REVISTA MATEMATICA IBEROAMERICANA
VoL. 14, N.° 1, 1998

Weighted Weyl estimates

near an elliptic trajectory

Thierry Paul and Alejandro Uribe

Abstract. Let w? and E]h denote the eigenfunctions and eigenvalues of
a Schrodinger-type operator Hy with discrete spectrum. Let 9, ¢) be a
coherent state centered at a point (x, ) belonging to an elliptic periodic
orbit, v of action S, and Maslov index o.,. We consider “weighted Weyl
estimates” of the following form: we study the asymptotics, as h — 0
along any sequence
he

2rl —a+ o,

[ €N, a €R fixed, of
Yo | W) P

|Ej—E|<ch

We prove that the asymptotics depend strongly on a-dependent arith-
metical properties of ¢ and on the angles 6 of the Poincaré mapping
of . In particular, under irrationality assumptions on the angles, the
limit exists for a non-open set of full measure of ¢’'s. We also study the
regularity of the limit as a function of c.

1. Introduction and results.

Consider a Schrodinger operator H = —h2A+V (x) with V smooth,
either on M = R™ (in which case we assume V tends to infinity at infin-
ity and therefore H has discrete spectrum) or on a compact Riemannian

145



146 T. PauL AND A. URIBE

manifold, M. In [7] we considered “trace formulae” associated to pro-
jectors on coherent states in the following sense. For (z,&) € R*™ and
a € S(R™) define the coherent state ¢g, as:

a _ _ —3m/4d o—m/4 —izg/2h Jiy/h (Y T X
(1) Py (v) = ply — ) (2rh) >/ 427 e e a(—ﬁ ).

Here p is a cut-off function near zero and a is the Fourier transform of a,
(in the manifold case (z,¢&) € T*M and the above definition is in local
coordinates near z). Let ¢; and E; the eigenfunctions and eigenvalues
of H. Then if ¢ is a Schwartz function whose Fourier transform is
compactly supported and E = |£|? + V (z), we have

E; —F :
@ Ye(F5) | Weo b)) e e i/,
=

J

for h — 0. (If E # [£|* + V (z), the left-hand side tends to 0 rapidly
in f.) Although the form of the asymptotic expansion does not depend
on (z,¢), the coefficient co(x,§) is highly sensitive to the point (z,¢)
being periodic or not with respect to the classical flow. In case (z,¢)
is either not periodic or is on a hyperbolic trajectory, we proved in [7]
(using a Tauberian theorem) that, for every ¢ € R,

Xi_ee —m —m
B) D [ (eey i) P= o (@, ) A2 4 o(hmm )
|E;—E|<ch

as I — 0 possibly along certain sequence. (Here X[_eq is the charac-

teristic function of the interval [—c, c|].) The main goal of this paper is
to study the case where (z, &) belongs to an elliptic closed trajectory.

Our results are related to the existence of quasi-modes near an
elliptic trajectory. Recall that if H is as before and + is a closed elliptic
trajectory of the Hamiltonian |£|? + V(z) with energy E, period T,
action Sy, Maslov index o, and Poincaré mapping of angles 0;, j =
1,...,m—1, then one can construct (see [9], [3], [8], [7]) quasi-modes of
H (namely solutions of the Schrédinger equation modulo a remainder),
microlocalized near v, of quasi-energies

. h S\ e 1
(4) EQ,M:E_*_ T—7<(27Tl—f)+z:l(kj+§>93+0'ry>,
‘7:
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for (k,l) € Z™, | large. The remainder is O(A?) uniformly as
Sy
‘m = and k= Yk

remain bounded. The existence of these quasi-modes implies that part
of the spectral density of H concentrates near the quasi-energies defined
by (4), but this doesn’t say anything about Egjlw as | k |— oo and
does not involve the rest of the spectrum. The results of this paper will
indicate that the rescaled localized spectral density

(5) Za(

) | Wogyoits) I

(which is the rescaled spectral density microlocalized at the point in
phase space (x,£)) has a certain semiclassical limit whose singulari-
ties are indeed precisely the quasi-energies (4), and this time with no
restriction on | & |.

We will now state our results, valid for more general quantum
Hamiltonians: Let Hp = ZlL:o W Py(z,D,) where P, is a differential
operator of order [ on R™ (or M) of principal symbol P, sub-principal
symbol Pl_1 (formally P, is regarded as acting on half-densities) and
smooth coefficients. Let H(z,&) = Zleo PP(z,¢) and Heup(z,€) =
Zleo Pl_l(x, ¢) be the principal and sub-principal symbols of Hy. We
assume that Pp is elliptic, H is positive, and in case M = R™, that
‘H tends polynomially to infinity at infinity. We will also suppose for
simplicity that Hgup(z, &) = 0.

Let EJh and @b? denote the eigenvalues and eigenvectors of Hjp.
Let us suppose that (z,£) belongs to an elliptic trajectory of period
T, action S, Maslov index o, and Poincaré mapping of angles ¢ =
(01,...,0—1). We will use throughout the notations

k:(klv"'vkm—l)ewn_lv

m—1

(6) k@::nfkjej and <k+%>9:: <kj+%)9j
=1 '

J=1
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Theorem 1.1. Assume that 01/(27),...,0,—1/(27) are rational.
Then, for every « € [0,2m), as i — 0 along the sequence

(7) o Sy len,
21l — « + O~
one has
8) D Wy ) = BTY2L0 () + oY)
|E;—E|<ch
for all ¢ such that
) C%ii<2ﬂj+<k+l>9+a> forallj € Z, ke N"1,
T,y 2 ’ )

Moreover, as a function of ¢ the limit L,(c) is a step function constant
on the intervals defined by (9).

Next we consider the irrational case:
Theorem 1.2. Assume that 1,01/(27),...,0,_1/(27) are linearly in-

dependent over the rationals. Then there exists a set M% of values of
¢, of full Lebesque measure, such that for all c € M“

10) D | Wegy ) P= B0 () + o),

|Ej—E|<ch

for h as in (7). Moreover, as a function of ¢, L, (c) is locally Lipschitz
on M in the sense that for all c € M® there exists 3. > 0 such that,

(11) [ Lald) = Lale) IS B] ¢ —c|,  foralld € M.

Finally there exists a rapidly decreasing family {gx}renm—1 (related to
the microlocalization of the symbol a of Y, ¢)) such that

(12) {c: forall k e N*™1 |1 — (T EFY/204+0) 15 0 g ¢ M@,

for all e > 0. (For a precise definition of the set M* see Lemma 3.3.).
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REMARK. In the rational case the discontinuities of the function £, are
located exactly at the values of the Eg]lv[ defined before by (4), for the
values of 7 given by (7). In the irrational case in order to prove that
L (c) exists we need that ¢ be at some distance from the quasi-energies
Egjlv_, (unless the symbol a of the quasi-mode is chosen very judiciously,
in which case we can work with ¢ in the complement of the set of all
quasi-energies). In all cases this suggests that the weighted spectral
measure, (5), in the semi-classical limit, is particularly singular exactly
at the values of the Eg]lw defined before. We hope to provide a rigorous
proof of a precise statement of this elsewhere.

The paper is organized as follows: In Section 3 we prove the exis-
tence of the functions £, which are studied in Section 4. In Section 5
we finish the proof of the main Theorems, using a Tauberian argument
that we recall in Section 2. Finally, in the appendix we review and ex-
tend slightly a result on Holder continuity of function such as £, using
wavelets.

2. A Tauberian lemma.

In this section we refine the Tauberian lemma of [2] and [7].
Counsider an expression of the following form

(13) Eale) = Y wim p(BO=EY,

defined for all ¢ € R where R will henceforth denote the set of all
Schwartz functions on the line with compactly supported Fourier trans-
form.

Let M* a subset of RT of full Lebesgue measure in a bounded
interval.

We introduce the following notations. Fix a positive function f €
R satisfying f(0) =1 and f(O) = 1. For every a > 0, define

NS Y
(14) fa(r) :=a f(a)
and for every a > 0 and ¢ > 0

(15) Pa,c = fa * X[

—c,c]
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where x is the characteristic function of the interval [—c, ¢].

[_C7C]
The Tauberian lemma in question is:

Theorem 2.1 (See [2] and [7]). Let M* a subset of Rt of full Lebesgue
measure in a bounded interval. Suppose w;(h), Ej(h), E and Y} itself
satisfy all of the following:

1) There ezists a positive function w(h), defined on an interval
(0,%0), and a functional Fo on R, such that for all p € R

(16) Bn(p) = Folp)w(h) +o(w(h)),  h—0.

2) for all c € M* the limit
Lo(c) = lim Fo(pa,c)
a—0

ertsts.
3) Ly is a continuous function on M®.
4) There exists a k € Z such that h* = O(w(h)), h — 0.

5) There exists an € > 0 such that for every ¢ there is a constant
Cy, such that for all E' € [E — ¢, E + €|

(17) T (@) < Cpw(h)

(rough uniformity in E).

6) The w;(h) are non-negative and bounded: there exists a constant
C > 0 such that for all j and all h,0 < h < hg

(18) 0<w;(h)<C.

7) The eigenvalues E;(h) satisfy the following rough estimate: for
each C1 there exist constants Co, Ny such that for all k

(19) #{j: Ej(h) < Cr+kh} < Co(h k)Mo .

Define the weighted counting function by

(20) Ng )= Y wh),

Jilzj(h)|<c
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where

21 (h) = =L
(21) () o= 220
Then the conclusion is: for all c € M<,

(22) Ng (h) = Lo(c) w(h) + o(w(h)), h—0.

PROOF. Except for the fact that the set M of allowed c’s is not RT,
this theorem is precisely [2, Theorem 6.3]. Proceeding exactly as in the
proof of the [2, inequalities (188)], one shows that for all R > 0, for all
N € N exists C' > 0, Cy > 0 such that for all a € (0, R) and for all 7,
0<n<ec,
1 a
o) (1 _C E)NE,c_n(h) < —
(23)
S I
w

Let ¢ € M be given. We begin by observing that by the first of the
inequalities (23)

1 1 a
_— < bt
(24) w(h) NE,C(h) > w(h) TE,h(@‘LH—U) +C 1 s

where we have also used the fact that Ng (%) /w(h) is bounded (a trivial
consequence of (16)). For every n such that 0 < 7 < ¢ one can take the
limit in (24) as i — 0 to obtain that

1 a
2 li —<Ng(h) < ac .
(2 P Sy = o)

If we now assume that n +c € M“ we can take the limit as a — 0 to
obtain

1
26 limsup —— Ng..(h) < L,(c+n).
(26) wsup s N () < Lofe+ )

By the assumption that M has full measure, we can find a sequence
{n;} such that for all j, c+n; € M* and n; — 0. Taking the limit in
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(26) of Lo(c+n;) as j — oo and using the fact that £, is continuous
at ¢ we obtain

) 1
(27) hglj(l)lp M NE,c(h) S La (C) '

A similar argument starting with the second inequality (23) shows that

1
o S
(28) hgl_)lglf o) Ngc(h) > La(c),

which finishes the proof.

3. The existence of L,(c).

In this section we prove the existence of the coefficients L, (c) in
the limits (8) and (10) (see (36) below).

Lemma 3.1. There exists a rapidly decreasing family of non-negative
numbers, {ck}renm-1, such that for all ¢ € R the first coefficient
e (x,€) in (2) can be written as

—+o0
(29) K@= Y D @nTy)cyen /204,

n=—oo keNm—l

PROOF. In [7] we proved that the first coefficient ¢ (z, ) in (2) can be
written as

92n 7T_(?m-i—l)/2 Cg($7 5)

+o0 ' +o00 .
GO = Y sr) e [ e 2(sisd) Una)ds,

where (&, £) is the tangent vector to the classical flow at (z,&), Z is the
Weyl/Heisenberg operator defined by

(31) Z(e, )(a)(n) = eI e a(n — f)

and U is the metaplectic representation of the linearized flow at time 7,.
(We should point out that in the manifold case a defines intrinsically a
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smooth vector in the metaplectic representation of T, ¢)(T*M), and U
and Z are operators in that representation space.) Denoting by S the
linearized flow at time T’,, we also showed that one can find a symplectic
mapping R such that R~'SR is block-diagonal of the form

1 pw O
(32) R'SR=10 1 0 |,
0 0 Ay
where p € R and Ag is the direct sum of rotations of angles 01, . . ., 0, 1.

Furthermore, the transformation R maps the vector (sz,s¢) to the
vector (s,0).

Let us denote o' := Mp(R)"'a and V := Mp(R™!SR), where
Mp(R) denotes the metaplectic representation of the mapping R. Then,
letting Z(s) := Z((s,s&)) and

W (s) := Mp(R)™! Z(s) Mp(R) = Z(s,0,0,0),

one has
(a, Z(s) U"a) = (a’, W(s) V"a’) :

Denote the variables of a’ by (n1,72) where 71 € R and 7, € R™L,
- 2 2

and let ¢PnT27)/2 qenote the direct sum of the propagators of one-
dimensional Harmonic oscillators at times 61, ...60,,_1, acting on a’ by

inuail /2

acting on the ny variables. If e denotes the metaplectic quanti-

zation of

(33) (6 ).

we get that (30) becomes

92n 7T.(3n—|—1)/2 Cg(x7 f)
+oo

= Z 95(nT7)ema

[ (2 DD () oy — s, ) iy

The integral over ds is a convolution and the integral over dn; is the
integral of that convolution. Therefore, using the Fourier inversion
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formula plus the fact that on the Fourier transform side the operator
. 2 .

™9, /2 is multiplication by e~m#¢’/2 (¢ being the dual variable), one

gets

22n 7I_(3n—|—1)/2 Cg($7 5)

(34)
+OO . _ - 2 2
= 3 ey f a7 (0, m2) €0 P02 (0, ) dy

n=-—oo

where a’" is the Fourier transform of o’ with respect to ;. Let b(x) :=
a’"(0,z) and let us decompose b on the Hermite basis, hy, of eigenfunc-
tions of the harmonic oscillator

(35) b= > brh.

keNm—l

Then, letting ¢ := |bg|? we get (29) and the family {cy} is non-negative.
It is also rapidly decreasing since the function b is Schwartz.

REMARK. For a given quantum Hamiltonian H, the coefficients {cg}
depend only on the symbol a of the coherent state. Observe that the
proof shows that given any rapidly decreasing family {cy} one can find
an a giving rise to it.

We next prove the existence of the limit

. (fa*X[_c C])
(36) Lq(c) == lim ¢, " (x,€),

a—0

for f as in the Tauberian lemma and ¢ (x,&) as in (29). Let ¢4(c) :=

(fa*X[_c C]) .
¢ " (z,€), that is
. sin (n c¢Ty) in((k+1/2)6+a)
(B7)  dal0)i=c + Y flan) — = e '
n#0,k 7

We must then prove that the limit £, (c) = lim,_,0 ¢4 (c) exists.
To lighten up the notation a bit, let us define

(38) dy, = (k+%>9+a, keNmL
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keeping in mind the notation (6). Let 0 < a < 1, then

b1(c) — dalc) = ; Z sin(ch,y)ckemd’“/ F(tn)dt

7 (n,k)eZxNm—1

(39) _ i Z <ezncT~, _ 'e—incTy )Ck eindk /1 f/(t n) »

e 21

Applying the Poisson summation formula to the series over n, we get
(after a calculation)

n(0) = dalc) = — Y Ckf(g(%(gﬂﬁwﬁdk))

7 (4, k)eZxNm-1
1 ) dt
(40) —g(; (27Tj—CT,y+dk)>>?,
where g(x) =z f(x).
Lemma 3.2. Define

1
o — {CER: for all (j, k) € Z x N*~ 1 c7é:tT—(27rj+dk)}.
v

If 0./(2m), ..., 001/ (27) are rational and ¢ € MY, then each of the
limits

(41) il_r)n Z Ck/ - (2mj £ T, +dk))

(j,k)EZXNm—1

dt
t

exists (and is finite). Moreover, the convergence is locally uniform in c.

PROOF. By the rationality assumption the complement of Mg is dis-
crete. Therefore, if ¢ € M{ there exists € such that

0<e<|2mj+cTy+dgl, for all (j,k) € Z x N™~1,

The function g is rapidly decreasing: for all N € N 4Cy > 0 such that
for all z € R, |g(z)] < Cn (1 + |z])~". Therefore

2my £ cT + dy, tv
‘g( )‘ SOnN x . N
t + (27j £ T + dy)
N

(2mj £ T + dg)N

(42)
<Cn
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and so for all (j,k) € Z x N™~1 and for all a € (0, 1)

@) [ 1

This shows that each of the integrals in the series (41) extends to a
continuous function of a € [0,1). Moreover, since the family

dt < CN I—CLN+1
t = N _2njteTy +di|V

g(% (2mj+cT, + dk)> ‘

Ck . -1
My, ;= , k) € Z x N™
ko 127 + ¢ Ty + di|V (. %)

is absolutely convergent (for IV sufficiently large) and it dominates the
absolute values of the terms of (41), we are done.

We now turn to the irrational case.

Lemma 3.3. Assume that 1,0,/(27),...,0m—1/(27) are linearly inde-
pendent over the rationals. Let

(44) 1::{ceMg“: 3 ck(i(dk+§>>_2<oo},

keNm—1
where {x} denotes the fractional part of x, and let
(45) M* = ME N M.
Then, if c € M®, each of the limits

b
: 1 . dt
2 [ oy i ety v )
J

exists and is finite. Moreover, the convergence s locally uniform in c.

Proor. It is enough to consider one of the series above, say the one
with the plus sign. Let ¢ € M and define

Ot :={(j,k) € Zx N1 : 21j + c¢T, + di, > 0},

and
O~ :={(j,k) €ZxN""1: 2xj+cT, +dy <0}.
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Since ¢ € M¢, Z x N1 = Ot UO~. Recalling that g(z) = = f(z)
and that f as well as the ¢, are non-negative, we see that the terms
with (4,k) € OF have the sign 4+ and therefore each of

dt
Z ck/ — (21§ + T, +dk)) ;
(j,k)eo=* a

is a decreasing function of a. It therefore suffices to show that
. 1 . dt
(11_1;% Z ck/ g(;(27rj+cT7+dk)>?<oo

and similarly for the series over O~.
Specializing (43) to N = 2, we see that exists C' > 0 such that for
all @ € (0,1) and for all (j,k) € OF

Voomj+eT +d\ dt C
g )= <
a t t = 27+ cT +di)?

(46)

(The last denominator is not zero if (j, k) € O*.) Therefore, the Lemma
will be proved provided we show the convergence of the double series
of scalars

(47) > My,

(4:k)eOT

where T+d )

. c E\

M ;g — ( ) )
k,j Ce \J + 2t
that is
Ck

48 M= ———
(48) T+ kE+ B)?
where

9m—1 1 m—1 Hj
7j=1

Since the terms in (47) are positive, we can prove its convergence by
first summing over j with k fixed, and then summing over k € N™~1,
Observe that

(50) (j, k) e O if and only if  j>[-k{—p]+1
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where [z]| denotes the greatest integer less than or equal to x. For every
k consider the series

+oo
(51) > My
j=—[k&+p]

(If + € Z, then [—x] = —[z] — 1, and since ¢ € MY, for all k € N*~1,
k&4 ¢ Z.) Comparing this series with the integral

Foo dx
(52) /_[kg-w] (x+EkE+0)2

we find that
+oo Cr
(53) > My < My peip + ;
: ! —[k k
j=—[kE+p] K+l RE+

or with the notation {x} = fractional part of z = x — [z],

+oo
Cr Ck
oy 2 Mo S G GE ey

j=—[k&+B1+1

Therefore convergence of (47) follows from the convergence of
> Terae
5 -
herm oy K&+ P}

But since by assumption ¢ € M$, this series converges.

In conclusion we have shown that £, (c) exists for ¢ as defined by
the Lemmas.

REMARKS. In the irrational case:

1) To find examples of numbers ¢ in M$, it suffices to find a family
{9k }renm—1 of positive numbers such that ng_2 cr < oo. Then if

1
(55) 27rj:|:cT7+(k+§>9+a‘ >gn, forall (j,k) € Zx N1
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then ¢ € M®. Defining g = €gx, € > 0, one see that still ng_2 cr <
oo and therefore associated to g (by (55)) is a subset of M, whose
intersection with any interval I has a co-measure in [ arbitrary small
as € —» 0; therefore M has full measure.

2) The set M is related to the rate of decay of the ¢ (that is
to the properties of the symbol, a, of the coherent states), as well as
to irrationality properties of 6/(27w). At one extreme, we can choose
a such that only finitely-many of the coefficients ¢, are non-zero (see
the remark following Lemma 3.1). In that case M® = MY is just the
complement of the set of quasi-energies of the quasi-modes associated
with the trajectory.

4. Properties of the function L.

Having established the existence of the function L4(c), we now
derive some of its properties.

Rational case. Let us go back to the identity L,(c) = limg_q ¢o(c)
where ¢, is defined in (37). Applying in (37) the Poisson summation
formula to the series over n with & fixed one obtains

(56) Lao(c) = lim l(}«1*/»’(;))(0),

a—0 q

where

(57) F.(y) = / D ewd(Ty(x —y) — 2mj — di) dw .

¢ gk
For each ¢ > 0 the function F, is a step function; indeed

(58) F, = Xk: Ck X[—c—(2mj+di) /T , c—(2mj+di) /T] °
J

Since f(-/a)/a — §, we obtain

(59)  Lalc) = > ¢k,  forallce M,

{j,k:—cT'<2nrj+dr<cT}

which is clearly a step function (i.e. a locally constant function) of

c € Mg.
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Irrational case. To study the function £, (c) on M as defined by (36),
we will use a wavelet decomposition.

Let g € L? be a function satisfying [ g(z) dz = 0 and [z g(z) dz =
0. If it exists, the wavelet coefficient of L,(c) — ¢ is

(60) T(a,b) = l/g(”“"_b)(ca(g;) _a)dz.

a a

Plugging in (60) the expression

. Ty
(61) Lofo)—o=Y 20270 51";' 1) gind g,
n#0 7
k
one finds, supposing g even
_ 1 L : b in(dg)

(62) T(a,b) = 37 Z o glan)sin(nbT,)ce .

n#0 K

k

The following result shows that such a decomposition is indeed valid.
Proposition 4.1. Let g as before, § being compactly supported and

even, and let us suppose that ¢ is a compactly supported function sat-
1sfying

(63) [@i@ % = [Gwp-a5 1.

Then, for all c € M*,

-I-Ood +o0o —b
(64)  Lalc) — ¢ = lim ;“/ o(“=2)T(a.b) b,

e—=0 /o a
where
(65) T(a,b) = 1 Z 1 g(an)sin(nbT,) ¢, e
’ 21 nT, 7 '
n#0
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PROOF.
O da [0 c—b
/5 = /_oo db(p( - )T(a, b)
+oo 1 )
=[S T (lam) T p(—an) e )
a n
© n#0 7
k
e G(an) ey
T da R . : in((k+1/2)0+a)
(66) = ; Z ¢o(an)glan)sin(ncl,)e Ck
© n#0
k
= Z P(en)sin (ncT,) ™™ ¢
n#0
k
where N
“da _, ..
o= [ T et ita)

Noting that ¢'(a) = ¢(a) g(a)/a is compactly supported and 9 (0) =1
by hypothesis one get the result, thanks to Lemma 3.3.

The next result, thanks to the result of the Appendix will enable
us to prove the Lipschitz continuity on M%.

Proposition 4.2.

(67) T(a,b) =0O(a), mnear0 almost everywhere and uniformly in b.

ProOF. Since [zg(z)dx = [ g(z)dx =0, ¢’(0) = 0. So one can find
a C* function f such that §(§) =& f(¢) and f(0) = 0. Then

(68) T(a,b) =a Z flan)sin(bnTy) eindi ¢,
n#0
k

and it is easy to check, by the same argument as in Lemma 3.3, that if
be M*,

Z flan)sin(bnTy) ein((k+1/2)0+a) .

n#0

k
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is bounded.

5. End of proofs.

The convergence statements in both theorems are immediate con-
sequences of the Tauberian lemma of Section 2, applied to the following
objects

(69) Tola,) = Y wim o(BH =Y,
where
(70) w;(7) = |($(ae), 5) 1%

The weighted counting function is therefore

(71) > W i)l

J
|2, ()= B|<ch

The functional of the Tauberian lemma is

(72) Folp) = cf (2,€)

as defined by (29). We must check that the above objects satisfy the
assumptions of the Tauberian lemma.

a) Theorem 1.1. It is easy to see that the functional Fy defined
where ¢f (z, ) is defined by (29) satisfies the hypothesis 2 of the Taube-
rian Lemma of Section 2 if we take for M® the set defined by (9).
Moreover the other hypotheses are satisfied as in [7]. Then just apply
the Tauberian Lemma.

b) Theorem 1.2. The Lipschitz continuity of Fy is an immedi-
ate consequence of Proposition 4.2 together with Theorem A.1 below.
The fact that M% is of full Lebesgue measure, is a classical result of
Diophantine analysis (recall that the sequence {gx} in the remark 1,
Section 3 is rapidly decreasing).
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Appendix. Wavelets and Holder continuity.

Int his appendix we will prove an easy extension of results of [6],
[5] and [4].
Let M“ a bounded subset of R of full Lebesgue measure.

Theorem A.l. Let g be a be a continuously differentiable compactly
supported function. Let f defined and bounded on M®. Let us suppose
that f admits a “scale-space coefficient T(a,b)” decomposition with re-
spect to g, namely

(73) f(x):/oo/+oog<x_b)T(a,b)%db, for all x € M.
0 J-

a
Let us suppose moreover that
(74) T(a,b) = o(a®),

near 0 almost everywhere and uniformly wn b. Then F is a-Holder
continuous on M; by this we mean

(75)  |f(z1) — f(z2)| = Oy, (Jz2 — 21]|%), for all z1, x5 € M*.

PROOF. The proof is absolutely equivalent to the one in [4], so we will
only sketch it. Let us write first:

wy 1@= ([ ) [we( )Ty
— fula) + fla).

f1 is obviously C'*°. We concentrate on f.
Let x1,22 € M%, 21 < x3, we cut fs in three pieces.

ro—XT1 da

flan) = futen) = [ 5 [ang

0 a

(77) —/ml_ml da dbg(‘“a_b)T(a,b)

0 a
a2 - La(Y)

-T(a,b)

.Tg—b

)T(a, b)

a

(78) == Tl - Tz + T3 .
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We now analyze each term:

e T} and T». Since T'(a,b) = O(a®) almost everywhere, we have

p2=a1 g 1 /a;—b
|T,.|:/ @ —g<””’ )‘Caa
0 a a a

= Oz~ ) lolls, ©

(79)

e T5. If g is continuously differentiable let us write

(80) g(mz—b)_g<x1—b):xz—xlg,<x’—b>

a a a a

with 21 <2/ <7y, So

1 /
da 1 ' —b
< a — g | -
|T3|_/M_w1 @ | o (50 |1, e —
81 ' da
=y ZO(|$2—$1|)||9'||L1/ —a*!

= O(|.T2 - .T1|a) .
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