / Xiw: Ms(p>r/cy W
du

- / Xu: MF>/CY g (=1 (u))
{u: M f(u) > %H
</ m .

)

<d

Notice that the same argument controls the behaviour of T}, f () on any
interval of z upon which |¢’| is bounded below.

ii) By the proof of i) it is enough to consider the behaviour of T},
near a critical point, say 0, of maximal order k. Now p(0) # 0 implies
that by taking a small enough neighbourhood of zero, we can assume
p(x) ~ e > 0. After a translation of f we can assume, then, that

ds
T, f( /fs—&x FOEM) T

which is essentially the situation of Lemma 3.5, case f§ = 0, a = k.
(The proof of Lemma 3.5 can be easily modified to give the variant
required here.)

iii) Suppose first that ¢ has a monotonic critical point at co. Then
lim, o p'(z) = 4 and thus p(z) ~ z for large . So in this case,

Ty fla) ~ 1/2/f 1/2’

which is unbounded on L? by Lemma 3.6.
If ¢ has a critical point of finite order at zg, then 0 = ¢'(z¢) =
p'(z0)/4 — 1 which implies that

p(@) = p(wo) + 4 (x — x0) + Oz — w0)?

near xy. Assuming that zo = 0, and making a translation of f, we have

Ty fla) ~ 1/2/f 1/2’
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which is the case 3 = 1 of Lemma 3.5. Thus 7}, is unbounded on L? in
this case too.

Corollary 3.7. Let p(z) and q(x) be polynomials in x, p(z,t) = = +
tp(z) +t*q(z), Alz) = p*(v) — 4w q(z) and ¢ = A/(4q).

i) If deg A > degq and ¢ has no critical points then M, and H,
are of weak-type 1-1 and bounded on L", 1 < r < oc.

ii) If deg A > degq, p?/(4q) does not vanish at any of the critical
points of ¢, the largest of the orders of which is k, then My and H, are
bounded on L" if and only if r > 2 (k — 1)/k, except when k = 2, in
which case they are of weak-type 1-1 and bounded on L™, 1 < r < 0.

iii) If deg A > degq and p?/(4q) vanishes at some critical point of
Y, if deg A < degq, or if A =0, then My, and Hy are unbounded on
L2

PROOF. When v # 0, ¢’ vanishes at infinity if and only if deg A <
deg ¢; when deg A > degq, 9’ is bounded below at infinity. Moreover

¢’ is bounded below near Z, anyway. The result now follows from
Theorem 3.2.

3.3. Constant coefficients.

When each of the A’s is constant, then H, and M, are bounded
on L1(R), 1 < q < oo, and are of weak-type 1-1. Moreover when
q > 1 the bounds may be taken to be independent of the A’s. This
latter statement for Hy follows trivially from Theorem 2.3; for both
H, and M, it is also a special case of [S2, Chapter XI, Section 2,
Propositions 1 and 2]. However since the method of [S2] involves lifting
to a higher dimensional setting R¥, k& > 2, where the lifted operators
are now associated to curves in R¥, the weak-type 1-1 estimate does
not follow. We now present in Theorem 3.9 the result that the weak-
type 1-1 bounds of H, and M, may be taken to be independent of
the coefficients, and depend only on the degree. The following lemma
is closely related to Lemma 3.3. It is also useful in examining higher
degree analogues of Theorem 3.2.

Lemma 3.8. Let p be a real polynomial of degree at most n, with
p(0) = 0 and leading coefficient 1. Let G be the union of the gaps of p
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as in Section 2 above. Then

1
suplp [ e —p(0)d] £ O @),

h>0

where Cy, depends only upon n and M f is the ordinary Hardy-Littlewood
maximal function of f.

PROOF. By scaling we may assume h = 1. (Note that J is a gap for p if
and only if J/h is a gap for h="p(h-)). By Lemma 2.5 we may change
variables to obtain

du
fle—p dt‘—‘/ fle —u) ————
‘/[1,2]0G ( p([1,2]NG) ( ) ' (p~(w))]
Ip(tl)l
f(z —u)|du,

| |p<t1)|

where |p| attains its maximum on [1,2] N G at ¢; and |p’| attains its
minimum on [1,2]NG at to. Now |p(t1)| < C |p(to)| by Lemma 2.5.a) ,
and by Lemma 2.5.b), [p(to)] < 2eo(n) ¢/ (to)]; 50 [p(t1)] < C o/ (to)].
Thus the integral above is dominated, independently of the coefficients
of p, by the Hardy-Littlewood maximal function of f.

Theorem 3.9. Let p(z,t) =z + Z LA t? with A; constants. Then
there exists C(n) depending only upon n and not on {A } such that

o Myr(@) > )l < 0 1412
and
Ha: |Hpf(z)| > a}| < C(n) Hj;Hl '

Proor. By Theorem 2.4 it is enough to prove the estimate for M,.
Let p(t) = Z?:l A;t7. Without loss of generality, assume A4,, = 1. It
is enough to obtain the weak-type estimate for

1
up | / Fx —plt)) dt|.
keZ [2k72k+1]

For all except boundedly may & (with the bound depending only upon
n) we can use Lemma 3.8 to dominate the integrals by M f(z). The



MAXIMAL FUNCTIONS AND HILBERT TRANSFORMS 143

remaining k’s correspond to a bounded number of finite measures of
mass 1 and hence play no role.

It is interesting to note that one may also prove the quadratic case

of Theorem 3.9 by dominating M, f(x) pointwise by M f(z) + M f(z £
p(t;)) where t, is the critical point of p. The proof proceeds along the
lines of that of Theorem 3.2, uses Lemma 3.3 and dominates 75 f () by
Mf(x£p(ty)). It also suggests that it is really the gaps of p which are
also gaps of p’ which are crucial in Lemma 3.8.
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