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Unrectifiable 1-sets have
vanishing analytic capacity

Guy David

Résumé. On complete la démonstration d’une conjecture de Vitush-
kin: si £ est une partie compacte du plan complexe de mesure de Haus-
dorff unidimensionelle nulle, alors E est de capacité analytique nulle
(toute fonction analytique bornée sur le complémentaire de E est con-
stante) si et seulement si E est totalement non rectifiable (I'intersection
de E avec toute courbe de longueur finie est de mesure de Hausdorff
nulle). Comme dans un papier précédent avec P. Mattila, la démons-
tration repose sur un critere de rectifiabilité utilisant la courbure de
Menger, et une extension d’une construction de M. Christ. L’élément
nouveau principal est une généralisation du théoreme 7'(b) sur certains
espaces qui ne sont pas nécessairement de type homogene.

Abstract. We complete the proof of a conjecture of Vitushkin that says
that if £ is a compact set in the complex plane with finite 1-dimensional
Hausdorff measure, then E has vanishing analytic capacity (i.e., all
bounded analytic functions on the complement of E are constant) if
and only if E is purely unrectifiable (i.e., the intersection of E with
any curve of finite length has zero 1-dimensional Hausdorff measure).
As in a previous paper with P. Mattila, the proof relies on a rectifiability
criterion using Menger curvature, and an extension of a construction of
M. Christ. The main new part is a generalization of the T'(b)-Theorem
to some spaces that are not necessarily of homogeneous type.
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1. Introduction.

The main goal of this paper is to complete the proof of Vitushkin’s
conjecture on 1-sets of vanishing analytic capacity.

Let E be a compact set in the complex plane. We say the E has
vanishing analytic capacity if all bounded analytic functions on C\ E are
constant. Ahlfors ([Ah]) proved that E has vanishing analytic capacity
if and only if it is removable for bounded analytic functions, i.e., if for
all choices of an open set 2 C E and a bounded analytic function f on
Q\E, f has an analytic extension to §2.

It was conjectured by Vitushkin ([Vi]) that if £ is a compact set
such that 0 < H1(E) < +oo, then E has vanishing analytic capacity
if and only if F is totally unrectifiable (or irregular in the terminology
of Besicovitch), which means that HY(E N G) = 0 for all rectifiable
curves G. Here H! denotes one-dimensional Hausdorff measure. Ac-
tually, Vitushkin’s conjecture also said something about the case when
HY(K) = +00, but this part turned out to be false ([Mal]).

The first half of this conjecture was obtained as a consequence
of A. P. Calderén’s result on the boundedness of the Cauchy integral
operator on L2(T") when T' is a Cl-curve (or even a Lipschitz graph
with small constant) in the plane ([Ca]). Indeed, if E is a compact
subset of a rectifiable curve and H!(E) > 0, there is a C'-curve I' such
that HY(E N F) > 0, and one can use Calderén’s theorem and a nice
duality argument of Uy ([Uy]) or Havin and Havinson ([HH]) to find
non constant bounded analytic functions on C\(ENF'). Thus E cannot
be removable for bounded analytic functions if H*(ENG) > 0 for some
rectifiable curve G. See for instance [Chl] for a recent treatment of this
result.

Our main result is as follows.

Theorem 1.1. Let E C C be a compact set such that H'(E) < +oo
and FE is totally unrectifiable. Then E has vanishing analytic capacity.

Progress in the direction of Theorem 1.1 has been quite slow for
some time, because one was not able to relate nicely information on
the Cauchy kernel (typically, the existence of a bounded function on F
whose Cauchy integral is bounded on C\ E') to the geometry of E. Then
M. Melnikov introduced “Menger curvature” in connection to analytic
capacity ([Me]). This was rapidly followed by a result on the Cauchy
operator ([MV]) and the proof of Theorem 1.1 in the special case when



UNRECTIFIABLE 1-SETS HAVE VANISHING ANALYTIC CAPACITY 371

E is Ahlfors-regular ([MMV]). This last means that there is a constant
C > 0 such that

(1.2) c~tr<HYENB(z,r)) < Cr,

forallz € F and 0 < r <diamF.

H. Pajot ([Pa]) observed that Ahlfors-regularity can be replaced

with the weaker condition that
liminf (r"H'(E N B(z,7))) > 0,
r—0

(1.3)
limsup (r *HY(E N B(z,r))) < +o0, forallz € E.

r—0
(This last is a sufficient condition for E to be contained in a countable
union of Ahlfors-regular sets.) The method for these papers uses the
miraculous positivity properties of Menger curvature, but also relies on
standard Calderén-Zygmund techniques such as the 7'(1)-theorem. For
these it is very useful to know that E is Ahlfors-regular, or at least that
the restriction of H! to E is doubling, i.e., that HY(E N B(x,27)) <
CHYEN B(z,r)) for allz € F and 0 < r < diam E ([Li]).

It turns out that the general Calderén-Zygmund techniques used
by [Ch2] and [MMV] do not fail in the general case when 0 < H}(E) <
+00, but merely become much more painful to apply. This was (par-
tially) observed in [DM], where the analogue of Theorem 1.1 for Lips-
chitz harmonic functions (instead of bounded analytic) is proved. The
present paper will rely on the construction of [DM].

Before we start a short description of the argument, let us ob-
serve that it is very easy to show that E is removable for bounded
analytic functions if H!(FE) = 0 (apply Cauchy’s formula on curves of
arbitrarily small lengths that surround E). Also, compact sets of di-
mension d > 1 are not removable: one can construct bounded analytic
functions by taking Cauchy integrals of positive measures p such that
w(B(xz, 7)) < Cr? for some d’ € (1,d); such measures can be obtained
from Frostman’s lemma. Thus the only unclear situation left is when
E has dimension 1 and H!(E) = +o00. See for instance [Gal, [Chl],
[Ma2], or [Vi] for general information about analytic capacity.

Let us now describe our strategy for proving Theorem 1.1. More
details will be given in the course of the paper, but the reader may want
to use this description to avoid getting lost in unimportant complica-
tions.

Let E C C be compact, and assume that H'(E) < +oco and E
does not have vanishing analytic capacity; we want to prove that F has
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a non trivial rectifiable piece. By easy manipulations, we can find a
bounded analytic function h on C\E such that h(co) = 0 and h'(c0) =
lim, o 2 h(z) =: a > 0. It is not hard to show that

(1.4) h(z) = /E%d‘;(y) . forzeC\E,

where p denotes the restriction of H! to E (i.e., u(A) = H (AN E)
for all Borel sets A) and f is some bounded measurable function on
E. This is Theorem 19.9 in [Ma2]. To prove it one surrounds E by
a sequence of (finitely connected) curves I';, and one applies Cauchy’s
formula to them; eventually f du comes out as a weak limit of measures
h(y) dy on curves I'y,.

The first stage of our argument consists in replacing f dy with a
new finite measure g dv with the following properties:

(1.5) 0 <v(B(z,r)) <Cr, for allz € C and r > 0,

g is bounded acccretive, i.e.,

(1.6) lg(z)| < C, Reg(z) > C~ ! forall z € C,

(1.7) /gdz/:/fdp:a>0,
there is a Borel set F' C E such that

(1.8) C'u<v<ponF and v(F) >

Y

(VRIS

(the first half means that C~1u(A) < v(A) < u(A) for all Borel subsets
A of F), and

(1.9) the Cauchy integral of gdv lies
' in an appropriate space BMO(dv) .

The measure gdv will be imported directly from [DM], where it was
constructed for very similar reasons (see in particular Theorem 2.4 in
[DM)); the properties (1.5)-(1.8) are the same as (2.5)-(2.8) in [DM],
and (1.9) will have to be made more precise and proved, starting from
the corresponding L2-estimate (2.9) in [DM]. The construction of g dv
is very similar in spirit to a construction of M. Christ ([Ch2]), who used
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it to show that if F is a regular set with positive analytic capacity, then
there is another Ahlfors-regular set G such that H'(ENG) > 0 and for
which the Cauchy integral defines a bounded operator on L2(G). At
that time, [MMV] did not exist, and so M. Christ could not conclude
that G is uniformly rectifiable. The proof of boundedness of the Cauchy
operator on L?(G) was directly deduced from the analogues of (1.6) and
(1.9) by the T'(b)-theorem (on G).

The construction of g dv in [Ch2] and [DM] relies on the existence
on E of an analogue of the decomposition of R” into dyadic cubes. The
general scheme is to replace f du by measures that live on small circles
on (maximal) “cubes” @ C E where Re [ f dy is a little too small. The
construction is less pleasant in [DM] than in [Ch2], because one has to
find slightly different ways to deal with the “small boundary property”
of the constructed “dyadic cubes” when p is not doubling. Nonetheless
the spirit is the same.

In [DM] we could not continue as in [Ch2], because we did not
have an appropriate T'(b)-theorem. This is the reason why we restricted
to Lipschitz harmonic capacity. If H'(E) < +o0o and E has positive
Lipschitz harmonic capacity, then we can get fdyp (and then gdv) as
above, but with f real-valued (and hence g(z) > C™!) in addition.
Then we do not need Stage 2 below, and we can use the argument of
Stage 3 below to find that F' is rectifiable (and hence that F is not
totally unrectifiable).

In the present situation, g is not necessarily positive and we can-
not apply directly the positivity argument with Menger curvature from
[MMV] (see below), as in [DM]. So we’ll prove a T'(b)-theorem on
E = supp (v) and apply it to the truncated operators T, given by

(1.10) riw= [ U,

r—=y

to get uniform bounds on the norm of 7T, on Lz(E, dv). Once again,
the proof of the T'(b)-theorem of Section 3 will follow rather classical
outlines: we shall use the dyadic cubes from [DM], construct a version of
the Haar system adapted to those cubes and the accretive function b =
g, remove a “paraproduct” that takes care of T'b and 1Tb, and prove that
the matrix of the remaining operator in the modified Haar system has
sufficient decay away from the diagonal to allow a use of Schur’s lemma.
This is the same program as in the proof of the (standard) T'(b)-theorem
by Coifman-Semmes ([CJS]) or Auscher-Tchamitchian ([AT]). See also
[Da] or [My] for a presentation of this scheme and [DJS] for the original
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T'(b) paper. Here again, the fact that g is not necessarily doubling will
create trouble, but altogether nothing dramatic. See sections 2-9 for
the details.

We shall also need to spend some time checking that our 7'(b)-
theorem applies to the space (£, dv) and the function b = g (see sections
10-13). In particular we’ll have to build cubes adapted to dv, and then
check the appropriate version of (1.9).

At the end of this (call it Stage 2), we know that the truncated
Cauchy operators T, are bounded on L?(dv), with bounds that do not
depend on €. In particular,

(1.11) ITe11Z2 a0y < C

where C' does not depend on ¢ > 0. A brutal expansion of (1.11) gives
that

(There is no problem of convergence here and in the lines that follows,

because v is a finite measure.) The domain of integration in (1.12) is
U(e) UV (e), where

(1.13) Ue) = {(x,y, z) € E%: e< lz —y|, |z —2z|, ly— z|}
and
(1.14) V(e) = {(z,y.2) € E*: |z—y| > e, |[x—2| > cand |y—2| < e} .

A fairly brutal computation gives that

(1.15) ///V@ |x—y| |a:)ilyz(| Yo,

see [MV, (5)], and note that the (very short) proof only uses (1.5). Thus

(1.16) ‘///U() i m)fuz()) <C.

Now we want to use the following nice formula [Me]: for each triple
(21, 22, z3) of distinct points of C,

(1.17) > ( L = *(z1, 22, 23) ,

o€ Ro(1) — 20(2)) (Zo(l) - 20(3))
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where we sum over the group Gs of permutations of {1,2,3} and
¢(z1, 22, z3) denotes the Menger curvature of the triple (z1, 2o, 23), i.e.,
the inverse of the radius of the circle that goes through z1, z2, z3. (When
the three points are on a line, set ¢(z1, 22, 23) = 0.) This is [Me, (19),
p. 842|. Because the integral in (1.16) is invariant under permutations
of z,y, z, we can use (1.17) to get that

(1.18) /// (x,y,2) dv(z) dv(y) dv(z) < C,
U(e)
still with a constant C' that does not depend on €. Hence (by positivity),

(1.19) A(v) =: ///E3 A (z,y,2) dv(z) dv(y) dv(z) < C.

We shall call ¢(v) the Melnikov curvature of the measure v.

At this point we can use a theorem of David and Léger ([Lé]),
which says that if v is a finite measure on C such that (1.5) holds,
2 (v) < +o0, and if E‘, the support of v, has finite H'-measure, then
v is rectifiable. This means that E is contained in a countable union
of rectifiable curves, plus possibly a set of v-measure zero. The set
ENF, where F is as in (1.8), is also rectifiable, and hence meets some
rectifiable curve on a set of H'-measure greater than 0. This third stage
completes the (sketch of) proof of Theorem 1.1.

Theorem 1.1 leaves open the characterization of vanishing analytic
capacity for compact subsets of the plane such that H!(E) = 400 but
dimension (E) = 1. The obvious generalization of Vitushkin’s conjec-
ture where one would demand that

(1.20) H'(mg(E)) =0, for almost every # € R,

where 7y denotes the orthogonal projection onto the line of direction e,
does not work. P. Mattila ([Mal]) showed that (1.20) is not preserved
when we replace E with its image under conformal mappings, while
vanishing analytic capacity is. P. Jones and T. Murai ([JM]) later
found examples of compact sets £ C C with positive analytic capacity
and such that (1.20) holds. It is not known yet whether there are
compact sets of vanishing analytic capacity for which (1.20) does not
hold. M. Melnikov likes to conjecture that compact sets £ have positive
analytic capacity if and only if there is a (nonzero) positive measure v
supported on E and such that v(B(z,r)) < Cr forallz € E and r > 0,
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and c?(v) < 4+oo. Note that the “if” part of this conjecture is proved
in [Me].

2. Construction of a Haar system.

In this section we are given a Borel subset F of some RY and a
finite Borel measure p on E. We are also given a sequence of partitions
of E into Borel subsets @), Q € A, k > 0, with the following properties:

2.1) for each integer k£ > 0, E is the disjoint union of the sets @,
Q € Aka

22)if0<k </, Q€ Ay, and R € Ay, then either QN R = & or
else R C @,

2.3) u(Q) >0 for all Q@ € Ay and all £ > 0,
2.4) diam Q < Cy A7F for all k > 0 and Q € Ay,

2.5) for each £ > 0 and each Q € Ay, the number of R € A4y
such that R C ) is < (.

Here Cp and A > 1 are two constants that do not depend on k&
or @, and diam () is the diameter of . The sets @, Q € |, A, will
be called cubes, or dyadic cubes (even though they should probably be
called A-adic.) In the later sections, more will be required from these
cubes, but the properties 2.1)-2.5) will be enough for the moment.

For each cube @, we shall denote by k(@) the integer k such that
Q € Ap, and by d(Q) = A~F@) its official approximate size. We
should mention now that diam () may be much smaller than d(Q), and
also that a given subset of E could be equal to ) for a few different
cubes @) coming from different generations k(()). When we talk about
a cube (), we shall always mean both the set () itself and the knowledge
of the generation k(Q).

If Q is a cube of generation k(Q)) > 1, then there is a unique cube
Q € Ap(Q)—1 Which contains (), and which we’ll call the parent of Q.
The children of @ are the cubes R € Ay(g)4+1 that are contained in Q.
We shall denote by F(Q) the set of children of (). Note that in some
instances F'(Q) will be reduced to only one child, the set @ itself. At
any rate, 2.5) says that F'(Q)) never has more than Cj elements.

In this section we want to construct a Riesz basis of L?(E,dp)
which is adapted to the above decomposition of E into cubes, and a
given accretive function b. This Riesz basis will be analogous to the
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Haar basis, which corresponds to the case of £ = [0,1] C R, equipped
with the Lebesgue measure, the usual dyadic intervals, and b = 1. The
construction given below is very similar to one initially used for [CJS] or
[AT], but we shall need to repeat the argument to convince the reader
that nothing more than 2.1)-2.5) is needed. For personal convenience
reasons, we shall stay pretty close to the argument given in [Da].

Our function b is Borel-measurable, complex-valued, and bounded
and accretive. This means that

(2.6) |b(z)]<C and  Reb(z)>C', forallz € E.

In fact, we shall only use the paraaccretivity condition that b is bounded
and

(2.7) ‘/deu‘ > C7u(Q), for all cubes @,

but this will not matter for our only application.

We start our construction with the definition of a few projection
operators. For x € F and k > 0, denote by Qx(x) the cube of Ay that
contains x. Then set, for each f € L2(E,dpu),

(2.8) B () = n(Qulx)) ™ /Q 2

This is the standard orthogonal projection on the set of functions that
are constant on each cube Q € Ag. Also set

(2.9) Dy =Egi1—Ey, k>0,

and then define the corresponding twisted operators Fj and Zj by

(2.10) Fif(z) = (/Q (m)bd“)_lfQ ($)fbdu

and
(2.11) Zy = Fry1 — F .

We need a few easy facts concerning these operators. First,

(2.12) /Q(ka)bd,u:/bedu, for all Q € Ay,
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which is clear from (2.10). Next,

(2.13) F;jFi, = Fjnr

with jAk = min {j, k}. When j > k, we observe that F} f is constant on

all cubes ) € Ay, and hence also on cubes of A;. Then F;Fy f = F f.
When j < k, (2.12) says that

/Q(ka)bdﬂ=/bedu,

for all Q € Ay, and hence all cubes @Q € A;. Then F;Fi.f = F;f, by
definition of Fj. This proves (2.13). Next

(2.14) Z; %y =851 Z;
because
ZjZk = (Fjy1—Fj) (Foy1—Fk) = Fjy1Fpp1 —FjFy1 — Fj Fi+ Fj F,

A brutal computation using (2.13) gives the result.
Let us also check that

(2.15) /(Zk w) (Zgv)bdp =10, for u,v € L*(dp) and k # £.

We can assume that k£ > £. Since Z, v is constant on each cube of Ay,
it is enough to show that

(2.16) / (Zxu)bdp =0, for all Q € Ay .
QR

This last holds because
/ (Fpu)bdp = / (Fryiu)bdp = / fodu
Q Q Q
by (2.12).

Next we check that Ey and the Dy, k > 0, provide an orthonormal
decomposition of L%(du). First observe that if £ denotes the set of
(finite) linear combinations of characteristic functions of cubes, then

(2.17) £ is dense in L*(dpu) .
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This is an easy consequence of (2.4), or more precisely of the fact that
we can decompose E into disjoint unions of cubes of arbitrarily small
diameters, because continuous functions are dense in L2(du). Then

(2.18) f= klim Egf (with convergence in L*(dp)),
—00

for all f € L%(du), because this is obviously true when f € £, and the
operators Ej are uniformly bounded. Also, the decomposition

k—1

(2.19) Exf=Eof +) Dif
¢=0

is orthogonal. The orthogonality of the D,’s among themselves comes
for instance from (2.15) with b = 1, and they are orthogonal to Ey by
(2.16) with b = 1. Because of this and (2.18),

(2.20) 1113 = 1B 113 + D IIDef 3

£>0

for all f € L?(du).
We want to prove similar estimates for Fy and the Z,’s, but first
we need a few facts about Carleson measures.

Definition 2.21. A Carleson measure on EE X N is a measure v =
{vk}r>0 on E x N such that

(222)  v(@x{keN: k> kQ}N= ) wu(Q <CuQ),

k2k(Q)

for all cubes Q, and with a constant C' that does not depend on Q.

Recall that k(@) denotes the generation of (). The definition is
very analogous to the definition of discrete Carleson measures on the
upper half space; one should not be disturbed by the fact that the role
of t > 0 is played by A=F k € N, in our situation. Here is Carleson’s
theorem in our context.

Lemma 2.23. Let v = {v}i>0 be a Carleson measure on E' x N. Also
let f € L*(du) and a sequence { fx}ren of functions be given. If

(2.24) Fel@)] < Qi) /Q e,
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for all k>0 and x € E, then

@) [nPrdr =Y [P <ol
k

To prove this, we first need estimates on the maximal function
(2.26) F@) = swp(@ula) ™ [ Ifldu,
k Qk (@)

We start with the usual weak-L! estimate. Let f € L(du) and A > 0
be given, and set O(A) = {x € E: f*(z) > A}. Also denote by M
the collection of maximal cubes ) with the property that

(2.27) AJﬂdu>Au@D-

(These are the cubes such that (2.27) holds and either Q) € Ay or else
none of the ancestors of () satisfies (2.27).) By definitions, the cubes @
are disjoint (because they are maximal) and cover exactly O(A). Then

229 O = 3 w@ <A S [ i< Al
QEM, QeEM, '@

Thus the maximal operator f — f* maps L'(dp) boundedly into
weak-L!(dp). Since it is also clearly bounded on L (du), real interpo-
lation gives that

(2:29) £ < C Sl for £ & L¥(dp).
Now let f and {fx} be as in the lemma, and set
@30 UN = {(mk) € B XN [fio)] > A},
for each A > 0. If (z, k) € U()\), then
p@ule) ™ [ 1fld> s >
Qk(2)

by (2.24), and hence Qx(x) is contained in one of the cubes of M,.
Thus

(2.31) v e |J @x{k=kQ)}

QeM,
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and then
vUN) < > v(@Qx {k>k(Q)})
(2.32) QeMA
<C Y Q) =CuoMm),
QEM

where O()\) is as above, and by (2.22) and the first part of (2.28).

Thus the function of repartition of {fi}r>0 for the measure v is
dominated by the function of repartition of f* for p; the desired esti-
mate (2.25) follows from this and the maximal theorem (2.29). This
proves Lemma 2.23.

Lemma 2.33. For every f € L*(dpu),

(2.34) f=Ff+) Zf,

k>0

where the series converges in L2(dyu), and

@39 CUAB IR +Y [ (7P du< Ol

k>0

Of course the constant C' is not allowed to depend on f; it depends
only on the accretivity constant in (2.6).

The formula (2.34) obviously holds when f € £ (and then the sum
is finite), because Fyf = f as soon as f is constant on all the cubes
of Ag. The general case follows by density of £, plus the fact that the
operators Fj, are uniformly bounded on L2, by their definition (2.10)
and the accretivity condition (2.6). (Look at the effect of Fj on each
cube @ € Ay, separately.)

Now we want to prove the second inequality in (2.35). Write

Zif = Feprf — Frf
= (Ex10) " Ery1(bf) — (Bx b) " Ex (bf)
= (Br10) ™! = (B D)7 B (bf)
+ (Bx0) ™ (Br41(0f) — Ex(bf))

(2.36)
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and then use the fact that (Exi1b) " (FExb)~! is bounded because of
(2.7) to get that

(2.37) | Zif|? < C|Dib|? |Eeg1(bf)|” + C |Di(bf)?.

We can easily take care of the second piece, because

23) Y / Db dn =3 Db < 10718 < € 1113

k>0

by (2.20). For the first piece, we want to use Lemma 2.23 with the
sequence { fi} given by fi = Ex(bf), k > 1. Obviously

Eo(bf) ()] < 1(Qua)) " /Q ez

for all x € E, and so (2.24) holds (modulo an inessential constant).
We also want to take vy = |Dy_1b|?du for k > 1, and we have to
check that this is a Carleson measure. Thus we take a cube ) and try

to estimate
3 / Dy 1 b2 dp.

k>k(Q)
When k > k(Q), Di—1b= Dy_1(b1lg) on Q by definitions, and so

> /|Dk 1 b)? d,u<2/|Dk 1(b1g) |2 du

k>k
(2.39) K@
< b1ell3

< Cu(Q)

by (2.20) and the fact that b is bounded. The last term fQ |Dy(q)y bl dp

is at most C' (Q) because || D) bllco < 2|b||o, and so {vg }x>1 defines
a Carleson measure. By Lemma 2.23,

(2.40) 3 / Dy b2 | (b) 2y < C|| 12

k>1

We are left with a last term, £ = 0. For this one,

@4 [ IDabP BN P dn < BN < C IR
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by a brutal estimate. From (2.37), (2.38), (2.40) and (2.41) we deduce
that

(2.42) Z/ |Zef 1P du < C |13 -

k>0

Since we also have that

Foflg= 3 |( [ van) ([ roan)|u

QEA,

<C > / £ 0% dp

Qe

<C|fl3,

by Cauchy-Schwarz, we get the second half of (2.35).
The first half of (2.35) will now follow by duality. We write

f=Ff+) Zf
k

and
b =Ry T +ZZkb o

as in (2.34), and then

(243 191 = [ 70 Pvdn.

which we expand as suggested above. Note that for k # £,
[ @ @ 1)y pdu=o

by (2.15), and also that

/(Fof) Zk(b_lf)bdN:/Fo(b_lf) Zk(f)bdp =0,
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for all k because Fy(f) and Fo(b~! f) are constant on cubes of Ag and
by (2.16). Thus

191 | [ o) o Pyvau] + 3| [(2e) 2o Py b

< ClEofll2 [1Eo®™  Flll2 + C YN Zufll2 126 (67 P2

<c(imsl3+ Y 1zu1E) "
(2.44) ¥

(e D3+ Y lze— DIE)
- C(||F0f||§ + ||Zkf||§>l/2||b_17||2
k

by Cauchy-Schwarz (twice) and the second half of (2.35) (applied to
b= f). Of course ||b=1 f|l2 < C'[|f]l2, so we may divide both sides of
(2.44) by || f]|2 (if f # 0) and get the first half of (2.35).

This completes the proof of Lemma 2.33.

For each cube @, denote by W (Q) the vector space of all functions
f that are supported on ) and constant on each of the children of Q.
Also let W(Q) be the set of functions f € WT(Q) such that

(2.45) /bedu:o.

Let r denote the number of children of @; thus 1 < r < Cy by (2.5).
The dimension of W (Q) is obviously r. Since the condition (2.45) is
not degenerate on W (Q) (because 1o does not satisfy (2.45)), W(Q)
is an (r — 1)-dimensional space.

We want to find an appropriate basis of W(Q). If r = 1, i.e., if
@ has only one child, then W(Q) = {0} and there is nothing to do.
Otherwise we set D = D(Q) = {1,2,...,r — 1} and look for a basis
{hg}eep of W(Q) such that

(2.46) / he) hy bdp = 0e o1
Q
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for e,¢’ € D, and where 0. = 1 if ¢ = ¢’ and 0 otherwise. It will be
convenient for us to add the function

(2.47) R = (/ bdu)_l/le ,
Q

where the choice of square root is irrelevant, to get a basis of WT(Q).

With this choice of hy), we’ll even have (2.46) for all ¢,¢/ € Dt =
{0,1,...,r — 1}, because fQ hgbdp = 0 if hg € W(Q), by (2.45).
Denote by ae g pu(R)™!/? the constant value of h, on the child R €
F(Q) of . Thus we want to look for hf, under the form

(2.48) hy= > acrp(R)V?1g.
ReF(Q)

We have already decided that
—1/2 12
o= [ van) " 2.
Q

Set br = u(R)™! [ bdp for all R € F(Q). Note that these numbers are
bounded and bounded away from 0 by (2.7). With all these notations,
our constraints (2.46) are equivalent to

(2.49) Z Qe Qe g b = Oc e for e, € DV .
ReF(Q)

Lemma 2.50. We can find complex numbers ae g, 1 <e <r—1 and
R € F(Q), such that (2.49) holds and |a. r| < C for some constant C
that depends only on the accretivity constant in (2.6) and Cy in (2.5).

To prove the lemma, some additional notation will be useful. De-
fine a bilinear form (-,-);, on C" (indexed by the set F/(Q)) of children
of Q) by

(v, w)y =Y vRwrbE,

R

where v = (vg) and w = (wg).

Now suppose we already chose coefficients o g, 0 < e < k — 1,
for some k € {1,...r — 1}, in such a way that the equations in (2.49)
hold for 0 < e, ¢’ < k — 1. (We already did this with £ = 1.) Call v,



386 G. DaviD

0 < e < k—1, the vector of C" with coordinates a. g, R € F(Q). With
our new notations,

(2.51) <U€,U51>b = 66,6’ N for 0 S g, 6/ S kE—1.
We want to define a new vector vg. Set
(2.52) V={velC : (vu,)=0 for0<e<k-1}.

Because k < r — 1, V is at least one-dimensional and in particular is
not empty. Select a first vector z # 0 in V. Because the numbers bp
are all # 0, we can find w € C” such that (z,w), # 0. Since the |bg|
are bounded from below, we can even choose z and w with bounded
coefficients, and with (z,w), = 1.

We want to modify w to get a vector in V. Set

(2.53) v=w — Z (w, ve)p Ve -

e<k-—1

Then

(2.54) (v, ver)p = (W, Ver)p — Z(w, Ve)p Ve, Ver)p = 0,

€

for all &’ < k — 1, because of (2.51). Hence v € V, as desired. Also,

(2.55) (20 = (z,whp — Y (w, o) (2,0 = (z,w)p =1,

e<k—1

because z € V.
Choose among z,v, and z + v the vector x for which |(z,z)s| is
largest. Note that if |(z, 2)| and |[(v, v)p| are less than 1/2, then

{(z 4+ v,z 4+ v)p| = {2, 2)p + (v,0)p + 2 (z,w)p| > 1,
by (2.55), so that |(z,z)s| > 1/2 in all cases. We take
~1/2 .

v = ({z,7)p)

It is easy to see that vy has coefficients oy g, R € F(Q), that can
be bounded in terms of the |a. r/|, ¢ < k—1 and R’ € F(Q), and
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the accretivity constant for b. With this choice of v, we now have the
identities in (2.49) for ¢,¢’ < k. The lemma follows by induction.

Let us choose the coefficients a. g as in Lemma 2.50. This defines
functions hf), e € D = D(Q), that lie in W(Q) and satisfy (2.46). Set

(2.56) (9 = / fobdu,  for f.g € L*(dp).
With this notation, (2.46) is the same as

(2.57) (hy, hg>b = 0c el for ,¢' € D(Q) .

Lemma 2.58. The functions h§,, € € D(Q), form a basis of W(Q),
and

(2.59) f= Y (£ hgwhdy,  forall f€W(Q).
eeD(Q)

In addition,

(2.60) CTHAE< D Wgl* < CIIFIE
c€D(Q)

for all f € W(Q), with a constant C' that depends only on the constants
in (2.5) and (2.6).

Indeed, if f € W(Q) can be written as f = _p, c. hgy, then

<f7h§2>b - ZQ&"( Eth6Q>b = Ce¢,

by (2.57). Applying this with f = 0 gives the independence of the
functions hgy; we then deduce that they form a basis of W(Q) because
we know that dimension (W (Q)) = r — 1. Thus all f € W(Q) can be
written as f = Zee D Ce hEQ, and the computation above shows that the
ce are as in (2.59).

From the formula (2.48) and the fact that the coefficients a. g are
bounded, we deduce at one that

(2.61) I <C > wR)V?1g.
ReF(Q)
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In particular,
(2.62) Ihgllz < €
If f e W(Q), then (2.59) implies that
€ 5 € 2 1/2
1712 < D7 I ol 1Al < (30 Kfhehel?)
eeD eeD

by the equivalence of the #! and ¢2-norms in C"~!, and the fact that
r < Cp. Similarly,

Z |<f7 h’EQ>b|2 < Cy ||f||% ’

eeD

by Schwarz and (2.62). This completes our proof of Lemma 2.58.

Proposition 2.63. Every function f € L?>(dp) can be written as

(2.64) F=Fof+>, > Y. (fhgwhy,

k>0 QeAL e€D(Q)

where
(2.65) (i = [ Fhgban
Q

is as in (2.56), and the convergence of the series in k occurs in L*(du).
Moreover,

(2.66) CTHIFIZ<IFfI3+D_ D D WLHmowl> < ClIfI3-

k>0 QEAL e€D(Q)

Finally, the decomposition in (2.64) is unique: if there is a decomposi-
tion

(2.67) F=htr S Y .

k QeArLeeD(Q)

where fo is constant on each cube of Ay and the series (in k) converges
in L?(dp), then fo = Fof and cg = (fyhg)e for all Q € U, Ak and
e € D(Q).
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Recall from (2.10) that Fp is a harmless projection onto the sub-
space of functions that are constant on each cube of Ay.

We start with the proof of the existence of the decomposition and
the estimate (2.66). We already have a decomposition of f as f =
Fof + Yy Zxf, with a control on the norms, that comes from Lemma
2.33. Because of this, it will be enough to show that for all £ > 0,

(2.68) Zif=Y, Y, (L hghhy

QEAL eeD(Q)

and

(2.69) 1ZeflI3~ D2 D0 (kg

QEAL e€D(Q)

Obviously, Zuf = Ygea, Z2f, where Z2 f = 1¢ Zy.f, and

1ZeflI3= > I1Z2f113 -

QeA
Thus it is enough to show that
(2.70) ZZr= Y (fhghhg
e€D(Q)
and
(2.71) NZZFIE~ D2 [ hel®,
e€D(Q)

for each cube @) € Ay, and with constants in (2.71) that do not depend
on f, k, or Q. In view of Lemma 2.58, it is enough to show that
Z2f € W(Q) and that

(2.72) (Z2 £ g = (f hg)

for all e € D(Q).

It is clear that Z,?f = 1¢ (Fi41f — Fyf) is supported on () and
constant on each child of (). (See the definitions (2.10) and (2.11).)
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Also, fQ(Z,?f) bdp = 0 by (2.16), and hence Z,?f € W(Q). (See near
(2.45) for the definition of W(Q).) Finally, let ¢ € D(Q) be given. Then

<Z;?f,hig>b:/(z,§f) hg bdp
Q
(2.73) :/Q(Fk-l—lf—ka) hg bdp

_ / (Fesnf) B b,
Q

by definitions (and in particular (2.11)), the fact that Fyf is constant
on (), and because

(2.74) / hobdu =0, for all Q and € € D(Q)
Q

(because hgy, € W(Q)). Next hg, is constant on each cube of Ag1, and
so (2.12) (applied with k + 1) tells us that

[ @eapiigvdu= [ fhgbdu= (705
Q Q

This completes the proof of (2.64)-(2.66), and we are left with the
uniqueness result to prove. To this effect, let us first check that

(2.75) (hgs hyr )b = 0(Q,e),(@" &)

(that is, 1 if @ = Q' and ¢ = &’ and 0 otherwise) for all choices of @,
Q' €U, Ak, € € D(Q), and &' € D(Q’).

We already know this when Q = Q. When ) and @’ both lie in
a same Ag but Q) # @', then (2.75) holds because hé and hEQ’ have
disjoint supports. Finally assume that Q € A and Q" € Ay, and that
¢ < k. Then hEQ', is constant on @ and (hg,, hEQ’)b = 0 by (2.74). Thus
(2.75) holds in all cases.

Now let f € L?(du), and suppose that f has a decomposition (2.67)
as in the proposition. For each choice of Q" € |J, Ay and ¢’ € D(Q’),
(fos th’,>b = 0 by (2.74) and because fy is constant on @)’. Then (2.75)
tells us that

12
(2.76) (o+32 3 X chhighiy), =co s

k=0QcAL eeD(Q)
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for £ large enough. Thus CEQ’, = (f, hg,)b by taking limits. A comparison
of (2.67) with (2.64) now gives that fo = Fof because we know that
the series are the same.

This completes our proof of Proposition 2.63.

3. A T(b)-theorem.

Let E be a compact subset of the plane, and let p be a finite
positive Borel measure, with support (4) = E. We shall assume that

(3.1) w(B(x,r)) < Cor,  forallz e Fandr >0

and some constant Cy > 0. We want to state (and later prove) a T(b)-
theorem on the space (E, du) for one-dimensional singular integral oper-
ators; unfortunately, our statement will already require the existence of
a collection of “dyadic cubes on E” with properties somewhat stronger
than those of Section 2. We shall assume that E is equipped with col-
lections Ak, k£ > 0, of Borel subsets (which we’ll call cubes) with the
following properties.

First we ask for the same combinatorial properties as in (2.1) and
(2.2):

for each k£ > 0, E is the disjoint union

(3.2)
of the cubes @, Q € Ay,

ifk<?4,Q¢eArand R e Ay,

3.3
(3:3) then either Q N R = @ or else R C Q.

We also require that for each integer £ > 0 and each @Q € Ay, there be
a ball B(Q) = B(x(Q),r(Q)) centered on E and such that

(3.4) AP <r(Q) < CrATF
and
(3.5) ENB(Q)CQC EN(30B(Q))),

where 30 B(Q) = B(z(Q),307(Q)). Here A and C; are positive con-
stant, and we shall assume (mostly for security reasons) that A >
10* C;. It will be convenient for us to demand also that

(3.6) Ag has only one element ,
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because it will make some of the algebra easier. This is also easy to
arrange, because F is bounded and we could always add a first genera-
tion of cubes with only one element, or group all the cubes of Ag into
a single one. (This would make the constants C; and A slightly worse,
though.)

We shall also need “small boundary” properties for our cubes. Set

N(Q) = {x e Q: dist (z, E\Q) < tA~F@}

3.7
(3:7) U{z e E\Q: dist (z,Q) < tAk@)

for all Q € A =J, Ar and 0 < t < 1, and where k(@) denotes, as in
Section 2, the integer such that @ € Ayg). We require the existence
of an exponent 7 € [9/10, 1] and positive numbers £(Q), Q € A, with
the following properties. First,

(3.8) p(N(Q)) < Cot™ £(Q) foralQ e Aand 0<t<1.

Also,
(3.9) 191 B(Q)) < Co&(Q) < C2AHQ),
and
(3.10) > R < Coé@),
ReA,
RC91B(Q)

for all £ > k(Q). These are coherence relations that will be useful when
we try to apply Shur’s lemma (much later). A reasonable choice would
be £(Q) = 1(92 B(Q)), say, but this will not suffice for our application
to Theorem 1.1 because we shall be working at the same time with some
other measure.

Our condition (3.8) will be even more useful for cubes () such that

(3.11) §(Q) < Cop(Q)-

Let us call these cubes good cubes. Denote by G the set of good cubes.
We also assume that the only cube of Ay is a good cube (which would
be fairly easy to arrage anyway), and add a last requirement on the
numbers £(Q) that will allow a better control on the bad cubes. We
demand that

(3.12) £(Q) < AT(Q),
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whenever () is a bad cube and Q is its parent (i.e., the cube of Agg)_1
that contains it).

The reader may be worried by this long list of requirements. In-
deed this will make it rather unpleasant to check all the hypotheses of
Theorem 3.20 below, but nonetheless it is always possible to construct
cubes with the properties above when E = supp p and p satisfies (3.1).
Such a construction is done in [DM], and we shall encounter it when
we try to apply Theorem 3.20 to analytic capacity.

We shall also assume that we are given a Borel function b on FE,
and that b is bounded accretive, i.e., satisfies (2.6).

Now we want to describe the singular integral operators that we
want to study. Denote by £ the vector space of (finite) complex linear
combinations of characteristic functions of cubes (Q € A. Also let b€ be
the set of products bf, f € £. It will be easier to define our operators
as operators from b€ to its dual, or equivalently as bilinear operators
from b€ x bE — C. We shall denote by (Tbf,bg), f,g € &, the
effect of T'(bf) on bg (or equivalently the image of (bf,bg) under the
bilinear operator). In particular, we drop the parentheses around bf
intentionnally, to simplify notations.

We shall assume that T is associated to a “standard kernel”, as

follows. By standard kernel, we mean a continuous function K (z,y) on
{(z,y) € C? : x # y} such that

(3.13) K@) < Cale—ylt, foraz#y
and
3.14)  K(e.0) - K9]+ [K(p.0) - Koo < Co 20

whenever |z — y| < |z — y|/2.

The Cauchy kernel K (z,y) = (z — y)~! is obviously a very good
example of standard kernel.

The relation between 7" and K is that

(315)  (Tf.g)= / / K(2,y) () g(y) du(z) duly)

whenever f, g € b€ have disjoint supports.
By disjoint supports we mean that we can write f and g as f =
>0 @blg and g = > pnrblg, with all the cubes @ disjoint from
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the cubes R. The reader should not worry about the convergence of
the integral in (3.15). We shall see later that

(3.16) /Q/RM<+OO,

|z —y|

for all cubes @, R such that Q " R = @. This will come as a fairly
easy consequence of (3.1) and (3.8), but we prefer not to check it now
and try to state our main theorem soon. See (8.7) and the relevant
definition (7.9) for a proof.

We shall also demand that 7' satisty the following analogue of the
“weak boundedness property”: there is a constant C3 > 0 such that

(3.17) (Tblg,b1lg)| < Csu(Q),forall Q € A.

Our last conditions will be that T € BMO and T'*b € BMO. Since E
is in general far from being a space of homogeneous type, there is some
ambiguity as to which definition of BMO we should take. The following
version of “dyadic-BMO” based on L?-oscillation will be best suited to
our needs.

Definition 3.18. We denote by BMO the set of functions 3 € L*(dpu)
such that

(3.19) /Q 1B(x) — moBl du(z) < C*u(Q).

for all cubes Q € A and some C > 0.

Here

1
mqQf = méﬁd#-

We shall denote by ||3||smo the smallest constant C' > 0 such that
(3.19) holds for all @ € A. As usual, BMO is a Banach space of
functions defined modulo an additive constant, the mean value of (3
on the unique cube of Ay, or equivalently the value of the constant
function Eyf3, where Ej is as in Section 2. We are now ready to state
our T'(b)-theorem.

Theorem 3.20. Let E C C be a compact set and p a finite positive
Borel measure such that E = supp p and (3.1) holds. Let b be a bounded
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accretive function on E, as in (2.6). Let (Ag)r>o0 be collections of
“dyadic cubes”, with the properties (3.2)-(3.12). Finally let T : b€ x
b& — C be an operator that satisfies (3.13)-(3.15) and (3.17), and
suppose that there are functions 8 and 8 in BMO such that

(3.21) (Tb,bg) :/ﬁbgdu
and
(3.22) (Tbg.t) = [ Gbgdn.

forall g € £. Then T extends to a bounded operator on L?(dpu).

A few comments on this statement will be useful.

The conditions (3.21) and (3.22) are just a dual way to say that
Tb = 3 and T*b = 3, where T denotes the transposed operator. Recall
that £ is dense in L%(dp), as in (2.17). Since C~! < |b| < C by (2.6),
b€ also is dense in L2(du) and the (Th,bg), g € £, determine Tb.

REMARK 3.23. Because b€ is dense in L2(du), it is easy to see that T
extends to a bounded operator on L2(du) (or, if we see T' as a bilinear
operator, that T' extends to a bounded bilinear operator from L?(du) x
L?(dp) to C) if and only if there is a constant C' > 0 such that

(3.24) [(Tof,b9)| < Cllfll2llgllz - forall fgec €.

REMARK 3.25. Although this was not said explicitely in the statement,
our proof will give a bound on the norm of T' (or equivalently on the best
constant C' in (3.24)) that depends only Cy, C1, C2, C3, A, ||B|lBMO
and ||8]lBmo-

Here we work with a compact set E, and this has the small ad-
vantage that we did not need to define Th and T%b as “distributions
modulo additive constants”. Our hypothesis (3.17), applied to the only
cube of Ay, gives a control on the integrals of Th and T%b against b
(i.e., the constant piece Fy(T'h) = Fy(T*b), with the notations of Sec-
tion 2). Thus it is not surprising that we only need to control ||5||Bmo
and ||5]|pmo once we have (3.17).
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REMARK 3.26. As far as the main goal of this paper is concerned, the
reader should not pay too much attention to the (slightly complicated)
general definition of singular integral operators given here: Theorem
3.20 will be applied to operators T. that can be defined brutally by
integration against the very integrable kernels

1 (|x—y|)
"2 )
r—y €

where ¢ is a smooth cut-off function that vanishes in a neighborhood of
0. Also see the beginning of the discussion about principal value oper-
ators associated to antisymmetric standard kernels in the next section.

REMARK 3.27. In our statement we have assumed that £ = supp p
because this was natural and simple. However, Theorem 3.20 is still
true if we only assume instead that E is a bounded Borel set contained
in the support of y and such that u(C— E) = 0. This will not make any
difference in the proof below, and it may make the hypotheses a little
bit easier to check, because we could be given partitions of E (rather
than supp p) into dyadic cubes. This is not a very serious issue anyway,
because it is fairly easy to see that such a partition can be extended

to a partition of supp p with the same properties. See the argument a
little below (3.57) in [DM].

REMARK 3.28. Our condition (3.17) is clearly necessary for T' to have
a bounded extension to L2(dpu), and we wish to claim without proof (es-
sentially, because we shall not need this fact) that our main conditions
Tb € BMO and T%b € BMO are necessary as well. The verification
should amount to checking that

(3:29) /Q T((1 = 10)d)(z) — T((1 - 1) b)(x(Q))* du(z) < C 1(Q),
for all ) € A, and this would follow from

030 [ ([ o sy ) ) < cn@.

We shall prove similar (only a little more complicated) estimates later;
see in particular the proof of (13.65) to reduce to

du(y) \2
/Q(/ZQ\Q |$u_yy|> dp(z)
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and then the proof of (13.75), where we can define h(z) as in (13.70)
and (13.55) but with r(z) = 0, because p satisfies (3.1).

REMARK 3.31. Our statement of Theorem 3.20 is clearly not optimal.
We can replace our accretivity condition (2.6) with the slightly weaker
requirement that b be bounded and satisfy (2.7). Our choice of 7 =
9/10 in (3.8) is not optimal; probably a weaker definition of standard
kernels would work as well and E should not need to be bounded. Our
hypothesis that £ and K live in the plane (as opposed to some R™) is
not needed (see Remark 9.112); quite possibly £ and K do not need to
be one-dimensional either. However the modifications needed to take
care of all these details could be quite painful (if they exist), and our
proof is already complicated enough without them. Since we only have
one clear application in mind so far, it is probably wiser not to think
too much about extensions now.

A more unpleasant aspect of Theorem 3.20 is that we have to
use cubes with the properties (3.2)-(3.12). This will even create some
trouble in the present paper, because the cubes that are given to us will
come from a different measure and will not be directly adapted to the
measure on which we want to apply Theorem 3.20.

It seems that F. Nazarov, S. Treil, and A. Volberg were able to
prove a T'(b)-theorem for measures that satisfy (3.1) without using our
machinery with dyadic cubes [NTV]. It would be interesting to see
whether their proof can be adapted to give Theorem 1.1.

In the next section we want to say a few words about the “principal
value operator” associated to a given antisymmetric standard kernel.
After this we’ll discuss shortly how to verify that T and T%b lie in
BMO with the help of the Haar system of Section 2.

4. Antisymmetric standard kernels.

Let K be a standard kernel, and suppose that
(4.1) K(z,9) = —K(y,0),  whena #y.

We want to define a singular integral operator T': b€ x b€ — C such
that (3.15) and (3.17) hold.
We start with the easy case when

(4.2) [E K@l <,
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for all z € E and some C' > 0. Then we can set

(4.3) Tf(z) = / K(z.y) f(y) dp(y).

forall f€b€& and x € E; T'f is a bounded function and

(Tf,g) = / Tf(x) g(x) dyu(z)
(4.4)

- / / K(2,9) f(4) 9() du(y) du()

with a nicely convergent integral, for all g € b€. By Fubini and anti-
syminetry,

(45) <Tb 1Q,b1Q> =0, for all Q € A

in this case. If f,g € &£, then for k£ large enough we can write

(4.6) f= Z Ao 1g and g= Z nr1lr .

Qe ReAy

Then (4.4) and (4.5) imply that

(Tbf,bg)
(4.7) = A K (z,y)b(y) b(z) du(y) du(z),
Q,RXE:A:CQX;&;% QnR/R/Q Y)Y ply) ap

when (4.6) holds.

When we no longer assume (4.2), the simplest is probably to get T
as a limit of operators T%, as follows. Select a nice C! cut-off function
@ such that p(t) =0 for 0 <t <1 and ¢(t) =1 for t > 2, and then set

Kee.y) = o) K@),

for all (small) ¢ > 0. The kernels K. are still uniformly standard and
antisymmetric, and they satisfy (4.2), so we can define singular integral
operators 1, as in the discussion above.
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Lemma 4.8. For every antisymmetric standard kernel K we can define
a singular integral operator T : b€ x bE — C by

(49)  (Tbf.bg) = lim (Tbf.bg),  forall fg€ €.

Moreover T satisfies (3.15) and (4.5), and (4.7) holds whenever f,g are
as in (4.6).

We shall refer to T' as the principal value operator associated to
(the antisymmetric standard kernel) K. Note that we shall only use
(3.13), and not (3.14).

Our proof of Lemma 4.8 will rely on (3.16), which will only be
proved later (see (8.7) and the definition (7.9)) but is fairly simple.

Because of (3.16), the integrals in (4.7) converge, and we could
have taken (4.7) as our definition of 7' It is slightly easier to proceed as
we do because we won’t have to check that different expressions for f
and g in (4.6) give the same result in (4.7). Let us return to the lemma.
The existence of a limit in (4.9) follows from the dominated convergence
theorem, applied to the kernels K. (that converge pointwise to K) in
the formula (4.7) (which is satisfied by all the T.’s as soon as (4.6)
holds). We also get the formula (4.7) for T at the same time. From
(4.9) and the linearity of each T, we get that T" is linear. The formula
(4.5) for T follows directly from (4.9) and the fact that each T, satisfies
it. Finally (3.15) is an easy consequence of (4.7) (and the existence
of decompositions as in (4.6)), or can be obtained directly from its
analogue for the 7T.’s and the dominated convergence theorem.

This completes our discussion of the principal value operator as-
sociated to antisymmetric standard kernels. Note that they satisfy the
weak boundedness property (3.17) automatically, because they satisfy
the stronger (4.5).

5. Th € BMO and the Haar system.

In this section we want to see how to use the modified Haar system
of Section 2 to check our conditions that 70 € BMO and T%b € BMO.
First observe that our cubes @, @ € A, satisfy the conditions (2.1)-
(2.5) required for the construction of Section 2: (2.1) and (2.2) are the
same as (3.2) and (3.3), (2.3) follows from (3.5) and the fact that B(Q)
is centered on supp p, (2.4) is a consequence of (3.4) and (3.5) (although
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with a slightly larger constant), and finally (2.5) (again with a larger
constant) follows from the fact that for each r,

the number of cubes of A, that meet a

5.1
(5:1) ball of radius r is always < 1 + C A% 2.

This last is an easy consequence of (3.4), (3.5), and the fact that the
balls B((Q) are centered on E, because this implies that |2(Q)—x(Q")| >
A7F when Q, Q' € Ay, with Q # Q.

So we can apply the construction of Section 2 to our cubes Q € A
and our function b. We do this and get a modified Haar system {hg, }q e
It will be simpler to call

(5.2) H={(Q,e): Qe Aandeec D(Q)}

the set of indices that show up.
For each function 8 € L?(du), set

(5.3) 85 = (B, 1)y = / B, by,

for all (Q,e) € H. These coefficients do not determine 3 entirely, but
only modulo the piece Fyf (see (2.64) and (2.65)). Here, because Ay
has only one cube, Fy3 is simply the constant

(5.4) Foff = (/Ebdu>_1/Eﬁbdu.

(See the definition (2.10).) Nonetheless, the coefficients 37, are enough
to determine whether 8 € BMO.

Lemma 5.5. Let 3 € L?(du) be given, and define the Bo, (Q,€) € H,
by (5.3). Then B € BMO if and only if the (g satisfy the following
quadratic Carleson measure condition: there is a constant C' > 0 such
that

(5.6) SN 18P <CPu(R),  forallReA.

QCReeD(Q)

Moreover the best constant in (5.6) is equivalent to ||5||Bmo-
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To prove the lemma, let 3 € L?(dp) and R € A be given. Set

1
mpB = m/}zﬁdﬂa

as in Definition 3.18, and then apply Proposition 2.63 to f = (6 —
mpgf) 1g. For all cubes Q C R and all € € D(Q),

(5.7) (. 1)y = /Q Fh bdu= 65

(the extra term fQ mpg (B hg bdp disappears because of (2.74)). Then

6s) 3% |ﬁa|2s0||f||%sc/R|ﬁ—mRﬁ|2du,

QCReeD(Q)

by the second half of (2.66).

Denote by A the constant value on R of Fy3 + ZQ,&-(ﬁ? h22>b hS,,
where the sum is restricted to the pairs (Q,¢) such that () contains R
and is of a generation k(Q) < k(R). It would be easy to check that A

is the value of Fy gy on R, but we don’t need this fact. Because of
(2.64),

(5.9) B=N1r=D_ > (Bhghhd.

QCRecD(Q)

Apply the uniqueness result in Proposition 2.63, and then (2.66), to the
function (8 — A)1g. This gives

(5.10) /Rw—wdugcz > 18P

QCReeD(Q)

(recall (5.3)). Finally observe that

(5.11) /R|ﬂ—mRﬂ|2du§/R|ﬂ—>\|2du-

This would be true for any constant A: it follows from the pythagorean
theorem, or the fact that mgf3 is the orthogonal projection of 3 on the
vector space of constant functions in L?(R,dp).



402 G. DaviD

When we compare (5.8), (5.11), and (5.10), we find that the quanti-
ties in (5.8) are equivalent. Lemma 5.5 follows by taking the supremum
over all cubes R.

Lemma 5.12. Let T : b€ x bE — C be a bilinear operator. Set

(5.13) Bo = (T'b,bhg)
and
(5.14) 35 = (Tbh,b),

for all (Q,e) € H. Then there are functions 3 and B € BMO such that
(3.21) and (3.22) hold if and only if the sequences {5} and {35} both
satisfy the Carleson condition (5.6).

Indeed if f € BMO is such that (3.21) holds, then (3.21) with
g = h{, says that the numbers (3, in (5.13) are the same as the ones in
(5.3). Lemma 5.5 then gives the desired control on the BG- Conversely,
suppose that the (g in (5.13) satisfy (5.6). For each integer k > 0, set

(5.15) Be= Y. Y. Bohg.
QEAL eeD(Q)
Note that
(5.16) H ZﬁkH <CZ > ) 1Bl
k=m QEAy e D(Q)

by Proposition 2.63. Since the right-hand side of (5.16) tends to 0 when
m and n tend to oo (because Y-, [65]* < +0o, by (5.6) applied to the
only cube of Ag), the series >~ B converges in L?(du). Denote its
limit by #*. By the uniqueness part of Proposition 2.63,

(5.17) (B ho)e =5,  forall (Q,e) € H

and * € BMO by (5.6) and Lemma 5.5.
Denote by W the subspace of € spanned by the hg,), (Q,e) € H.
By (5.13) and (5.17),

(5.18) (Tb,bg) = (8", 9, forall g e W.
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From Proposition 2.63 and the description of Fy in (5.4) we see that W
is a subspace of codimension 1 in £ and the one-dimensional space of
constant functions is a complementary space for W in £. Thus, even
though (5.18) does not imply that 8* satisfies (3.21), this will be easy
to fix. Set

(5.19) o=+ ([ vin) " (T0n - (570)

(note that [, bdu # 0 by accretivity.) Obviously, adding a constant to
B* does not modify (8*, g), for g € W, because of (2.74). Therefore
(5.18) yields

(5.20) (Tb,bg) = (3, g) = / Bbgdu,

for all g € W. Since we also have that
(5.21) / Bbdp = (8,b) = (8,b) + ((Tb,b) — (6*,b)) = (Tb,b),

by (5.19), we see that (5.20) holds for all g € &, i.e., (3.21) holds. Note
that 3 lies in BMO because 3* does. This proves the converse.

The story for the transposed operator, i.e., with (3.22) and the
numbers 37, is the same. This completes our proof of Lemma 5.12.

The proof of Theorem 3.20 will (continue to) keep us busy for the
next few sections. The argument will follow roughly the same lines as

in the Coifman-Semmes or Auscher-Tchamitchian proofs of T'(b). See
[CJS], [AT], [Da] or [My].

6. Paraproducts.

In this section we want to construct bounded operators P such that
Pb and Ptb are prescribed functions in BMO. We shall call them para-
products because they look like other operators that actually looked like
Bony paraproducts.

In the standard situation for the regular T'(1)-theorem, say, these
operators are bounded singular integral operators, and we can use them
to substract them from the operator 7' of Theorem 3.20; this allows one
to reduce to the situation where 7'1 and 7?1 are equal to 0 (instead of
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just lying in BMO.) Here this approach will not work brutally, because
our paraproducts will have a fairly bad kernel. We shall have to use
them in the following slightly more subtle way. The boundedness of
these operators, which will not be so trivial because it will use Carleson’s
theorem, will be used to show that their matrices in the modified Haar
system of Section 2 define bounded operators on £2(H). These bounded
matrices will then be substracted from the matrices of operators T
from Theorem 3.20, and we shall be able to prove that the resulting
differences of matrices are small enough to be handled by just looking
at the size of their coefficients.

In this section we construct the paraproducts, prove their bound-
edness, and compute their matrices. For the results of this section, none
of the small boundary conditions on our cubes will be used: the weaker
structure of Section 2 is still enough.

For each sequence {[5’2‘2}(@,5)6 g of complex numbers that satisfies
the Carleson condition (5.6) we define an operator P on & by

(Qe)eH

where
1
(6.2) 0 = (/ bdp) 1q.
Q

The sum in (6.1) has only finitely many terms, because only finitely
many coefficients (f, hg))p can be different from 0 when f € £. Thus
(6.1) makes sense, and even Pf € £.

We shall also be interested in the operator P that we get from P
by “b-transposition”, as follows: P is the linear operator from & to the
dual of b€ defined by

(6.3) (Pg,bf) = (Pf,bg),
or equivalently
(6.4) (Pg, f)o=(Pf,g)y, forall f,ge&.

Lemma 6.5. The operator P is also given by

(6.6) Pg= Y ﬂg(/deu)_l(/ngdu)hg,

(Qe)eH
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for all g € £ and where the series in (6.6) converges in L?(dpu).

Let g € £ be given, and set

(6.7) c%zﬁ%(/@bdu>_l(/cggbdu).

By the paraaccretivity conditions (2.6),
-1
[ van " <@
Q

and, since g is obviously bounded, [c,| < C'|55] for all @ and e. The
constant C' may depend wildly on g, but we don’t care. In particular,
> 0. lco[? < +oo by (5.6), and the same argument as in Lemma 5.12
(see around (5.15)) shows that the series in (6.6) converges in L2(dyu).
Call h € L?(dy) the limit; we want to check that h can be taken as Pg,
i.e., that

(68) <h7f>b: <vag>b7 for alleE

When f is a constant, (h, f)p = 0 because h is a limit in L? of finite
linear combinations of functions hg and (hg), f)p = 0 by (2.74). Since
Pf = 0 because all the (f, h()p are equal to 0, we get (6.8) for constant
functions. Since all functions in £ are linear combinations of some
constant and functions hg, (by Proposition 2.63 and (5.4)), it is enough
to prove (6.8) when f = hg,. But

(Pho), 9)o = B0 <9Qag>b=ﬁé(/deu)_l(/ngdu) = (h, hgy)v

by (6.1), (2.75), (6.2), the definition of h as the right-hand side of (6.6),
and (2.75) again. This proves Lemma 6.5.

Proposition 6.9. The operators P and P both extend to bounded
operators on L?(du), with norms less than C' times the constant C in
the Carleson condition (5.6).

First observe that P extends to a bounded operator on L2(dpu) if
and only if there is a constant C' > 0 such that

(6.10) (PLOGI<Clfllzllgllz,  forall fig €&,
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This follows easily from the density of £ in L?(du) and the fact that
C~1 < |b| < C by (2.6). This condition is also equivalent to the exis-
tence of an extension of P to a bounded operator on L2(dpu), because of
(6.3). Thus it will be enough to prove the boundedness of (an extension
of) P to L?(dy).

From Lemma 6.5, the uniqueness result in Proposition 2.63, and
(2.66) we deduce that for every g € &,

(6.11) 1Pgllz<C D 1P,
(Q,e)eH

where cg, is as in (6.7). We want to use Lemma 2.23 (Carleson’s theo-
rem) to estimate the right-hand side of (6.11). Set

(6.12) fe= > / |g|du 1,
EAk

for all & > 0. Obviously the sequence {f} satisfies (2.24) with f
replaced with g. Also define measures v, on E by

(6.13) dg =3 ( 3 |5Q|) Q) 1qdu.
QEA, e€D(Q)

Let us check that {vy}x>0 defines a Carleson measure on £ x N, as in
Definition 2.21. For each cube R € |J, A,

(6.14) S ou®=3 (Y 16F) <cunr),

k>k(R) QCR ceD(Q)

by (5.6). In other words, (2.22) holds and v = {v} is a Carleson
measure. Lemma 2.23 now tells us that

S [ 10 an < Clgl3.
k

But

Z/|fk| =3 3 (3 1R)u@2( [ loln)

kE QeAr eeD(Q)

(6.15) >0t Y g,

(Qe)eH
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by definitions (6.12) and (6.13), the accretivity condition (2.6), and
(6.7). Because of (6.11), this gives that ||Pg||3 < C'||g||3, proves the

boundedness of P, and completes our proof of Proposition 6.9.
Next we want to talk about matrices.

Definition 6.16. Let T : £ x b€ — C be a bilinear operator. The
matriz of T' (relative to the system {hg,}) is the matrizc M with coeffi-
cients

(6.17) M(Q,e,R,&') = (Th%),bh%),  (Q,€) € H and (R,&') € H.

The slight asymmetry of this definition cannot be a serious problem
because C~! < |b| < C by (2.6); our definition is just more convenient
for our paraproducts P and P. Note in particular that if 7" denotes the
b-transpose of T' as in (6.3), i.e., if T : € x bE — C is defined by

(6.18) (Tg,bf)y=(Tfbg)y, forfgeE,

then the matrix of 7' is just the transpose of M.

We do not claim that M determines 7', and indeed it does not say
anything about (T'1,bf) or (T f,b) when f € &, but it will still be useful
to determine when 7" has a bounded extension to L2(du).

Lemma 6.19. Let T : £ x bE — C be a bilinear operator and M
denote its matriz relative to the system {hg}. Then T admits an ex-

tension to a bounded operator on L?(du) if and only if

(6.20) T1¢e L*(dp),

(6.21) T1e L*(dy),

and

(6.22) M defines a bounded operator on ¢*(H) .

Let us explain these conditions; (6.20) means that there is a func-
tion h € L?(du) such that

(6.23) (Tl,bf>:(h,bf>:/hbfdg, for all f € E.
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Similarly, (6.21) means that there is an h € L?(dyu) such that

(6.24) (T~1,bf>:(Tf,b):/ﬁbfdpJ, for all f € &.

As for (6.22), let W* denote the set of finitely supported sequences
z = {25 }(@.c)en and define a bilinear operator S from W* x W* to C

by

(6.25) (Sx,y) Z Z M(Q,¢, R, 5)513@ ?JR ;

(Q,e)EH (R,e')EH

for all z,y € W*. Then (6.22) means that there is a constant C' > 0
such that

(6.26) [(Sz,y)| < Clizllflyll,  forz,y e W7,

where
1/2

lol = (Y I

(Q.e)eH
and similarly for y.
The obvious mapping from W* to W = span{hg, : (Q,¢) € H}
defined by ¢(z) = ) g he, is a bijection and

CH ]l < lle(@)l2 < C ],
by Proposition 2.63. From (6.17) and (6.25) we deduce that
(6.27) (Sx,y) = (Tp(x),be(y)), for all z,y € W*.
Hence (6.22) holds if and only if there is a constant C' > 0 such that
(6.28) (Tfo9) < Clifll2llgllz,  forall figeW.

Because of this, (6.22) is clearly necessary if we want 7' to have a
bounded extension; (6.20) and (6.21) are necessary too, because 1 €
L*(dp) and T has a bounded extension if and only if T does. The
converse is not much harder. Suppose that (6.20), (6.21), and (6.22)
hold. By Proposition 2.63, every f € &£ has a decomposition f =
Fof + nf, where Fyf is a constant because Ag has only one cube,
wf € W, and
[Foflls + 2 < ClIfl2
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Then, for f,g € &,

(Tf,09)] < KT (Fof),bg)|l+ KT (nf),bg)]
< ClE T2 [lgllz + KT (7 f), 0 Fog)| + KT'(x f), b g)]
< ClEofllzllgllz + C1Eo gl ITLllz I fllz + Clw fllz llm g2
< CllEofllzllgllz + CllFogli2 I Fll2 + ClIf 1219l
< Clflzlgllz

(6.29)

by (6.20), (6.21), and (6.28). Thus T has a bounded extension to L?,
as desired.
This completes the proof of Lemma 6.19.

Finally we want to compute the matrix of P.

Lemma 6.30. Denote by P = ((P(Q,¢, R,€"))) the matriz of the
paraproduct P defined by (6.1) (using the sequence {;}.) Then

(6.31) P(Q,e,R,e") =0, when QN R=@ or RC Q,

and

(6.32) P(Q,{E, R,¢') is B times the constant value
of hz on Q when Q C R, Q # R.
Recall from (6.17) and (6.1) that
(6.33) P(Q,e,R,€') = (Phg), bh%) = G5 (9, bh%)
by (2.75). This is obviously 0 when @ N R = @, and also when R C @

because fg is constant on @), and by (2.74). Thus we are left with the
case when () C R, Q # R. In this case h‘j‘é is constant on () and

<9Q,b>:/9de,u: 1,

by (6.2). The lemma follows.
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7. Reduction to the study of a matrix N.

In this section we take an operator 1" that satisfies the hypotheses
of Theorem 3.20, compute its matrix, substract from it the matrices of
appropriate paraproducts, and show that the remaining matrix defines
a bounded operator if some other matrix A/ defines a bounded operator
on ¢2. The matrix A/ will be a matrix with nonnegative coefficients,
that no longer depends on the operator 7" but only on the size of certain
integrals on E. The boundedness of (the operator defined by) N will
be proved in later sections, with the help of Schur’s lemma.

We shall not use the small boundary properties of our cubes in this
section either, except for the fact that

(7.1) p({xr e @: dist(z, E\Q)}) =0, for all Q € A,

which follows from (3.8).

Let T be an operator that satisfies the hypotheses of Theorem 3.20.
Denote by T = ((T'(Q,¢, R,e"))) the matrix of TM; in the modified
Haar system {hg,}, and where M, denotes the operator of pointwise
multiplication by b. Since T is defined on b€ X b&, T'My is defined on
E x b€&, as required in Definition 6.16, and

(7.2)  T(Q,e,R,&) = (Tbh,bh%),  for (Q,e), (R,') € H.

We already know from (3.21) and (3.22) that (T'M;)1 =3 and (T M;)1=
3 lie in BMO, hence in L?(dyu). (Compare (3.21) and (3.22) with (6.23)
and (6.24) for T'M,.) Hence Lemma 6.19 says that it will be enough to

prove that 7 defines a bounded operator on £*(H).
Next define sequences {5} and {55} by (5.13) and (5.14). Then

Lemma 5.12 says that {4} and {[5’2:2} satisfy the Carleson condition
(5.6).

Denote by P the paraproduct constructed in Section 6 with the
sequence {622} and by P* the analogous operator defined with the se-
quence {BZQ} These two operators have bounded extensions to L%(du),
by Proposition 6.9. Denote by P the matrix of P. By Lemma 6.19,
P defines a bounded operator on ¢?(H), and so does its transpose P.
Similarly, the matrix P* of P* defines a bounded operator on ¢*(H).

Set M = T — P — P* and denote by M(Q,e, R,€’) its generic
element. The discussion above shows that

Theorem 3.20 will follow if we can prove that

(7.3) 0
M defines a bounded operator on £%(H).
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Let us compute the coefficients of M. We use (7.2), Lemma 6.30, and
then (5.14) and (5.13) to get that

(7.4) M(Q,e,R,e") = (Tbh%,bh3),
when QN R =2 or Q = R,
M(Q,e,R,&") = (TbhS,bh3) — P*(Q, e, R,¢)
(7.5) = (Tb h¢ ,bhf?:> - BZ} (value of hf;: on Q)
= (TbhS), bhS,) — (Tbhs),b) (value of hS, on Q),
when @ C R, Q) # R, and
M(Q,e, R,€') = (Tbh),bh5) — P(R,&',Q,¢)
(7.6) = (TR, bhs,) — B (value of b on R)
= (Tbh§, bh%) — (Tb,bh%) (value of h§) on R),

when R C @, R # Q.

The next stage of our computation is to express the coefficients of
M in terms of the kernel K(z,y) and then estimate them in terms of
some integrals on E. The following notation will be useful. Set

(7.7) d(Q) = A™H@

for all Q € A, where k(Q) denotes the generation of @), and also

(7.8) 2Q ={z € E: dist(z,Q) <d(Q)}.
For each Borel subset V of E such that Q NV = @, set
dp(x) dp(y)
. I V) = L Sl U
(79) @)= [ [
and
_ [ d(Q) dp()

where 2(Q)) denotes the center of the ball B(Q), as in (3.5). These are
the quantities that will be used to control the coefficients of M. We
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still denote by F(Q), @ € A, the set of children of @, i.e., the set of
cubes Q" € Ag@)+1 such that @* C Q. We shall try to be systematic
about calling Q* or R* generic children of () or R.

Lemma 7.11. If QN R = @, then for all choices of ¢ € D(Q) and
e € D(R),

(7.12) |M(Q,e, R, €")] < CA1(Q,R) + C A2(Q, R)
where
Al(QvR)
(7.13) — Z Z N(Q*)_l/z ,U(R*)_l/z I(Q*,R* N 2@)
Q*EF(Q) R*€F(R)
and
(7.14) A2(Q, R) = (@)Y > w(R*)TV2I(Q,R\2Q).

R*€F(R)

To prove the lemma, let us first observe that Tbhg(z) is well-
defined when dist (z, Q) > 0 and that it is given by

(7.15) Tb by () = /Q K (2,y) b(y) hy(y) duly)
Recall from (2.48) and Lemma 2.50 that

(7.16) hy= Y. e (@) 1g-,
Q*eF(Q)

where the coefficients o ¢~ are uniformly bounded. From this descrip-
tion and the first standard estimate (3.13) we get that

du(y)
x—y|’

(7.17) Tohg(x) <C Y u(Q*)‘l/Z/

Q*eF(Q) Q

when dist (z, Q) > 0. Notice incidentally that dist (z,Q) > 0 for u-
almost all z € R, by (7.1) (or (3.8)).

This estimate is best when z € 2Q\@, but when = ¢ 2@ we can
use the second standard estimate (3.14) and the fact that fQ bheydp =0
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(by (2.74)) to get a better one. Let z(()) denote the center of B(Q),
as usual. (Actually, for the computation that follows, any point of @
would work equally well.) If x € F\2Q,

Tohi )| = | | K bo) R (o) ity
=| [ )~ K (@) b0 i) )

(7.18) <C/Ww_x | b(y) 1% ()| dply)

.T—JT

<C (Q) Z “(Q*)1/2

_ 2

2 d@)
< Cp(Q) T2 Q)

by (7.15), (3.5), (3.4) and (7.16). We may now use (3.15), (7.4), (7.16)
and the discussion above to get that

IM(Q, e, R,€')| = [(Tbhs), bh%)]

(7.19) <C Y ) [ Teny ) dute).

R*€F(R)

On each R*N2 Q) we use (7.17) to estimate |T'b hg)(z)|; when we integrate
the estimate and sum over R*, we get less than C'A1(Q, R). Similarly,
we use (7.18) for z € R*\2Q, integrate over R*\2 () and sum over R*,
and we get a contribution < C'A3(Q, R). This proves Lemma 7.11.

Note that our estimate is more performant when d(Q) < d(R); in
the other situations, we would use a symmetric argument. We won’t
need to do this, because as we shall see soon we won’t have to bound
coefficients of M for which d(Q) > d(R).

Lemma 7.20. We have that

(7.21) IM(Q,e,Q,€")| < C+ CA3(Q),

forall Q@ € A and e,e’ € D(Q), where

(7.22) A3(Q Z Z —1/2 (Q3)~ V2 I(Q7,Q3).
QRIEF(Q) QieF(Q)

Q3 #Q7
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To prove the lemma we start again from (7.4) and use (7.16) to get that
M(Q,e,Q,€") = (Tbh), bh))

(7.23) =Y D aeqr aegp Q)T p(Q3) 72
Q1 2EF(Q)

(Th1lg:, 1g;).

The terms for which Q7 = Q)5 are less or equal than C'C'3, by our weak
boundedness assumption (3.17), and so we are left with terms for which
Q7 # Q3. For each such term we use (3.15) and (3.13) to get that

(Tblg:,blg;)

- | / K (2, y) b(y) b() du(y) dp(x)
(7.24) I7Qs

< CI(Q1,(Q3) -

Lemma 7.20 follows because the coefficients aq . are uniformly bound-
ed.

Now we want to estimate the coefficients of M for which ) C R,
@ # R. In such situations, we shall systematically denote by R(Q) the
child of R that contains Q.

Lemma 7.25. For each choice of cubes Q C R, Q # R and ¢ € D(Q),
e’ € D(R),

(7.26) |IM(Q,e,R,e")| < C(By1 + Bi2 + Ba1 + Bas),

where

B = Z Z p(Q*) 7V (R T2
Q*€EF(Q) R*cF(R
w2

I(Q*,R*N2Q),
(7.28)  Biz= Y w@QY?u(B)V2I(Q,R\2Q),

R*€F(R)
R*#R(Q)

(7.29) By = > Q)7 u(R(Q)*1(Q*,2Q\R(Q)),
Q*EF(Q)
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and

(7.30) Baz = p(Q)"? p(R(Q))™? J(Q, E\(2QU R(Q))) -

To prove the lemma, let @, e, R,e’ be given, and denote by « the
constant value of h%, on Q. Thus |a| < C u(R(Q))~?2 by (7.16). This
time we apply (7.5)

(7.31)  M(Q,e, R, ') = (Tbh),bh5) — a(Tbhs,b) = By — By,

where

(7.32) By = (Tbhg,bh 1r\r(Q))
and

(7.33) By = a(Tbhy, 1p_r@)b) -

Note that the part (T'bhg, a1gq)b) cancelled out; this will allow us
to use the kernel K (x,y) again to estimate B; and Bs. Thus

@3 Bl<C Y pm) MR [ Thg)| dute).
R*€F(R) R
R"#R(Q)

by (3.15) and (7.16) for R, and now we can estimate |10 h)(z)| with
(7.17) and (7.18). As before, we use (7.17) on each R* N2 Q. After we
integrate on R* N2 and sum over R*, we get a contribution less or
equal than C'By;. On the rest of R* we use (7.18), and we get a total
contribution less or equal than C'Bjs after integrating on R*\2 @ and
summing over R*.

The estimates for By are similar. Recall that |o| < C pu(R(Q))™/?
and hence

739 Bl <OpRQ) [ Tl dnte).

On 2Q\R(Q) we use (7.17) and get a contribution less or equal than
CBsi. On E\(2Q U R(Q)) we use (7.18) and get less or equal than
CBss. This proves Lemma, 7.25.
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We are now ready to reduce the proof of Theorem 3.20 to the
“verification” that a certain matrix A’ defines a bounded operator on
(2(A). Define a matrix N = ((N(Q, R)))q.rea as follows. Set
where A1(Q, R) and A»(Q, R) are as in (7.13) and (7.14), when

() N R = @ and either d(Q) < d(R) or else

(7.37) d(Q) = d(R) and diam @ < diam R,
(7.38) N(Q,Q)=A43(Q), forQeA,
and

(7.39) N(Q,R) = Bi1 + Bia + Ba1 + Bag

when Q C R, Q # R, where A3(Q) is as in (7.22) and the B;; are as
in Lemma 7.25. Finally set N(Q, R) = 0 in the other cases, i.e., when
@ N R = @ but (7.37) does not hold and when R C Q, R # Q.

Lemma 7.40. To prove Theorem 3.20 it is enough to show that N
defines a bounded operator on £%(A).

Set NT = N +N*+1d, where Nt is the transpose of N and Id the
identity matrix. Obviously N'* defines a bounded operator on £2(A)
if A does. Let us suppose that this is the case; since N is a matrix
with nonnegative entries and all the sets D(Q), @ € A, have at most
C elements, we shall get that M defines a bounded operator on £?(H)
if we can prove that

(7.41) IM(Q,e,R,e")| < NT(Q,R),

for all Q,¢, R,¢’, and where N*(Q, R) denotes the generic element of
NT.

Denote by Dy the set of (ordered) pairs (@, R) such that Q@ C R
or (7.37) holds. When (Q, R) € Dy, (7.41) follows from Lemma 7.11,
7.20, or 7.25. Otherwise, we shall use the transpose T of T, which is
defined by (Th f,bg) = (Tbg,b f) for all f,g € £. Notice that T also
satisfies the hypotheses of Theorem 3.20, only with K(x,y) replaced

with K (y, z) and the functions g, 3 exchanged. We can define a matrix
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M with T as we did for T itself, and it is clear from (7.4)-(7.6) that M
is the transpose of M. If (Q, R) & Dy, then (R, Q) € Dy and

IM(Q,e,R,€')| = |M(R,¢',Q,¢)] < NT(R,Q) = NT(Q, R),

by Lemma 7.11, 7.20 or 7.25 (applied to T) Thus (7.41) holds in all
cases, and M defines a bounded operator if N does. Lemma 7.40
follows, by (7.3).

We completed the task assigned to this section: we can forget
singular integral operators and concentrate on the matrix N.

8. Estimates on I(Q,V).

We shall need to estimate the various coefficients of our new matrix
N. In this section we prove a few estimates on integrals like 1(Q, V)
that will be useful later. The small boundary properties (3.8)-(3.12)
will be needed here.

We start with a simple estimate that uses the density property
(3.1) ounly. First observe that

/ Z/ du(y)
lz—y|>d |$ - y|2 20d< |z —y|<2t+1d |z —y|?

>0
(8.1) <C> (24d)(2'd)”
£>0

<Cdt,

for all x € E and d > 0.
Next let Q@ € A and V' C E\Q be given. For each = € @) we use
Cauchy-Schwarz to show that

du(y) 1/2 du(y) |2 1/2 () ~1/2
32 [ S <uwye( [ R < o) i),

where we set d(x) = dist (z, E\Q). Note that d(z) > 0 almost every-
where on @), by (3.7)-(3.8). We may now integrate (8.2) on @) to get
that

53 1Qv)= [ [ BUBD < ouwy [ i) i

Q
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(see (7.9) for the definition of I(Q),V)).

Lemma 8.4. We have that

(8.5) /Q de) V2 du(z) < Cd(Q)"V2E(Q).

Here d(Q) = A=*(@) as in (7.7). To prove the lemma we decom-
pose @ into a first region By where d(z) > d(Q) and annuli By, £ > 1,
where 274d(Q) < d(z) < 271d(Q). Then

/B A) 2 du(r) < d(Q)2 u(Q) < Cd(Q) 2 £(Q).
by (3.9), and

/B dz) Y2 du(z) < 22 d(Q)Y/? u(By)

< C2Y24(Q)7227THE(Q),

(8.6)

for £ > 1, by (3.8). Lemma 8.4 follows by summing a convergent power
series.
From (8.3) and Lemma 8.4 we deduce that

(8.7) I(Q,V) < Cu(V)M*¢(Q)d(Q)~2,

for all cubes @ and all sets V' C F\Q.

We want to refine this estimate when () is not a good cube (as in
(3.11)), because getting estimates in terms of u(Q) rather than £(Q)
will be very useful to get rid of some of the negative powers in formulae
like (7.13), (7.22), (7.27) or (7.29). Recall that g is not doubling or
anything like that, and we don’t have much in terms of lower bounds
for p.

Lemma 8.8. We have that
(8.9) 1(Q,V) < Cp(V)? (@)Y ()2 d(Q) 12,

forallQ € A and V C E\Q.
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To prove this we shall use a decomposition of )y into maximal
good subcubes. For each Q € A, denote by S(Q) the set of maximal
good cubes contained in ). Obviously the cubes S, S € S(Q), are
disjoint and contained in @, but it is also true that they almost cover
Q, i.e., that

(8.10) M(Q\ U S)zo.

Ses(Q)

This is essentially [DM, Lemma 5.28], but the proof is quite simple and
so we give it here. For each integer £ > 0, let Z, denote the set of cubes
R € Ag(g)+¢ such that R C @ but R is not contained in any S € S(Q).
Such cubes are obviously bad, as well as all their ancestors until ) and
hence they satisfy

(8.11) p(R) < Coé&(R) < Co AT E(Q),

by (3.9) and repeated uses of (3.12). Because of (5.1) and (3.4), (3.5),
Z; has at most C A% elements, and so

(8.12) p( U R) <0a¢@),
ReZ,

where the value of C' does not matter because we only need to know
that p(Ugey, 1) tends to 0 when £ — +oo. The desired estimate
(8.10) follows because

@U9e(Yn).

for all £ > 0.
To prove Lemma 8.8 we use (8.10) to almost-decompose @) into its
maximal good subcubes S, S € S(Q) and write

I(Q’V):/Q/V dp(z) dp(y)

lz —y]

= ) ISV)

S5e5(Q)

<Ou(V)V? Y E(8)d(s)~?
SeS(Q)

<o) > u(8)d(s)7H?,
Ses(Q)

(8.13)
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by (8.7) and (3.11) for the good cubes S.
Lemma 8.14. For all ) € A,

(8.15) > us)(Ge) <ce@.
Se5(Q)

Of course we don’t need the power 6 here, but the proof will be just
as easy. Denote by Sy(Q), £ > 0, the set of cubes S € S(Q) such that
k(S) = k(Q) + £. Because of (5.1), S¢(Q) has at most CA?* elements.
Let us check that

(8.16) u(S) < Cy A7HED ¢(@Q),

for all S € Sp(Q). When £ =0 or 1, u(S) < u(Q) < Coé(Q) by (3.9).
When £ > 1, u(S) < p(S) < Co&(S) < Co AU ¢(Q) by (3.9) and
repeated uses of (3.12), and where S denotes the parent of S. Here we
use the fact that all the ancestors of S between S and Q@ are bad, by
definition of S(Q).

From (8.16) and the fact that Sy(Q) has at most CA?* elements
we deduce that the contribution of Sy(Q) to the left-hand side of (8.15)
is at most CAZPAT10A%E(Q) < CA~2£(Q); Lemma 8.14 follows by

summing over £ > 0.

Most of the time, Lemma 8.14 will be used in combination with
Cauchy-Schwarz, as follows

> us)(Ge) < (X ) (X we(Ga))”

Ses(Q) 5e5(Q) SesS(Q)

(8.17) < Cu(@)2E@)?,

because ) is (essentially) the disjoint union of the cubes S € S(Q). A
trivial consequence of (8.17) is

S)d(S)~V? = d(Q)~/? 5)(UDy
- S;@)m ) d(S) @73 (as)

<CdQ)TV? (@) E(Q)?.

Lemma 8.8 follows from this and (8.13).
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We shall need a last estimate on 1(Q, V'), to be used when we have
a larger power of (@) to recuperate

@>1/2-

(8.19) 1@.20\Q) < Cp@) (553

To prove this we write

1Q,2Q\Q) = Y I(5,2Q\Q)

5e5(Q)
(8.20) < >0 I(S25\9)+ > I(S,2Q\29)
5e5(Q) Ses(Q)
g I]_ + Iz .

For each S € S(Q),
(8.21) I(S,25\S) < Cu(28)Y2£(S)d(S)1/2 < Cu(S)*%d(s)~1/2,

by (8.7), (3.9) and (3.11) for the good cube S. Hence

I,<C Z 3/2 -1/2
SeS(Q)
(8:22) < Op(@)? Y u(S)d($)™?

< Cu(@)EQ)V2d(Q)~2,

by (8.18). This takes care of I;.
As for Iy, let us check that

) Q)
(8.23) / wous o~y = Cd@Q)

for all S € S(Q) and z € S.

Denote by Ty, 0 < £ < k(S) — k(Q), the cube of Ayg)4e that
contains S. This is a decreasing sequence of cubes, with Tp = @ and,
T(s)y—k(@) = S, and 2Q\2 S is the union of the sets 2Ty\2Tp;1, 0 <
¢ < k(S) — k(Q) — 1. For these values of ¢,

(8.24) 1(2Ty) < Co&(Ty) < Co ATHE(Q),
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by (3.9) and repeated uses of (3.12). Then

k(S)—k(Q)-1
/ duy) Z /
2Q\25 [z — y| T[\ZTZ+1 |
8.25
(8.25) < Zu 27) d(Tps1) "

< C¢(Q)dQ),

by definition (7.8) of 2Ty4q, the fact that z € S C Ty41, and then
(8.24). This proves (8.23). Now

// du(y) du(z)
SES(Q) 2Q\25 |5E—y|

C S -1
(8.26) < ;w )E(Q)d(Q)

by the definitions (8.20) and (7.9), (8.23), and (3.9) (to get that £(Q) <
Cd(Q)). The desired estimate (8.19) follows from (8.20), (8.22) and
(8.26).

9. Bounds on N.

In the original version of this paper, the matrix AN/ was bounded
with the help of Schur’s lemma. This was quite tempting, but it turns
out that it actually complicated the estimates. The current section was
revisited in October 1997, after the author noticed that in the similar
extension of T'(b) by Nazarov, Treil, and Volberg, the corresponding
estimates were much simpler. Here is the simple trick that makes the
difference; I am sure the reader will be glad that the authors of [NTV]
kindly communicated it to me.

Lemma 9.1. Let N = (N(Q, R)))g,rea be a matriz with complex
coefficients. Assume that for each Q) € A there are at most C indices
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R € A such that N(Q, R) # 0, and also that

(9.2) Z IN(Q,R)|? < CF, for each R € A.
QeA

Then N defines a bounded operator on (2(A), with norm |||N]|| <
C Cy.

This is easy to prove. First observe that if A/ is as in the lemma,
then it is the sum of at most C7 matrices that satisfy the hypotheses
of the lemma with C; = 1 and the same constant C5. Thus we may
assume that C; = 1. For each R € A, denote by vg € (?(A) the
vector with coordinates N(Q, R), Q € A. By (9.2), ||vr||? < C2, while
our first hypothesis with C; = 1 says that the vectors vg, R € A, are
orthogonal to each other. Hence if = (zr)grea is any vector in £2(A),

03) Wl = | S anon| =X lenl lerl? < &3 o)
R R

as needed. The lemma follows.

To estimate the matrix A from Section 7, we want to decompose
it into a sum of matrices N*, with k = k(Q) — k(R) and prove geo-
metrically decreasing bounds on the norms |||AV*]||. For each integer
k > 0, denote by A'* the matrix with coefficients N*(Q, R) = N(Q, R)
when k(Q) = k(R) + k and N¥(Q,R) = 0 otherwise. Note that
N =350 NF, because N(Q, R) = 0 when k(Q) < k(R). See around
(7.36)-(7.39) for the definition of N.

At this point, and for almost all the rest of this section, we fix an
integer k > 0 and we study N* by cutting it into smaller pieces. As we
shall see, Lemma 9.1 will be quite handy for most of them.

Case A. Terms with Q = R. Of course this only shows up when k£ =
0. Denote by Nj the part of AV that lives on the diagonal, i.e., set
Ni(Q,R) = 0 when Q # R and Ny(Q,R) = N(Q,R) = A3(Q) for
Q € A. (See (7.38).)

Recall from (7.22) that

(9.4) A3(Q) = @)™ w(Q3) P 1(QF, Q%)
QT Q3
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where we sum over pairs of distinct children of Q. By (8.9) and (3.9),

1(QF,Q3) < Cu(@3)'? p(@)'?e(@)?d(Qy) ™12
< Cu(@3)Y? n(@)?,

and so A3(Q) is a sum of boundedly many bounded terms. Thus N
defines a bounded operator on £?(A), with norm |||V:]|| < C.

(9.5)

Case B. Terms coming from A1(Q, R). Set No(Q, R) = A1(Q, R) when
k(Q) = k(R) + k and (7.37) holds, and N2(Q, R) = 0 otherwise. We
should perhaps have written N§(Q, R) instead of N»(Q, R), but k is
fixed and we’ll try to keep the notation simple. Note that No(Q, R) =0
unless 2() meets R; this is clear from the definitions (7.13) and (7.9).
Thus for each @ there are at most C cubes R € Ay(g)— such that
N2(Q, R) # 0. We can apply Lemma 9.1 to the matrix Ny with coeffi-
cients N2(Q, R) and get that

(9.6) IIN2]]]? < C sup B(R),
ReEA
where
(9.7) S(R)= Y Ny(Q,R)’
QEA(R)

and A(R) is the set of cubes QQ € Ay(g)+s such that @ N R = @ but
20N R+ 2.
Fix R € A, plug (7.13) into (9.7) and then apply (8.9) to get that

SRY<C D D D> w(@) T (R THI(QT, R N2Q)?

R*cF(R A(R) Q*€F
(9.8) EF(R) QEA(R) Q*EF(Q)

SOY DD wR)T (R N2Q) Q) d(QF) .

R* Q Q*

Let us fix R* and try to bound the corresponding sum. Let us warm
up with the easy case when £ < 10, say. Then we simply say that
£(Q*)d(Q*)™ < C by (3.9), that the R*N2Q, Q € Ag(r)+k, have
bounded overlap (by (3.4), (3.5)) and are contained in R* and then
that X(R) < C' after summing over boundedly many children R* of R.

For larger k we wish to argue that since @ N R = @ by (7.37),
the sets R* N 2@ only cover a small proportion of R*. This can be
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implemented directly if R* is a good cube, but in general we need
to bring in the decomposition of R* into maximal good subcubes S,
S € S(R*), as in (8.10). For each R* € F(R) set Sy = {S € S(R*) :
k(S) < k(R)+ k/2}, R% = Uses+ S and R* = R*\RY. We write

(9.9) Y(R)<C Z (04 (R*) + o_(R")) n(R*)71,
R*€F(R)

where

(9.10)  ox(R)= > D wRLN2Q)EQY) Q).

QEA(R) Q*€F(Q)

For o (R*) we say that £(Q*) < C'd(Q*) by (3.9), so that

=3 3 > wSn2Q)¢QNdQY) !

SeStT QEA(R) Q*eF(Q)

<C E: 2: p(SN2Q) < E:IKAs%

SeST QeA(R) Ses+

(9.11)

where Ag is the union of the sets SN20Q, Q € A(R). We used the
fact that the 20, @ € Ag(r)+k, have bounded overlap. Next all the
points of Ag lie within A=*(B)=F = A=k d(R) of some point of E\S,
because the cubes @@ do not meet R (and even less S). (See (7.8) for
the definition of 2 Q).) Hence Ag is contained in the set N¢(S) of (3.7),
with t = A7*d(R)d(S)™! < C A7*/2 (because d(R) < A¥/2d(S) by
definition of Sy). So

oL (R) <C Y, ATF(S)
Ses,

(9.12) < CATF2 N u(S)
S€S+

< CAFTI2 (R,

because the cubes S are good (as in (3.11)), disjoint, and contained in
R*. This will be enough to take care of 5.

For o_(R*) we only say that u(R* N2Q) < u(R*), but we use a
better estimate for £(Q*). Let @ € A(R) be such that 2 () meets R* ,
and let z be any point of 2¢Q) N R* . Then let H be the smallest cube
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that contains z such that k(H) < k(R)+ k/2. Since H is not contained
in any cube of S4, it is a bad cube and so are all its ancestors contained
in R*. Then

E(H) < ATHORED=RIED) ¢(Rr)
(9.13) < CAk¢(RY)
< CA™®*d(R),

by repeated applications of (3.12), because k(H) > k(R)+k/2—1, and
by (3.9).

Since 2Q meets H and @) is of a strictly later generation than
H, @Q is contained in 91B(H) and (3.10) says that {(Q*) < C¢(H) <
CA=5% d(R) for all Q* € F(Q).

Thus all the terms in the sum that defines o_(R*) (in (9.10)) are
at most

Cp(R*)AT* d(R) d(Q) ™ < Cpu(R*)A™*.

Since by easy geometric considerations (like (5.1)) there are at most
CA?! cubes Q in A(R), we get that

(9.14) o_(R*) < Cu(R*)A~?k,

From this and the similar estimate (9.12) we deduce that ) (R) <
CA™TF/2 (see (9.9)), and then that |||[Na]|| < CA™™F/% (by (9.6)).

Case C. Terms from Bii. Set N3(Q,R) = Bji, where Bi; is as in
(7.27), when Q@ C R, Q # R, and k(Q) = k(R) + k. Otherwise set
N3(Q, R) = 0. These coefficients are like the N3(Q, R) = A1(Q, R) that
we just treated (compare (7.27) with (7.13)), except that now we sum
over pairs Q*, R* such that @* € F(Q) and R* € F(R) is not the cube
of F(R) that contains (). The same estimates as before can be carried
out, because whenever we used the fact that 2 does not meet R in
subsection B, we only needed to know that ) does not meet R*. So the
matrix N3 with coefficients NV3(Q, R) has a norm |[|Ns]|] < CA~TF/4
and the proof is the same as for N>.

Case D. Terms from Bsi. Now set N4(Q, R) = By, where By is as
in (7.29), when Q C R, @ # R, and k(Q) = k(R) + k. Otherwise set
N4(Q, R) = 0. These coefficients are a little like the previous ones, but
with a p(R*)~'/2 replaced with u(R(Q))~'/2, where R(Q) is the child
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of R that contains ). To accommodate this change, it will be better to
use (8.19) rather than (8.9). Recall from (7.29) that

(9.15)  Bar= Y @)V u(RQ)P Q" 2Q\R(Q)),
Q*EF(Q)
and note that

1(Q%,2Q\R(Q))

(9.16) iI(Q*,ZQ\Q*)

1(Q",20\2Q7) + I(Q*,2Q"\Q7),

by definition of I(-) (see (7.9)).
The last term 1s at most

Cp(Q*) E(Q*)Y?d(Q*)~Y? < Cu(Q*) £(Q)/2d(Q)~/?

by (8.19) and (3.10).
The first term is

1(Q,2Q\2Q%)

by (7.9) and (3.9). Thus

(9.17)  Na(@R<C Y @) p(R(Q) Q)@
QT eEF(Q)

Note that for each ) € A there is at most one cube R € A such that
N4(Q,R) # 0 (namely, the ancestor of order k of @}). Thus we can
apply Lemma 9.1 to the matrix Ny with coefficients N4(Q, R), and

(9.18) [[NVall] < sup X(R),
with

S(R) =) Ni(Q,R)?
(9.19) @

<C YD Y mM@Q)uER)THER) @)

R*€F(R) QEA(R*) Q*€F(Q)
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and where
A(R*) = {Q c Ak(R)—l—k . Q C R* and 2Q meets E\R*} .

(The last condition is needed if we want 1(Q*,2 Q\R(Q)) # 0in (9.15).)
We shall now proceed as in Case B. As before, the case when £ < 10
is easy, because we can just use (3.9) to get that

0D 3D 3) SRS RETS
R* Q Q*

(because the cubes Q* are disjoint and contained in R*). So we may
assume k > 10.
Set

Sy = {S € S(R*) : k(S) < k(R) + g}

and subdivide A(R*) into AT and A~ where
AT ={Q € A(R*): Q C S for some S € S}

and A~ = A(R*)\A™. For cubes of AT we use (3.9) to get that

= > Y Q) d(Q)™!

QEAT Q*eF(Q)

(9:20) " ek

Now for S € Sy and Q € AT, Q C S, we have that 2Q meets F\R*
by definition of A(R*) and so Q@ C Ny(S), with t = A=F(@)Fk(S)+1 gy
By definition of S, t < CA™*/2 and so (3.8) yields

(9.21) > (@) < u(Ny(S)) < CATF/2E(S) < CATM/2 u(S),

QCS
QeAt

because S is a good cube. Altogether, (9.20) becomes

(9.22) oL (RY)<C > A2 u(S) <CATF? (R,
SES+
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because the maximal cubes S, S € S, are disjoint and contained in
R*.
Next we want to estimate
(9.23) o_(R) =Y > w@Q)EQdQ) .
QREA~ Q*EF(Q)

This time we shall just say that p(Q*) < p(R*), but we’ll use a better
estimate on £(Q). By definition of A*, the smallest ancestor H of @
such that k(H) < k(R)+ k/2 is a bad cube, and so are all its ancestors
in R*. By repeated uses of (3.12),

é(H) < A—lO(k(H)—k(R*)) f(R*)

(9.24) < CATFE(RY)

< CATF d(R)
(by (3.9)). Also, (3.10) says that £(Q) < Co&(H). Altogether,
(9.25) £Q)d(Q)TH < CEH)d(Q)™H < CATH,

By (5.1), there are at most CA%* cubes @ in A(R*) and so o_(R*) <
CA~?ky(R*). Finally

(9.26) L(R)<C Z W(R) ™ (04 (R*) + 0 (R*)) < CA™*T/2
R*€F(R)

by (9.19), (9.20), (9.23), (9.22) and this, and so |||Ny]|| < CAF/4 by
(9.18).

Case E. The far part from A3(Q, R). Now we study the piece of N* that
comes from terms As(Q, R) for which dist (Q, R) > d(R). For each R €
A denote by A(R) the set of cubes @ € Ay g)4x for which (7.37) holds

and dist (Q, R) > d(R) = A7*(®), Define N5 by N5(Q, R) = A»(Q, R)
when @ € A(R) and N5(Q, R) = 0 otherwise. When Q € A(R),
As(Q R) = (@2 Y w(B)V2I(Q,RM\2Q)

R*€F(R)

< u(Q 1/2 R*)~1/2 d(Q) dﬂ(x)z
(9.27) MQr 2, ) Ju iz =0

< Cu(@Y?Y " p(RA)M?d(Q) dist (Q, R*) 2

R*

< Cu(@Q)? w(R)V? d(Q) dist (Q, B) ™2,
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by (7.14) and (7.10).
Subdivide each A(R) further into the

(9.28)  Ay(R) ={Q € A(R) : 2°d(R) < dist (Q, R) < 2*T1d(R)},
¢ > 0. We want to control the norms of the corresponding pieces N5 4

of N5, and this is the only place in this revised Section 9 where it will
be more pleasant to use Schur’s lemma.

Lemma 9.29 (Schur). Let N = ((N(Q, R)))gea,rea be a matriz with
complex coefficients, and assume that there are positive numbers w(Q),

Q € A, such that

w(Q)

(9.30) QXE:A o) IN(Q,R)|<C,  forallRe A
and

w(R)
(9.31) %w@) IN(Q,R)| < C,  forallQecA.

Then N defines a bounded operator on L%(A), with norm |||N]|| < C.

For the very easy proof, see for instance [Da, p. 43] or [My, p. 269].
We want to apply this to N5 ¢, with w(Q) = w(Q)Y2. Let us first check
sums over Q. For R € A,

2 o (N5 o(QR)| <C Y u(Q)d(Q)dist(Q, R)~
w(R)
(9.32) QEA(R)

< CATFA(R) (2%d(R)™> ) w(@),

QEA((R)

by (9.27) and definitions. Since all the cubes @@ € A;(R) lie within
C2¢d(R) of R, their total mass is at most C 2¢d(R) by (3.1), and so

(9.3 > L N lQu 1) < CAF 2t
Q
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Next we fix () and sum over R. Of course we need only consider those
R for which @ € Ay(R), and all these cubes R lie at distance less or
equal than C2°d(R) = C 2¢ A¥ d(Q) from (). Thus

w(R)

> o) Vet @B <0 > u(R)d(Q) dist (Q, R) ™
R R
(9.34) < Cd(Q) (A2 d(Q))7* Y u(R)
< Cd(Q) (A*2°4(Q))
=CA k27t

Altogether, Schur’s lemma yields

(9.35) V5[] < Y Vs ell] < CATF.
12

Case F. The local part of A2(Q, R) and Bys. Set Ng(Q, R) = A3(Q, R)
when k(Q) = k(R) + k, (7.37) holds, and dist (Q,R) < d(R); set
N6(Q, R) = B12 when k(Q) = k(R) + k, Q C R and Q # R; finally set
Ng(Q, R) = 0 otherwise. Note that

(9:36)  Ne(Q,R)=u(@Y? Y wER)V2IQR\2Q),
R*€F(R)
QNR*"=o
when Ng(Q, R) # 0, by (7.14) or (7.28). Also, dist (Q, R) < d(R) when
Ng(Q,R) # 0, so for each Q € A there are at most C cubes R € A
such that Ng(Q, R) # 0. Lemma 9.1 tells us that

(9.37) 1IVG6]l[* < C sup B(R),
ReA
where Ng is the matrix with coefficients Ng(Q, R) and

Y(R) = Ne(Q,R)>.
Q

For each R € A and R* € F(R), set

(9.38) A(R") = {Q € Ap(mysx ¢ dist (Q, R) < d(R) but QNR* = &} .
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Then
(9:39) SR <C Y pR)a(R),
R*€F(R)
with
(9.40) o(R") = > wQ)J(Q,R\2Q)*.
QEA(R")

Fix R and R* € F(R). For each Q € A(R*) set
(9.41) d(Q) = d(Q) + dist (Q, R*)
and, for notational convenience,

(9.42) Jo=J(Q,R"\2Q).

Our basic estimate for Jg is

B d(Q) dp(z)
Jo = /R*\zQ v — 2(Q)2

du(z
(543) = @) o—a(@)[26(Q)/2 |7 — z(Q)?
d(Q)
S C m )

which follows from (7.10), the fact that

dist (z(Q), R*) > dist (z(Q), E\Q) > d(Q)

(by (3.4) and (3.5)), and (8.1).

Let us first say rapidly how we would estimate o(R*) if R* were a
good cube. We would first sum over the cubes @ such that 6(Q) ~ ¢ for
a given 0, the interesting case being when d(Q)) < 6 < d(R*). By (9.43),
the contribution of @ to the sum would be at most Cu(Q) (d(Q)/6(Q))>.
Also, the total mass of the cubes ) would be about

( d(f{*))TaR*) < O(%)E(H*)
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(if R* is good) because each cube @ lies at distance less than C'§ from
R* but does not meet R*. Summing over Q would give less than

o) (5) wiaw,

We would then sum over § and get that
o(R*) < CA™F p(R¥)

(the largest terms are when § ~ A=* d(R)).
In general, R* is not a good cube and we’ll have to localize to

maximal good subcubes of R* and distinguish two cases as usual. For
each ) € A(R*), choose a point z(()) such that

(9.44) 2(Q) e R* and  dist (2(Q),Q) <§(Q).
Denote by AT (R*) the set of cubes @ € A(R*) such that

z(Q) is contained in a maximal good

(9.45) )
cube S € S(R*) and Q C 25 .

Also set A~ (R*) = A(R*)\AT(R*) and

(9.46) ox(R )= > Q) J.

QEA*(R¥)
Let us first estimate oy (R*). A trivial estimate for Jg is

_ 4(Q) dp(x)

Jo = /R*\zQ 7 - 2(Q)?
< p(R*) d(Q) dist (R*, 2(Q)) >
< u(RY) d(Q)_l .

(9.47)

We want to use the following weighted average of (9.47) and (9.43)

(9_48) Jé < C(@)Z—T/Z(M(R*)>T/2 < d(Q) (u(R*))T/2 '

3(Q) d(Q) =7 6(Q) \dQ)
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For each S € S(R*) and £ > 0, denote by By(S) the set of cubes
Q € A+(R*) such that 20d(Q) < §(Q) < 21 d(Q) and S = So.
Obviously every @ € A1 (R*) lies in some By(S) and so

(9.49) B Y Y Y wQ

SeS(R*) £>0 QeB,(S)

If Q € By(S), then @ does not meet S (by definition (9.38) of A(R*))
but

dist (@, S) < dist (Q, 2(Q)) < 6(Q) < 21 d(Q),

by definitions (see in particular (9.44) and (9.45)). Thus Q C N(S5),
with
t=C21d(Q)d(S) = C2" L AR d(R) d(S)7L.

Note that ¢ cannot be too large: if B,y(S) contains some (), then
2¢d(Q) < §(Q) < Cd(S) because Q@ C 25 (by (9.45)). In particu-
lar, the value of ¢t above is never more than some constant C. Set
t" = min{¢,1}. Then all cubes @ € By(S) still lie in Ny (S) (because
Q C 28 for Q € By(S)). We may now apply (3.8) and get that

> w(@) < u(Ny(S))

(9.50) QEBAS) (2 AR A(R) d(S) V) £(S)
<C (2 ATFA(R) d(S)™H)T u(S),

3

because S is a good cube. Next

PRNT(PF
QEB(S) W(RY) \7/2
(9.51) < O ATAR) AS) ) 2 (S)

by (9.50), (9.48), and the definition of B,(S). We may now sum over
£ > 0, noticing that the largest term is for £ = 0, and get less than

kr/2 4 )\
(L (1) ).

Thus (9.49) becomes

o e ()" 5 ()
SeS(R*)
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By Holder,
d(R)\" 1-7/2 d(R)\2 /2
SE;;L*) @) () < (XS:M(S)) (Z(m> ws))
(9.53) < Cu(R*)'7TP (R
< Cp(R*)*"/2d(R)"/?

because the cubes S, S € S(R*), are disjoint and contained in R*, and
by Lemma 8.14 and (3.9). Hence

(9.54) o (R*) < CA™F/2 (R¥),

which will be enough for our purposes. Let us now turn to o_(R*).
First we want to check that

(9.55) Jo <CA™F,  forall Qe A= (RY).

We start with the easy case when (@ is not contained in 2R*. If d(Q) >
d(R*), then

dist (2(Q), R*) > dist (2(Q), E\Q) > d(Q) > d(R*),

by definition (9.38) of A(R*), (3.4) and (3.5). Otherwise, diam Q <
d(R*)/2 and, since some point of @) lies at distance > d(R*) from R*,
dist (z(Q), R*) > d(R*)/2. In both cases

Jo < p(R*)d(Q) dist (x(Q), R*) 2
<4p(R*)d(Q)d(R*)™?
< CA™* p(R*) d(R)™!
<CA™F,

by (9.42), (7.10) and (3.9).

We still need to check (9.55) when @ C 2R*. Let Hy = R* D
H; D .-+ D Hj; be the decreasing sequence of all cubes H C R* that
contain z(Q) (the point of R* that was chosen in (9.44)) and such that
Q C 2H. Since () C 2R*, there is at least one such cube, and then
d(H;) < C6(Q) by minimality of H, (and (9.41)). Note also that all
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the cubes Hj, 0 < j < £, are bad because Q € A~ (R*) and (9.45) does
not hold. Thus (3.9) and (3.12) yield

(9.56) 1(2H;) < C¢(Hj) < CATY ¢(RY) < CA™YI 4(RY).

Decompose R*\2(Q into the sets Z; = (R*\2Q) N (2H;\2H;41), 0 <
j<{—1,and Z, = (R*\2Q)N2H,;. When 0 < j </—2 and z € Zj,

|z — 2(Q)| = dist (z,Q)
Z dist (.T, 2H@)

(9.57) > dist (E\2H1,2H,)

1

2 5 d(Hj41).

Thus, for 0 < j </ — 2,
(058)  J(Q, 7)) < 4u(Z;)d(Q) d(Hjsn) > < CA™ A7,

by (7.10) and (9.56).
When j =4 —1 or j = £, we want to use the simple estimate

(9.59) |z — 2(Q)| > @ , for z € R*,

which comes from the fact that | — z(Q)| > dist (Q, R*) trivially and
= 2(@Q)] > dist (5(Q), \Q) > d(Q) by (9.38), (3.4) and (3.5). (See
also the definition (9.41).) Thus, for j =¢—1 and j = ¢,

(9.60) J(Q,Z;) <4u(Z;)d(Q)d(Q)~2 < CAT* AR d(R)?6(Q) 2.

Recall that d(Hy) < C(Q), so that

o () < (42"

Since we also have that §(Q) < Cd(R*) because Q C 2R*, (9.60)
implies that

J(Q. 7)) < CA—k(—)S < oAk,
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when j =/ —1 or 5 = £. Altogether
¢

(9.61) Jo=J(@Q,R\2Q) <) J(Q,Z;) < CA™,
§=0

which completes our proof of (9.55).

A second estimate for Jg is

(9.62)  Jo < p(R")d(Q)dist (z(Q), B) ™% < 4 u(R*) d(Q) 6(Q) 7,

which follows directly from the definitions (9.42) and (7.10), and (9.59).
Plug these two estimates into (9.46) to get

(9.63) o (R)<CA™ 3 u(Q)u(R)dQ) Q).

QeA™(R~)

When we sum over the set of cubes Q such that §(Q) > A~*/2d(R),
we get less than

(Zu ) u(R7) A7 d(R) A d(R)
< CA™F p(RY) (Y (@) )d(R) ™

Q
< CA™" u(RY),
by (3.1) or (3.9).
We are left with the cubes @ such that §(Q) < A7%/2d(R). These
cubes are contained in N;(R*), with ¢t = min {1, CA~*/2} because they

are 6((Q))-close to R* but do not meet it (by (9.38)). By (3.8) and (3.9),
their total mass is at most

CATHI(RT) < cATH 2 d(R),
and so the corresponding piece of o_(R*) is at most
CA™F ATM2A(R) p(R) (A7 d(R)) ™" < CATF/2 u(R) .
Altogether, o_ (R*) < CA=*7/2 y(R*). Now

(9.64) o(R*) =0 (R*) +0_(R*) < CA™*/2 (R*),
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by (9.40), (9.46), (9.54) and this last estimate. We may now compare
with (9.39) and (9.37) to get that |||Ng||| < CAF7/4, as desired.

Case G. The terms Bas. Finally define N7 by taking N7(Q, R) = Bas
when @ C R, Q # R, and k(Q) = k(R) + k, and N7(Q,R) = 0
otherwise. This is the last piece of the matrix N* that we have to
study: recall that N was defined around (7.36)-(7.39), and that co-
efficients A1(Q, R) and A3(Q, R) were dealt with in subsections B, E
and F respectively, while A3(Q, R) was treated in Subsection A, By in
Subsection C , By in F and Bs; in D.
Recall from (7.30) that

(9.65) Baz = p(Q)'? p(R(Q))™? J(Q, E\2QU R(Q))) ,

where R(Q) is the child of R that contains ). As usual we can apply
Lemma 9.1, and

(9.66) 1IN7[][* < sup B(R),
ReA

with

(9.67) = > > )HIG

R*cF(R) QEA(R*)

where this timme we set

(9.68) A(R") ={Q € Agry+r : Q C R*}

and

(9.69) Jo = J(Q,E\(2QUR")).

Set §(Q) = d(Q) + dist (Q, E\R*) for Q € A(R*). Note that
6(Q)

(9.70) |z — 2(Q)] > for z € E\(2QU R"),

2 Y
because |z — z(Q)| > d(Q) on E\2Q and |z — z(Q)| > dist (Q, E\R")
on E\R*. Then

071  Jo=d(Q)

s SCdQIQ)
\(2QUR~)

z—x(Q)
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by (8.1).

When k£ < 10, say, we can simply say that Jo < C by (9.71)
and X(R) < C by summing brutally. When k > 10, we expect to win
something from (9.71) when 6(Q) > d(Q), and otherwise to use the fact
that () stays close to the “boundary of R*” to say that > u(Q) is small.
As usual we need to distinguish cases because R* is not necessarily good.

Fix R* € F(R) and first consider

At = {Q € A(R") : there is a maximal good cube
(9.72) }
S € S(R") such that k(S) < k(R) + 5 and Q C s} .

For each S € S(R*) and £ > 0, set
(9.73) AF(S) ={Q € AT: Q C Sand 2°d(Q) < 4(Q) < 271 d(Q)}.

All these cubes lie at distance less than 2¢71d(Q) from E\R*, and so
they lie in N¢(S), with t = C'2¢d(Q) d(S)~L. If we get a t > 1, simply
remember that @ € AJ(S) is always contained in S; otherwise apply
(3.8) and the fact that S is a good cube to get that

(9.74) Z (@) JG < C (2P AT A(R) d(S)™) u(S)27%,
QEAL (S)

where the 272¢ comes from (9.71). When we sum this over £ > 0, the
largest term is when £ = 0 and we get at most

CA™FTd(R)™ d(S)™7 u(S) < CATF/2 pu(s),

because only the maximal good cubes S with £(S) < k(R) + k/2 can
give non empty sets A, (S), by (9.72). Since every cube @ € A" lies in
some A (9),

S Q) RN THIZ < CATF R TE YT w(s)
(9.75)  QeAat SeS(R*)

< CA—kT/Z )

Next we want to estimate the contribution of A~ = A(R*)\A™ to > (R)
(in (9.67)). Let Q € A~ be given, and let Hy = R* D H; D --- D Hy be
the collection of all subcubes of R* that contain () and are of generation
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less or equal than k(R) + k/2. By the definition (9.72) of AT, all these
cubes are bad, and so

(9.76) n(2H;) < C¢(Hj) < CATY ¢(R*) < CA™YY d(R),

by (3.9), (3.12), and (3.9) again. Now

041
(9-77) Jo=J(QE\2QUR)) < J(Q.Z),
§=0
where Zy = E\2R*, Z; = 2H;_1\2H; for 1 < j < {, and Zy4; =

2H,\2 Q. This comes dlrectly from the definitions (9. 69) and (7.10).
On Zj7 0< .7 < éa

|z — 2(Q)] > dist (E\2H;, Q) > d(H;) = A~/ d(R*),
because (Q C Hj. Thus, for 1 <j </,
(9.78) J(Q, Z;) < d(Q) A¥ d(R*) > i(Z;) < CA™ AT,

by (9.76). For j = 0, we simply have that

J(Q, Zo) = d(Q) /E\QR* %
(9.79) < Cd(Q)d(R*)™
< CA™F,

because dist (z(Q), F\2R*) > dist (Q, E\2R*) > d(R*) (since QQ C R*),
and by (8.1). Finally, |z — 2(Q)| > d(Q) on Z;41 and so

(9.80)  J(Q.Zes1) < d(Q) 7' u(2Hy) < CAF AT < 0AF,

because Hy is the smallest cube H containing () and for which k(H) <
k(R)+k/2. Summing over £ now gives that Jo < CA™F forall Q € A,
and then

(9.81) > @) R IG < CATH,
QEA-

because all these cubes are disjoint and contained in R*. Finally, when
we add up the estimates in (9.75) and (9.81) and then sum over R* €



UNRECTIFIABLE 1-SETS HAVE VANISHING ANALYTIC CAPACITY 441

F(R), we get that ©(R) < CA™F/2 and |||N7]|| < CATFT/* (see (9.67)
and (9.66)).

At this point we may collect all the estimates from the various
subsections. We get that

V< D NIINGT < cATrr /e
j

and finally
A< D NIVEIT < C.
k

This completes the proof of Theorem 3.20.

REMARK 9.82. We have only used the fact that the ambient dimension
is 2 a few times, when we used (8.1) to estimate the number of cubes
Q € Apm+r in a ball of radius Cd(R). This estimate was always
beaten by a A~1%% that came from (3.12). If we had been working
in a larger ambient dimension, we would only have needed to replace
10 with a larger constant in (3.12), which is possible. Thus Theorem
3.20 works also for one-dimensional sets £ C R", with almost the same
proof. The proof most probably also works for different dimensions of
E (and corresponding homogeneities of kernel estimates) but we did
not check this carefully. The authors of [NTV] did for their version.

10. A short description of [DM].

We want to use Theorem 3.20 to prove our theorem about analytic
capacity. So we give ourselves a compact set £ C C such that H(E) <
+o00 and F has positive analytic capacity, and we want to show that F
is not totally unrectifiable. As we discussed in the introduction, we can
find a bounded measurable function f on E such that [ fdy=a >0
and the Cauchy integral of fdu is bounded on C\E. Here p denotes
the restriction of H! to E.

Next we want to replace fdu with a new measure g dv, where g
has the advantage of being accretive (i.e., satisfies (2.6)). We shall use
the measure v and the function g constructed in [DM] for purposes sim-
ilar to those of this paper. These satisfy (1.5)-(1.8), and also a weaker
analogue of (1.9), namely, the fact that the maximal Cauchy integral of
g dv lies in L?(dv). To complete the argument outlined in the introduc-
tion, we shall have to put ourselves in position to apply Theorem 3.20
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to the measure v, and in particular construct an acceptable collection
of dyadic cubes on the support of v. These cubes will be constructed
as modifications of the dyadic cubes on E given by [DM]; see the next
section. Once this is done and we are in positition to apply Theorem
3.20 we shall have also to check that truncated Cauchy integrals of g dv
lie in the relevant BMO-space (instead of just L?) uniformly. This will
only be possible after we give a reasonable description of the construc-
tion of g and v, which is the aim of this section. It will be convenient
to use references like (x1.2) rather than the longer “[DM, (1.2)]”.

We start with our compact set £ C C, duy = dH |1E, and a bounded

function f such that ||f|l < 1and [ fdp = a > 0. The construction of
v and g will only use these informations; it will happen that in addition
the Cauchy integral of f du is bounded on C\E, and then g du will also
have nice properties with respect to the Cauchy kernel, but we don’t
need to think about this now.

The first thing we do is construct a collection A = (.5, Ak of
dyadic cubes with the properties listed below. Note that p is a finite
measure, but does not necessarily satisfy (3.1); this will not be a prob-
lem. The constants Cy, Cy, A, below are absolute constants; see the
discussion below. Let us describe the properties of A. First

For each k£ > 0, E is the disjoint union

(10.1)
of the Borel sets @, Q € Ay,

ifk</t,QelAxand Re Ay,

(10.2)
then QN R=Y orelse R C Q,

and for each k& > 0 and each cube QQ € Ay, there is a ball B(Q) =
B(z(Q),r(Q)), centered on E, and such that

(10.3) AP <r(Q) < AT,

(10.4) ENB(Q)c @ c EN28B(Q),
and

(10.5) the balls 5B(Q), Q € Ay, are disjoint .

These are the properties (%3.3)-(x¥3.9) in Theorem %3.2. It is also easy
to arrange that

(10.6) Ay has only one element .
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This was assumed in [DM] also (see just after (x4.1); the construction
gives this automatically if we normalize things by taking diam £ = 1.
Next there is the story about small boundaries. Set

N,(Q) = {z € E\Q: dist (z,Q) < tA~F@)}

(10.7)

Uf{zeQ: dist(z, E\Q) < tA™F@}
for @ € A and 0 < t < 1, and where k(Q) denotes, as always, the
generation of (). Then

(10.8) n(Ne(Q)) < C2t™ p(90B(Q)),

for all Q € A and 0 < ¢t < 1, and where we can take the constant 7 > 1
as close to 1 as we want. Here we shall take 7 = 9/10. Furthermore we
can decompose A into the set of good cubes ) such that

(10.9) w(10*B(Q)) < C1 pu(Q),

and the set of bad cubes that do not satisfy (10.9) but for which
(10.10) r(Q) = AH@

and, more importantly,

(10.11) p(10*B(Q)) < A7 u(10*B(Q)),

where Q denotes the parent of (). Note that the only cube of A is good
by definitions, and so Q is defined for all bad cubes.

These are not exactly the condition (x3.13)-(x3.16) stated in The-
orem *3.2. First, there is the difference that we replaced 100B(Q) in
(x3.16) with 10*B(Q). This does not cause any harm; it just makes
some of the constants larger. The second difference is in the phrasing
of the conditions: (10.8)-(10.11) are are slightly different from (x3.13)-
(x3.16), even with 10* instead of 100, but they are fairly easy to deduce
from (x3.13)-(%3.16) by choosing C; and A large enough. In fact, this is
what was done in [DM], in sections 4 and 5. Theorem %3.2 was stated
for all choices of C; (which is called Cy there) and A, provided that
Ci > 1 and A > 5000 Cy, but then it was decided to take A = C C}9°
for some absolute constant C' (the one that shows up in (x3.13)) and
then C so large that (%3.13) and (%3.16) actually imply (10.8) and
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(10.11). See (x4.1) for the choice of A, (x¥5.25) and (*5.26) for a dis-
cretized version of (10.8) where t = A~ = (CC{%)~* and we get
p(N(Q)) < CT%u(90B(Q)) < C't1°u(90B(Q)), and (x5.30) for
(10.11). The two other relations (10.9) and (10.10) are the same as
(¥3.14) and (%3.15).

This completes our discussion of the construction of cubes in [DM].
Note that we get our implicit property that A > C; from earlier sections
automatically here (i.e., without having to skip generations artificially).

Once our collection of cubes is chosen, we run a stopping time
construction, somewhat like in [Ch2]. We select collections I; and LI
of cubes ) € A, with the following main properties:

(10.12) the cubes of I; U L I are disjoint (this is (x4.11)) and,
all the cubes @ € A such that Q@ C O(M) or
(10.13) Re / fdp < ayp(Q) are contained in some
Q

cube of Iy UL,

where O(M) = {x € E : there is an r > 0 such that u(B(z,r)) > Mr},
and M and a; are two positive constants (that may depend wildly on
E). This is Remark %4.12; see also (x4.4) and (x4.5) for the definition
of O(M). Set

A’={QeA: Qe LULI orQ isnot

(10.14) ] i
contained in any cube of I; UL I} .

These are the cubes which we shall really be working with. A fairly
easy consequence of (10.13) (see (x4.13)) is that

(10.15) 1(100B(Q)) < CA™F@ - forall Q € A,

Denote by PL I the set of parents of cubes of L I. This makes sense
because the only cube of Ay happens not to be in L I (or I; either), by
construction. Set I = I; U PLI. One puts a suitable order on I; this
order is chosen so that cubes of earlier generations come first and, in
case of equality, cubes of I; N Ay come before cubes of PL I N A. Call
Qn, n > 1, the nt" cube of I for this order. We construct a sequence of
measures F,,, n > 0, as follows.
All measures F;, are of the type

(10.16) F, = pnfdu+ Z Oy, AV,

1<m<n
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(see (%4.15)), where {p,} is a decreasing sequence of nonnegative func-
tions on E, with 0 < p,, < 1, the «,,’s are bounded complex numbers,
and dv,, is a finite sum of multiples of restrictions of Hausdorff measure
on circles.

We start with Fy = f du, po = 1, and no measure vy, and construct
the F,, by induction. To go from F,,_; to Fj,, we distinguish between
two cases. When @,, € I, we simply replace QQ,, with a circle, as follows.
Take pp, = pn_11p\@, (i.e., kill the part of p,,_1 f dp that lives on Qy,)
and choose C,, = C(Qy,), where

r(@)
100

and z(Q), r(Q) are as in (10.3)-(10.5). In [DM] we chose a slightly
larger radius for C(Q) (see (x4.2)), but this new choice does not make
any difference in [DM], and will help us a little bit here. Finally choose

Pu e, e

where p} denotes the value of p,,_; on @),,, which happens to be constant
by construction. Take oy, = u(Qn)?! an fdu, so as to get [F, =
[ Fp_q.

When @,, € PL I, the construction is slightly more complicated.
We want to remove the children of (),, that lie in LI and replace them
with circles, but we shall also modify the values of p,,_1f on the rest
of Q. Denote by A,, the set of children of ) that lie in LI and by A},
the set of other children of @) (i.e., those that do not lie in L I). Set

Hn =Ugea, @, Gn = UQGA; @, and then
pn—1(z), when z € E\Q,, ,
(10.18) pn(z) =4 0, when z € H,, ,
(1-6,)pn_1(z), whenze€ G, ,

(10.17) C(Q) denotes the circle with center x(Q)) and radius

dv, =

where the number 0 < 6,, < 1 is correctly chosen (see (x4.28) and
(¥4.32)). Also set

(10.19) Cn= ) C(Q)
QcA,
and

* (Q) 1
(10.20) dv = Y pr T dH L |
i HY(C(Q)) @)
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where p; still denotes the constant value of p,_; on @,,. This is slightly
different from the choice given in [DM], where C,, was taken to be only
one of the C(Q), @ € A,, chosen at random, and on which we put
the total mass of H,,. This modification will make our life a little more
pleasant later (when we compare the mass repartitions of y and v), but
it does not alter the argument in [DM]. The main point, of course, is
that we still have the same mass

(10.21) vl = o3y w(H,,) -

To complete the definition of F,, when @),, € PL I, one also chooses a
complex number «,, and sets

(10.22) F,=F,_1— 1y, pn-1fdu—0,1qG, pn_1 fdu+ an,dy, ,

We don’t need to be too precise here about the way the constants «,,
and 60,, were chosen. The main constraint was that

(10.23) /Fn = /Fn—lv

our choices were such that

_ 6, < C p(Hy)
(10.24) 0= 0= 1(Qn)
and
(10.25) | <C

(see (x4.33) and (%4.38)).

It is a good idea to set A, = {Qn}, A}, = @ (say, but it does
not matter) when @, € I;. With these conventions, we still have the
properties (10.18)-(10.22) when @Q,, € I (see (x4.21)-(x4.23)).

We may also have to use later the fact that

(10.26) the sets H,,, n > 1, are disjoint ,

which comes from (10.12) and the fact that each H, is the (disjoint)
union of the cubes of A,,. Alternatively, see (x¥4.69) for this statement.

Since {p, } is a decreasing sequence of nonnegative functions, it has
a limit poo. Set

(10.27) Ex={x € FE: psx(x)>0}.
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By construction, F,, does not meet any cube of Iy U L I. Then

(10.28) dist (C(Q), Eno) > dist (C(Q), E\Q) > 2 1(Q) > 2 d(Q).

— 100 — 100
for @ € Iy UL I, by (10.17), (10.4), and (10.3).
Similarly, if @ and Q" € A are such that Q N Q" = &, (10.4) says
that |2(Q) — z(Q")| > max {r(Q),r(Q")}, and hence

(10.29) dist (C(Q),C(Q) > —> max {r(Q), 7 (Q")}.

This is the case in particular when Q,Q' € I, UL T and Q # Q'.
The measure that we want to study is

(10.30) dv = poo dp + Z dvy, ,

which is obviously finite because p is, and by (10.21) and (10.26). The
function g is given by

o3 o0 =1), on B

9(z) = ay, , on C, ,

which does not cause any confusion because all these sets are disjoint
by (10.28), (10.29), and (10.30).

The function g turns out to be bounded (by (10.25)) and accre-
tive (which means that it satisfies (2.6)) by construction. This comes
from the whole design of the stopping time argument (and in particu-
lar (10.13)) and the choice of the coefficients a,, but we don’t need to
know precisely how it is proved to understand the rest of the present
paper. See (¥2.6) and its proof before Lemma %4.56 for details.

Our next task is to define a collection of cubes A on the support
of v, and then prove a T'(b)-theorem for v and these cubes. This is the
aim of the two next sections.

11. Dyadic cubes for v and v+.

The following measure v+ will be slightly easier to handle than v.
Set

(11.1) dvt =1g, du+ Y dy},
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where

(11.2) dvt = (p) " dv, = LA
g ngn H(C(Q))

Obviously v < vT, and v is still a finite measure because p is finite,
and by (10.21) and (10.26). Set

(11.3) E:EOOU(UCTL):EOOU( U C(Q)).

n>1 QeI ULI

This is not quite the support of »*, because supp v+ is closed, but on
the other hand

(11.4) vH(C\E) =0,

which will be enough for our purposes.

In this section we want to construct families Ay of partitions of
E and check that they satisfy the conditions (3.1)-(3.12) required for
Theorem 3.20, with respect to the measure v*. Let us start with the
construction of cubes.

For each cube @ € A® (see (10.14) for the definition), set

(11.5) RQ)=@nE)U( U a®).

SelLuLIl
SCQ

Our first collection of cubes for vT is A? = {R(Q) : Q € A°}, which we
naturally split into the A) = {R(Q) : Q € A°NAL}, k > 0. We need to
complete A® with cubes that come from decomposing the circles C(Q),
QelULI.

For each cube @ € I;ULI we construct a collection A(Q) of subsets
of C(Q) as follows. We start at generation k(Q) + 1; we cut C((Q)) into
(disjoint) arcs of circle of equal length ¢;, with 10A-K@-1 < ¢, <
20A7 K@ -1 gay, and call Ak(Q)H(Q) the collection of these arcs of
circle. Then we subdivide further each arc R € Ak(Q)H(Q) into smaller

arcs of circle of equal length £, € [L0A™F(@)=2 20477@)=2] and call
Ag@)+2(Q) the resulting collection of arcs of C(Q). We continue like

this, and eventually construct a collection A(Q) of (disjoint) subarcs
of C(Q) for all k > k(Q), and with the usual properties of dyadic cubes.

Finally set A(Q) = Ugsx0) Ar(Q)-
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Our collection of cubes for v (and v) is

(11.6) A=Au( U A@),

QeI ULI

which we can decompose into the

(11.7) Aszgu( U Ak(Q)).
Qe ULI
k(Q)<k

First we want to check that A has the combinatorial properties (3.2)
and (3.3). We start with the first one:

for each k > 0, E is the disjoint

(11.8) g
union of the cubes R, R € Ag.

Fix £ > 0. Because E does not meet the cubes of Iy U L1 (see
after (10.27)), it does not meet the cubes of A\AP either (by definition
(10.14)), and then (11.5) says that E., is the disjoint union of the
ExNR(Q), Q € AY. So we are left with the circles C(S), S € I; U LI.
If S € I ULI and k(S) > k, then there is exactly one cube Q € A
that contains S, and C(S) is contained in R(Q) by (11.5). Moreover
C(S) does not meet any other R(Q'), Q" € AY, and it does not meet
any of the circles C(Q"), Q" € I U LI and k(Q") < k (and even less
the corresponding cubes of Ag(Q")). Thus the cubes of A} partition
C(S). If k(S) < k, then C(S) does not meet any of the R(Q), Q € AY,
because all the circles contained in those circles come from cubes @’
with k(Q') > k > k(S). It does not meet the Ag(S'), S # S, either,
and it is nicely covered by the cubes of Ay (S). This completes our proof
of (11.8).

Next we check (3.3). Let R; € Ay and Ry € Ak“ be given, and
suppose that Ry N Ry # @. If Ry N Ry N Ey # &, then Ry = R(Q1)
and Ry € R(Q2) for cubes Q1 € Ag and Q2 € Agyq, and (11.5) says
that Q1N Q2 D RiN Ry N Ey 75 @. Then Q2 C Q1 and Ry C Ry. If
RiNRyNEs =@, then RN RyNC(S) # 1 for some S € I; ULI. If
k > k(S), then Ry, Ry C A(S) and Ry C Ry by construction of A(S).
If k = k(S), then Ry = R(S) and Ry € A(S), whence Ry C R;. Finally,
if k < k(S), then R; = R(Q1) and Ry = R(Q2) for cubes Q1,Q2 € A°
that both contain S. In this case also Q2 C @1 and Ry C R;. This
proves (3.3) when ¢ = k + 1; the general case follows because of (11.8).
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Next we want to consider properties of our cubes that involve the
measures v and vT. We start with the upper bound for density (3.1)

(11.9) vH(B(z,r) <Cr, forallz € Cand r > 0.

This is proved in [DM], beginning of Section 4.2; unfortunately the
statement (x2.5) only mentions v and not v*, but the proof applies to
vT. (The only difference between v and v* comes from the size of the
functions p,,, and the only information used in the proof of (x2.5) in
this respect is that 0 < p, < 1.)

We also want to relate the measures of our cubes for p, v+, and v,
and to this effect we define numbers pg, Q € A°, by

(11.10) o= [ (-6
n>1:Q,EPLI
and QCG,

Recall from (10.12) and (10.14) that if @ € A°, Q is never strictly
contained in a cube of I; U LI. Let ng denote the largest integer for
which k(Qn,) < k(Q). By construction, the function p,, is constant on
(@, and in fact the only times p,, has possibly been modified on () for
n < ng where when @, € PLI and Q C @, (and hence Q C G,,).
Because of this, the constant value of p,, on @ is precisely pg (see
(10.18)).

If furthermore Q € I; and m is the integer such that QQ = Q,,,
then p,,—1 = pn, on @) because the cubes @y, nyp < £ < m, do not meet
Q. (All these cubes lie in I, by definition of our order.) Thus

(11.11) PQu = P > when Qp, € I,

where p} still denotes the constant value of p,,_1 on Qp,.

If Q € LI and m > 1 is such that Q € A,, (i.e., the parent of @
is @), then p,, is equal to p,, on @, because none of the cubes @,
m < £ < ng meet Q,,. Thus

(11.12) PO = Py s when Q € A, .

(We just proved this when @, € PLI, but (11.11) says that this is
also true when @, € I;.)
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Lemma 11.13. For all Q € A,

(11.14) v(R(Q)) < povT (R(Q)) < po (@) < Cr(R(Q)).

We start with the first inequality. Let us even prove that for all
Qe A,

(11.15) dv < po dvt, on R(Q).

Recall that pg is the constant value on @ of p,,, where ny denotes the
largest integer such that k(Qn,) < k(Q). Obviously pe < pn, = p@
on @, and hence poodp < polg,_ dp on Eoo NQ = Ex N R(Q). Thus
dv < pg dvt on Ey N R(Q) (see the definitions (10.30) and (11.1) of v
and v1). Now let C(S) be one of the circles that compose R(Q), as in
(11.5). Let n denote the integer such that S € A,,. Then dv = dv,, =
pt dvit = p* dvt on C(S), by (11.2). Since pf = ps by (11.12), S C Q
by (11.5), and pq is obviously a nondecreasing function of @), we get
that p¥ < pg and dv < pg dv™ on C(S). This proves (11.15).

The second inequality in (11.14) is fairly straightforward

vI(R(Q) = n(QNEx)+ Y vF(C(9))

Sel ULl
SCQ

(11.16) =u@QNEL)+ Y. u(S)

SelLuLIl
SCQ

< (@),

by (11.5), (11.2), (10.12), and the fact that E, does not meet the cubes
of LULI.

To prove the last inequality, we want to use the fact that the inte-
gral of gdr on @ is not too small. Let us first check that

(11.17) Re/ fdp > aou(Q), for all @ € A°\L 1,
Q

where @y < ap is some positive constant (the same one as in [DM].)
When @) € A%\ (I; U L), this follows directly from (10.13), the defini-
tion (10.14) of A° and the fact that ag < a;. When Q € Iy, Q is not
contained strictly in any cube of HD U M1 (see the definition of I in
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[DM], just above (%4.11)), because it is a maximal cube of HD U M 1.
Also, @ is not contained in any cube of LI (by (10.12), or the defini-
tion of I7). Since LI is (by definition) the set of maximal cubes with
the properties that

(11.18) Q is not strictly contained in any cube of HD U M1

and that (11.17) does not hold (see (x¥4.8) and (%4.9)), and since we
know already that () satisfies (11.18), we get that it satisfies (11.17), as
promised.

Let Q € A°\LI be given, and again denote by mg the largest
integer such that k(Q,,) < k(Q). Observe that () does not meet any
of the C,, n < ng; otherwise () would meet a cube of A,,, thus would
be contained in this cube (because k(@) < k(Q)), and even would be
strictly contained in it (because k(Q,,) < k(@) if Q),, € I; and because
Q¢ LIifQ, € PLI), a contradiction with the definition of A°. Then

(11.19) /QFm:/Qpnofdusz/Qfdu,

by (10.16) and the discussion after (11.10).
Next we claim that

(11.20) / gdl/:/ F,, ,
R(Q) Q

i.e., the further modifications of F,,, n > ng, do not change the integral
of F,, on (what becomes of) ). This will follow from the fact that

(11.21) /Qpnfd,u-l- > amllz/mH:/QFno,

1<m<n
QmCQ

for all n > ng by taking limits and comparing with (11.5). (The union
of the Cp,, @, C @, is the same as the union of the C(S), S € Iy ULI
and S C @, because Q ¢ L1.) The relation (11.21) is easily proved by
induction. It holds for ng because no @,,, m < ng, can be contained
in @) (they are all of strictly earlier generations). If (11.21) holds for
n—1,n > ng, and if @), does not meet ), then (11.21) also holds for n
because the left-hand side is not modified. Otherwise, @,, C @ (because
k(Qn) > k(Q)), and all the modifications of the integral of F,,_; affect
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the left-hand side of (11.21). Since the sum of these modifications is
zero by (10.23) (or by construction), (11.21) for n follows from (11.21)

for n — 1.
From (11.17), (11.19) and (11.20) we deduce that

a0 pq 1(Q) < pq Re/Qde

< pQ ‘/ fd#‘
Q
(11.22) < ‘/ P

| [ 21
R(Q)

< Cv(R(Q)),

because ¢ is bounded (by (10.31) and (10.25)). This proves the last
inequality in (11.14) when Q € A°\L I.

When Q € L1, R(Q) = C(Q) and v(R(Q)) = v(C(Q)) = i, i(Q),
where n is such that Q € A,, and p} is as in (10.20). Thus (11.12) says
that v(R(Q)) = po 11(Q), and (11.14) holds in this case as well. Lemma
11.13 follows.

Note that (11.14) implies that v(R) > 0 for all R € A°, because
p(Q) > 0 for all @ € A. (Recall that @ is centered on E = supp pu.)
Thus v(R) > 0 for all R € A, and so E C suppv C supprt. (We
shall see soon that diam R < CA~* for R € Aj.) As was observed in
Remark 3.27, this and (11.4) are just as good, in view of Theorem 3.20,
as knowning that E = suppv or E = suppv™.

We want to continue checking that v+, E, and A satisfy the hy-
potheses for Theorem 3.20. We already know that (3.1)-(3.3) hold, and
the next verification in our list is the story about the balls B(Q).

Thus we want to define a center z(R) and a radius r(R) for every
R € A. We start with the case when R € A° and R = R(Q) for some
Q € AY. First,

(11.23) dist (2(Q), R) < Tl((%) .

Indeed, if z(Q) does not lie in E,, there are only two possibilities. The
first one is that z(Q) € Q" for some Q" € I; U L I which is contained



454 G. DaviD

in Q. If Q' = @, then (11.23) holds because R = C(Q). If Q' is strictly
contained in @ (i.e., of a strictly later generation), then

r(Q)

dist (2(Q), R) < dist (+(Q), C(Q")) < 607(Q) < 1.

The second possibility is that p,(z(Q)) tends to 0 without ever being
equal to 0. Indeed, 0 < 6,, < 1 for all n, and hence (10.18) says that the
only places where p,, becomes 0 are the H,,’s, i.e., the cubes of I; UL I.
In this second case x(Q) lies in infinitely many cubes @, € PL I, and
dist (z(Q), R) = 0. Thus (11.23) holds in all cases.

Let us also check that

every point of R = R(Q) lies at distance

11.24
( ) less or equal than r(@)
100

from ().

Of course there is nothing to check for points of () N F,; thus we are
left with points of the circles C(S), S € 1 ULI and S C @ (see (11.5)).
These points are within r(S)/100 of some center z(S) € @, by definition
of C(S); (11.24) follows because 7(S) < r(Q) when S C Q.

Let us choose a center z(R) € R at distance at most r(Q)/100
from 2(Q) and take r(R) = r(Q). Then (3.4) is the same as (10.3), and

(11.25) R C ENB(z(R),297(R)),

by (10.4) and (11.24). Let us also verify that

(11.26) EHB(QJ(R),QST(R)> CR.

100
Let € EN B(z(R),987(R)/100) be given. If z € Ey,, then = € Q by
(10.4), and hence z € R. Otherwise x € C(S) for some S € Iy ULI.
If S C @ we are happy because then C(S) C R by (11.5). So let us
assume this is not the case. Then S N Q = I, because ) cannot be
strictly contained in S (since @ € AY). We know that

99

dist (z,Q) < |z — z(Q)| < m""(@)v

but on the other hand (10.28) says that

dist (z, Q) > dist (C(S), Q) > dist (C(S), E\S) > % r(S),
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and so r(S) < r(Q). Then

'(8) _ (@)

dist (z, S) < ,
100 100

and there are points of S at distance less than |z — z(Q)| + r(Q)/100 <
r(Q) from z(Q). This is impossible because of (10.4), and (11.26) fol-
lows. (Note that the argument did not need to be as tight as it looks,
because in the dangerous case where r(S) ~ r(Q), we could use (10.5)
to get a somewhat more brutal contradiction.)

Our estimates (11.25) and (11.26) are not quite the same as (3.5),
because of the factor 98/100, but they are just as good for the proof of
Theorem 3.20. We could also have decided to take r(R) = 98 r(Q)/100;
then we would have obtained (3.5), but only

98 —k —k
— < <
100A _’I"(Q)_ClA

instead of (3.4). This difference is even more obviously harmless (just
dilate E.)

We still need to define x(R) and 7(R) when R € A\A? j.e., when
R € Ag(Q) for some Q € I; ULI and some k > k(Q). In this case
R is a small arc of the circle C(Q), with length £ € [10 A% 20 A=%].
We choose for z(R) the center of this arc and take r(Q) = A=F. Then
(11.25) and (11.26) (and even the analogue of (3.5)) hold for R because
k> k(Q) and

(11.27)  dist (C(Q), E\C(Q)) > %’r

(Q), forall Qe LULI,
by (10.28) and (10.29).

This completes our discussion of (3.4) and (3.5). Since (3.6) is the
same as (10.6), we are left with the story about small boundaries. We
first need to define numbers {(R), R € A.

When R € A(Q) for some Q € I, ULI, simply take £(R) = vt (R).
When R € A° set &(R) = u(10* B(Q)), where Q@ € A is such that
R = R(Q). Let us first check the auxiliary conditions (3.9)-(3.12), and
then we shall return to (3.8).

When R € A(Q), (11.27) and the fact that k(R) > k(Q) imply
that £ N 91B(R) = C(Q) N91B(R). The property (3.9) for R and the
measure v+ follows from the fact that vt is a bounded constant times
Hausdorff measure on C(Q) (by (11.2) and (10.15)); (3.10) for R follows
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because in addition £(S) = vt (S) for all the cubes S € A(Q). All cubes
of A(Q) are good for vt (i.e., satisfy (3.11) for v), and hence we don’t
need to check (3.12) for them.

Now consider R € A°, and let Q € A° be such that R = R(Q). Re-
call that we chose r(R) = r(Q) and z(R) at distance less or equal than
r(Q)/100 from z(Q). (See above (11.25)). Thus 91B(R) C 92B(Q).

Let A denote the set of cubes S € I; U L I such that C(S) meets
91B(R). Then

vT(91B(R)) < vt (Es NILB(R)) + Y v (C(S))

SeA
(11.28) < (Bo NI1B(R)) + > (S)
SeA
<ER)+ Y u(S),
SeA

by (11.3), (11.2), the facts that v+ < p on E,, and 91B(R) C 92B(Q),
and the definition of {(R). If S € A and S is not contained in @, then
SN Q = @ because @ cannot be strictly contained in S, since Q € AY.
Then (10.28) says that

r(S) < % dist (C(S), E\S) < %dist (€(S), 2(Q)) < 1007(Q).

Then (10.4) says that S C 10*B(Q). Hence

> u(S) < u(10*B(Q)) = &(R)

SeA

and (3.9) follows from (11.28) and (10.15).

Now fix £ > k(R) = k(Q), and denote by Bj the set of cubes
T € AY such that R(T) C 91B(R). If T' € By, T C 93B(Q), by crude
estimates on diam (7T"U R(T')) and the fact that k£ > k(Q). Then

> E(R(T) =) n(10*B(T))

TEBk

(11.29) < Cp(U(lO‘*B(T)))

T
<C¢E(R),

because the 10 B(T), T € Ay, have bounded overlap and are contained
in 10*B(Q). This takes care of the cubes of A® in the sum in (3.10). Now
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let Dy be the set of cubes T' € Ar\A° that are contained in 91B(R).
All these cubes lie in sets A(S) for cubes S € I1 U LI such that C(S)
meets 91B(R). Hence

(1130) Y &) =Y vr@<vt(|Jes)) =Y us)<em),

TeDy SeA SeA

because the cubes T' € Dy, are disjoint, and by the discussion above.
This completes the verification of (3.10) for R € A°.

Finally (3.11)-(3.12) follows easily from its counterpart (10.9)-
(10.11) if Cy > C4, and also the only cube of Aq is good for v+ and
(3.11) because the only cube of Ag is good for (10.9) or (x3.14).

We still need to check (3.8) for cubes of A. For cubes R € A(Q),
Q € I; U LI, this follows from the fact that N;(R) C C(Q), by (11.27),
and the simple structure of the cubes of A(Q).

Now let R € A° be given, and let Q € A® be such that R = R(Q).
Also set k = k(R) = k(Q) and

N, = {z € R: dist (z, E\R) <t A™*}

(11.31) i )
U{z e E\R: dist (z,R) <tA™"},

for 0 < ¢ < 1. This is the set that we need to control for (3.8). Still

denote by N¢(Q) the set in (10.7); we want to use (10.8) to control the

sets IV;. Note that because of (3.9), it is enough to prove that

(11.32) vH(Ny) < CtTE(Q) = Ct™ u(10°B(Q)),

for 0 < ¢t <1072, say.

Solet 0 <t <1072, y € RN N, and z € N;\R be given, with
ly — 2| < 2t A=k, Note that for each y € RN N, there is a z like this,
and for each z € N\ R there is an y like this. Let us distinguish a few
cases.

If y and z both lie in E,, then y € @ and z € E\Q, and so y and
z both lie in Nyt (Q).

Next consider the case when z € E, (and hence z € E\Q) and
y € R\E. Then (11.5) says that y € C(S) for some S € I; U L I such
that S C @, and

(11.33) 2t A=K > |y — 2| > dist (C(S), E\Q) > % r(S),
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by (10.28). The center x(S) of S lies in S C @, while z € E\Q); since

|z(S) —yl+ |y — 2] < % +2t AR <3t AR
we get that z and x(S5) lie in N3(Q). Using (11.33) again and (10.4),
we deduce from this that the whole cube S lies in Nygp:(Q).

Our next case is when y € RN Ey = QN Ey and z € (E\R)\ Ew.
Then (11.3) says that z € C(S) for some S € I; U LI, and (11.5) even
adds that S is not contained in ). Moreover S N Q = I, because
cannot be strictly contained in S (since @ € A®). This time

(11.34) 26 A=F > |y — 2| > dist (C(S), Q) > dist (C(S),E\S)Z%T(S),
by (10.28), and
|z(S) —y| < |x(S) —z| + |z —y| < % +2t AR <3tAF,

Since y € @ and z(S) € S C E\Q, we get that y € N3.(Q), z(S) €
N3:(Q), and (by (10.4) and (11.34)) the whole S lies in Nigo:(Q).

Our last case is when y and z lie in E\ Es. Then y € C(S) for some
S € I; U LI such that S C @, and z lies in C(T') for some T' € I; U LI
such that "N () = . Then

(11.35) 2t A=% > |y — 2| > dist (C(S),C(T)) > % max {r(S),r(T)},
by (10.29). Since z(S) € S C Q and z(T') € T C E\Q, and

r(§) () —k
t A
100 ~ 100 ~° ’

we get that z(S), z(T') € N3¢(Q), and then that S and T are contained

in NlOOt(Q) (by (1135) again.)
We may now summarize our discussion:

(11.36) N; C (B N N3:(Q)) U ( U C(S)) ,

Sez
where Z denotes the set of cubes S € I; U L1 that are contained

NlOOt(Q)- Now
> vt e(s) = usS)

<100 Co t™ pu(90B(Q))
< 100 Cyt™ ¢(R)

2(S) = =(T)| < |y — 2 +

(11.37)
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by (11.2), (10.12), (10.8), and the definition of £(R). Since vt (Fo N
N3:(Q)) < 3C2t™ E(R) by (10.8) again, (11.32) follows from (11.36)
and (11.37).

This completes our verification of the hypotheses of Theorem 3.20
for the set E, the measure v, and the cubes of A. In the next section
we use this information to show that Theorem 3.20 also holds on E, v,
and with the cubes of A, even though the hypotheses (3.8)-(3.12) are
not necessarily satisfied in this case.

12. Theorem 3.20 holds for v.

In general we do not expect that v (equipped with the cubes of
A) will satisfy the conditions (3.8)-(3.12) about small boundaries. A
typical bad thing that may happen is the following. For some good
cubes R = R(Q), Q € A, the factor pg in (11.14) could be very small,
much smaller than the corresponding factors for other cubes that touch
R. When this happens, we shall not have a good control on the measure
for v of the sets N¢(R) in terms of v(R), and so we may have to declare
that R is bad for v without having any compensation available in terms
of (3.12). Nonetheless we want to prove that Theorem 3.20 holds for
E, v, and the cubes of A.

By this we mean that if T : b€ x b€ — C is an operator that
satisfies (3.13)-(3.15) and (3.17) (with g and A replaced with v and
A), and if there are functions 3, f € BMO(dv) that satisfy (3.21) and
(3.22) (for v), then T extends to a bounded operator on L2(dv). The
definition of BMO(dv) is the same as for du: we do not use small
boundaries there.

To prove our claim, we shall simply follow the proof of Theorem
3.20 and show that it applies.

All the arguments in sections 2-7 can be applied without modifi-
cation; the small boundary properties are never used there, except to
get qualitative information like (3.16) or (7.1). These properties are
also true for v because they hold for v™. Thus we can get as far as
Lemma 7.40, which says that it is enough to prove that the matrix A
(associated to the measure v) defines a bounded operator on £2(A).

We already know from Section 11 that the corresponding matrix
N for vT defines a bounded operator, and so it will be enough to show
that

(12.1) N(Q,R) <CNT(Q,R)
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(with obvious notations). To make the comparison easier, it will be
useful to define positive numbers pg for all R € A. When R € A° and
R = R(Q) for some Q € A", we take pr = pg. When R € A(Q) for
some () € [y ULI, we set pr = pg. We claim that

(12.2) dv < prdvt, on R
and
(12.3) v(R) > C™tprvT(R), for all R € A.

When R € A? and R = R(Q), this follows from (11.15) and (11.14).
When R € A(Q) for some Q € I; U LI, this is obvious because v =
po vt on C(Q), by (11.2) and (11.12).

We are now ready to prove (12.1). We shall just take the differ-
ent types of coefficients N(Q, R) from (7.36)-(7.39) one after the other
and compare them with the corresponding ones for v*. We start with
A1(Q, R) in (7.13). Recall that A;(Q, R) is a sum of terms

w(Q*)v(R*)™V21(Q*, R* N2Q),

where Q* € F(Q) (the set of children of Q) and R* € F(R). Note that
for each choice of Q* and R*,

(124)  W(Q*) v(R*)"V2 < C(pg- pr-vH(Q*) v (RY)) V2,

by (12.3), and

] dv(z) dv(y)
(12.5) Q% R7Nn2Q) = /*/R*HZQ |z =y

< PQ* PR* I+(Q 7R*ﬂ2Q)7

by (12.2). Here we set

dvt(x) dvt(
(12.6) T(Q,V) = //” y)
|z — ]
for @ € A and V C E\Q, the obvious analogue of I(Q,V) for v.
From (12.4) and (12.5) we deduce that A;(Q,R) < CAT(Q,R)

(with obvious notations).
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Next let A2(Q, R) be as in (7.14);

A(Q,R) =v(@QY? Y w(R)V2I(Q,R\2Q)

R*€F(R)
<cvt 1/2Zp—1/2 “2J(Q,R1\2Q)
(12.7)
<cuvt 1/22p1/2 V2 HQ,R\2Q)
< CAJ(Q,R),

by (12.2), (12.3), (12.2) again, and where J* and AJ (Q, R) are the ob-
vious analogous of J and A2(Q, R) for vT. (See (7.10) for the definition
of J.)

The story for A3(Q) in (7.22) is similar: A3(Q) is a sum of terms

v(Q7) VP w(Q5) TV I(QF, Q3)
(12.8) < C(pg: pos vH(Q7) v (Q3) 7Y% por pos IT(QF, Q3)

and hence A3(Q) < CA3(Q). Next (7.27) says that By is a sum of
terms

(@) v(R*)™ Y 1(Q*, R* N2Q))
(12.9)
< C(pg- pre v (Q") v (R) ™2 pg- pr- IT(Q*, R* N 2Q)

(still by (12.2) and (12.3)), and hence By; < C Bi;. Similarly B;s in
(7.28) is composed of terms

v(@QY2u(RY)™V2J(Q, R"\2Q)
(12.10) < CvT(Q)Y? (pg- vt (R*)™Y? pr-JH(Q,R*\2Q)

and is thus < C Bij. Our next term is By, in (7.29), and it is a sum of
terms

Q") v(R(Q))™* I(Q*,2Q\R(Q))
(12.11)
< C(pg+ prigy v (Q") VT (R(Q)) ™2 po- IT(Q*,2Q\R(Q)),
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which are also dominated by the corresponding terms for v+ because
pQ- < pre) (since Q* C Q C R(Q) by definitions). Finally,

Bys = v(Q)?v(R(Q)) "2 J(Q, E\(2QU R(Q)))

1/2 —1/2
(12.12) < 0g” Pri) B
< B3, ,

for the same reason.
This completes our verification of (12.1); Theorem 3.20 for v and
the cubes of A follows.

13. The Cauchy operator is bounded on L?(dv).

It will be easier for us to deal with the truncated operators T,
€ > 0, defined by

(13.1) T.f(z) :/ M, for f € L*(dv).
lz—y|>e r—y

Because v is a finite measure, there is no problem in defining 7, or

even in proving that it is a bounded operator on L?(dv). Of course we

want to prove that 7. is bounded on L?(dv) with bounds that do no

depend on ¢, and this will require more work.

We cannot apply Theorem 3.20 (for v) directly to T¢, because it
does not have a standard kernel, but this will be very easy to fix. Denote
by X the nice cut-off function such that X' (t) = 0 for 0 < ¢t < 1/2,
X(t)=2t—1for1/2<t<1,and X(t) =1 for t > 1. Then set

(13.2) T, f(2) = /X(|a:—y|> fly) dv(y) |

€ r—y

for f € L?(dv). We can replace T, with T, because
(13.3) INT. = Te| || z2(an) < C,

where ||| - ||| denotes the operator norm, and with a constant C' that
does not depend on €. This follows easily from (the continuous version
of) Shur’s lemma, since

Y

(13.4) (T — T) f(2)] < / 1£ ()l dv(y)

e/2<|x—y|<e |'T _y|
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and
Sup(/ dV(y)>
13.5 T e/2<|z—y|<e |aj - y|
( ) _Sup(/ dl/(l'))<c
y e/2<|z—y|<e |'T - y| -
by (11.9).

We want to prove that
(13.6) Tl L2 (@) < €

with a constant C' that does not depend on ; (13.3) tells us that it is
enough to deal with T. instead. We want to apply Theorem 3.20, with
E, v, and the cubes of A; Section 12 says that we can do this. We
choose b = g, where ¢ is as in (10.31). Note that g satisfies (2.6), as
was observed shortly after (10.31) (or directly by (%2.6)); this was the
whole point of the construction in [DM].

The kernel
lz—yl\ 1
K =X
() =x(F7) .=

is antisymmetric and standard with uniform estimates, and T. is the
singular integral operator associated with K(z,y) as in Lemma 4.8.
(Most of the construction is not needed, though, because K (z,y) satis-
fies the integrability condition (4.2).) In particular, it satisfies the weak
boundedness property (3.17) automatically, by antisymmetry. Hence
(13.6) will follow as soon as we verify the last condition in Theorem
3.20, namely that T'g and Tg lie in BMO with uniform estimates.

Note that we don’t need to be as careful as in the statement of
Theorem 3.20 and define T'g and Ty by duality. Here, due to the fact
that our kernel K is bounded, Tg and T*g are well defined, and even
bounded, and the only thing we have to check is that they lie in BMO
with uniform bounds. Also, Tg = —T*g by definitions (and in particular
antisymmetry), so we only need to show that ||Tg|lsmow) < C for
some C' that does not depend on .

Note that

Tog(z) — Togla)| < / . lsw)ldviy) ¢

|z —y|
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by (13.4) and (11.9). Since bounded functions obviously lie in BMO,
the desired estimate (13.6) will follow if we prove that

(13.7) 1T gllBmo(ar) < C-

In view of Definition 3.18, this means that
(13.8) / 1T. g(x) — mp, (T. g)|*dv(z) < Cv(Ry),
Ro

for all Ry € A, where mg, (Te g) denotes the mean value of T, g on Ry
(for v). It is even enough to show that for each Ry € A there is a
constant mp, such that

(13.9) /R T2 (x) — mn, |2 dv(z) < Cv(Ro)

because we know that the left-hand side of (13.8) is always less than or
equal to the left-hand side of (13.9).

Let us first take care of the cubes Ry that are contained in circles
C(Q),QQeULI

Lemma 13.10. For each Q € Iy UL there is a constant Cg, such that
(13.10) Tg(e) - CHl<C. onC(Q).

Recall that on C(Q), ¢g(y) is a bounded constant «,, (by (10.31)
and (10.25)), and dv = A\g dH', where )¢ is of the form

()
" Q)

by (10.20). Hence A < C' as well, and
(13.12) Te(1e(q) 9)(@)| < C,

by elementary properties of truncated Cauchy integrals on circles, and
it is enough to study

(13.13) CL(.T) - Ts((l - ]'C(Q)) g)(l.) - ‘/{| —y|> EE\C(Q)} %Z(y) .
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Recall from (11.27) that

98

dist (C(Q), E\C(Q)) > 100 r(Q) ,

so that we can assume that ¢ > r(Q)/2, say, because otherwise we can
replace € with r(Q)/2 without modifying a(z). Denote by z( the center
of C(Q), and also set

D={yeE\C(Q): |y— x| >e}
(the domain of integration for a(xg)) and

A:{yEE: e—%gw—xdge—k%}

(which contains the difference between D and the domain of integration
for a(x) when = € C(Q)). Then

| [ (- =) s v
(13.14) § C/ |dy(y;|
Alz—
v /[|y—$0|>T(Q)/2} ‘ (= _Z)_(;j;) —y) ‘ dv(y)
<C,

because ¢ > r(Q)/2, and by the upper density estimate (11.9). (The
computation for the last line is the same one as for (8.1).) Thus we can
choose Cg = a(zp), and Lemma 13.10 follows.

Lemma 13.10 immediately gives (13.9) for all the cubes Ry that
are contained in a C(Q)). Thus we are left with the cubes Ry € A°, and
we can even suppose that Ry = R(Qy) for some Qo € A°\([; ULI).
Because of (11.15),

(13.15) /R | Teg(x) — mp,|* dv(z) < p, /R [ Teg(x) — mp,|* dv* (v)
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and, since pg,u(Qo) < Cv(Ry) by Lemma 11.13, (13.9) will follow if
we can show that

(13.16) [ 12g(w) = v (@) < C Qo).

Ry

Let us summarize what we have done so far.

Lemma 13.17. To prove (13.6) with a constant that does not depend
on g, it is enough to show that for each € > 0 and each cube QQy €
A\ (I; ULI), we can find a complex number mq such that

(13.18) /R(Q gt - mol2dv* (z) < C 1w(Qo) |

where C' does not depend on € or Q.

At this point we fix a cube @)y as in the lemma, and we want to
find mg and eventually check (13.18). Our notations so far have been
slightly different from those of [DM, Section 8|, where what we call T.g
was called T¢(g dv). It will be more convenient for us now to revert to
the notation of [DM], i.e., to let the measure show up in the notations.
Recall from (10.31), (10.30), and (10.16) that

(13.19) gdv = nlglgan = fdu+ Z(Fn —F, )= fdu+2<pn,

n>1 n>1
where
(13.20) ¢on = —1p, pn_1 fdp— 0 1G, pnor fdp+ andvy,
by (10.22). Hence
(13.21) T*(gdv) = T*(f du) + Y _ T*(¢n),
n>1

the proof of (¥2.9) in [DM] also gives that the series converges absolutely

vt-almost everywhere, so we should not worry about convergence.
Fortunately we shall not need to estimate most of the terms in

(13.21) in the present paper, because this was mostly done in [DM].
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Denote by J the set of integers n > 1 such that @, C Qo and define a
function A on E by

(13.22) Ae) = sup (IT°(F dy))| + 31T (pn) @)])
neJ

for x € E, and

(13.23)  A@) = sw  (|T(fdw)(@)|+ Y [T7(pn)(@)])
EZA_k(Q)/5 neJ

forz €C(Q), Qe LULI.

Lemma 13.24. We have that
(13.25) / A(z)? dvt(z) < C u(Qo),
R(Qo)

with a constant C' that does not depend on € > 0 or Q.

When z € Ey, [DM, (%4.130) and (x4.131)] give that

x)gCJrCZ Z 0(Q) 1p\q(7) ey ()

neJ QEA,UAS

O3 Q) 10) By (),

neJ QEA;
QnEPLI

(13.26)

with the notations of [DM], that we won’t have to make explicit here.
Thus

(13.27) Alz) < C+ W (z) + W (2),

where W/ and Wy are as in (x5.1) and (%5.3), but where one sums only
on the cubes Q € R = I[; U LI U BL I that come from indices n € J,
i.e., cubes that lie in A,, U A} for some n € J. By Remarks 5.177 and
x5.179, and especially (x5.182),

/R(Q L AP @) S v Q) N B + on( U @)

neJ

(13.28) < C u(Qo) .
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(See (x5.180) if you want to check that v is the same here as in [DM],
and recall that v™ = p on E).

Now suppose that z € C(Q) for some Q € I; U LI. We may use
(¥4.132) and (x4.133) to get that

A@) <C+CY > Q) ég(x)

neJ QeEA, UAS

(13.29) e Y 0@ho).

neJ QEA;,
QnePLI

(See (x4.14) and a little below for the definition of k,,; indeed k,, =
k(Q) for the cubes Q € A,,.) Then

(13.30) A(z) < C+ W/ (z) + Wi (z),

where W{ and Wy are defined like W, and Wy in (x5.2) and (%5.4),
but where we only sum over those cubes () € R that lie in A,, U A}, for
some n € J. Now

/ Ax)? dvt (z) = / A)2 dvt (@)
R(Qo)\Ex R(Qo)N(Uger,uw: €(Q))

(13.31) < Cv*(R(Qo)) + Cu( U Qn)

neJ
S C N(QO) )

by (%5.182) and Lemma 11.13. Lemma 13.24 follows from this and
(13.28).

Now we want to take care of the T°(y,,) for which n ¢ .J. We start
with the set J; of integers such that (),, does not meet Q.

Denote by zg the “center of ", i.e., the point x(Qg) of (10.3)-
(10.5). For each n € Jy, set

(13.32) B, (z) = |T¢pn(x) — T pp(z0)]| .

Lemma 13.33. We have that

(13.34) Y Bu(z) <C+CZ(x),  forze R(Qo),
neJp
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where

A—k(Qo)
(13.35) Z(x) = /
E\Qo |

n(y) .
=yl zo -y
To prove the lemma, set
(13.36) V(z)={yeC: |xr—y|>ecand |zg—y| > ¢},

(13.37) W(z)={ye C\V(x): |[x—y|>cor|zy—y| >e},

and then define a function h by

|z nyﬁjoot yl’ wheny € Vi),
h(y) = |z —y|~t + |zo —y|™!, whenye W(z),
0, otherwise .
Obviously

B (z) < / h(y) [on ()|

(13.38)
S/ pn_lhdu+9n/ pn_lhdu+|an|/ hdv, ,

n n

by (13.20) and because || f|coc < 1. We want to sum this over n € Jj.
Notice that the sets H,, are disjoint by (10.26) and contained in E\Qy
by definition of J;. The C,,’s are disjoint too, by (10.29). The sets G,
are not necessarily disjoint, but (10.18) says that

(13.39) On, Pr—1(z) = pr_1(z) — pp(x), when z € G, ,

so that for a given x € F,

(13.40) > Onpni(z) <1
n:c€G,
Thus
ZBn(:p)g/ hdp,+/ hdu+CZ/ hdv
neJ, UnEJ]_ H, UTLEJ]_ G, neJy Cn

(13.41) gz/ hdu+CZ/ hdv,
E\QO Cn

neJp
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for all x € R(Qo).-

Let us first take care of the integrals on W (x). Let € R(Qo)
be given. When ¢ > 2diam (R(Qo) U {zo}), W(z) C B(zg,2¢) and
h(z) = |z —y|~t + |xo —y|~' <4e~! on W(x), and hence

(13.42) /W( ) duty) + /W( ) dvy) < ©.

be (10.15) (applied to Qp or to a suitable ancestor of ()y) and (11.9).
When e < 2diam (R(Qo) U {wo}), W(z) C B(zo, CA~*(@0)) and
then

C A—F(Qo)
13.43 h(y) < ,
(13.43) (y) Y p—

on W(z).

From this and (13.41) we deduce that

@4 Y B <C+C2@)+C Y [ sw)ivl),
Cn

neJy neJy

where

A—k(Qo)
o=yl |wo -yl

(13.45) p(y)

We still need to control the contribution of the sets C,,. Let n € J; be

given, and let () € A,,. Since n € J1, Q,, does not meet (o, and neither
does Q C @Q,,. Then

dist 0, C(@)) 2 dist (Q0,C(Q)) > dist (C(Q), F\Q) > (@),
by (10.28). Hence
(13.46) lzo — 2| < C'lzo —yl, for all z € Q and y € C(Q) .

Similarly, C(Q) does not meet R(Qy), by (11.5) and the fact that the
circles C(Q), @ € I; U LI, are disjoint (by (10.29)). Then for all z €
R(Q)) we have that

dist (z,C(Q)) > dist (R(Q),C(Q)) > dist (C(Q), E\C(Q)) = — 7(Q),
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by (11.27), and
(13.47) e — 2| <Cl|z -y, for z € Q and y € C(Q) .

From (13.46) and (13.47) we deduce that p(y) < C p(z) whenever y €
C(Q) and z € @), and then

E:ﬁp@NWMZE:E:L@f@m@)

neJy neJ; QE-An

<Y Y [ o)t

(1348) neJi QeEA,
SC/ p(z) du(y)
E\Qo

=CZ(x),

because v(C(Q)) < p(Q), the cubes @ are disjoint and do not meet Q,
and by definition (13.35) of Z.
Lemma 13.33 follows from (13.44) and (13.48).

Lemma 13.49. We have

(13.50) /R o 2 @) < CniQu).

We leave the proof of Lemma 13.49 for later, and continue with the
proof of (13.18). Lemmas 13.33 and 13.49 will give us enough control
on the T¢(py), n € Jy (see later). So we want to switch to the set
Jy = N* — (J U Jq) of integers n > 1 such that Qg is strictly contained
in ,,. Thus Qo C G,, when n € Js. For each n € Js, set

wn = n + 9n ]-QO Prn—-1 fd,u
(13.51)
=1y, pn—1fdp —0n 1g,\qQo Prn—1 [ di + ay dvy,
(by (13.20)), and then set
(13.52) B, (z) = |Tn(x) — Ty (z0)], for x € R(Qo) -
We claim that

(13.53) Y Bu(z)<C+CZ(z), forzeR(Qo),
neJs
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by the same proof as for Lemma 13.33. The main point is still that the
sets H,, are disjoint and disjoint from R(Qy), that the integrals against
andy, are controlled by the integrals on H,,, and that the integrals on
the sets G, \Qo sum up by (13.39) and still concern E\Qy.

The last piece that we need to study is

(13.54) = Onpnrlofdu=(1-p)lg, fdp,
neJs

where p denotes the constant value of p,, on )y, where ng is the largest
integer in Jy. (If Jy is empty, we don’t need to worry but we can also
take p =1 and ¢ = 0.) The last equality in (13.54) comes from (13.39).
For each z € R(Qy), set

(13.55) D(z) = E N B(z,diam (Qo U R(Qo)) + A~F@0))

By (%4.97) or (x4.98),

(13.56) IT*(1p\D(e) [ dp) ()| < C,

because it is a T¢(f du)(z) for some & > A=F(Q0): next

(13.57) 1T (1p\D(ao) f dp)(z)| < O,

by (13.56), and because the difference between the left-hand sides of
(13.56) and (13.57) is controlled by

/A du(y) <c.

v —y| ~

where A = (D(zo)\D(z)) U (D(x)\D(z0)). This last estimate uses
(10.15). Now assume that z € R(Qp) N Ex or € R(Qo)\EFx and
r € C(Q) for some Q € I, ULI such that ¢ > A=*®@) /5 Then
|T°(f du)(x)| < C by (%4.97) or (¥4.98), and hence

T ()| < [T°(f dp)(@)| + T (Le\q, [ di)(@)]

< O+ [T (Aorpten £ )@ + dulv)

D(w0)\Qo | — Y]
< C-l-/ duly)
- D(zo\Qo 1T =Y

(13.58)
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The following lemma will be useful; we shall prove it later, at the same
time as Lemma 13.49.

Lemma 13.59. Set

_ Aply)
Zi(z) = L(mo)\Qo T —yl’ for all x € R(Qo) .
Then
(13.60) / Za(2)2dvt (&) < C p(Qy).
R(Qo)

We are now ready to prove (13.18) (modulo the two lemmas). Take

(13.61) mo= Y Tpn(wo) + Y T tn(x0).
neJy neJs
For each z € R(Qo) N Eoo = Qo N Es and € > 0,
| Te g(z) — mo| = [T°(g dv)(z) — mo

< A(2) + Y IT%pu(@) = Tpu(0)|

neJy

(13.62) £ 3 [T (@) — T (w0)| + [T ()

neJs
<A@@)+ Y Bulw)+C+ Zi(x)
neJiUJy
<A(z)+C+CZ(x)+ Z1(x),

by (13.19), (13.22), (13.51) and (13.54) (to get that 3., wn =
S e Ynt1b), (13.32) and (13.52), (13.58), Lemma 13.33, and (13.53).

When z € R(Qo)\Eos and z € C(Q) for some ) € I; UL I, and
we suppose in addition that e > A=%®@) /5 we can use (13.23) instead
of (13.22), and the same computations as for (13.62) yield

(13.63) Teg(z) —mo| < A(x) +C+C Z(z) + Z1(x) .
When z € C(Q) and ¢ < A7¥(@) /5, set &' = A_k(Q)/5 and observe that

dv(y
e g0) - Tog)] = [ UL
{e<lz—yl<e'y LY

(13.64) oo dmy)

-1/ <c,
{yeC(Q),e<|z—y|<e'} r—y
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by (11.27), (10.31), (10.25), (10.20), and elementary properties of trun-
cated Cauchy integrals on circles, and where m denotes the integer
such that Q € A,,. Thus (13.63) holds also when ¢ < A=*(@) /5 even
though with a slightly larger constant C. Altogether, (16.63) holds for
all z € R(Qo) (and all € > 0).

Now (13.18) follows from Lemmas 13.24, 13.49, 13.59, plus the
fact that v (R(Qo)) < C u(Qo), by Lemma 11.13. Because of Lemma
13.17, our proof of (13.6) will be complete as soon as we establish the
two lemmas.

First consider the function Z(z) of Lemma 13.33. We claim that

(13.65) Z(x) < C+ Zy(x), for all € R(Qo) ,

where Z; is as in Lemma 13.59. Let D(zy) be as in (13.55) and the
definition of Z;. Then

A—k(Qo)
(15.66) / du(y) < C,
E\D(z0) |z —y| |lzo — vl

by the same computation as for (8.1), because (|x — y||zo — y|)~! <
C |zo —y|~2 on the domain of integration and by (10.15), applied to Qo
and its ancestors.

So we may concentrate on

P ( ) / A—k(Qo) p ( )
Tr) = ny).
’ D(eo)\@o 1€ — 4] [T0 — Y]

But |zo — y| > A7*(Q0) /2 on D(2)\Qo, by (10.3) and (10.4), and so
Z(x) < 2 Zy(x). This proves our claim (13.65).

Obviously Lemma 13.49 will follow from Lemma 13.59 and (13.65),
because v+ (R(Qo)) < u(Qo) by Lemma 11.13.

We now prove Lemma 13.59. The argument is quite similar to
estimates for functions hf, that were done at the beginning of [DM,
Section 5.1], but we give the argument here because some of the com-
putations in [DM] are much more general than what we need here.

First we want to reduce to an integral on Q¢ (rather than R(Qy)).
For each z € )y, set

(13.67) 7(x) =inf {A7% : there is a cube Q € A? that contains '} .
The main point of this definition is that

(13.68) p(B(z,r) <Cr, for all r > r(z),
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by (10.15). Also note that
(13.69) r(z) =0, on Eo N Qo ,

because E, does not meet any cube of I; U L I. Next set

dp(y)
13.70 hleoa;/ _ )
( ) (@) = 1q0() D(zo\Qo T(T) + |7 — Y|
We want to check that
(13.71) / Za(2)? dv* () < c/ h(w)? dp(s).
R(Qo) 0

For z € Eoo NR(Qo), r(x) = 0 and Z;1(x) = h(z); for the corresponding
part of the integral, there is nothing to check because v < p on E.

Now let @@ € I; UL I be given, with () C )¢, and let us look at the
contribution of C(Q). For each = € C(Q),

99

dist (2, D(20)\Qo) 2 dist (C(Q), F\Q) > 7557(Q) ,

by (10.28), and hence
(18.72) r(2)+|z—y| < AT Dt |z—y| <1007(Q) +|w—y| < Cla—yl,

for all y € D(x0)\Qo and all z € Q. Then Z;(z) < C h(z) for all z € Q,
and

(13.73) /C(Q) Z1(z)?dvt(z) < C/Q h2(2) du(z),

because v (C(Q)) = 1(Q). When we sum this over the (disjoint) cubes
Q@ € I, U LI that are contained in )y, we obtain that

(13.74) /Rw " Z1(z)?dvt(z) < C/ h(z)? du(z)

0

(by (11.5)); our claim (13.71) follows from this and the trivial estimate
for E, mentionned above.

Because of (13.71), Lemma 13.59 will follow as soon as we show
that

(13.75) / h(z)? du(z) < C u(Qo) -

0
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To prove this we decompose @)y into its maximal good subcubes R,
R € S(Qop). The decomposition is the same as in Section 8, even though
p is a slightly different measure now (that does not satisfy (3.1)). In
particular, the analogue of (8.10) in this context holds, with the same
proof. (See Lemma %5.28.) For each R € S(Qy), set

dp(y)

(13.76) ha(z) = 1x(2) /23\3 il

where 2 R is as in (7.7)-(7.8) or in (%4.79). This is almost the same
function as in [DM] (see (x5.8)), with the only minor difference that
we may have chosen r(z) a little larger than the one in [DM]. (See
in particular (x5.5) and (x5.7).) This difference does not disturb us,
because our function hp is slightly smaller than the one in [DM], and
the estimates from [DM] will work even better for it. Now we claim
that

(13.77) h(z) < C+ hg,(z) < C'+ hg(z),

when z € R, R € S(Qp). The first inequality is an easy consequence of
the fact that |z —y| > A=*(@0) on D(20)\2Qo, so that

o)~ hoy(@) = [ oyl M duly) < 4M9) u(D(so)) < C.
D(z0)\2Qo

by (10.15). The second inequality comes directly from Lemma *5.36.
The fairly easy proof is quite similar to arguments used earlier in this
paper: because all the cubes @) such that R C Q C Qp and Q # R
are bad, the contribution to hg,(z) of the annular shells at distance
~ ATFHQo)=t < E(R) — k(Qo), from z decrease rapidly; the main
contribution comes from ¢ = 0 and is less than C by (10.15). (See [DM]
for details.)
Next, for each R € S(Qo) and each z € R,

(13.78) hr(z) < C(1+log(1+ A7F®) dist (x,2 R\R)™Y)).

This is (%5.24), and it follows from a rather brutal computation using
dyadic annular shells and the density estimate (13.68). The logarithm
is an estimate of the number of shells that we need to cover the domain
of integration. Finally,

(13.79) /R hi(@)? du(x) < C w(90B(R)) < C u(R) .
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This follows fairly easily from (13.78) and (10.8), plus the fact that R
is a good cube. This is also a consequence of Lemma %5.22. Now

0 ReS(Qo)

(13.80) <2} / (ha(2)? + C) du()

by (8.10) (or Lemma 5.28), (13.77), and (13.79).
This completes our proof of (13.75); Lemma 13.59, Lemma 13.49,
and our main estimate (13.6) follow.

At this point we may return to the description given in Section 1:
the estimate (1.11) follows readily from (13.6), and we may conclude as
in the introduction.

This complete our proof of Theorem 1.1.
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