REVISTA MATEMATICA IBEROAMERICANA
VoL. 14, N.° 1, 1998

On Bernoulli identities
and applications

Minking Eie and King F. Lai

Part I

Abstract. Bernoulli numbers appear as special values of zeta func-
tions at integers and identities relating the Bernoulli numbers follow as
a consequence of properties of the corresponding zeta functions. The
most famous example is that of the special values of the Riemann zeta
function and the Bernoulli identities due to Euler. In this paper we
introduce a general principle for producing Bernoulli identities and ap-
ply it to zeta functions considered by Shintani, Zagier and Eie. Our
results include some of the classical results of Euler and Ramanujan.
Kummer’s congruences play important roles in the investigation of p-
adic interpolation of the classical Riemann zeta function. It asserts
congruence relations among Bernoulli numbers, i.e.
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We then deduce from this Kummer’s congruence by using von Staudt’s
theorem and Euler’s generalization of Fermat’s theorem

m n

a™ =a" (mod pNT1),

if @ is relative prime to p and m = n (mod (p — 1) p"). Our argument
can be applied to derive congruences among Bernoulli polynomials and
in general the special values at negative integers of zeta functions asso-
ciated with rational functions considered by Eie.

1. Introduction.
Let my,...,m, be positive integers and P(T') be a polynomial in T’

with complex coefficients of degree less than mq +- - -+m,.. For |T'| < 1,
we let

P(T = .
F(T) = (1 _Tm1).(..21_Tmr) :kz:;)a’(k)T .

Such functions occur as generating functions of partition numbers (cf.
Hardy and Wright [5, Chapter XIX]) and dimensions of spaces of au-
tomorphic forms — e.g. if we let a(k) be the dimension of the space of
Siegel modular forms of genus 2 and weight &, then

oo

14 173°

2 = o =T T (-1

(c¢f. Igusa [6]). The value of a(k) is determined by F' via the residue
theorem as

1 F(z)dz
k) = —
ak) 21 Jo 2Rt

where C is a sufficiently small circle centered at the origin going coun-
terclockwise.
The generating function of the numbers a(k) is the Dirichlet series

Zp(s)=> a(k)k™

k=1

(¢f. Hardy and Wright [5, Chapter XVII]). This zeta function is related
to F(T) via a Mellin transform

ZAQNQ=AWFJWWﬂ—Fm»m
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for Re s sufficiently large. Our underlying principle is to evaluate F'(T")
in two ways, yielding a Bernoulli identity, with special values of the zeta
functions of Shintani [8], Zagier [9] and Eie [2], [3] on the one hand, the
special values of classical zeta functions of Riemann and Hurwitz and
sums of residues on the other. One gets easily this way Euler’s identity:
if n > 2,

Bog Bon—ox = — (21 + 1) Bay, |
z_: 2n—2k) ok Bon—2k (2n+1) By

(¢f. [1, Part I, p. 122]) and Ramanujan’s identities (o, > 0 with
afB =m?),

1)ifn>1,
o k2n 1 . e k2n—1 . . B2n
S gy~ Y g = - O
2)iftn € Z,
B 1 —2n—1
« (2“2"”1 +kzle2ak 1)
B 1 —2n—1
— (=) <2C(2n+1 +Z 2Bk_l)
n+1
B B
— _22n -1 k 2k 2n+2—-2k n+l—k Qk
kZ:O( S @R @iz 20 @ ﬁ’
3)ifn > 1,

s i(—l)k‘*’l csch (a k) (g i(—l)k‘*’l csch (B k)

k2n+1 k2n+1
k=1 k=1
1 1
i () Fusa()
22n—|—1 Z( l)k 2k 2 In+2-2k 2 n+1 kﬁk
Z 2k)! (2n+2-2k)

(cf. [1, Part II, Chapter 14]).
In the first part of this paper we present some new Bernoulli iden-
tities. In view of the current motivic interest in special values of zeta
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functions, one cannot help from wondering if there is an abstract frame-
work giving a unified explanation of these identities as in the case of
polylogarithms (cf. Zagier [10]).

In the second part of the paper the Bernoulli identities are used
to give new proofs of classical Kummer congruences. The Bernoulli
numbers B, (n = 0,1,2,...) and Bernoulli polynomials B, (z) (n =
0,1,2,...) are defined by

t = B, t"
et—1:Z I |t| < 2m,
n=0

and

, t] < 2m.

Suppose that m,n are positive even integers, p is an odd prime with
p — 1 not a divisor of m and N is a non-negative integer. Kummer’s
congruences asserted that if

m=mn (mod (p—l)pN),

then B B
1— m—1y —m =(1— n—1y = d N+1 )
(1—p™ ) - (1-p"") - (mod p™ )

Kummer’s congruences play important roles in the p-adic interpola-
tion of the classical Riemman zeta function. Indeed if we consider the
function

Cp(s) = (1—=p77)C(s) = Z n=*, Res> 1.
()1

Then the congruences tell us that (,(s) is a continuous function on the
ring of p-adic integers Z,, i.e.,

(p(1—m)=¢(1—n) (modpNth),
if m =n (mod (p—1)p"N).

One can construct a p-adic measure p on Z,, and express (,(1—m)
as a constant multiple of the p-adic integration

/ a™ (),
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where the integration is over Zj (see for example Koblitz [9]). Note

that for z € (Z/pNT1Z)*, the set of invertible elements of the quotent
ring Z/pN T Z, one has

x =2""! (mod pNTt),
if
m=mn (mod (p—1)p").

So that Kummer’s congruences follow as easy consequences by a simple
argument (cf. [6]).

Here we shall develop another elementary proof of Kummer’s con-
gruences by a simple identity among Riemann zeta function and Hur-
witz zeta functions,

O A=) = S ().

(4,p)=1
1<j<pN Tt

where the Hurwitz zeta function is defined as

C(s;é):Z(n-i-(S)_s, Res>1,6>0.
n=0
Such an identity follows easily from the consideration of zeta functions
associated with rational functions of the form
P(T)

F(T) - (1 _Tm1) (1 _Tmr)

(see Part I).

Note that both the Riemann zeta function ((s) and Hurwitz zeta
function ((s; 0) have analytic continuations in the whole complex plane.
Moreover, their special values at non-positive integers are given by
Bernoulli numbers and Bernoulli polynomials, respectively. Specifically,
one has

_1 Bn, B, (9)
1—m)=(-1m =" d 1—m;d) =— :
R Y e
Set s = 1 —m in the identity (I), we get
B 1 (m
m (1—pnH2m _ 2 B, im—l p(N+1)(i-1)
I (Q-pmH—r=— 3% §<l>z.7p
(d.p)=1 =0

1<j<pNt?
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Here

(V) =rm

is the binomial coefficient.
On the other hand, von Staudt’s theorem ([2, Chapter 5, Theo-
rem 4)) implies that pB; is alway p-integral, i.e. it contains no divisor

of p in the denominator of pB;. So after modulo pN*1, we get
B 1
1— m—1\ 7 m = -, —(N+1)
(I=pmH—2=— 3  j"p
(J',z))T\]lJr1
1<j<
(L11) 1‘J 3
o 5 Z jm—l (mod pN—I—l) )
(4.p)=1
1<j<phtt

Next we evaluate the sum

> i,

(4,p)=1
1<j<pNtt

in the multiplicative group (Z/pN+!Z)* by decomposing it into a direct
product of finite cyclic groups and we obtain Kummer’s congruences by
assuming von Staudt’s Theorem; finally we give a proof of von Staudt’s
theorem by using the Bernoulli identity (IT) with N = 0.

At the end of the paper we extend Kummer’s congruences on
Bernoulli numbers to congruences on Bernoulli polynomials.

2. Special values of zeta functions.
2.1. Bernoulli numbers and Bernoulli polynomials.

We recall some results on special values of zeta functions.
For the Riemann zeta function

C(s):Zn_s, Res >1
n=1
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and the Hurwitz zeta function

o0

C(s;5):Z(n+5)_S, >0, Res>1,

n=0

it is well known that for an integer m >0 ,

B
((=m) = ()" == and - ((-mi0) = -

m—+1

2.2. Zeta functions associated with linear forms.

Bm—l—l((S) )

173

Let 8 = (B1,...,0,) be an r-tuple of nonnegative integers and

L(z)=a121+ -+ a, . + J be a linear form with
Rea; >0 and Re(5+2aj)>0.
=1

For Res > r + |3, define the zeta function associated with L as

Z(L,B,s) =Y _ nL(n

neN”

Z anl--- (a1my+---+arn.+0)"7,

ni=1 n,=1

where we use the notation n” = nfl coemPr

These zeta functions were first considered in more general context
by Eie in [2]. In particular, they have meromorphic continuations in
the whole complex s-plane. Furthermore, their special values at non-
positive integers are given explicitly there. Here we summarize the

results we need from [3].
For any polynomial f(z) of p variables and degree k

k
— § (65} (67
f— aal'l ..../L-pp,

l|=0

we let
k

k P DB
P = Y aal(-an)--Cap) = 3 a [ ot

! a; +1
|| =0 la|]=0  j=1 J
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where o = (aq, . . ., ap) ranges over all p-tuples of non-negative integers
and |a] = a1 + -+ ay.
Also for any nonempty subset S of the index set I = {1,2,...,r},

we let
Z aiz; +0 = L(z) - Zajxj
iel—S jes

and |S| be the cardinal number of S.
The following proposition is an immediate consequence of the main
theorem in [3].

Proposition 1. For any integer m > 0, the special value at s = —m
of Z(L, 3; s) is given by

Z(L, By —m) = J"(a" L™ («))
~DAsTN 1
+Z(H aﬁ,-l—l )a(S)! Jr

JES J

(TTo7 159 @) .

igS

where S ranges over all non-empty subset of I = {1,2,...,r} in the

summoation and
a(S) =m+ S|+ 6.
JES

Here we describe the analytic continuation of Z(L, 3; s). For Re s >
T+ |5], we have

Z(L,B;8)I'(s)
oo oo
— Z Z nll"'nfr/ 5 1 _—(aini+---4apn,.+08)t dt
ni=1 n,.=1 0
00 r 0o
:/ e % H (Znﬂf e “J”t> dt
0 j=1 n=1
Set
oo T
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A term by term differentiation of the identity

> 1

—a;nt __
Ze g = ot 1’ t>0,
n=1

we get
d

B0 = o ()" ()

Thus around ¢ = 0, Fj(t) has the asymptotic expansion

B! ELEY Bp(a;t)" Pt

)8+l — 3. —1)
(a; )% n, >B+1 n(n—p; —1)!

It follows that at ¢ = 0, F'(t) has an asymptotic expansion of the form
> Gt
n>—(|8l+r)

Consequently, the analytic continuation of Z(L,;s) and its special
values at negative integers follow from Lemma 7 in Section 4.
When 8 = 0, we have the following

Corollary. For any integer m > r, one has

Z(L,0;r —m)
_ Z (—1)m—T—ar+1 (m — T')' B . B aal_l o (],a’"_]' 5Oér+1
ar! ol aggq! e ar L " '
|a|=m

2.3. Shintani zeta functions.

Next we consider another kind of zeta function which were inves-
tigated first by Shintani in [8] and then Eie in [3]. Here we reformulate
the main result in [3].

Let A = (ay,...,a,) and u = (uy,...,u,) be r-tuples of complex
numbers such that Re a; > 0 and u; > 0. Define the zeta function

oo oo

Z(Au;s) = Z Z (ar(ny+uy) + -+ ap(ng +u))™*,

n1=0 n,=0
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where Res > r.

Proposition 2. For any integer m > r, one has
Z(A,u;r —m)

r (m—r)! 1—1 -
= (=" ) mel(ul) By, (up)ay* ™ - ral Tt

lp|=m
Here the summation is over all p-tuples of non-negative integers
such that and |p| =p1 4+ +p- =m
3. Euler’s Identity.

If we start from the fraction

we obtain the identity

C(s—1)+¢(s Zan-l-nz S+ 2((s),

ny= 1n2 1

from the Dirichlet series Zp(s). Setting s = 2 — 2n, we get Euler’s
identity

Bok, Bon—ox = —(2n + 1) Bay, > 9.
Z 2n—2k) 2k Don_2k (2n+1) By n >

In this section we shall establish a new identity analogous to that of
Euler and then as an illustration of our method we give an extension
of the Euler identity to Bernoulli polynomials. We state a lemma.

Lemma 3. Given

T) = zm: b; TV
j=0

and
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with my + - - - 4+ m, > m, then, for |T| <1 we have

m

F(T) — ij i i Tmml""'"i‘"rmr—l—j
7=0

n1=0 n,,=0

and hence

-I-ij Z (nymi+---+n.my +7)"°.
j=1 n1,...,np >0

To illustrate our principle we consider as a first example, a fraction
related to the generating function of the dimensions of Siegel modular
forms of genus two,

1
(1-T2)(1-T3)(1—-T°)(1—1°)

B(T) =
and we derive a new Bernoulli identity.

Proposition 4. For any integer m > 3,

2m — 4)!
Z L Bpl sz Bps BP4 2p1—1 3p2—1 5p3—1 6p4_1

ipl—am 1! p2! pal py!
_ 1 B2m B ( 17 + i 22m—2 + ESZm—4) B2m—2
1080 2m 432 48 360 2m — 2
197 62m—4 1 1
B () )
wozm—2(2 2(g) T Pam—2\3

1 ¢2m—4 1 1
— 25B,w_(—>——1631m_(—>>
+542m—3( 2m=3\ g 2m=3\3

52m—3 1
().
2m—3 "3 \5

PROOF. Let

1

F(T)= (1—T2)(1—T3)(1_T6)(1_T5)'
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By Lemma 3, we have for Res > 4

Zp(s)= > (2ni+3ny+6nz+5n)"°

nl,...,n420
|n|>0

oo

= Z Z Z Z(2n1+3n2+6n3+5n4)_s

n1:1 n2:1 n3:1 n4:1

[c. ol o

+3 3 (@ +3n2+6m3) "+ (201 +6n2+5m3) 7"

n1:1 n2:1 n3:1

+(2n1+3n2+5n3) " °*+(3n1+6n2+5 ng)_s)

oo o0

+ )0 D (2014 3n2) "+ (201 + 6n2) T+ (201 + 5ng) ™

n1:1 n2:1

+(Bni1+6n2)"*+(Bni+5n2) " +(6n1+5n2) ")
+ (27 +37°+67°+57°)((s).
On the other hand, we decompose F(T') into partial fractions

B 1 N 1 N 1 N -1
180 (1—-T)% T 30(1—T)3  48(1+T)2  5(1—1T°%)

F(T)

N 19 — 3327 — 2372 — 5473 +15T* + 144 7T°
720 (1 — T)

| D14+ 274T + 51472 + 514T° + 274T* 4 514T°
720 (1 — T6)?

:Jmkzo(k-l-l)(k—l—Q)(k-l-?))Tk-l—%lg)(k-l—l)(k—iﬂ)Tk

L i(—l)k(k +1)T% + é iu — T 15k
k=0

1 oo
+ =) (19-3327 — 2372 — 54 T° + 15T + 1447°) T*
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+ 514 T3 4 274T* + 514 T°) T .

So the corresponding zeta function is

Zp(s) = ﬁ (C(s=3)+6¢(s—2)+11¢(s —1)+6¢(s))
+ $(§(3—2)+3C(s—1)+2(j(8))
1 2—s 1—s
+ 55 (P77 =D =D+ (27 = 1)(())

+%<I;(5k) §5k+4 )
720( 2:: (k)™

=) (332(6k+1)"" +23(6k+2)"°
k=0

454 (6k+3)"°—15 (6 k+4)~* —144 (6 k+5)_s))
+ = (514 Z (6 k)~

+§:(k+ 1)(274 (6 k +1)=* + 514 (6 k +2)*

+ 514 (6k+3)"° +274 (6 k+4)~°

+514(6k+5)77)).

Set s =4 — 2m with m > 3, we get that Zp(4 — 2m) is equal to the
right hand side of our identity after an elementary calculation.

Consider Zp(s) as a sum of zeta functions associated with linear
forms, we have

ZF(4— 2m)

2m —4)!
= Z —( m ) Bp1 Bp2 Bp3 Bp4 op1—1gp2—1 gps—1 pps—1

—  p1!p2! p3!pa!
[pl=2m
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(2m — 4)!
+ D Sy Be B By,

bl Tt p1!pa! ps!

. (2[11—1 3p2—1 5p3—1 + 2p1—1 3p2—1 6p3—1
+ op1—1 6P2—1 5P3—1 + 3P1—1 6p2—1 5P3—1)

(2m — 4)!
+ D 1 Bu By,

1 1ol
pl=2m—2 PUP2

. (2[11—1 3p2—1 + 2p1—1 6p2—1 + 2p1—1 5p2—1
+ 3P1—1 6P2—1 + 3p1—1 5P2—1 + 6p1—1 5P2—1) )

In the second summation, p = (p1, p2, p3) ranges over all non-negative
integers p1, p2, ps such that p; + p2 + p3 = 2m — 1. So at least one of
p; must be odd. But Bernoulli numbers of odd index are zero except
B; = —1/2. Hence we have

(2m — 4)! —1 pa—1 ps—1
Z SN Bpl BP2 Bps a11)1 a1272 ags

pl—zm_y P1tp2!pst

B

D2

:_% Z MB

| | D1
Ip|=2m—2 P1: P2

p1—1 p2—1 p1—1 p2—1 p1—1 p2—1
(a T a T e T a T T e T
Therefore, the second sum in the summation cancels the third sum.
Hence our identity follows.

REMARK. Different decompositions of F(T') into partial fractions may
lead to different expressions of Zp(s) in terms of finite sums of Riemann
zeta functions and Hurwitz zeta functions. However, one can prove that
the resulting identities are the same by employing well known identities
such as

k .
_ 1.m—1 i
B (k) = k J§:1:Bm(5+ k)

The formula in the next proposition is an analogue of Fuler’s iden-
tity.
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Proposition 5. For each positive integer n > 4, one has

112—:2 (2’/1,—2)! sz B2n—2k
= (2k=2)1(2n—-2k-2)! 2k 2n -2k

_ (_ B2n> (2n+1)(2n—06)
6

2n/6(2n—2)(2n—3) "
PROOF. Let
T2
F(T) =
(T) a-7

Then for |T'| < 1,
— 1 - k+2 __ 1 = 3 m
F(T)_gg(k+1)(k+2)(k+3)T _gmzzo(m —m)T™.

The corresponding zeta function Zp(s) is then

£ (G5 =3) (s = 1)),

Also we can express Zp(s) as a sum of zeta functions associated with
linear forms. By Lemma 3 we have

Zp(s) = Z Z Z Z(n1+n2+n3+n4+2)_s.

n1 =0 no =0 n3:0 n4:0

After a change of variables n; + no + 1 = p1, ng +ng + 1 = ps in the
summation we get

Zp(s) = Z Z p1p2 (p1 +p2) 7.

p1=1p2=1
Set s =4 — 2n with n > 4. The identity
2n—4

Z (2n—4)!  Bry2 DBop—i—2 +(_an) 2
E'2n—k—4)! k+2 2n—k—2 2n/(2n—2)(2n —3)

1(_an+ an—2>,

6 2n | 2n—2
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follows from Proposition 1 and a simple calculation yields our assertion.

REMARK. The identity of Proposition 5 appears in [7] as a consequence
of an identity among Eisenstein series. Similar identities follow from
different consideration of generating functions. For example, if we con-
sider F(T) =T3/(1—T)"%, we get the following identity for n > 6,

> (2n - 6)! Bap Bag By
P+q+7’=n(2p_2)!(2q_2)!(2r_2)! 8pqr
P,q,r>2

- (_ 152:) (1;0 - (2n-2) (2n2—n3)_(25nn— 4)(2n— 5))
1 / Boy_4
* @(271—4) '

Proposition 6. For any integer n > 2

2n

Z % (—1)* By (u) Ban—i(u) = —(2n — 1) Bay, .

PRrROOF. Writing the fraction F(T) = T/(1 — T)? in two ways we get

the identity
oo oo oo
SokTE= 3T 3 g,
k=0

1 =0 u») =0

Hence for Re s > 2, we have

C(S—l): Z Z(n1+n2+1)_s

1 =0 u») =0

:ii(("1+5)+("2+1_5))_8’ 0<o<1.

n1 =0 no =0

This is just the function Z((1,1), (0,1 —0);s) of Proposition 2.
Set s =2 — 2n, we get

> % Byi(0) Bon—k(1 —0) = —(2n — 1) By, .
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In light of the identity (cf. [14, p. 31])
B2n—k(1 - 5) = (_1)k B2n—k(6) )

we have proved that the identity holds for 0 < u < 1.
However, as functions of variable u, both sides of the identity are
analytic functions of w. If it holds for 0 < v < 1, it must hold for all u.

REMARK. In exactly the same way, we get the following identity
(2n)!
Y. = Byl(u) By(v) By(w)
plglr!
p+q+r=2n
=(2n—1)(2n—2) Bay(u+ v + w)
+B-2(u+v+w))2n(2n—2)Bay_1(u+ v+ w)
+ ((w4+v+w)?=3(w+v+w)+2)2n(2n—1) Bop_o(u+v+w).

4. Identities in Ramanujan’s notebooks.

In Chapter 14 of Ramanujan’s notebooks II [1], there are many
interesting identities on Bernoulli numbers. We shall use here Cauchy’s
formula for Taylor series coefficients. First we prove a new identity
analogous to those of Ramanujan and then we make some remarks on
the proof of Ramanujan’s identities by our method.

We quote the following classical result from [9]:

Lemma 7. Let {\} be a sequence of positive real numbers tending +o00.
Suppose that the Dirichlet series

’l,b(S) = Z ax A8 ’
A>0
converges for sufficiently large Res. Let
ft) =2 a3
A>0
be the corresponding exponential series. If att =0, f(t) has an expan-

siton of the form

Z Cpt", no being integer,

n>ng
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then

1) 9(s) has a meromorphic continuation in the whole complex
plane, and

2) Y(—m) = (=1)™m! C,, for each integer m > 0.

Proposition 8. For a, 3 > 0 with o3 = 7% and each positive integer
1,

n+41 B B
2k 2n+2—2k b b1k
> 2k—1)2n—2k+1) (-
= (2k)! (2n+2—2k)!( ) (2n +1)(=8)a

Con 1-n = csch?ka
:(271,—1)2120[1 ZkT

k=1

4272 o2

. ~= csch?ka cotanh k o
Z k2n—1

+(2n—1)2717 (=)t Z CS?#

k=1

Com a2 s= csch?k 3 cotanh k3
—2 s kz:; f2n—1 :

PRrROOF. For any positive number ¢, consider the zeta function

Z annz an1+( Bi)nz)_s, Res > 4.

ny= 1n2 1

By Proposition 1, Z.(s) has an analytic continuation and

Ze(2—2n)

2n—2

_ Z T (2n —2)! Biy2 an__llc~C (\/a)k(€+\/5i)2n—2—k

2n—2—k)! k+2 2n

€ \/_Z o a” 2n+2
+(( +a2 ) +(€+\/_Z-)2)<_23n1j2) 2n(21n—1)'
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It follows that

I=1lmZ. (2—-2n)

n+1
B (2n —2)!
_I;(2k)!(2n+2—2k)! (2k-1)2n-2k+1)

+ Bk Banya—oi (—=B)" a7,
On the other hand, let

Fult) = (3 memvamt) (3 nyererFina)

n1:1 n2:1
e(Vatetivh)t
(e\/at _ 1)2 (e(e-m'\/ﬁ)t _ 1)2

and
e(VativB)t

(e\/at _ 1)2 (ei\/ﬁt _ 1)2 ’

F(t) = lim F.(t) =

Note that for Res > 4,

Z.(s)T(s) = / LB (1) d
0
It follows from Lemma 7 that

1
Z(2-2n)=(2n—-2) — A7 (2) dz,
2m |z|=6

where 0 < § < 1 and the direction on the circle |z| = § is counterclock-
wise. As e — 0, we get

1
I=(2n-2)— I=2n P dz.
Gn-2tgs | HTEG)

Let C'y be the contour in the complex plane consisting of the rectangle

with vertices (2N + 1)(v/a + VB i), 2N + 1)(v/a — /B i), (2N +

1)(—va — /B 1), (2N + 1)(—/a + /B i) in counterclock direction.
Note that F(z) is bounded on the rectangle by a constant independent

of N. Thus we have

lim 27 F(2)dz = 0.

N—oo Cn
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This implies in particular that the sum of residues of 272" F'(z2) inside
C'n approaches zero as N — oo. Thus the residue at zero is equal to
the negative of the sum of residues elsewhere. It follows that

I = —(2n—2)!Z{Residues of 217 F(2) at z = 2k /B 1, 2k},

k#0

Our assertion now follows .

REMARK 1. When o = 3 = 7 and n is odd, we get

n+1

Z%@k%@%ﬁgf;mNQk‘”@"+l—2“04f

o0

—om i csch?km + (2m)t-2 Z csch?km cotanh km .

k?n k2n—1
k=1 k=1

= (2n—1)(27)

REMARK 2. If we consider instead the zeta function

- Z Z (Va (ni+u)+ (e+iv/B) (n2+v)) ", Res > 2,

n1 =0 no =0

with 0 < u, v <1, we find that for all positive integers n

n+1
22 3 Box(u)  Ban—a2r+2(v) ok (g

24 T@R)! 2n -2k +2)!

_n i Ccos (2 kx ’U) (e2k“a + 62k(1—u)a)

T J2n+L (o2ka _ 1)

k=1

[\:JI»—l

o0 2k7ru ( 2kv + e2k(1—v)ﬁ)
Z |2+l (e2kB — 1)

Setting u = v = 1/2, we obtain the identity

> h(ak > h(Bk
S T S
ntl sz ( 1) Bap a2k <1)

— 92n+1 2 n+l—k gk
Z Qn+2-2k0" &
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As u, v approach 0, we get the identity

. 1 00 k—2n—1 . 1 00 k'_2n_1
o (Geen DY G ) =0 (G Y )
k=1 k=1
— _22n %(_1)]@ Boy, B2n—|—2—2k Ozn+1_k ﬁk
2K)! 2n+2—2k) !

k=0

with n a positive integer. The right hand side of the identity we ob-
tained is a constant multiple of

1 e~ (VautivBv)z g,
2mi Jgs (L eV (1= V) |

It is zero if n < —1. This yields the identity ([1, Chapter 14, p. 261])

0 k2n—1 o0 k2n—1 an
n n o n n
« Ze2ak_1_(_ﬁ) Zezﬁk_l_(a _(_/B))4n7 n>17
k=1 k=1
if we let u, v approach zero.

REMARK 3. For each rational function F'(T') of the form

P(T)
(1—Tm1)..-(1—Tmr) ’

where deg P(T') < my+---+m,. The possible poles of F'(e~?) lie in the
imaginary axis of the complex plane. By a direct verification, we can
find a sequence of contours Cy (N = 1,2,...) such that the following
conditions hold:

1) C is the rectangle with vertices x y+i yn, TN —i YN, —Tn+i YN,
—rN —tyn, xn > 0, yny > 0 with direction counterclockwise,

2) imy o0 2y = liMy 00 yv = +00,
3) Cn does not pass through any pole of F(e™?), and
4) max,cc, |F(e~?)| is bounded by a constant independent of N.

It follows that for any positive integer n,

1
im — D E(e™%)dz = 0.
N—oo 271 Cn
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This also implies that the residue of z~(TYF(e™%) at 0 is equal to
the negative of the sum of residues of ="V F(e=%) at z = 2kmi/m,
keZ,k#0,5=1,...,r. Note that the former is a constant multiple
of Zp(—n) while the latter is an infinite series in general. This produces
an identity between Bernoulli numbers and sums of infinite series. Here
we give two examples.

I) For positive integers m and N with N > 3,
. . (mr)
cotan| —
>
n2m+1
n=1
n#Z0 (mod N)

—1)mt1l(Qr)2m+1 N-2 ‘ )
- ]3](2771(,—{—)1)! Z(N_J_I)B%n-l—l(%).

=1

IT) For positive integer m and even integer N > 3,

¢ (mr)
o0 an{ —
>

n2m+1

n=1
nZN/2 (mod N)

—1ym(2r)2mtlt X _ ' )
- N)(2£n-21)! ;(—W (N —j- 1)B2m+1(%>.

5. Generalizations to several variables.

It is possible to extend our arguments to the cases when F(T') is a
particular type of rational functions of several variables.

Suppose that o; = (aj1,...,05,), j = 1,...,7 are n-tuples of
non-negative integers with |oj| = o1 + -+ + o, > 0 and P(T) =
P(Ty,...,T,) is a polynomial in n variables T4, ..., T, with deg P(T') <
la1| + -+ - + || We use the notation

n

P =T[1, 8= (... 0.

7j=1
Consider the rational function F(7') of the form
P(T
F(T) = )
1—T™)--(1—T)
P(Ty,...,Ty)

(I_Tlau ...T;Llln).._(l_Tlan "'Tﬁ“") .
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For |Ty| < 1,...,|T,] <1, F(T) has a power series expansion
oo o0
> alB)T =3 al) T T
181=0 181=0

For sufficiently large Res, the zeta function associated with F(T') is
given by

Zes) =3 3 alB) (Bufa- )"
B1=1 Bn=1

Another expression for Zp(s) as a sum of zeta functions associated with
linear forms was given by Eie in [2]. This leads to an identity in zeta
functions. Using the special values at negative integers, we obtain a
family of Bernoulli identities. Here we give an example to illustrate the
general procedure.

Consider the rational function

1
1-T1T)(1-T1T3)

F(T) =

For |T1| < 1 and |T%| < 1, we have

F(T) = Z Z (Tl Tz)ru (Tl T22)n2 — Z Z T{h—i—nz T2nl+2n2 )
n1=0m2=0 n1=0n2=0

It follows for Res > 1,

Zp(s)= Y > ((m+n2)(ni+2n2))"+ > ny>+ > (2n3)~°

n1:1n2:1 n1:1 n2:1

= 37 3 (1 4+ m2) (m +21m2)) ™ + (14279 ¢(25).

n1:1 n2:1

On the other hand, as a rational function of T, we have the following
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decomposition of F(T') into partial fraction
1 10T
F(T) = n
DTy T ma-n)

Ty
(1-T1)(1-T1T>)

oo 00 0o 00
_ Z Z T1n1+n2 T22n2 + Z Z T17l1+n2+1 T22n2+1

n1 =0 no =0

ni =0 no =0

0o 00
- Z Z TlTL1+n2+1 Tznz )

n1 =0 no =0
Consequently we get another expression for Zg(s) as

Zrp(s) = Z Z (n1+mn2)"" (2n2)~"

oo oo

+ Z Z (ni+na+1)7°2ngy+1)~°

ni =0 no =0

oo oo

_ Z Z(n1+n2+1)—sn2—s

n1=0 nz:l

=277 =1) > > (nitna) Tyt +27°¢(25)

ni=1lns=1

03 3 (e g) (e 3)) ()
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=D > (muw) )y Y (mn)C+((29)

m=1n=m+1 n=1m=n+1
o) o)
=2 Z Z (n1+mn2) *ny® +((2s).

Now it remains to evaluate the zeta functions at negative integers. We
need the following proposition from Eie [3].

Proposition 9. Let Q = ax? + bxy + cy? with a, b, ¢ > 0 and
D =0b%>—4ac>0. Suppose that

oo oo
Zg(s) = Z Z(an%-l—bnlng-l-cn%)_s, Res > 1.
ni=1lns=1

Then Zg(s) has an analytic continuation and its special value at each
negative integer s = —m (m =1,2,...) is given by

! B B,
Zo(—m) = Z m aP pd o _Z2ptatl 2r+q+1

p+q+r:mp!q!r! 2p+q+1 2r4+qg+1
B —b/(2a)
+(—2T2m_:22>(/ (az® +bx +c)™dx
0

—-b/(2¢)
+/ (a+by+cy2)mdy>.
0
Proposition 10. Suppose that
Z(s)= > > (ni+n2+26) 7" (na+06)"*, >0, Res>2.

n1 =0 no =0

Then Z(s) has an analytic continuation and its special value at the
negative integer s = —m (m =1,2,...) is given by

1

3
+

m!
(m+1—FkkN(2m+2—k)

(=)™ (m!)? 1
i ( 2(2m+2)! t3 (m + 1)2>B2m+2(5)-

By, (6) Bam+2—1(6)

k=1
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Proor. For Res > 2, we have
Z(s)(T(s))*
_ Z Z /OO /oo(tl t2)s_1 e_(n1+n2+25)t1 6—(n2+6)t2 dt]_ dtz
o Jo

ni =0 no =0

:/ / (t]_ tz)s_l Z Z e—(n1+n2+26)t1 e—(nz-l—(s)tz dt]_ dt2
0 0

n1 =0 no =0

oo oo L 6(1—5)t1+t2 6(1—5)t1
= t1t9)°™ dtq dt
/0 / (b2 G =y (e — 1y @2

_ /Oo 25— L e(1=0)t dt/l (u (1 —u))s"ell=0)u .
0 0

et —1 etv — 1

Rewrite the above formula as

0o te(1=0)t 1 1 e(1=0)tu
7 T — 2s—3 1 — s—1 ]
(s)I(s) /0 t o dt ) /0 (u(1—u)) T du

It follows from a standard process as given in the proof of the main
theorem in [3] that

Z(—m) (—1)™ m! 2§2 Bomya—p(1 —0) Bg(1—6) Fo(—m),

2 @mi2-pip
where

An elementary calculation shows that

m!, if=2m+ 2,
m (2m+1—p)! )
Fg(—m)=¢ 2(-1) ((m+1—ﬂ)3 , H0<B<m+1,
0, ifm+2<pB<2m+1.

Hence our assertion follows.
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Using the identity

oo oo

D) ((ny+ma) (na +2n9)) 7" 4 (L+27%) ¢(29)

n1:1 n2:1

= S 27 1) () - (29) +27°¢(29)
b3S () (e ) o)

and propositions 9 and 10, we get the following Bernoulli identity

3 m!372"  Bopygr1 Barygnr

iy plglr! 2p+q+1 2r+qg+1

+ (‘;%T;‘) ( /0_3/2@32 +32+2)" do

—3/4
+/ (1+3y+2y2)mdy)
0

1 B, 2
- Jar-n(Za)
2 m+ 1

+2m ( (g}:ﬁ;)'? T -|1- 1)2>B’2m+2 (%)

[((m+1)/2]

m!
READ DR s s y s Y CYSTYC Yy

k=1
1 1
B () Bamsaan(5)
2k 5 ) Pam+2-2k( 5

REMARK 1. As shown above, the consideration of cases of several
variables leads to zeta functions with products of linear forms. Though
we have no general formula to evaluate their special values at negative
integers, it is possible to calculate these values case by case.

REMARK 2. It is possible to further extend our arguments in this
section to the cases that

F(T) =
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with P(7T) not necessarily a polynomial and aq, ..., o, are not necessar-
ily n-tuples of non-negative integers. Indeed, we only need the following
considerations.

I) P(T) is a finite complex linear conbination of Tlﬁ1 -+ Thn with
Re ﬁj > 0.

II) For all 1 < j < r, o = (1,...,05,) with a; = 0 or Re
Qi > 0, but Q; # 0.

Under the second condition, for 0 <7} < 1, we have the expansion

i Z )Tm1a1+---+mrar

= i io: P(T) ﬁT]mlaj1+~..+mrajr.
j=1

m1=0 m,.=0

Hence it is easy to write down Zp(s) as a sum of zeta functions associ-
ated with products of n linear forms. By employing the same arguments
as in Proposition 8 we obtain more identities. As an example we con-
sider the function

T (uv/a+v(e+ivB))
(1 —TVe) (1 —Te+iVB)’

F(T) =

where ¢ > 0, 0 < u, v < 1 and o, 8 > 0 with a8 = 2. Calculating
the residues and separating the real and imaginary parts we obtain the
following known (cf. [1, volume II, p. 276]) identity

m—+1
o2m Z Bon—ak+2(u) Bar(v) a1k (_ gk

2n—2k+2)!(2k)!

_ —m cos (2 k mv) (e2Fue + e2k(1—u)a)
= —= Z k2m+1 (e2ka _ 1)

ym 2. cos (2 kmu) (e2hvP 4 ¢2(1-0)8)
Z k2m+1 (e2kB — 1)

[\:JI»—l

k=1
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Part I1
Minking Eie

Throughout the rest of the paper, we use the following notations:
p is an odd prime number, m,n are integers such that p — 1 is not a
divisor of m, N is a positive integer or zero.

6. An identity for zeta functions.

We apply the method of Part I to establish an identity for zeta
functions.

Proposition 11. For any prime number p and complex number s with
Res > 1, one has

(1=p)C) = O 3 (s ).

(4,p)=1
1<j<pN Tt

PRrROOF. Counsider the zeta function Zp(s) associated with the rational
function

1 1
C1-T 1-Tp"

F(T)

It is easy to see that for Res > 1

Zp(s) =) k5= (kp)™ = (1—p~*)((s).



196 M. EiE anDp K. F. LAl

On the other hand, we have for any nonegative integer N,

T-1T7
F(T) =
(T) (1-T)(1—Tr)

- T+T%2+...47P1
B 11T

(T+T%>+ -+ TP (1+TP + T2 4 ... 4 TPE" D)
= N+1

(1-17"")
(G.p)=1 k=0
1<i<p™Ht

It follows that for Res > 1,

Ze(s) =5 S (s

Note that Zp(s) is determined by F(T') uniquely through the integral
formula

ZF(S)F(S):/ FlP(e=t)dt,  Res>1,
0

where I'(s) is the classical gamma function. Thus our identity follows.
As a consequence, we have the following.

Proposition 12. Suppose m is a positive even integer and p is an odd
prime with p — 1 not a divisor of m. Then

(1—p™ 1) % = Cy(m) + C1(m) (mod pN+1) ,

where

- _
Cim)=— > ] l<l>sz(N+1)(’ D, 0<i<m.

(4,p)=1
1<j<pN Tt
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ProOOF. We begin with the identity in Proposition 11. Both the Rie-
mann zeta function ((s) and Hurwitz zeta functions

J .
C<S’W), lea"'apN+17

have analytic continuations in the whole complex plane. So that the
identity I) is true for all s. In particular, we can set s = 1 — m in the
identity to yield

(1—pmt %” :% > pNEDim=y Bm( J{ZH)

p
(4,p)=1
1<j<pNt?
1 " (m — -
LS S (Mg
@Gp)=1 =0
1<j<pN Tt
:ch(m)
1=0

Note that the exponent of p occurs in [! is not greater than

[
+o=—<

I
_l. —
P! p—1

DO | =~

l
P

"~

Also p By is p-integral for all [ and

1
Ci(m)=(m-=1)---(m—1+1) Z jm=t— (pBl)p(NH)(l—l)—l .

[!
(4,p)=1
1<j<pNtt

Thus C;(m) =0 (mod p™¥*1) provides that
l
—§+(N+1)(l—1)—12N+1.
This is equivalent to

(N+1)(-2)

vV
DN | =~
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But N is a nonnegative integer, the inequality holds provides that

[
[—2>—-+1.
_2+

This is equivalent to [ > 6. Thus it follows

B

-_m d pNt1
=3 Cim) (mod pM+)

Il
E

(1—p™")

N
I
=

Co(m) + C1(m) + Ca(m) + Cy(m) (mod p™¥11).

Next we prove
Ca(m) =0 (mod p™T1)

and
Cy(m) =0 (mod p™Th).

Note that

-1
_ -m—2 N—|—1 N+1 -m—2
Ca(m) = 732 > P Z J

(4,p)=1 (4,p)=1

If p # 3, then

m—1 N
12 ’
is p-integral and divisible by p?¥ 1. However the case p = 3 is impossible
under the assumption that p — 1 is not a divisor of m. This proves that

Ca(m) =0 (mod p™¥th).

Now consider the case [ = 4,

m—1)(m—2)(m—3 o
i) = DD 0= 5 s
(4.p)=1

_ _(m— 1) (m —2) (m — 3) p3N+3 Z jm—t

720 ,
(4:p)=1

:_(m—l)(m—2)(m—3)p3N+3 Z et

24325
(4:p)=1
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Obviously Cy(m) is p-integral and divisible by p¥*! for any odd prime

p. Hence we can drop the last two terms in our congruence relation and
it completes our proof.

7. Congruence relations of Cy(m).
Recall that for 0 <1 < m,
1 m—1 (T (N+1)(1—1)
Ci(m) = — Z J (l>Blp :
(4.p)=1
1<j<p™ Tt
As shown in Proposition 12, Kummer’s congruences are equivalent to

Co(m) 4+ C1(m) = Cy(n) + C1(n) (mod pN+1).

However .
_ m—1
Ci(m) = 9 Z J
(4,p)=1
1<j<pNtt

So it is easy to see that if m =n (mod (p — 1)pY), then
Ci(m) = Cyi(n) (mod p™¥tl),

since

M= (mod pNt1),

for all integer j relative prime to p. Consequently, Kummer’s congru-
ences are equivalent to

—(N+1) —(N+1)
b . p .
— Z §m = — Z " (mod pN‘H) )
(4,p)=1 (4,p)=1
1<j<p™N Tt 1<j<pNtt

To simplify the notation we write

2.

(4:p)=1
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for

2.

(4,p)=1
1<j<pN Tt

Our proof that
Co(m) = Co(n) (mod p™¥ 11y,

employs the classical theorems of Fermat ([6, Theorems 71, 88]).

Proposition 13. Suppose that m, n are positive even integers and p
15 an odd prome with p — 1 not a divisor of m. Then

Co(m) = Cy(n) (mod p™¥ 11y,
if m=n (mod (p— 1) p).

ProOF. By the fundamental theorem of finite abelian group ([11]), we
can decompose the multiplicative group G = (Z/p™ 1 Z)* into a direct

product
w
GO H G’L )
i=1

where Gy is a cyclic group of order p — 1 and G; (i = 1,...,p) is a
cyclic group of order p® with

ert--+te,=N.
Such a decomposition is possible since Z/p™N 1 Z contains Z/pZ as a

subfield and the multiplicative group (Z/pZ)* is a cyclic group of order

— 1 ([8]).
Suppose that g, g1,. .., g, are generators of Gy, G, ..., G ; respec-
tively. It follows

Colm) =" — 2. J"

(4:p)=1

—(N+1) m .

Note that g™ # 1 since p — 1 is not a divisor of m. So

glr=Hm _q

1 moy oy gmP=2)
+g t+--+yg g — 1
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For each 1 <14 < p, if g/ = 1, then we automatically have
1 +g:n+ ,_,_,_g;n(Pei—l) :pei )

If g/ # 1, we have

1+g;[fl+._.+g;n(pei_l):g
But

Consequently the sum

L+ gl 4t gt

always has the divisor p®.
With a possible permutation in the indices, we suppose that g" =1
for 1 <1i < qand g™ # 1 for ¢ <4 < p. Then we rewrite Cy(m) as

p~ N+ gm(p— 1)_1q !

— i H H gz

Colm
o(m) = g

Suppose that ¢gP~! = 1 + kp, then it is a direct verification that
(g™®=1) —1)/(mp) is p integral and

1
— ("D 1) =k dp).
mp (9 ) (mod p)

It follows

1 1
m(p—l)_l = n(p—l)_l mod .
e )= @ - 1) (mod )

Also g™ —1and g —1 (i = q, .. ., p) are invertible elements of Z /pN T1Z
and

g™ —1=g¢"—1 (mod pN+1)

gi" —1=gi' =1 (mod p™*t).
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So that

(g™ -1)"t=(g" - 1)~ (mod p" ),

(9" =1~

(9" —1)7" (mod pNT1).

Multiply all these congruences together, we get

Co(m) = Co(n)  (mod p™*).

8. von Staudt’s Theorem.

Our proof of Proposition 13 is analogous to the proof of von
Staudt’s Theorem in [2, p. 384]. Indeed we are able to give another
proof of von Staudt’s Theorem by the identity (II) with N = 0. In other
words, we are able to kill two birds with one stone.

Proposition 14 (von Staudt’s Theorem). Suppose that m is a positive
even integer and p is an odd prime. Then

a) By, is p-integral if p — 1 is not a divisor of m,

b) if p— 1 is a divisor of m, then p By, is p-integral and

pBy, =—-1 (mod p).

PROOF. We begin with the identity (II) with N = 0.
B 1223 (m
1— m—1 m __ - B - —1 l—l.
(L—=p"7) = m§§<l>m p

j=11=0

Multiply both sides by m, we get

p—1 m
— m el I
=B = Y3 () )
j=11=0
p—1m—

1
m sm—1[  1— m—
= ( )sz Tt p™ T (p—1) By,
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It follows
p—1m—1 m
= B =3 Y () B
j=1 1=0

Now we shall prove our assertion by induction on m.
Suppose that p B; is p-integral for all 1 <[ <m — 1. Then

(7’) Bpt = (7) (pBi)p'~*

is p-integral provide that [ > 2. Hence we have

m _ 1 - m = .m—1, M (m B 1) = -m—2
(I-p )Bm=52.7 _EZ] +TPZ] (mod p) .
j=1 j=1 J=1

Note that p # 2 or 3, so that the third term on the right hand side is also
p-integral and divisible by p. So we can drop it in our consideration.

If (p—1) is a divisor of m, then ;™ =1foralll1 <j<p-—1.1I¢t
follows

p—1 m X 1_m_1
2] (mod p).
p i=1

(1-p™) B, =

J
Thus p B,, is p-integral and

pBp, =—-1 (mod p).

On the other hand, if p — 1 is not a divisor of m, we choose an element
g of order p —1in (Z/pZ)*. Then

m L= i NS (e
(I-p )BmE—Zg —EZg (mod p)
P50 j=1
1 g(p_l)m 1 mp_1 m
=, o1 22" (wedy)
p g —

Suppose that g?~! = 1+ ap. Then
gP= ™ =1 4 map (mod p?) .

Thus
1 glp=Dm _q

p gm-—1
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is p-integral. This proves that B,, is p-integral.

9. A slight generalization of Kummer’s congruences.
Here we reformulate Kummer’s congruences in a general form.

Theorem 15. Suppose that m,n are positive even integers and k is
a positive integer such that p — 1 is not a diwvisor of m for all prime
divisor p of k. Then

Bm m—1\ __ Bn n—1
WH(l—P )ZFH(l—P ) (mod k),
plk plk

if m =n (mod ¢(k)), here ¢ is the Euler ¢-function.
PROOF. Suppose that

m

k = prvl—l_l y
i=1

with p1,...,p, are distinct prime numbers and Ny,..., N, are non-
negative integers.
Consider the zeta function

Ck(s) = Z n=*, Res > 1.

(n,k)=1
n>1

Ck(s) has the Euler product
[[a=p)¢s).
plk

As usual, (;(s) has its analytic continuation and its special value at
s =1 —m is given by

Gt =m) = = T =Y.

plk

On the other hand, ((s) is the zeta function associated with the ratio-
nal function

1 S| 1 1
F(T)= — — - - ... Y
() 1-T ill_Tpi—i_Zl_Tpipl-i- +( )1_Tp1"'Pu
= 1<i
1<p
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by the well known inclusion-exclusion principle. Also for |T'| < 1, F/(T)
has the power series expansion

F(T)= ) i Ttk

(ik)=1 1=0
1<5<k

Thus it follows

(4,p)=1
1<j<k
and hence
G-m= 3 B (l) = 3 37 m
k m ™\ k m [ ! '
(.k)=1 (j.k)=1 =0
1<j<k 1<j<k
Set, .
_ my ., -1
Cl(m)—g Z I J Bk .
(4,k)=1
1<j<k

Note that for each 1 <7 < p

1 MY .op— _ _
Cl(m) = — N1 Z l >,] lBlkl 1 (mOd pf:vz-f—l) .
mp; .
(4,k)=1
1<j<pit!

By our proof Proposition 2, we have for [ > 2,
Cy(m)=0 (mod pNithy, i=1,...,p.

7

By Chinese remainder’s theorem, we get for [ > 2.
Ci(m)=0 (mod k).

This implies

B

-_m 1— m—1 =

] [a-pmh
plk (j,k)=1 (j,k)=1
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Consequently our assertion is equivalent to prove

But it follows from the fact that

1 P_(Nﬁl) N.
.m _ P; . i1
k2 =T > ™ (mod pith
(J,k)=1 (4,k)=1
1<j5<k 1<j<pNit?
and our previous identity
p—(NrH) p—(NrH)
7 "ITLE 7 =T mod Ni+1
S Y mET— Y " (medpMTh),
(4,k)=1 (4,k)=1
1<j<p™itt 1<j<p™itt

forall 1 <2 < p.

10. p-adic interpolation.

Let p be a prime number. Z, and QQ, are the ring of p-adic integers
and the field of p-adic numbers, respectively. (2, is the algebra com-
pletion of Q,. For a fixed positive integer k, we let X be the inverse

projective limit of Z/kpN Z, i.e.

X, =1lmZ/kpN 72,
.<_

where the map from Z/kp™ Z to Z/kp"™ Z for M > N is the reduction
modulo kp”~. Denote by a + kpv Z,, the set of x in X} which map to
a in Z/kp" Z under the natural projection map from Xy, to Z/kp» Z.

Fix a r-th root of unity ¢ with r relative prime to k. Also suppose

that ¢ is not a p™V-th root of unity for any N. Define

Ea

N —
pe(a+ kp™ Zy) = 1= ek

and
Wt k2N 2 = Y ot kpV 2y

e"=1

e#£l
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The above p-adic measure was given in [6] and it is also known as
Mazure measure.
Note that

X = U (a+kZp)
0<a<k

is a disjoint union of k£ topological spaces isomorphic to Z,. Also we
have
a+kpNZ,= U ((a+bkp™)+EkpNTtzZ,).
0<b<p

The above is a disjoint union of p compact open sets. It is easy to verify
directly that

p—1
wa+kpNZ) = p((a+bkp™) +kpNt'zZ,).
b=0

For any continuous function f : Xy — €2,, we define

N—o0
0<a<kpMN

. f(x)du(x) = lim Z f(a) pla+kp™N Z,) .

Consider the integration of the exponential function e*® and follow the
general procedure of [6], we obtain the following.

Proposition 16. For any positive integers m and k, we have

/Xk ™ Ldp(z) = (1 — ™) %m .

Proposition 17. Let X be elements of X}, which map onto (Z/kZ)*,
the invertible elements of Z/kZ. Then for any positive integer m,

/;xm_ldu() (1—pm mH

plk

PrRoOOF. By the inclusion-exclusion principle, we decompose the inte-

gration into the following:
T T
Pipj Xk PrPpXp

fom b2

pjlk
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Here pq,...,p, are distinct prime divisors of k. To prove the proposi-
tion, it suffices to prove that

B,

m—1 m m—1
x dp(x)=(1-r") —,
[t = -y D

for any integer o which is a prime divisor or a product of distinct prime
divisors of k.
Again we consider the integration of e'®,

/ e dpe(z) = lim (1 — ekpN)_l Z (e eh)ab
an

N—o00
0<b<kpN /a

= lim (1 - )71 (1 = (b)) (1 — e® e2) !
N—oo

— (1 e eoct)—l .

Since 7 is relative prime to «, the mapping € to € causes a permutation
among r-th roots of unity. Hence

r— (1 + ecxt et e(v’—l)cxt)
/ e du(z) = T orat
an €

T 1
l_ercxt_l_eat

(1 —gm B,,(at)™ 1
_ S 0=r) et

m)!

m=1

By comparing the coefficients of ¢, we get our assertion.

Now we are ready to given another proof of the theorem in Section
9.

PROOF OF THEOREM 15. For any element z in (Z/kZ)*, we have the
congruence relation

2™t =2""1 (mod k),

since m — n is a multiple of ¢(k). Hence for any prime divisor p of k,
with the p-adic measure p(x) defined on X, we have

/X 2 () = /X e dp(x)  (mod p°),

* *
k k



ON BERNOULLI IDENTITIES AND APPLICATIONS 209
where o = v, (k) is the highest power of p dividing k. On the other
hand, we have r™ — 1 € (Z/kZ)* since ™ — 1 € (Z/p*Z)* for any
prime divisor p of k. Also we have

r’"—1=r"-1 (mod k),

since (r,n) =1 and m =n (mod ¢(k)). Hence

-y

This is equivalent to

) " Vdu(z) = (1 —r")~t /X 2" Vdu(z) (mod p*).

Bm m— Bn n— «
WH(l—p H = (1—p""Y)  (mod p®).
plk plk

Thus it follows

11. Congruences among Bernoulli polynomials.

We are able to apply our previous arguments in Section 6 to derive
congruences among Bernoulli polynomials or in general, the special val-
ues at negative integers of zeta functions associated with rational func-
tions as considered before. Here we give a simple example to illustrate
the general procedure.

Proposition 18. For a fized prime odd number p (p > 5) and any
positive integer k relative prime to p. Suppose that o, 3 are positive
integers such that 1 < «, B < k and o+ jon = Bp for some positive
integer jo with 1 < jo < p — 1. Then for all compler number s with
Res > 1,

R A R S



210 M. EiE anD K. F. Lal

PRrROOF. Counsider the zeta function Zp(s) associated with the rational

function o
F(T)= —— .

Obviously, we have

Zp(s) = k_SC(s; %) .

Also from the identity

T*(1+TF+ ...+ Tw-Dk)

P(T) = i ,
we conclude that
_Sp_l a+ijk
Zp(s) = (kp) ;C(S’ )
p—1 ik
= (k) C(5:2) + (k) > “Lh)
j=
J#Jjo

On the other hand, we also have

T(14+TF+ .- + TO-DE) (1 4 Tk ... 4 TG 1))

F(T) — 1 _ TkpN+1
Thus it follows also that
i (5 2) — () = ey pi (s 20y
"k "k — " kyp
j];jo
_ N+1\—s . j
1<j<kp™t!
(4:p)=1
j=a (mod k)

Multiply the factor £~* on both sides, we get our assertion.
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To simplify notation we write

j=«a (mod k)

for

Proposition 19. Under the assumptions of the previous proposition

and suppose that m,n are positive integers such that p — 1 is not a
divisor of m. Then

(B () =7 ()
if m=n (mod (p—1)p").

PROOF. Set s =1 — m in the identity of Proposition 7, we get

L (a(§) - ()
1 Z i (7) By =t p(NAD (=) gl-m

j=a (mod k) I=0

With exact the same argument as in Proposition 2, we get

i (Bn () =8 (7))

1 . 1 m—1 7. 1—
= mkmpN+1 Z jm 5 jm 1 kl m (mod pN—i—l) ]
j=«a (mod k) j=«a (mod k)

Thus our congruences are equivalent to

1 m 1 . N+1
j=«a (mod k)

j=a (mod k)
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Note that k is relative prime to p, so the mapping x — kx + « is an
one to one mapping from Z/pN*+1Z into Z/p™N*+1 Z. Thus we have

Z jm = Z 3™ (mod p™N Ty,

j=«a (mod k) 1<j<pN+t
(J:p)=1

Hence our congruences follow by the same argument as in Proposition
13.

REMARK. It is possible to construct another p-adic measure on the
space Z, so that the integration of the monomial z™~1 over Ly, yields a
sum of Bernoulli polynomials. Hence, we have the p-adic interpolation
of Kummer’s congruences on Bernoulli polynomials. We’ll discuss this
in another paper.
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