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1. Introduction.

In this paper, we study particular examples of the intertwining
relation

(1.a) Q:A=AP,

between two Markov semi-groups (P, ¢ > 0) and (Q, t > 0) defined
respectively on (F, &) and (F, F), via the Markov kernel

A: (B, &) — (F,F).

A number of examples of (1.a) have already attracted the attention
of probabilists for quite some time; see, for instance, Dynkin [14] and
Pitman-Rogers [41]. Some more recent study by Diaconis-Fill [11] has
been carried out in relation with strong uniform times.

In Section 2, a general filtering type framework for intertwining is
presented which includes a fair proportion of the different examples of
intertwining known up to now.

In Section 3, we prove that the relation (1.a) holds when P; =

?+ﬁ, Q: = QF, with a > 0, 8 > 0, where ( ?+ﬁ) (respectively
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(Qf)) is the semi-group of the square of the Bessel process of dimension
2 (v + ) (respectively 2 ), and A = A, g is defined by

(1.b) Af(y)=E[f(yZ)], where Z is a beta(a,) random variable

(in the sequel, we shall say, in general, that A is the multiplication
kernel associated with Z).
The intertwining relation

(1.c) Q7 Mg = Nayp QF

may then be considered as an extension to the semi-group level of the
well-known fact that the product of a beta(a, ) variable by an inde-
pendent gamma(« + [3) variable is a gamma(«a) variable.

Changing the order in which the product of these two random
variables is performed, we show the existence of a semi-group (11} & ,t>
0) such that

(Ld) 0P Aasp=AarpQF .  a>0,8>0, a+B>1,

where A, g is the multiplication kernel associated with a gamma(a+3)

variable and (II**, ¢ > 0) is the semi-group of a piecewise linear Markov
process X% taking values in R .

In Section 4, it is shown that the X *# processes possess a number
of properties which are reminiscent of those enjoyed by the squares of
Bessel processes X <.

In Section 5, we compare the intertwining relation (1.a) and the
notion of duality of two Markov processes with respect to a function
h defined on their product space (see Liggett [33]). The intertwining
relationships discussed in Section 3 are then translated in terms of this
notion of duality. With the help of some (local time) perturbations of
the reflecting Brownian motion, some other intertwining relations have
been obtained in [7]; these are briefly discussed at the end of Section 5.

It would be interesting to be able, in the examples of intertwin-
ing discussed in this paper (Section 3, in particular) to obtain a joint
realization of the two Markov processes (X;) and (Y;), with respec-
tive semi-groups which satisfy (1.a). In many cases (see Siegmund [46],
Diaconis-Fill [11]), there exists a pathwise construction of Y in terms
of X for instance (possibly allowing some extra randomization). So far,
we have been able to obtain such a construction of the X*# process in
terms of X only in the case a + = 1.
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It may well be that, if such a pathwise construction can be obtained
for any (o, 3), then most of the properties of the X*# processes which
are being discovered in Section 4, mainly by analogy with their Bessel
counterparts, will then appear in a more straightforward manner.

A summary, without proofs, of the main results contained in this
paper has been presented in [58]

2. A filtering type framework for intertwining.

The following set-up provides a fairly general framework for in-
tertwining. (X, t > 0) and (Y%, ¢ > 0) are two measurable processes,
defined on the same probability space (2, F, P) taking values respec-
tively in £ and F', two measurable spaces; furthermore, (X, t > 0) and
(Y, t > 0) satisty the following properties:

1) there exist two filtrations (G, t > 0) and (F, t > 0) such that:
a) for every t, G, C Fy C F,
b) (X¢, t > 0) is (F;) adapted and (Y, t > 0) is (G;) adapted,;

)

2) (Xt, t > 0) is Markovian with respect to (F;), with semi-group
(P, t > 0), and (Y, ¢ > 0) is Markovian with respect to (G;), with
semi-group (Q¢, t > 0);

3) there exists a Markov kernel A : E — F such that for every
f E— R+,

E[f(X,)|Gi] = Af(Y;),  for every t > 0.
We then have:
Proposition 2.1. For every function f : E — Ry, for everyt,s > 0,
(2.a) Qi AN f(Ys)=AP, f(Ys), almost surely.

Consequently, under some mild (continuity) assumptions, one obtains
the identity
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PROOF. The result (2.a) is obtained by computing

E[f(Xt+S)|g8]

in two different ways.
On one hand, we have

]E[f(Xt+s)|QS] = E[]E [f(Xt+8)|gt+8]|g8]
=E[Af(Yi4s)]Gs]
= Qe Af(Y5).

On the other hand,

E[f(Xt1s)|Gs] =EE [f (Xeps) | Fsl|Gs| = B2 f(X5)[Gs] = A By f(Y5) -

We now present six classes of examples of intertwining where the
hypotheses made in Proposition 2.1 are in force.

2.1. Dynkin’s criterion.

This is, undoubtedly, one of the best known, and oldest, examples
of intertwining between two Markov processes (see [14]). Here, we start
with a Markov process (Y, t > 0) taking its values in a measurable
space F'; Y is Markovian with respect to (G;), with semi-group (Qy, t >
0). We assume that there exists a measurable application ¢ : F — FE
such that for every measurable function f : F — Ry, the quantity

Q+(f o ¢)(y) only depends, through y, on ¢(y).

Now, if x = ¢(y), we define P,f(x) = Q¢(f o ¢)(y). It is now easy to
see that the process (X} o d(Yz), t

(Ft) = (Gt), and has semi-group (P,
(P, t > 0), we have

> 0) is Markovian with respect to
t > 0). Moreover, by definition of

QiA=AP,,  with Af(y) = f(é(y)),

so that the hypotheses of Proposition 2.1 are satisfied.
A particularly important example of this situation is obtained by
taking Brownian motion in R™ for (Y3, t > 0), and (X; = |Y|, t > 0),
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the radial part of (Y3, t > 0), so called Bessel process of dimension n.
Here, F =R", E =R, and ¢(y) = |y|.

2.2. Filtering theory.
Consider the canonical realization of a nice Markov process (X, t >
0), taking values in E, with semi-group (P, t > 0), and distribution
P, associated with the initial probability measure p on E. Define
P,=WxP,,

where W denotes the Wiener measure on C'(Ry,R™), which makes
(Bg, t > 0), the process of coordinates on C'(Ry,R™), an n-dimensional
Brownian motion. Next, define (on the product probability space), the
observation process

t
Yt:Bt-l—/ h(X,)ds,
0

where h : £ — R" is a bounded Borel function.
Define G; = o(Y;, s < t), and the filtering process (II{’, ¢ > 0) by

I (f) = Eu[f(X)|Ge]

for every bounded measurable f : E — R. Then, (II}', t > 0) is a
((G¢, t > 0), P,) Markov process, with transition semi-group

Q:(v,T) =P, (IIy €T)
which satisfies the following intertwining relationship with (P, ¢ > 0)

(2.c) QA = AP, where Ap(v) = (v, ¢) .

PROOF OF (2.C).

Qi Ap(v) = E, [II} (¢)] = By [p(X¢)] = APy o(v) .

NOTE. A deep study of the measure-valued process (II}', ¢ > 0) has
been made in [16] (see also [26] and [54]).
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2.3. Pitman’s representation of BES(3).

Consider (B, t > 0) a one-dimensional Brownian motion starting
from 0. In this example, we take (X; = |B|, t > 0) and (Y; = |By| +
ly, t > 0), where (I, t > 0) is the local time at 0 of (B, t > 0). Then,
it follows from [40] that (Y%, t > 0) is a 3-dimensional Bessel process
starting from 0, and a key to this result is that, if (G; = o(Ys, s <
t), t > 0), then, for every Borel function f : Ry — R, one has

E[f(X,)|G] :/0 f@Yy) da,

so that the hypotheses made in Proposition 2.1 are satisfied with

Af(y) = / f(ay)de.

Several variants of this result, in different contexts, have now been
obtained, starting with Pitman and Rogers [41].

2.4. Age-processes.

Let (X¢, t > 0) be a real-valued diffusion such that 0 is regular for
itself, and let n be the characteristic measure of excursions of X away
from 0. Define g = sup{s <t: Xy, =0}; (At =t — g4, t > 0) is called
the age-process.

(A¢, t > 0) is a Markov process in the filtration (G, = Fy,, t > 0),
and its semi-group (Ilg, t > 0) satisfies

I, A =AP;, where Af(a) = n(f(X,)|V > a),
with V' the life-time of the generic excursion under n. The identity

E[f(X:)|Fg,] = Af(A)

(which corresponds to the third hypothesis in Proposition 2.1) may be
proved by excursion theory. In the particular case where (X, t > 0) is
a Bessel process with dimension d € (0, 2) and index —v (the dimension
and the index are related by d =2 (1 — v), so that 0 < v < 1), we now
identify A.
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We simply write g for g1, and define the Bessel meander of index
v, (my(u), u < 1), by the formula

1
JI—g X9+u(1—9) J

(this process is called the Brownian meander in the case v = 1/2).
Then, we have the following

my (u) = u<l1

Lemma 2.2. Let 0 <v < 1.
1) m, is independent of F,.

2) M, the distribution of m, on C(]0,1],R}), and Péy), the dis-
tribution on C([0,1],Ry) of BES(d'), with d' = 2 (1 + v), satisfy the
absolute continuity relationship

Cv

B I'(l1+v)
= X7

21+V

(2.d) M, PO(V) , with ¢, =

The relation (2.d) is a generalization of Imhof’s relation for v =
1/2. A proof of this relation involving enlargement of filtrations and
change of probabilities, may be found in [2]; another proof is given in
[61, Chapter 3].

Ao

:
3

Figure 1. Age and Residual-life processes.
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As a consequence of (2.d), it is easily seen that the distributions
M, are all distinct as v varies in (0,1), but that, nonetheless, the one-
dimensional marginal X, (M, ) does not depend on v; we have

X1(M, ) (dp) = P(m, (1) € dp) = pe=*"*dp,

so that,

A (@) =Bl (am, 1) = [ S dppeT [ p).

REMARK. The age-process and the intertwining relationship corre-
sponding to v = 1/2 have been considered in [1].

2.5. Residual-life processes.

Consider again (X, t > 0) a real valued-diffusion such that 0 is
regular for itself. Define d; = inf{s > ¢t : X, = 0}. The process
(Ry =diy —t, t > 0) is called the residual-life process.

The random times (d¢, ¢ > 0) are obviously (F:)-stopping times,
and (R, t > 0) is a Markov process in the filtration (Fg,) with semi-
group IT given by

_ [ E[Ex, [f(TV)]], ifu>t,
uf(t)_{f(t—u), ifu<t,

I

where E denotes the expectation with respect to Py, and T = inf {¢ >
0 : X; = 0}. This is a classical result in regenerative systems theory
(see [34] and [10]), the proof of which relies only on the strong Markov
property of X.

Indeed, let f be a positive Borel function, and 7" = ds. We want
to establish the formula

E(f(Rets)|Fr] =TT f(R.).-

On the event {t < Rs} € Fr, we have diys = ds so that Ryys = Rs —t.
On the event {t > R}, we can write

f(Rt—l-s)(w) = g(wv 9T w) s
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with g(w,w’) = f(Ri—r, () (")), a Fr x F measurable function. The
strong Markov property taken at time T' = dy yields, on {t > R}
E[f(Bets)|Fr] = E[g(w, 0r w)| Fr]
= Ex,lg(w,-)]
=E[f(Ri—r, () (+))]
=E[Ex,_p, o, [[(T0)]],

(recall that for all ¢: Ry =Tyo 0).
The semi-group (11;) satisfies

P A=ATL, where Af(z) = E,[f(Ty)],

and (P, t > 0) denotes the semi-group of X. Indeed, for all positive
Borel functions f, we have

E[f(Rt”ft] = E[f(To © 9t)|~7:t] = Ex, [f(TO)] :

In the case where (X, ¢t > 0) is a Bessel process with dimension d < 2
and index (—v) (recall that d = 2 (1 — v)), the law of T is well-known
(see, e.g. [62])

so that

Furthermore, if u >t

gt = x[(35)] =l (% w-0)]

Consequently, the semi-group II is given by

Z].—I/
Zy

f[uf(t):]E[f( (u—t)++(t—u)+>].



320 P. CArRMONA, F. PETIT AND M. YOR
2.6. Brownian (or Bochner) subordination.

We present now an example of intertwining where P, = K; is the
semi-group of the standard symmetric Cauchy process (Cy, t > 0), and
A is the kernel of multiplication by N, a centered, reduced, Gaussian
variable (see Section 3.3 below for some general definition), i.e. for any
Borel f: R — Ry,

Af(x) =E[f(Nz)].

Consider (B, ¢, t > 0) a two dimensional Brownian motion starting
from zero, and let

Bt - O'(B&ﬁs» S S t)

be its natural filtration. Furthermore, let (7¢, ¢ > 0) be the inverse of
the local time at zero of B. ot
Then, as is well-known (see, e.g., Spitzer [47]), the process (C; =

Br,, t > 0) is a standard symmetric Cauchy process; furthermore, if we

define Gy = o (75,5 < t) and F; def B,,, then all the hypotheses at the

beginning of this section are in force, with: Xy = Cy, and Y; = /7.
Thus, if (9,51/2), t > 0) denotes the semi-group of (\/7¢, t > 0), we
deduce, from Proposition 2.1, the intertwining relationship

(2.€) 0PN = AK, .

More generally, if, for 0 < a < 2, (Cf,t > 0) denotes a symmet-
ric stable process of index « starting from zero, this process may be
represented as

CtaZBTt(g), t>0,

where (T, t(ﬁ )t > 0) denotes a one-sided subordinator of index = «/2,
independent from (B,,u > 0).

Then, just as above, if we call (9£B),t > 0) the semi-group of

(\/Tt(ﬁ), t > 0) and (K, ¢t > 0) the semi-group of (Cf,t > 0), we
obtain the following intertwining relationship

(2.f) 0PN = AKE .

More generally, we could also represent (Cf*, t > 0) using a time change
of another symmetric stable process (C), u > 0), by a suitable one-sided

stable subordinator (Tt(d), t > 0), thus obtaining a more general family
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of intertwinings relating the symmetric stable processes to the one-sided
stable subordinators.
We intend to develop such studies more thoroughly in a forthcom-

ing paper.

REMARK. After the presentation of these six classes of examples, the
following instructive remark may be made: in the set-up of Proposition
2.1, it is wrong to think of (Y, ¢ > 0) as a (Markov) process which
would carry less information than the process (X, ¢ > 0), so that one
would have

(2.2) o(Ys, s <t) Co(Xs, s<t), for every ¢t > 0.

Indeed, in Section 2.1, it is X which, generally, carries less information
than Y; in Section 2.2, the natural filtrations of X and Y cannot, in
general, be compared; in sections 2.3 and 2.4, Y carries less information
than X. Instead of (2.g), the important assumption in Proposition 2.1
is that X is Markovian with respect to (F3), and Y is Markovian with
respect to (Gy), with Gy C Fy; this is quite different from asserting

(2.8).

3. The algebra of beta-gamma variables and its relationship
with intertwining.

3.1. The beta-gamma algebra.

In order to facilitate the reading of the main Section, 3.3, we need
to recall a few well-known facts about beta and gamma distributed
random variables.

Let a and b be two strictly positive real numbers. We shall consider
three families of random variables, which we denote respectively by Z,,

Zap, Z (2) "and which are distributed as follows

a,b?
d
P(Z, € dz) = yq(dz) = 2% e " ﬁz) , x>0,
P(Zay € dz) = Bop(da) = 2% (1 — )=t =2 0<w<l
a, a, B(a,b) Y Y
a—ld
P(28) € dx) = f)(dx) = z>0

(1+ x)**+*B(a,b) ’
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(recall that: B(a,b) =T'(a)T'(b)/T'(a+b)).

There exist important (well-known) algebraic relations between the
laws of these different variables (see e.g. [22]; for some applications of
these relations, see [12] which also refers to [23]).

We first remark that

@ d _ Zab
3, £ _Zab |
( a) @b 1 - Za,b

The main relation is the following
d Za

3.b Zovs 2 :(7,2(1 Z),
(3.b) (Zap: Zave) =\ g— 7 Zat 2
where, on the left hand side, the two variables are assumed to be in-
dependent, while on the right hand side, Z, and Z; are assumed to be
independent and, as a consequence of (3.b), Z,/(Z, + Zy) and Z, + Zp
are independent.

Here is an interesting consequence of (3.b): if Z,, and Z,4p . are
independent, then

d
(3'C) Za,b Za+b,c = Zg,bt+c -

PROOF OF (3.c). From (3.b), the pair of variables (Z, p, Z4+4p,c) may
be realized as the pair

( Za Za+Zb )
Lo+ 2y Zoy+ Zy+ Z.

with Z,, Zy, Z. independent; then

d Za d Za, d
Zap Latb,c = - = Zaptc -
PO T Gat D+ L Zat Zpse T

We now remark that, as a consequence of (3.a) and (3.b), we obtain

7@ d Za

(3d) a,b 7 ’

where Z, and Z; are assumed to be independent.
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Finally, we remark that if Z, ; and Zc(f{—)b,c are independent, then

(3.¢) Zap 22, Z 2.

a,c

PROOF OF (3.e). From (3.b) and (3.d), the pair of variables

2
(Za'ab7 Z(S/—gb,c)

may be realized as the pair

( Za Za-l-Zb>
Zo+ 2y 7. ’

with Z,, Zy, Z. independent. We then obtain

@ 4 _Za ZatZpd Za

Lob = .
b a+b,c Za+Zb Zc Zc

3.2. Notation.

All the intertwining kernels A which will be featured in this Section
3 act from Ry to R, and are of the form

Af(x) = E[f(z Z)],

for some positive random variable Z; it will be convenient to say that
A is the kernel of multiplication by Z.

More precisely, we shall encounter the multiplication kernels listed
in the following table

2

A 27, 1/(2 Z,) Zog 1/Z s z?),
" " 2

A A, A, Ao g Aop AP

Table 1. Multiplication Kernels.
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3.3. Markovian extensions of the beta-gamma algebra.

In this section, (Qf) denotes the semi-group of the square of the
Bessel process of dimension 2 «. Then, we have the following

Theorem 3.1. For every a > 0, 8 > 0 and every t,
(3.) QT hap = Nap Q7 -

REMARKs. 1) The identity (3.f) may be understood as a Markovian
extension of the relation (3.b), since we deduce, in particular, from
(3.f), that,

QA5 f(0) = Aa g Q5 F(0),

which is equivalent to

(3'g) ]E[f(2tZa,B Zcx-l—ﬂ)] = ]E[f(2tZa)] )

where, on the left hand side, Z, g and Z,g are assumed to be inde-
pendent.

The relation (3.g) is another way to write the following main con-
sequence of (3.b)

Zo 2 Zop Zass.

2) We have already encountered the relation (3.f) in the particular
case: « = 1/2, f# =1, in Section 2.3.

3) As a consequence of (3.g), the infinitesimal generators are inter-
twined
L ANy =NAopgL?®.

This relation corresponds, in the language of differential equations, to
the transmutation of differential operators (see e.g. Trimeche [48]).

PROOF OF THEOREM 3.1. The identity (3.f) may be obtained as a
consequence of Proposition 2.1; indeed, if (X&) and (X/) are indepen-
dent squares of Bessel processes, with respective dimensions 2« and
2 3, starting at 0, then (X def X* 4+ XP, t > 0) is the square of a
Bessel process of dimension 2 (« + (3), and the hypotheses which are in
force in Proposition 2.1 are satisfied with

Fe=0(X2XP s<t), G =0(X2 s<1),
Xt:X?? YV,‘,:XtOH_B
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Indeed, by time-inversion, the processes (tQXf/t7 t > 0) and (thf/t, t>

0) are independent squares of Bessel processes of respective dimensions
2« and 2 3, starting from zero.

Let H be a non-negative measurable functional, and let f be a
positive Borel function; we have

E[H(Y,, u <t) f(X)] =E[Hu®Yi/y, u < t) f(£2X1)]-

We note Hy = H(u?Yy,, u < t). Since (t?Yi, t > 0) is Markovian

with respect to the filtration J(Xf‘/u, Xlﬂ/u, u < t),

E[H(Y,,u <) f(X{")] = E[H f(t*X]),)] = E[E[H, Y1) f(*XT),)]

We now use (3.b) and the fact that A, g is a multiplication kernel to
obtain

E[H Yy, u <t)f(X7)]

E [E [Ht |Y1/t]Aa,Bf(t2 Yl/t)]
E[H; Mo p f(t? Y1/0)]
E[H(Ya, u < t) Aapf (YD),

By comparing the two extreme terms, and letting H vary, we get

E[f(Xi)|G] = Aap F(Y1) -

We consider again the relation (3.g) which we write in a more
concise form as

Ao =AopgAays.

Since multiplication kernels commute, we also have
Ao = Aatphap

and this identity admits the following extension

Theorem 3.2. Let o > 0, 8 > 0, such that o+ 3 > 1. Then:

a,fB
t

1) There exists a semi-group on Ry, which we denote (II;"7), such

that

(3.h) H%BAa—i-ﬁ =Aatp Q-
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2) This semi-group is characterized by

(1+At)P
(1+A(t+y))>tB°

(3.1) / 8 (y, dz) (1 + Az)~(@H) =
0

for all t,\,y > 0.

3) Suppose a+ 8 > 1. Then every Cl-function f : Ry — Ry,
with compact support, belongs to the domain of the infinitesimal gener-
ator La g of (IT¢7), and

Bla+p—-1

L (0) = () + PO LZD [y () = g dy.

COMMENTS. 1) The particular case a + 8 = 1 of the relation (3.h) was
already encountered in Section 2.4 (up to some elementary modification,
since in that example we considered the Bessel process of dimension
2 a, instead of the square). More precisely, the square (A2, t > 0) of
the age process of the Bessel process of dimension 2« is a realization
(starting from 0) of the process X*“1=% On the contrary, in the case
a+ (> 1, we do not know whether the relation (3.h) may be obtained
as a consequence of Proposition 2.1 and our proof of (3.h) consists in
showing the existence of (II8?) via (3.i). The relation (3.i) is deduced
from (3.h) by applying both sides to the function

A
ex) exp (= Fu). wz0
and using the relations
Aaip(er)(2) = cagp (1 + X2)= (@0

Qen)(:) = (14 A0 e (= 5575)

(3.J)

2) The third part of the theorem follows from the second when one
considers the functions

Pa(z) = (1+A2)7%.

3) In the case o+ (3 > 1, the following pathwise description of a
Markov process X *# with semi-group H?’ﬁ is easily deduced from part
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3) of the theorem: the trajectories of X®P are ascending sawteeth of
constant slope 1.

More precisely, starting from zg > 0,
XPP =go+t, 0<t<S,

where S = xo (e — 1), and o is an exponential random variable of
parameter (3. Then, X*# has a negative jump of magnitude (1 —

e~ 1) Xgiﬁ , where T is an exponential random variable of parameter

a + B — 1, independent of S; then, X*P starts anew from z; = Xg’ﬁ.
We draw a typical trajectory of X7,

Xta’ﬂ A

Zo

Figure 2. Trajectories of X7,

We will show in Section 3.4 the existence of a positive measure
119P(y, dz), which is characterized by (3.i); this existence is assumed
for the moment. We now discuss duality properties for the semi-groups
(Q%) and (II®P); this will be important in the sequel, both in order
to discover some new intertwining relations (see theorems 3.4 and 3.5
below) and also to express some results of time reversal for X% (see
Section 4.5 below). We begin by recalling the

Definition. Two Markov semi-groups (P;) and (P;) on E are said to
be in duality with respect to a o-finite positive measure p (in short: they
are in p-duality), if for every pair of measurable functions f,g: E —
Ry,

<Ptf7g>p,: <f7ptg>p, .
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We now have the following

Theorem 3.3. Let a > 0 and p(dz) = z* dx. Then:
1) QF is self-dual with respect to .

2) Let B > 0, such that o+ 3 > 1. There is a unique Markovian
semi-group (I ’ﬁ) on Ry, which is in p-duality with (115F).

3) Every Cl-function f : Ry — Ry, with compact support, be-
longs to the domain of the infinitesimal generator L, s of (II ’ﬁ), and
we have

Lapf(e)=—f'(x)+p

a+ﬂ—1/ flay) — f@)
MEY: Y-

REMARKS. 1) Suppose « < 1. If we let 3 decrease to 1 — «, we obtain
in the limit a semi-group [I*=« A realization of this semi- group 1is
given by the square (R?, ¢t > 0) of the residual-life process of a Bessel
process of dimension 2 « (see Section 2.5).

Ay

Figure 3. Trajectories of X,

2) Again, in the case « + 3 > 1, the following pathwise description
of a Markov process X P with semi- group H fis easily deduced from
the form of the infinitesimal generator L, 3: the trajectories of X
are descending sawteeth of constant slope —1.

More precisely, starting from 2y > 0,

XPP =zo—t, 0<t<S$,
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where S = & (1 —e77), and o is an exponential random variable of
parameter o + 3 — 1. Then, X®# has a positive jump of magnitude
(1-e 1) X g’ﬁ , where T is an exponential random variable of parameter

(3, independent of 5’; then, X P starts anew from 71 = Xgﬁ We draw

a typical trajectory of X8,

From Theorem 3.3, we easily deduce two other intertwining rela-
tions, namely (3.k) and (3.1) below.

Theorem 3.4. Let a > 0,3 > 0 such that a + 3 > 1. Then, we have

QeAg = A 13" .

PRrROOF. We start from the intertwining relation (3.h)

H?ﬂ Aa—i—ﬁ = Aa+ﬁ Q? )

and consider the adjoint operators in L?(u), where p(dz) = 2%~ 1dux,
as in Theorem 3.3. We obtain

Q? Aa-i—ﬁ = Aa—l—ﬁ H?’ﬁ ,

since Q' is self-adjoint with respect to p (obviously Aa+5 denotes the
adjoint of Ayyp with respect to p). It remains to compute explicitly

Ay3; one finds

Aaspgly) = %E [g(ﬁ)] = cap Ns9(y)-

Theorem 3.5. Let o > 0,3 > 0 such that a + 3 > 1. Then, we have

(3.1) P A® = A®)

T8
a+pB,B T Ta+p,p I

PRrROOF. Remark that, from (3.d): A&z_i)_ﬂ,ﬁ = AgspAg. The result (3.1)

now follows immediately from the intertwining relations (3.h) and (3.k).
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As was already pointed out, Theorems 3.1 and 3.2 may be under-
stood as Markovian extensions of the relation (3.b). Likewise, the next
theorem is a Markovian extension of the relation

d
(3C) Za,b—f—c — Zab Za+b,c ’

with the notation of Section 3.1.

Theorem 3.6. Let a > 0, >0, v > 0, such that a« + 3 > 1. Then

(3.m) H?ﬁ Aa-i—ﬁ,v = Acx-l—ﬂ,'y H?’ﬁJﬂ
and
(3.m) ng,ﬁ-i—'y Mgy = Apy H?’ﬁ :

PROOF. A kernel A is said to be determining if, when considered as a
linear operator from Cy(R; ) to Cp(Ry), it is injective.

1) Since the kernel A,4p4~ is determining, it suffices, in order to
prove (3.m), to show the relation

b N b +
(3.0) 5 Aoty Dty = Daspry 57T Ay -

Now, the left-hand side of (3.0) is equal to 1" Aq+p, with the help of
(3.g). The right-hand side of (3.0) is equal to

Aaipoy Moty QF = Nagp QP =177 Agip

using first Theorem 3.2, then (3.g), and again Theorem 3.2.

2) To prove (3.n), we consider the adjoint operators in L?(1), where
p(dx) = z*~1 dz, of the kernels featured in (3.m).

By Theorem 3.3, the adjoint of II®” (respectively I1#717) is 197
(respectively 1P 7). and it is easily shown that the adjoint of Ay s

is a multiple of Ag .. The relation (3.n) is now proved.

REMARKS. 1) Assuming that the different intertwining relations ob-
tained in this chapter may be realized in such a way that they fit in
the filtering framework discussed in Section 2.1, Theorem 3.6 suggests
that, for « fixed, and as (3 increases, the process X®# is Markovian
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with respect to a filtration (.7-",5(5 )t > 0) which increases with 3; roughly
speaking, more information seems to be required as (3 increases in order
to construct X, and the case 3 = oo corresponds to BES Q(2 «); see
Section 4.5 for a more precise result formulated as a limit in law.

2) Transforming the relation (3.1) in Theorem 3.5 by duality with
respect to the measure p(dz) = 1 do does not yield any new relation

since A((i)_ﬁ’ P is its own adjoint (up to a multiplicative constant).

3.4. Explicit computation of the semi-group H?’ﬁ

This section is devoted to the proof of the existence of a probability
measure 1% (y, dz) which satisfies formula (3.1); we have not found an
elegant way to avoid the technical computations of this section.

We first reduce the problem to the inversion of a certain Laplace
transform. Let ¢,y be given and define x = ¢/(t + y). Then, from
formula (3.i), there exists a measure p”(du) on Ry which depends only
on £ (and «, 3) such that

/ (s dz) f(2) = / W (du) F((t+ y)w)

and, from formula (3.i) again, p” is the only probability measure on R
such that, for every A > 0

[e’e] K B
(3.p) /0 15 () (14 Au)~(@H8) — % |

In fact, from the comments following Theorem 3.2, we see that p" must
be carried by [0, 1].

We shall then deduce from formula (3.p) the following Laplace
transform identity

/01 " (du) u= @B exp ( - s(% - 1))

SO D (5 (s,

where K =1 -k = y/(t + y), and ®(a,b; z) is the confluent hypergeo-
metric function defined by

®(a,b; z) i(Z—Z—

k=0

(3.q)
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where (a)y =a(a+1)---(a+ k —1). The hypergeometric function

2 (@) (D) 2F
F(a,b,c;z) =) ( zi;k)k %l
k=0

shall also play a prominent role in the sequel (see e.g. Lebedev [30]).
Now, the key to the explicit computation of H?’ﬁ is the

Proposition 3.7. Leta >0, 3 >0 and a+ 3> 1. Then:

1) there exists a unique function gop : Ry — Ry such that for
all s >0

1+ /Ooo du go,p(u) e = L?(Z)ﬁ)

2) the function g, g may be expressed as follows in terms of F'

S_B (I)(_ﬁv Q; _S) 3

1
C+U’18_1F(/871_57a;_>7 qu>]-7

Gap(u) = u
cc F2—-—a—-08,1-p,2;u), otherwise,

where
1

“* 7 B(a,p)

and c.=(a+p-1)0.

It is now easy to express p" and H?’B(y; dz) in terms of g, 3. We
obtain the

Theorem 3.8. Let >0, 3>0 and a+ 3 > 1. Then

KU

_ K\ _ atB—
p"(du) = R e1(du) + (E) R’ ga,ﬁ( )U o2 lio<u<iy du

RU

and the semi-group H?’ﬁ 1s given by the formula
[ sz 1

= (%)ﬁf(Hy)

N / ' uaw—z(%)ﬁga,ﬁ(g (G- 1)) f(+ 9w



BETA-GAMMA RANDOM VARIABLES 333

For the sake of clarity, we have postponed the proofs of formula (3.q)
and Proposition 3.7 until now.

PROOF OF FORMULA (3.q). If we apply the formula

1 1 o0 3
— d a+pB—1 —ax
a®tf  T(a+ ) _/0 o ¢

to a = 1+ Au, the left-hand side of (3.p) becomes

Mgy J, 1ot [t
ndu d.T.Ta+’8 1e T—AuT
F(OH‘B)ON( )0

1

00 1
— d¢ e~ §a+ﬁ—1/ 1" (du u—(@tB) o—=&/u
[(a+B) ./0 0 ()

We shall now identify the right-hand side of (3.p) as a Laplace transform
in A. Since formula (3.i) follows from (3.h), we know that

(1+At)P

(31‘) (1 A (t + y))"‘+ﬁ = E[Q? (2yZa+,3;e)\)]7

where, keeping with our notation, Z,,g is a gamma variable with pa-
rameter a + (3. We introduce the density p§*(a, b) of Qf which is known
to be (see [37])

(35) pi(ab) = 5

1 (b>(a—1)/2 a-l—b)Ia_l(m

0.
21 ¢ ) 7

a

Making an elementary change of variable in (3.r), we obtain the identity

k)P o0
% :2(t+y)/0 dé e E[p (2y Zarp; 2(t+9) €)].

Comparing the new forms we have just obtained for the two sides of
(3.p), we get the identity

a+6-1 1
§ ; / e=E/0 = (@+B) ()
0

34) T(a+p
=2(t+y)Elpf 2y Zayp; 2(t+y)&)].
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Using formula (3.s), we obtain

2(t+y)Elpf (2y Zatp: 2(t+y)&)]

1N (a—1)/
= (sm50) ()

o (VT - P

K

and, developing this expectation, we find that the formula (3.t) may be
written as

L e arp)
—&/u , —(a 5(d
S J, e
a-1_-¢/k 00 NF
(3.1) _ 676‘/ dn na+ﬁ—(a—1)/2 e~/ Ia—l( \/H£77> .
2 KR Lo &
2

Now, with the help of the integral representation

I'(b o
®(a,b;z) = I‘(b(i—)a) e” 2(170)/2 /0 dtett((=D/2)=a 1, (2V/21),

which is valid for Re (b —a) > 0, |arg (2)| < m, b # 0,1,2,... (see [30,
p. 278]) together with the relation

Iu(é) — 6_i7ry/2 Jy(é ei‘rr/Z),

we find that (3.r) may be written as
1 _
_ _ L(a+pB) (k\# _ R
§/u y=(@4B) yr( ) = > T 0) (_) ¢ (_ B )
e U du e o , QU ,
/ et = = (% B ¢
which is obviously equivalent to (3.q).

PROOF OF PROPOSITION 3.7. i) The case when /[ is an integer n is easy,
since ®(—n, a;; —s) is a polynomial of degree n in s and the inversion of
the Laplace transform

sT"®(—n,a; —s)

is elementary.
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ii) It then remains to prove the proposition when 0 < # < 1, and
then, when 1 < 3 < 2, etc...

In fact, from the definition of g, g as presented in Proposition
3.7.1), we deduce the recurrence relation

B-1 00
(3.v) Ja () = % + ﬁ/o dtt™ gas1p-1(tx)

7
(more precisely, assuming that go41,8—1 exists, then if we define g, g
by (3.v), it satisfies part 1) of the proposition).

On the other hand, we also show that the expression of g, g as
presented in Proposition 3.7.2) satisfies the same recurrence relation;
consequently, using a recurrence argument, it will be sufficient to prove
the proposition in the case 0 < § < 1.

iii) We start with the proof of the recurrence relation (3.v). We
denote by g7 5(z) the right-hand side of (3.v). We easily obtain the
formula

oo
1+/ du gy, g(u)e™"
0

_Dla+p) | BL(a+p)
 I(a)sP sl (a+1)

/ dv®(1— 3, + 1; —v)
0

and, in order to prove (3.v), it suffices to show that the right-hand side
in the last equality is, in fact

F(a+p)

F(Oé) $B @(—ﬂ, o2 _S) ’

or, equivalently

@(—ﬂ,a;—s):1+§/Osdv@(1—ﬂ,a+l;—v).

But this follows from the identity

d

LI™®

(see [30, formula 9.9.4, p. 261]).

iv) We now prove the same recurrence relation (3.v) between g, g
(the function defined in part 2) of the proposition in terms of F') and
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Gat1,8—1- It is elementary to transform the desired relation (3.v) be-
tween g, p and go4+1,3—1 into the following relation

(3.w) ga,gG) = yl‘[}(B(;’ﬁ) +ﬁ/0y dn 1’ §a+1,ﬁ—1<%)> :

Consequently, in order to prove (3.w) for y < 1, we need to verify the
identity

Bla, p) B

’ F
)/0 d’l (1—572—ﬁ7a+1771)7

which follows from the classical identity

d b
%F(a,b,c;z) = %F(a+1,b+ Lc+1;2)
(see [30, formula 9.2.2, p. 241)).
At this point, it remains to verify the relation (3.v) between g, g
and §o+1,5—1 only for z < 1. We write (3.v) in the equivalent form

Ja,p(z) = $_1+ﬁ(3(; B + ﬁ/ d¢&=" §a+1,ﬁ—1(f)>

which implies

-1
Gos @) = T2 @) 2 s g o).

Since the value of o (1) is known, the above difference equation de-
termines g, g uniquely. Hence, all we have to verify is the following
relationship

b
c_a—F(a+1,b+ lLc+ 1;z)
c

— e P P ) - Dot -1)(B- 1) Flabt1,¢0),

T T

where c. = (a+p-1)(f-1),a=2—a—-0,b=1— [, c=2. This
relationship is equivalent to
azx

—Fla+1,b+1,c+1;2) = —F(a,b,c;z)+ F(a,b+ 1,¢;2),
c
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which is precisely [30, formula 9.2.13, p. 243].

v) We finally prove the proposition when 0 < 8 < 1. The first part
of the Proposition will now follow from the relationship

%(S_ﬁ @(_/Bv «, _S)) = 68_18_1 @(_/B + ]-7 «, _8)

and the integral representations

F(l+[ﬂy‘ﬁ_1:L/ dt e vt 1P
0

and

1
B+ lLa+p-1

1
— —y) = dte Yt +=P (1 — p)otB—-2
B(—p+Lo—y) = 5 )/0 PVt B (1 1)

We now obtain that part 1) of the proposition is satisfied with the
function g = g, p defined by

_ cf
zwmy_BGB+La+ﬁ—DFﬂ+@hm%

h(u) = /OW\1 dtt=P (1 — )22 (u —t)7, and ¢ = W .

The expression of h, hence of g, in terms of F', is then deduced from
the integral representation

1 1
= | dttta =t (1 —ut)
B(b,C— b) ‘/0 ( ) ( U ) )

which is valid for Re (¢) > Re (b) > 0 and u < 1 (see [30, formula 9.1.4,
p. 239]).

F(a,b,c;u) =

4. Some properties of the X*” processes.

The family of processes X*? enjoys a number of properties which
are the counterparts of properties of the squares of Bessel processes. In
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the eight following sections, we shall compare such properties for both
classes of processes.

4.1. Time-changing.
a) Here are two transformations of Bessel processes which are most

useful in some computations:

i) if (R, t > 0) is a BES (d), with d > 2, starting at ro > 0, there
exists a real-valued Brownian motion (8, t > 0) such that

t
ds I/Zg—l.

log (Ry) = fu+rvu, Whelreu,:/0 R_g’ .

In the literature, this relation is also found in the form of a representa-
tion of the geometric Brownian motion with drift v, i.e. (exp (B, +
vu), u > 0), in terms of a Bessel process R, with dimension d =
2 (1+v), as follows

exp (Bu + 1) =Ry(/0uds exp(2(ftvs). w0,

(see, for example, [52], and for some applications, [62] and [60]),

ii) for convenience, (R,(t), t > 0) now denotes the Bessel process
with index p, i.e. with dimension d = 2 (1 4 p). Let p and ¢ such that
1/p+ 1/q = 1. Then, under suitable conditions on p and p, we have

(4.a) g RY9(t) = Ruq(/ot ds R;z/”(s)>

(see [5, Lemma 3.1] and [43, Chapter XIJ).

b) Here are some similar results for the processes X7,

Theorem 4.1. i) If X = X%? starts from x > 0, and o > 1, there
exists a process with stationary independent increments € = £*° such

that .
ds
log (X¢) =¢& / -, t>0.
(X¢) ( 0 Xs>

The generator of & is given by

LPh(z) = ¢'(z) + B(a+B—1) / "y emviets D (p(z —y) — $(2)) -

0
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ii) Let m > 0, then
t
(4.b) Xy = X0 = X o (/ dum X771,
0

where cgy = ((a —1)/m) + 1, and B,y = (B/m) + 1.

REMARKS. 1) There are some similar results for the processes X7
introduced via Theorem 3.3, the discussion of which is postponed until
Section 4.4.

2) In fact, both Bessel processes and the processes X “# are exam-
ples of a particular class of R -valued Markov processes X which enjoy
the following scaling property: there exists ¢ > 0 such that, for a > 0,
A > 0, the law of (X, t > 0) under P, is that of

(A°Xy, t>0), under Py /xe .

Lamperti ([29]) has studied these processes, which he calls semi-stable
Markov processes, and has shown that, if P, almost surely, (X¢, t > 0)
does not visit 0, then one has

(4.0) 1og(Xt):§(/0t%), £>0

(here, we have assumed, for simplicity ¢ = 1) for some process & with
stationary independent increments. Several studies of such processes
have been made in recent years (see [19], [20], [50]).

3) Let (Xt(m), t > 0) be the semi-stable Markov process associated
with the Lévy process (m &, t > 0). It is easy, using relation (4.c), to

show that
t
XM = X(m)(/ XZZ"”_ldu> .
0

Thus, the relations (4.a) and (4.b) are easy consequences of the repre-
sentation (4.c).
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4.2. Absolute continuity relations.

Fix > 0. As « varies in [1,00[, the laws Q% of BESQ,(2«) are
locally mutually equivalent. The following explicit formula holds

X 2

(4.d) ng:t:<?t)y/2exp<—%/0ti—i)62;|g:t, v=a-—1.

From this relation, one deduces the important formula

v/ 2t P,
(2)" ea(en (-5 [ F)xe=) =200

It implies (see (3.s))

2 t Il/
aew (-5 [ K= = (5.

This formula plays a key role in the study of the winding number of
complex Brownian motion around 0 (see [47], [55], for instance); it has
also found applications in mathematical finance ([17]).

The counterpart of (4.d) for the laws I1%# of the processes X*F
starting from x is the following

Theorem 4.2. Let A> 0, ax+ O =a+ 0+, arx(a++A-1)=
AMa+ B+ AN+ (a+p—1)(a+ A). Then, one has

X\ A td
o I = (5 e (—n [ T,
where
B a—1+ )\
Py 6-1+ "

REMARKS. 1) Beware: the notation (ay, 5y) has nothing to do with
the notation (c(y,), B(m)) introduced in Theorem 4.1.

2) The absolute continuity relations (4.d) and (4.e) are obvious
consequences of the representation (4.c) of a Markov semi-stable process
as the time-change of the exponential of a Lévy process.

Since the Lévy process €%, associated with the BES Q(2 a) process
X%, is a Brownian motion with drift, precisely

& =2(a—-1)t+ By),
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we see that the relation (4.d) may be obtained, by time-changing, from
the Cameron-Martin Formula, which relates the laws of Brownian mo-
tion and Brownian motion with drift.

The Lévy process associated with X %P is

éta’ﬁ:t—Pois(ﬂ,a—kﬂ—l)t,

where Pois (3, a + 3—1) is the compound Poisson process of parameter
( whose jumps are distributed as exponentials of parameter o+ 3 — 1
(see the preceding section to identify £€*# with the help of its infinitesi-
mal generator). Thus, formula (4.e) may be obtained, by time-changing,
from the Girsanov Formula, when we make the change of probabilities
associated with the martingale

exp(AEP —tyY@P(N),  t>0,

where 1P is the Lévy exponent of £4F

a+A—1 )

Elexp —A&"] = exp (197 (1) = exp (t’\a+ﬁ+>\— 1

4.3. First passage times.
4.3.1. First passage times for BES Q(d).

If (X¢, t > 0) denotes BES Q(d), i.e. the square of a d-dimensional
Bessel process, we recall ([24], [18], [42]) that

d(A X,;) e~* is a local martingale, for ¢ = ¢ or ¢_ ,
with
by(x) =272 1,(V2z) and p_(z)=2"""?K,(V2z).

This implies

where T, = inf {t > 0 : X; = b}.
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4.3.2. Intertwining and martingales.
The following lemma will be useful in the sequel:

Lemma 4.3. Assume that Q:A = AP;. Then:
1) if p(Xy) e~ is a P, martingale, for every x, then

A (V) e ™ is a Q, martingale, for every y.

2) More generally, if L (respectively Ii) denotes the infinitesimal
generator of X (respectively Y), then LA = AL, and if f € D(L), then

Af € D(L) and f(X;) — fg Lf(Xs)ds is a Py-martingale, while

t
Af(Yy) —/ ds ALf(Y;) is a Qy-martingale.
0

REMARK. The first result may be understood as a particular case of
the second one, since the function ¢ satisfies L¢ = A¢p, and hence,

LA¢ = A\ Ag.

4.3.3. First passage times for X7,

For convenience, we write v = a + 3, and X = X*8. From the
above paragraphs, we deduce that

A pr(AXy) e Misa Hg’ﬁ martingale,
which yields
®(y,a; A X;) and U(y, o5 A Xy) e are H;j’ﬁ martingales .

Hence

H(vy,a;\a)
H (v, 5 AD)

¢, ifa<hbd,

4.f) 1P (e ) =
(4D 1L U, ifa>b.

, where H = {

In the particular case a = 0,b = 1, we obtain

1

P (e ) = ————— .
D ERTRY
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Hence, the function log(® (v, a; A)) admits the Lévy-Khintchine repre-
sentation

log®(y,a;\) = cA+ / (1—e ) dv(z),
0

for some measure v to be determined. Taking derivatives with respect
to A, and using the relations

d _
320N = S+ Lat 1) = 0,5 0) + = @y at 1)

(see [30, formula 9.9.13, p. 262]), we obtain

1+

(v — ) ®(y,a+ 1; X) /oo N
— @ dy(x) .
a®(y, a5 \) C+_o ve V(@)

From the asymptotic result ([30, formula 9.12.8, p. 271])
Q(v,a5A) ~ Cy 0 A=) A —> 00,

we deduce that ¢ = 1 and there exists a probability p(dx) on Ry such
that

O(y,a+ 1; A) /oo i
—_— = e~ u(dx and pldr) =
o an) o () )

dz) .
fy—axy( x)

Another interpretation of the probability p will be given in Section 4.7.

4.3.4. First passage times for £%0,

The results in this paragraph follow essentially from the absolute
continuity relation obtained in Theorem 4.2 for the processes £,
First, we have (recall that v = a + f3)

a—1+A _a—b+A
y=1+X 7 a+A

Eo[e?st] = et | where (X)) = A

and we have defined a=v—-1=a+pf—-1landb=v—a=[.
We then deduce (or we could appeal again to Theorem 4.2) that,
with the notation 7, = inf {u : , = v},

Eole™#™] = e~ W)
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where

1

v =5 (n=(a=b) +V(n—(a—1) +4ap).

It is interesting to study the Lévy-Khintchine representation of ¢~1;
we find

b = pt / T e (du),
where

Vab

u

(4.¢) v(du) = Li(2Vabu) e (@D gy,

PROOF OF FORMULA (4.g). We first remark that
(p—(a—0)*+4ap=(p+a+0b?—4ab.

We now seek a constant ¢ and a positive measure v on R} such that

oo
p—a+b+/(p+a+b)?—4ab= 2<c,u+/ (1 —e_““)y(du)> :
0
Taking derivatives with respect to u, we obtain

b oo
1+ prat :2(c+/ e““‘uu(du)),
Vit ath)?—4ab 0

from which we deduce, by letting 4 — oo, that ¢ = 1. It remains to
find the measure v which is specified by the equality

-1+ prath :2/ e " uv(du).
Jiutarb?—4ab o

Making the change of variables: p+ a + b = 2+vab 7, and using the
following relation, valid for n > 1 ([15, p. 414])

U °° _
— 1= de I(x) e ",
oY i 1(x)
we obtain
-1+ ptath :2\/ab/ dy [,(2Vaby) e # ¢~ (a+b)y
Jita+bZ—4dab 0
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and formula (4.g) follows.

NoOTE. These computations appear to be closely related to recent work
by J. Pellaumail et al in Queuing Theory ([32]).

4.3.5. Laguerre polynomials and hypergeometric polynomials.

e.i) Let (X}*) denote the square of BES (d'), with d' =2a =2 (1+
V). (X{) may be characterized (in law) as the unique solution of the
martingale problem

(4.h) for every A > 0, p(A X&) e~ is a martingale,

where ¢(z) = &7'/2 I, (V2 x).
We recall the hypergeometric functions notation (see [30, p. 275])

oF (=, 14+ v:2) =T +1) 27"/ 1,(2z),

which implies

(4i) oF (—, 140/, %) =y dlz),  where c, =T/ +1)27/2.

The Laguerre polynomials with parameter v': L,(fl)(x) may be defined
as the coefficients of the generating function (in y)

LY
0F1(—,].+l/ —.Ty z_: ]_-l-l/
([35, p- 39]).
It then follows from formula (4.1) that
> 1 / T
pdpAw)e ™™ =Y ———— LW () (= Ap)"
) = 3 L (57) (=20
(4.j) o0
=) A" Py(a,t
n=0

where we have defined

re = o (5 = S e i)
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since the expression of Lg’ ) in terms of the confluent hypergeometric
function @ is

1+,

L (z2) = ( O(—n,1+152)  ([30, p. 273))

n!

(we recall that, with our notation, @« = 1+ v’). We deduce from (4.h)
and (4.j) that

nf X2
(4.k) for every n € N, (t" L") (2—;>, t> 0) is a martingale.

e.ii) We now discuss similar results for the process X*#. This
process may be characterized (in law) as the unique solution of the
martingale problem (recall that v = « + 3)

(4.1) for every A > 0 A, (A )(X7) e ™ is a martingale.

Define . -
V) = Ay9(0) = 7 / daa" e~ B2y a)

and
Qn(y1) = = My (P, 0)(0).

v

It follows from (4.j) that

(4.m) crp(Ay) e = X" Qul(y,1) .
n=0

We now identify ¢ and @Q,,.
We remark that, in general, if F(z) = > °7  fo2" (with f, > 0,
for every n), then

FY(2) € AyF(2) = ) (V) 2" -

n=0

In particular, the application F' — F'7 transforms ,Fy(a, bs; 2) into

P+1Fq(77 Qr, bs; z) :
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Consequently, we obtain

b)) = Myd(y) = oFi(— - )(2) = — B(7, 5 7).

from (4.j) Cpr Cy!

Likewise,

Qu(t:1) = —— Ay(Pal -, 1) (1)

Cy!

N GON Y

 cynl (D(—n,a,z) ()
—t)"

:( ) F<_n777a7g)
c,r ! t

Hence, the series (4.m) may be written in the form

o0

(4n)  e(ashg)e =Y

n=0

A" Y

— (=t)" F( - n,v,q; _) )

(=) n, Y, 05

the polynomials F'(—n,y, a;y/t) are the so-called hypergeometric poly-

nomials.
The assertions similar to (4.h) and (4.k) are (recall that v = « + [3)

4.0 for every A >0, (v, AX2PY e M s a martingale
t

and

Xawg
(4.p) for every A >0, t" F( —n,,Q; tT) is a martingale .

e.iii) We have just seen that, in analytic terms, the intertwining of
the processes X and X*# with respect to the kernel A, translates as
the transformation of Laguerre polynomials ®(—n, «; -) into hyperge-
ometric polynomials F(—n,~,a; -) via the formula

1 oo
F(—n,v,a;y) = W/o daa’ e ®(—n,5ay).

Likewise, the intertwining of the processes X and X**# with respect
to the kernel A, g translates, in analytic terms, as the transformation
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of Laguerre polynomials with parameter v/ = « — 1: Lf{',)(x) into La-
guerre polynomials with parameter v =y —1=a+ - 1; LY (x) via
Koshlyakov’s formula ([30, p. 94))

L(n+ o+ )
T I(n+a)

In the same spirit, the integral relation (see [30, p. 277))

1
L) () = / 121 (1= 1)~ L0 (1)
0

1 1
F(a,b,c;z) = / dtt4=1 (1 — )4 F(a,b,d; 2 t)

B(d,c—d) J,
may be considered as a translation, in analytic terms, of the intertwining

relations which hold between the different processes X *# (see Theorem
3.6).

e.iv) We now consider two other fundamental generating functions
for (Lg} )(x), n>0) and (F(—n,v;a,2z),n > 0) respectively, which
have a clear meaning in terms of martingale properties of X and X**
respectively. These generating functions are

(1 _ t)—(u+1) e—mt/(l—t) _ Zng) (37) m 7
n=0

(4.q)

1-t)A—t+axt)™ = i (C:L)!" F(—n,y,a;z)t"

([30, p. 77 and 277 respectively]).
Let t = As/(14+A), with s < 1, z = 2/(25), and u(A) = (1+A)77.
The two left-hand sides of (4.q) become

— Az
u(A) (L+A—As) exp(—2(1+)\(1_s))>

and

uN) 1+ P A+ 1= As)P (1+>\(1—s+§)>_7.

Both expressions played a key role in the explicit computation of IT}" &
(see formula (3.1)). Indeed, these expressions are in fact respectively
equal to

U QL)) = a3 () (1)
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and

u(h) (1)1 (60 (5)

=147 u()\)i(j?'n F( —n,v,q; i)s"(%)n

n=0

Now, replacing z respectively by X& and Y *#, we obtain two martin-
gales which are in correspondence via the intertwining kernel A, since,
by formula (3.j)

Ary(ex)(2) = ¢y da(2) = ¢y (14 A2) 7.

4.4. Time reversal.

In this section, we apply the following general result on time-
reversal successively to X% a BESQ(2a) process, and X*# at their
last exit time from b > 0, when @ > 1. This result was originally proved
by Nagasawa [38]; for another proof see [44], or [39].

Theorem 4.4. Let X and X be standard Markov processes in E, which
are in duality with respect to p (see Section 3.3 for the definition). Let
u(z,y) denote the potential kernel density of X relative to u, so that

B[ [ 1] = [ ute) ) utan).

Let L be a cooptional time for X, that is a positive random variable
satisfying: L < ¢ (C is the lifetime of X), and Lo6, = (L —t)*. Define
X by

e {X(L_t)_, on 0 <L <oo for0<t<L,
t:

A, otherwise.

Then, for any initial law X, the process (Xt, t > 0) under Py, is an
homogeneous Markov process with transition semi-group (P;) given by

N P o))
Pf(y) = v(y)
0, if v(y) =0 or oo.

, if0<u(y) <o,
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In case A = e, v(y) = u(z,y).

For our application, we take: © = 0, « > 1, L = L; the last exit
time from b > 0, for either X or X*#. We can take u(dz) = 2% !dx
and use the results of Theorem 3.3. However, a more natural choice is
p(dz) = dz, the Lebesgue measure on Ry, since it will yield: v(y) =
u(0,y) = ¢, a constant.

Indeed, it is obvious that a Lévy process £ is in duality with é = —¢,
with respect to the Lebesgue measure on R. The representation

log(Xt)zﬁ(At;—Z>, >0,

implies that the semi-stable Markov process X associated with &, is
in dzx-duality with the semi-stable Markov process X associated with
é = —¢. Furthermore, thanks to the scaling property enjoyed by X,
we have v(y) = u(0,y) = ¢, a constant, as shown by the following
computation

EO[/OOO dtf(Xt)] :EO[/OOO dtf(tXl)] - /Ooo duf(u)Eo[Xil] .

Since £ = 2 ((— 1) t+ B;) and £ = t — Pois (8, + 3—1);, we have
the following

Theorem 4.5. Let a > 2, 8> 0, and (X&) and (XP) start at 0;
then for b >0

a) (X2, t < Ly) = (X279t < Typ),
b) (XPP ¢ < Ly) & (XM 0 < ),

where, on both right hand sides, it is assumed that the processes
start at b.

4.5. Some limit theorems.

In this section, we obtain several limit theorems concerning the
processes X*# and £%P, some of which are then applied to the study
of the asymptotics of the functional

b ds
0 Xsayﬂ ’
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as t —» 0o, when X&P #£ 0. In the sequel, we use the notation (fd)
to denote the convergence in law of finite-dimensional distributions of
processes indexed by R, .

The main result of this section is the following

Theorem 4.6. Let « > 0 and a+( > 1. Define vV = a — 1,
v=a+ -1, andlet (X, t > 0) denote a BESQ(2 ), and (B, t > 0)
a 1-dimenstonal Brownian motion. Then:

i) for fized «,

«a (fd) a
(X gy t 2 0) = o (X 12 0),
ii) for fized «,
(fd) ,
(g 2 0) ion 2Bt V1), £ 20),

iii) for fired a and B with o > 1,

1 @) v

1 ap v

A Ext )\::o v t,

iv) for fited a =1, > 0,

(367 120) 2 ()} mr=0).

REMARKS. 1) The result in ii) is in agreement with i) and the time-
change formula (see Section 4.1)

t
o o ds
log X" = ¢ ’ﬁ(/ Xa,g).
0 s

Hence, we have

cx,ﬁ
log X (g, = € O‘Jrﬂ/Xa,B )’
(a+B)s

and we remark that the result i) fits in well with the time-change rep-
resentation of (log Xi*, t > 0) as
b ds

log X{* =2 (B, + V' u), withu= | —.
0 X¢
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2) In the case where X*#(0) = 0, the following scaling property
holds

(4.1) (XP(AL), t>0) 2 (AX2P, ¢ >0)
and we may write i) in the equivalent form

(a+8) x> t>0 Y (xe t>0).

B—o0

The result for one-dimensional marginals is easily understood, since we

know that
d d X7
XPP S Zap S g,
X+ XY

where X® and X? are independent squares of Bessel processes with
respective dimensions 2« and 23. We then deduce from the law of
large numbers that (o + 3)/(X% 4+ X7) converges in probability to 1,
as 3 — 00, which implies the desired result.

3) iv) is obviously a refinement of iii) in the case @ = 1 (which
implies v/ = 0).

4) Inspection of infinitesimal generators easily yields the following
identity in law

(45) (e 12 0) L™, 120,
where the couple (ay, ) is defined by

Br=0, axt+B—1=A(a+p-1),
or, in terms of indices instead of dimensions

Uy = AV and vy=v +r(A-1).

The identity in law (4.s) allows to recast the limit results in ii), iii),
and iv) in terms of &-processes, both indices of which increase to oo as
A —> 00, in the manner we have just indicated.
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PROOF OF THEOREM 4.6. 1) The infinitesimal generator of (Xéla’f—ﬂ)t’
t > 0), applied to ¢ € C?*(Ry), is, in terms of & and 3

a+ -1

2 (a+p) (¢'(y) + /1dz 2272 (G(zy) — ¢(y)))

) 0
200+ B)(00)+ 1 [T doe ey < o)

after an elementary change of variables.
It is now easy to justify that, as « is fixed, and 3 goes to oo, we

may replace
e/ 0y) — g(y),

by

2
y () (/@480 — 1) £ L gy (/8D )2

Then, the coefficient of ¢'(y), respectively ¢ (y), converges, as 3 in-
creases to oo, towards 2 a, respectively 2y, which implies i).

2) The same kind of argument may be applied to prove the results
ii), iii) and iv). We give only the details for ii):

the infinitesimal generator of (é’aﬁ gy £ = 0), applied to ¢ € C LR)
is, in terms of a and

a+ -1

2(o ) (¢/0) + 55

[ due 0 oty — ) - 60

We then replace: ¢(y — u) — ¢(y) by: —ud’(y) + u® ¢" (y)/2; then, the
coefficient of ¢'(y), respectively ¢ (y), is

2(a+p)
a+p-1

2(a+p)B
(a+p-1)

and they converge, as (3 increases to oo, to 21/, respectively 2, which
implies ii).

(—1), respectively

We begin by recalling the following asymptotic results for the
BES Q(2 «) process X%, when X§ # 0

4 b d
Si>a, ifa=1,

4.t —_— —
o (og1)? Jy XT o
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where o = inf {t : B, = 1}, and B is a 1-dimensional Brownian motion
starting from 0, and

2 t ds as 1

4. 288 as 2
(40) logt Jq X& t—oo v/’

ifa>1.

We now prove similar results for the processes X *#:

Theorem 4.7. We consider the process X*P with o > 1 and Xg’ﬁ # 0.
Then

i) ifa=1,
1 b odu a4, v
—0
(logt)? Jo X}P t—oo 277

where v =a+ #—1, and 0 = inf {u : B,, = 1}, with the same notation
as in (4.t) above;

i) ifa>1,
1 t ds as. V

logt Jo X%P t—oo v’

wherev=a+f—1and vV = a— 1.

At least, three different proofs of (4.t) are known ; they hinge
respectively on:

1) Laplace’s asymptotic method (see [13], [57], [31]),

2) a pinching argument ([53], [36]), and finally:

3) the explicit computation of the law of f(f ds/ X} (see [47], [21],

[55]).

We now see that the three methods admit variants from which part
i) of Theorem 4.7 follows.

4.5.1. Laplace’s method.

From the formula

t
o o du
]-OgXt 7/825 ’ﬁ(/ Xavﬂ),
0 U
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we deduce

b du

0 ngﬂ

= inf{’v: /vds exp (£2F) > t}.
0

Let A =logt. We have, after some elementary transformations

(4.v) % Ot ;Zﬁ = inf{u: ilog ()\2 /Ouds exp (A%%’\‘z’f)) > 1}.

Using Theorem 4.6.iv), we now deduce from (4.v) that

1 [t d 2
— —uﬁinf{u:\/j3u>1}gza,

which proves Theorem 4.7.1).

4.5.2. Pinching method.

Let T, = inf {t : X’ = a} and 7, = inf {¢ : £€*” = b}. The main
ingredients of the proof (see [53]) are

(4w) L [Hde a
' (logt)? J, X&P t—oo )
and
e du
, XpP e
u

The latter equality is immediate from the time change formula

t
. o du
]'OgXt 76:5 ”8(/ Xay/g>.
0 U

Moreover, from Theorem 4.6.iv), we obtain

1 d vV
(logt)? 8" 15 27

This could also be deduced from the explicit formula

(1 + \/;/J2+4,ul/)>,

| o

E [exp (—u )] = exp ( —
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see Section 4.3.4.
It now remains to prove the convergence result (4.w). We have
Tt qu T qu

¢ Xgaﬁ - 1 X&Xaﬁ ?

where X“’ﬁ = Xa’ﬁ/t which, thanks to the scaling property of X®#,
’ﬁ, v > 0), a XP process

converges in law, as t — oo, towards (X,

starting from zero. Consequently, we have

T du g /Tl du
XauB tjo _a7/87
t w 1 Xu

and the result (4.w) follows a fortiori.

4.5.3. Explicit computation.

In the case of Bessel processes, this computation follows from the
conditional expectation formula given in Section 4.2, as a consequence
of the Girsanov relationship (4.g). Likewise, for the processes X**, we
deduce from Theorem 4.2 the following

t A
Ha)\yﬁA Y, dz ch,ﬁ<exp (_“/ ) ‘X 75 _ ) (E) Ha,IB Y, dz ,

where

a—1+ A

Sy ey

Then, using the explicit forms of the semi-groups Hf"ﬁ (y,dz) presented
in Section 3.4, we obtain a closed form expression for the above condi-
tional expectation, from which one should be able to deduce the limit
results announced in Theorem 4.7.

6. A Ciesielski-Taylor type theorem.

a) Let X% and X**! be two squares of Bessel processes with re-
spective dimensions 2« and 2 (1 + «), with a > 0, starting from 0.
Let

Tioy =inf{u: X7 >1} and S(at1) :/ dulyyarioyy -
0 <
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Ciesielski and Taylor (see [8], and also [18]) have proved that

d
(4.X) T(a) = S(a+1) .
For an extension of this result to a large class of diffusions and func-
tionals, see Biane [4].

b) We now prove a result similar to (4.x) when the Bessel processes
are replaced by the processes X*? with @ > 0 and oo + 3 > 1.

Theorem 4.8. Define T®P = inf {u: X&P > x}. Then

a)
1

(a+B,a5Az)’

E[exp(-A T3] =

b) if a > 1,

E{eXp(_’\/o dSI{X?"’Sw}>] - (D(a—i—ﬂ,(l)z— LAz)

Consequently, for every x > 0, we have

o0
d
(4_y) T;X,ﬁ = /0 ds 1{X3+1,ﬁ—1§w} .

PROOF. Part a) was already proved in Section 4.3.3.

To prove part b), we may take z = 1, using the scaling property.
We simply note X for X%# starting from zero, and T}, for T>F. We
now remark that, if there exists a C'-function (u(z), > 0) such that
L*P u(z) = A lyz<iyu(z), then

Blow (A [ as1pz)] = 10,

so that, letting a increase to co, we obtain

(4.2) E[exp(— A/OOO dsl{ng})] _ u(0)

The function

u(z) =

Sla+ f,a;Ax), <1,
a+bxl=e, r>1,
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satisfies L*Pu(z) = A1gz<1y u(z), on (0,1) and (1,00). It remains to
find @ and b such that u is C'. This will be so if and only if

a+b=2(a+p,a;A),

4,
0 V-2 aa s s a1,

where, in order to find the second equality, we have used

ifb(a%—ﬂ,a;x)zwfﬁ

T (a+pB+1,a+1m)

([30, formula 9.9.4, p. 261]). The solution of the system (4.za) is

b — Ala+P)
A a(l—-ba)

AMa+P)
a(l—a)

Hence, we have: u(0) = 1, u(co) = ay, so that, from (4.z)

]E[exp ( — )\/000 dul{Xu§1}>] = % .

We now show, with the help of the recurrence relations satisfied by
®, that ay = ®(a+ [, — 1;\), which implies b). Indeed, we find in
(30, (9.9.12), p. 262], that

Pla+pf+1Lat+ 1)),

ax =P(a+ 0,5\ — Sla+ L+ 1,a+1;)).

A
—@(a—i—ﬁ—}—l,a—}—l,)\):(I)(a—i—ﬂ—}—l,a,)\)—@(a—}—ﬁ,a,)\),
(07

whence
- ail ((a"f_ﬂ)q)(a‘f‘ﬁ—i‘l,a;)\)—(ﬂ+1)(p(a+ﬂ,a;)\))

:@(a+ﬂ,a—1,)\),

(from [30, formula 9.9.6, p. 262]).
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We now notice, using jointly parts a) and b) of Theorem 4.8 that

o0 Q(a+ B,a+ 1;Ax)
a+1,8 — = : ,
I1° (exp ( /\/0 ds 1{Xs§w}>> Pla+ B, z)

so that the probability measure i defined in Section 4.3.3, now appears
as the distribution of [ ds1(x, <, under II¢+HP,

Again, there exists similar results for Bessel processes (see [42],
[18]) and Bessel functions (see [24]).

NOTE. An explanation of the Ciesielski-Taylor identity (4.x) is given
in [59], using jointly Ray-Knight theorems for local times of Bessel
processes and a stochastic integration by parts formula.

It would be interesting to derive such an approach to explain the
identity in law (4.y).

4.7. Affine boundaries.

This problem has been considered by Breiman [6].

a) Let & > 1, and consider T, = inf {u : X& = ¢ (1 + u)}, where
X*is a BESQ,(2 ), with a < c.

Following a method due to Shepp [45] in the case o« = 1, it has
been shown in [56] that

(4.zb) EX(1+T.) " =

REMARK. It may be interesting to compare this formula with

O(a+ B, a5\ a)
O(a+ B,a5A¢)’

37 (e ) =

a formula obtained in the above Section 4.3.3.

b) We shall now obtain a formula similar to (4.zb) for
T.=inf{u: X3 =c(1+u)},

whenXg"B:a, and a < ¢ < 1.
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Under these conditions, we prove the formula

F(k,a+ B,a;5a)

(4.zc) Hg"@((l +TC)_N) - F(k,a+p,05¢)

Proor. Following Shepp [45] again, we use the two next arguments
jointly (we drop the superscripts «, (3 since there is no risk of confusion)

i) ®(a + B, ;A Xy) e~ is a martingale,

1 oo
i) F(r,a+ B,a3y) = m/ AANTLe A D(a+ B, a5 \y) .
0

From i), we deduce

IL(®(a+ B, a; A c(1+T.)) e o) = d(a + B, a; Aa)
and then, integrating both sides with respect to

d\
An—l -
T(e) "

we obtain

1 = k=1 —A(14+T.) ) 7
Ha(r(ﬁ)/o dANLe @(a+ﬁ,a,)\c(1+TC))>

= F(k,a+ B,a;a).

Making the change of variables ¢ = A (1 + T.) in the above integral in
(dX), we obtain formula (4.zc).

5. Some final remarks.
5.1. Duality and intertwinings.

5.1.1. pu-duality and h-duality.

There are presently, in the Markovian literature, two notions of
duality which have little in common; they are:

e the notion of duality of two Markov semi-groups (P;) and (P;)
on E, with respect to a o-finite measure p on E: this notion, which has
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already been presented in Section 3.3 plays, as we have seen in Section
4.5, a crucial role in time reversal;

e the notion of duality of two Markov semi-groups (R;) and (S;) on
E and F respectively, with respect to a function h: E x FF — Ry ; we
borrow this notion from [33]: (R;) and (S;) are said to be in h-duality
if for every (¢,n) € E X F,

Ry(hn)(€) = Su(hS) (1),
where hy(€) = h&(n) = h(E,7).

5.1.2. Comparison of intertwining and h-duality.

The following proposition shows, under adequate assumptions, the
equivalence between a property of intertwining and a property of h-
duality.

Proposition 5.1. Suppose that the semi-groups (Si) and (,§’t) are in
w-duality. Then:

1) if the semi-groups (R:) and (Sy) are in h-duality, then
RyH, = H, S ,
with Hy, f(€) = [ dp(n) (&, n) f(n);

2) conversely, if RyH, = H,, S, then (R;) and (S;) are in almost
h-duality, that is: for all &,

Ry(hy)(€) = Si(h%)(n), du(n) almost surely.

PRrOOF. For every positive Borel function f, we have

RyH, (€)= / Ri(€,dz) H, f(2)

(6,d2) j/ (2, m) £ (1) dp()

I
/@ /m@w><>
/

dp(n (hn)(f) .
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On the other hand, by definition of the dual semi-group, one has

mﬁﬂ@=/ww&ﬂme=/wwﬂmwﬁmy

Consequently, the first part of the theorem is proven.
The second part of the theorem is also immediate. Suppose R.H,,

=H “St. Then, for all positive Borel functions f, we have

/wwﬂmM%MF/@WﬂmMWW-

Thus, for all £

Ri(hy)(€) = Se(h) (), du(n) almost surely .

In the particular case where S, = 137, §, = 11", R = Q%, and
p(dz) = 21 dzx, the intertwining relation is given by

Qf Ap = A 1177
Consequently, the semi-groups are in p(dx) almost h-duality, where

B

h(&n) = nfw exp ( - %) :

This function is much more complex than the function that appears in
classical duality

h(€;m) = Lie<ny -

5.2. More intertwinings.

A more complete list of intertwinings of Markov processes is pre-
sented in [7], making important use of the reflecting Brownian motion
(|Bt|, t > 0) perturbed by a multiple of its local time at zero (I, t > 0),
i.e. (|Bt| —pl, t > 0), for some p > 0.

The new Markov processes are constructed explicitly in terms of
this perturbed reflecting Brownian motion, which gives hope that the
intertwining relations described in the present paper and in [7] may
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have a pathwise interpretation, that is, we hope these processes have
joint realizations that fit into the filtering framework of Section 2.1.

Although we have not yet been able to achieve this program, we
introduced another framework (see [7, Theorem 3.2]) which enabled us
to prove these intertwining relations. We saw in Section 4.6 how these
relations can be used to prove Ciesielski-Taylor identities between semi-
stable Markov processes of the same family.

Furthermore, the technique developed in [7] to compute the distri-
butions of the exponential functionals

t
At:/egsds, t>0,
0

where £ is the Lévy process associated with a semi-stable Markov pro-
cess X, consists in determining a family of random variables (Hj) such
that .

P(H, > t) = B [X—f] .
The intertwining relation Q; A = AP, implies that the families (Hp)
and (K,) associated respectively to the processes X (with semi-group
(P;)) and Y (with semi-group (Q¢)), are connected by

P(K,>t)= E[Z7P 1izm,>4],

E[Z-7]

if A is the kernel of multiplication by Z. Thus, the intertwining rela-
tions enabled us to infer the distributions of random variables related
to a family of processes (e.g. Y = X%#) from the distributions of ran-
dom variables related to another family of processes (e.g. X = X¢),
therefore avoiding tedious computations.
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