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Let G be the space of lines in R3, i.e. the 4-dimensional mani-
fold whose elements are all lines in R®. We can coordinatize G in the

following way
L={(e,x),

where e € S?\{=41} is the direction of £ and x = x, is the unique point
on ¢ which is perpendicular to e. We will denote the direction e of £ by
.

The distance on G can be defined using the standard distances on
the sphere and in R3 and this identification, thus

(1) d(l,m) = |z — x| + 0L, m),

where 6(¢,m) = 6(¢£*,m*) is the unoriented angle (€ [0,7/2]) between
¢ and m. This distance has the following property. Let Ty(a) be the
cylinder of radius J, axis £ and length 1, centered at the point a € £,
and let Ty = Ty(z¢) where z, is as defined above. Then for o > 6,

(2) 6(¢,m) <o, and Ty N T, # @ imply d(¢,m) < Cyo,

where C} is a suitable numerical constant.
All metric quantities defined on G refer to the distance d.

We will be using mixed norms on G defined in the following way:
if FF: G — R then

1Plsan = ([ /{ ) Fle.o)rds)” )™,
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where the z-integral is with respect to two dimensional Lebesgue mea-
sure. We remark that the functions we will be considering will generally
be supported in the set {(e,z) € G : ||z] < 1}.

The X-ray transform is the map from functions on R?® to functions
on G defined by

X0 - 1.
¢
Our purpose is to prove the following estimate

Theorem 1. If f : R® — R and the support of f is contained in the
unit disc then

||Xf| Li(Lr) < CE Hf“[he ’

for any e > 0. Here || ||, is the inhomogeneous Sobolev norm with ¢
derivatives in LP, and the exponents are as follows

)
p 9 q ) r

The following is an equivalent formulation of Theorem 1 which is
easier to work with.

Theorem 2. Let Q be a subset of S?\ £ 1, let E be a subset of the
unit disc in R3, and A > 0. Assume that for each e € § there are m
0-separated lines £ with direction £* = e such that

(3) |TgﬂE|2)\|Tg|.
Then
(4) |E| > Ce_l 606 )\5/2 m1/4 |Q|3/4 51/2 )

Of course, a subset {m;} of a metric space M is called 0-separated
if j # k implies that the distance from m; to my, is at least 0.

Theorems 1 and 2 are refinements of the result in [7] — the result
in [7] corresponds to the case m = 1. The argument in the present
context is more subtle than the argument in [7], but the basic strategy
is similar. Let D(a,r) be the ball centered at a with radius . The
main work is to prove
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Lemma 0. Theorem 2 is true provided we make the following additional
hypothesis on the tubes Ty : for any a € R3,

1y —10
T, N E N D(a,6%)| < A <1og 5) Ty .

A version of property (5) was also used in [7]. We could call it
the “two ends” condition, since it expresses the fact that £ N7} is not
concentrated near one end of T.

We now explain briefly how Theorem 1 fits into the literature.
There is a “space time” estimate for the X-ray transform, i.e. an es-
timate from L? to LI(G), which in the three dimensional case says
that

| X f]

ras)y SISz

After a result of Oberlin and Stein [6] for the Radon transform, this
was proved by Drury [3] with a loss of € derivatives and then by Christ
[2] as stated. The main conjecture on the Kakeya maximal function
can be stated as

| X fllzz@e) SN fll3e

and if one interpolates between this conjectural result and Drury’s, one
obtains the conjectural bound

(6) X7

ey S Wfllpes, >0,

for any p € (2,3), where ¢ = 2p" and 1/r = 1-3/q. Theorem 1 confirms
(6) when p < 5/2.

In [2] it is conjectured that (6) should hold as an endpoint result,
i.e. without the loss of € derivatives. When p < 5/2 it is conceivable
that this can be proved by refining the argument below, but we do not
attempt that here. Nor do we attempt a generalization of Theorem 1 to
higher dimensions; the natural generalization would be (6) in R™ with

2
p:n; , q=(n-1)p and

Lo,on,
r q

The plan of the paper is as follows: sections 1 and 2 are prelimi-
naries to the proof of Lemma 0, Section 3 is the proof of Lemma 0 and
Section 4 is the proof of Theorems 2 and 1.
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1. Preliminaries.

Some notation and terminology is as follows: the number € is kept
fixed throughout the proof of Lemma 0. We also fix §, although needless
to say the values of all constants must be independent of 6. If £ is a
line then the tubes Ty(a) and T, are as defined in the introduction and
in particular have cross section radius . We will say that tubes T, and
T, intersect at angle T if T,NT,, # @ and 0({,m) = 7. If F is a set
then the notation |E| will be used to denote the Lebesgue measure or
cardinality of F¥ depending on the context. The characteristic function
of £ will be denoted by x,. The disc of radius r centered at z in a
metric space is denoted D(z,r); we remark that we use this notation
regardless of whether the metric space is R?, G, S? or something else.
Finally we will use a certain normalization of the entropy of a set, which
in practice will be a set in G or on the 2-sphere.

Definition. If M is a metric space and o > 0 then E,(M) = 0*N,(M),
where Ny (M) is the maximum possible cardinality for a o-separated
subset of M.

In proving Lemma 0 we can assume that our lines intersect the
unit ball in R* and make an angle of less or equal than 1/100 with the
vertical direction, say, and will always make these assumptions in order
to avoid some notational complications. We also always assume that ¢
is sufficiently small.

In several places we will need to use some elementary but not
completely obvious facts from solid geometry. We will generally not give
the proofs of these facts. However, we want to clarify our terminology.
If /,¢/ € G are intersecting lines then the plane spanned by ¢ and ¢’
means of course the unique plane containing ¢ and ¢'. In addition,
if £ € G and e € S? then the plane spanned by ¢ and e is the set
{t €R®: z =y+teforsomey € £ andt € R}. If IT and II are
2-planes, then the angle between I1 and II is of course the inverse cosine
of the dot product between the unit normal vectors to II and II, just as
the angle between two lines is is the inverse cosine of the dot product
of their direction vectors. As an example of the kind of statement we
have in mind, we note the following.

Lemma 1.0. Suppose that II is a plane, £ is a line contained in II, ¢’ is
a line intersecting £ at a point a, and that the angle between £ and ¢’ is
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less or equal than o and the angle between II and the plane spanned by
¢and ¢ is < ¢. Then Ty (a) is contained in the C'(¢ 0+ J)-neighborhood
of I1, i.e., if & € Ty (a) then dist(z,I1I) < C(do + 9).

ProoF. Choose coordinates so that a is the origin, Il is the x1x5 plane,
and / is the xo axis. Then the assumptions mean that if y € ¢/, then

1| + y3| S o(lyr] + y2| + lvs]),

lys| S d(lya| + |ysl) -

If x € Ty (a), then there is a point y € ¢ with |y1| + |y2| + |ys| < C
and with |z — y| < CJ. The above equations then imply |y3| < o ¢, so
|z3] < 0@+ 9 as claimed.

One problem in adapting the argument in [7] is as follows: use
was made there of the fact (perhaps due to Cérdoba) that a family of
tubes contained in a C'd-neighborhood of a 2-plane and with J-separated
directions must satisfy an estimate >, [T;] ~ | U; Tj| up to 6° factors.
Here we will be considering families of lines which are d-separated in the
Grassmannian GG, but their directions may not be )-separated. Lemma
1.2 below is an adaptation of the Cérdoba argument to this situation;
the form of the statement may look peculiar, but it is the one which is
most useful for our purposes.

We will be considering various rectangles R relative to an orthonor-
mal basis ey, es, ez with respective dimensions 100 x w x 100, where
we always assume that 100 > w > 1004. Given such a rectangle R, we
will call w the width of R and will refer to the plane through the center
point of R spanned by the e; and ey directions as the 2-plane of R and
to the line through the center in the e; direction as the axis of R.

We fix a set £ and number A. If A is a d-separated family of lines
and if R is a 100 x w x 100 d-rectangle then we define the tube density
of R, d4(R), via

|{te A: T, C R}

(7) da(R) W
5

A plate of width w relative to A is a 100 x w x 100 d-rectangle R with
the following property:
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Plate property. Suppose that for each ¢ € A with Ty C R, a subset
Y, C Ty N E is given, satlisfying

il > (log 1) AL,
Then
(®) U vz (oe5) 2 mL

T.CR

Assuming that A is §-separated and the tubes {T}}sc 4 satisfy (3),
we define a quantity p,(A) in the following way

(9) Po(A) = SUp da(R),

where R runs over all plates relative to A of width < o. We will
frequently use the fact (easy to prove) that p, is monotone under set
inclusion,

(10) B C A implies p, (B) < p,(A).

Lemma 1.1. Assume that A is §-separated and the tubes {T}}ica
satisfy (3). Then

po(A) = Sup da(R),

where R runs over all 100 X w x 100§ rectangles with w < o (not just
plates).

Corollary.
i) ps(A) actually depends only on A and not on E or A.
ii) Let & = max(1004, 6%¢c). Then pz(A) > §°¢ p,(A).

PROOF OF THE COROLLARY. Part i) is obvious from Lemma 1.1. Part
ii) follows since it is easy to see that if w’ = max {6%¢ w, 1004} and if
R is a 100 x w x 1000 rectangle which contains M tubes Ty, € A,
then there must be a 100 x w’ x 100 §-subrectangle containing at least
C~1 6% M of these tubes.
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Proor or LEMMA 1.1. Fix a rectangle P with essentially the maxi-
mum tube density, i.e., P is a 100 x w x 1000 rectangle with w < o,
and if R is any other such rectangle, then d4(R) < 2d4(P). Let C(P)
be the lines £ € A with T, C P.

It suffices to show that P is a plate relative to A. So fix appropriate
subsets Yy C Ty, which from the form of the statement may be assumed
to have measure exactly

A
—3 [ Tel-
oz 5)
( 5
Let E = Ueec(p)Ye- Then, by Cérdoba’s well-known calculation,

A

ﬁ|C(P)|52% Z Y|
(logg Lec(p)
IR
Eyee(p)
<|EﬂP|1/2H Z Xy, ||,
tec(p)
. 1/2
=[EnPM( Y enval)
£,meC(P)

For each £ and 7 > 0, the maximality property of P implies there are <
(1/w) |C(P)| tubes T),, with m € C which intersect T, at angle between
(1 —40)/2 and 7. For each such m, |Y,NY,,| < 77163 Accordingly (the
sum over 7 below runs over dyadic values between ¢ and o)

(11) slnpe( Y 30 DIy

tec(p) T

J

1
_ IC(P)]?6° log < \ 1/2
< |EﬂP|1/2< )

w

and now (8) follows by algebra.
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Lemma 1.2. Let A be a §-separated subset of G and assume that the
tubes Ty, ¢ € A are contained in the intersection of a o-neighborhood
of a line and a 100 d-neighborhood of a 2-plane, where o > 6. Assume
that for each £ € A a subset Y, C Ty N E is given, satisfying

1\-3
Yol = (log5) AlTal.
Let E = UpeaYy. Then, with p = p,(A),

” IN=10 )0
(12) |E|2(logg> pIAZES(A)

PRrROOF. This is similar to the proof of Lemma 1.1. By Lemma 1.1 we
know that |C(R)| < pw/d for all 100 x w x 1000 rectangles R. So for
any fixed £ € A and 7, there are < p7/d tubes which intersect T at
angle less or equal than 7. Hence

A A2 S Y Il
(log g> LEA
<182 (S e val) "
Im
siere(e e )

- 1\ 1/2
S (1Alpo* log5)

using the same type of reasoning as before. The result follows.

The rest of this section is of a technical nature — Lemma 1.4 below
will allow us to avoid some unpleasant technicalites later on. Similar
issues come up elsewhere in the literature and Lemma 1.3 was suggested
by some (rather more sophisticated) lemmas of the same type due to
Szemeredi and Balog-Szemeredi, see [5, Section 9.3].

Assume that A is a set, N a number with |A| < N. An allowable
relation on A means a pair {IIg}gc.a, ~, where

1) For each B C A, IIp is a collection of subsets of B. Also ~
is a relation between points of A and subsets of A which belong to

Uscalls.
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2) If By C By and if Sy € Ilg,, then there is Sy € Iz, with S; C S
such that x ~ S; implies = ~ Ss.

3) If z € B then there is S € Iz with z ~ S.

If BC A,S € Il then we define ng(S) = {x € B: x ~ S}|; and
¢(B) = max{ng(S) : S € llg}. We note that property 2) guarantees
that ¢ is monotone under set inclusion, B; C By implies ¢(B;) < ¢(Bs).
Likewise property 3) guarantees that ¢(8) > 1 for all B C A.

Definition. A subset A" C A is good relative to ~ if the following
holds: if B C A" with |B] > (log N)~19|A’| then there is a subset C C B
with |C| > |B|/2 such that © € C implies there is S € Ilg such that
z €S and np(S) > N~cq(A').

In practice, we will work with several allowable relations simulta-
neously. Suppose then that {{II}}zc.a,~; };?:1 is a family of allowable
relations on a set A and denote the quantities nz(S) and ¢(B) defined
using the relation ~; by n%(S) and ¢/ (B). We say that A’ C A is good
with respect to all of the relations ~; if the preceding definition is valid
for each j, with the set C being independent of 5. More precisely,

Definition. A subset A" C A is good relative to all of the relations ~;
if the following holds: if B C A" with |B| > (log N)7t%|A’| then there
is a subset C C B with |C| > |B|/2 such that « € C implies that for each
j there is S € IT% such that x € S and n¥(S) > N=¢¢/(A').

The point is that a fairly large “good” subset will always exist:

Lemma 1.3. If {Nj}§=1 is a family of allowable relations on a set A
with |A| < N, and if N is large enough depending on ¢ and k, then
there is a subset A" C A with |A'| > N~¢|A| which is good relative to
all of the relations ~;.

ProoOF. Counsider a subset of A, which we denote by A;, which is not
good with respect to all of the relations ~;. Then, from the definition,
there is a subset B C A; with |B| > (log N)™'°|.4;|, such that half of
the elements z € B satisfy max {n%(S): z € S, S € lIx} < N7°¢7(A;)
for some j (depending on x). Hence we can find a common value of j
which works for at least |B|/(2k) elements. Defining A;4; to be these
elements, we see that n%(S) < N7¢¢’(A;) for all S € II such that
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SNA;+1 # @. Consequently, ifS € HfAZ_H then 7_7’?41-“ (S) < N=c¢7(A;)
by property 2), and therefore ¢7(A;+1) < N~%¢7(A;). We conclude.

If A; is not good, then there are A;1 1 C A; with |A;41| >
(log N)~19|A4;|/(2k) and j € {1,...,k} such that

¢ (Aip1) SN ¢ (A)).
Now suppose we have a string
(13) A=AyD---D A,

so that the above property holds for each ¢ = 0,...,n — 1. We can
pigeonhole to obtain a common value of j for at least n/k values of i.
Using the monotonicity property of ¢’ it then follows that

1< qj(An) < N—en/k qj(.A) < N—en/k-{—l,

i.e. n < k/e. On the other hand the last element of a maximal string
(13) must be good. So we have found a good subset with at least
((log N)~1°/(2k))*/¢ | A| elements, which gives the result.

We now specialize to the situation we care about, namely the fol-
lowing situation:

(x) A is a d-separated subset of G and the tubes {T;},c4 satisfy (3)
with respect to some set E contained in the unit ball (and some \).

If B C A then we let P;j(B) be the set of all plates relative to B of
width less or equal than §7¢. If £ is a line, then we let P;(B,¢) be the set
of all plates relative to B of width less or equal than §7¢ which contain
T,. Finally, if R is a plate relative to B then we let B;.(R) be the set
of lines in B such that the following conditions hold: i) T} intersects R;
and if we denote the axis direction of R by e, then ii) the angle between
the direction of ¢ and the direction of e is less or equal than §*¢, and
iii) the angle between the 2-plane of R and the 2-plane spanned by ¢
and the e direction is less or equal than §".

Definition. Suppose that A" C A. Then A’ is good if for any B C A’
with

81> (g 1) 4],
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there is C C B with |C| > |B|/2 such that if £y € C then

1) For any integer j < 1/e, we have

{m e B: T, NTy, # @ and (Lo, m) < 6¢}|
>0 {{me A : T,,NTy, # D and O(Ly, m) < 67¢}].

2) For any integer j with 67¢ > 1006, we have

14 dg(R) > 6% p,(A").
(14) Remax, B(R) > 6 ps(A')

Here we have set o = §7¢, and the notation dg(R) and p,(A’) is defined
by (7) and (9).

3) For any j with 7¢ > 1005 and any i < 1/e, r < 1/e, we have

15 Bi, (R)| > ¢ " (R)].
(15) Reg}?fs‘,eo)| (R)] > Reg%760)|AzT( )|

Lemma 1.4. If A is as described by (x) then A has a good subset A’
with |A'| > 0°|.Al.

Proor. We will define a set of allowable relations and apply Lemma
1.3. Let A be our set of lines, N = §~* which is clearly an upper
bound for |A|. If B C A, and if R is a plate relative to B, then we
define a subset Sp(R) = {m € B: T,, C R}. We could call this the
combinatorial plate corresponding to the geometric plate R. We let
I1;(B) be the set of all “combinatorial plates” relative to B with width
less or equal than 67¢, i.e.

(16) I1;(B) = {Ss(R) : R < Pj(B)}.
The following then constitute a set of less or equal than ¢~* allowable

relations:

1); For each B C A, I is all singleton subsets {m}, m € B, with
the relations £ ~ {m} if 6(¢£,m) < §’¢ and T, N T, # 2.

2); I = IL;(B) is defined by (16), and £ ~ Sg(R) if T, C R.

3)ijr lIg = I1;(B) is defined by (16); and £ ~ Sp(R) if T, intersects
R, ¢ makes an angle less or equal than 0% with the axis direction of
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R, and the 2-plane spanned by £ and the axis direction of R makes an
angle less or equal than 0"¢ with the 2-plane of R.

It is almost immediate that all these relations are allowable. We
indicate the proof.

Property 2) holds for the relations 1): if S; = {m}, then take
Sy = {m} also.

Property 2) holds for the relations 2) and 3): if S; € IL;(BB1) then
S; is the combinatorial plate Sp, (R) corresponding to some plate R €
P;(B1). Then clearly R € P;(Bz) also, and it follows that we can take
Sy = Sp,(R).

Property 3) holds for the relations 1): if £ € B then we can take
S = {¢}.

Property 3) holds for the relations 2) and 3): for this, fix a line
¢ € B and set S = Sg(R) where R is a 100 x w x 100 rectangle
containing Ty, with axis very close to and coplanar with £, and width
slightly greater than 100 . R will be a plate with respect to B according
to our definition and clearly £ ~ S for any of the relations 2) or 3).

By Lemma 1.3, there is a subset A" C A which is good with respect
to all of these relations and has cardinality > §¢|A|. Let us now see
that this means A’ is good in the sense of the preceding definition. Fix
an appropriate subset B and choose a further subset C using the fact
that A’ is good with respect to the relations 1), 2), 3). If £y € C then
properties 1) and 3) in the definition of good follow immediately using
the relations 1) and 3). For example, the relation 3);; leads to the
conclusion

max |B;(R)| > 6° max |A;.(R),
ReP;(B,4) ReP;(A")

which is slightly stronger than (15), and similarly 1); leads to a slightly
stronger form of property 1). It remains to prove (14). The relations
2); imply in the notation (7), (9) that

17 R)ds(R) > 6° R')d (R,
(17) Reg%geO)w( )ds(R) > R,g}g@,)w( ) da(R)

for any k, where w(R) is the width of R. Now let j and o be as in
(14) and choose a plate achieving p,(A"), i.e. let R’ be a plate relative
to A’ with width v’ < ¢ and with p,(A’) = da/(R'). Choose k as
large as possible subject to 6% > w’, and apply (17). Thus p,(A’) <
(6°w’) "' maxpep, (8,6,) W(R)ds(R). Now note that 6% < §~cw'; we
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conclude therefore that p,(A’) < 072 maxgep, (5,6,) dB(R). Clearly
k> j,s0 Py(B,ty) C Pj(B,4), and (14) follows.

2. First part of proof.

In this section we prove the following lemma, which is a refinement
of the main lemma in [7].

Lemma 2.1. Assume A is a 0-separated subset of G and for each f € A
the tube T, satisfies (3), (5).

Then for some o € (1000,100) and for some subset A" C A with
|A'| = 09| Al

(18) |B| > 61 py(A) V2 A2 \/85(/1’) Eq(A) g .

PrOOF. We may assume that A is good in the sense of Lemma 1.4,
else we pass to a suitable subset which is. (Actually, for the current
argument only property 1) in the definition is needed) Let x, be the
characteristic function of E' and define

(19) pal@) =D xp (7).

meA

It is easy to see that pq(x) < 072 for all x — this follows since a d-
separated family of lines passing through a fixed point has cardinality
< 672, We also define

(20) 1y g(w) = > Xr,, (©).

meA:57=<H(¢,m)<s0 1=

We claim there are positive integers j < 1/ and N < §=2 and a subset
A" C A such that

1\ -2
1
> Z
(21) A = (log=) |4
and if £ € A", then
A|Ty|
(22) Yol 2 S
log 5)
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where

(23) de:engﬂEﬂ{a:: palz) <2N}N{z: ;L{A,E(.I‘)ZESN}.

This follows from the pigeonhole principle. Namely, if C' is a suitable
constant then for each ¢ there is NV, a dyadic integer so that

ATl

(24) TyNEN{x: N <paslz)<2N} > T
Clogg

Accordingly we can pick a value of N so that (24) holds with that value
of N for at least (C'log(1/6))!|.A| tubes from A. Next, for each of
these tubes there must be a value of j < 1/e such that

Ty NEN{z: N<pa(x) <2N}{z: p),(x) >eN}|

(25) AT

> €
C'log -
og(s

and therefore (25) holds with a common value of j for at least

e (Clog(1/6))~t|AJ lines £. This proves the claim. We will use similar

“pigeonhole” arguments several times below without giving the details.
We clearly have

_ AEs(A")
26 E| > (2N)! Yi| >0° ——= .
(26) Bz N7 3 W =0 =g

Note that this immediately implies (18) (with o =~ §) if NA < §—12¢,
say, so in proving (18) we may assume that N\ > §—12¢,

Assuming N > 6~12¢ we now set 0 = 60U~ and let T,,(£) be the
3 X 30 tube concentric with Ty. For each £ € A", we define A" ({) =
{me A" : m ~; £} where ~; is the relation

ijm

if Ty N Ty, # @ and 0(¢,m) < §U=1e. We further define Ej for £ € A”
by
Ee= |J Ym.
meA' (£)

Note Fy is contained in T, (£).
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Lemma 2.2. If N > 6 '2¢ then there is a subset A’ C A" with
|A'| > |A"]/2, such that if £ € A’, then (with p = p,(A))

|Eg| > 6 p ' Nod A3,

Proor. Fix ¢ € A”. If a tube T,, intersects Ty at angle greater or
equal than §°c then the intersection has measure < §7¢§3/c. It follows
using (22) that there are at least

C—l(st% (10g%>_2)\

lines m in A such that T, intersects Ty at angle between 0°¢ and o.
Detailed justification for the latter assertion is as follows. Let B =
{m e A: T,, intersects Ty at angle between d°c and o}. Then

53
0 ¢ — 2 T, NT,
B[67° =2 3 [T T

meB

:/ ZXTm

I meB

_ J
= / e
T

> eN |Y
N )62
RN
e )
(10g 5
as claimed. We will use this argument again in Section 3 without giving
the details.

By the “goodness” property, we can choose A" C A" with |A'| >
| A"”|/2 so that if £ € A’ then there are at least

C_162€N% <1og %)_Z)

lines in A" such that T, intersects Tj at angle less than o, i.e.

1\ -2
A" (0)| > C_lNéze% (log 5) A.
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Fix £ € A’. We can pick 7 € [0, 0] such that at least

53N Z A
5

of these tubes Ty, intersect Ty at angle between 7/2 and 7. We denote
this set of lines m by C. Thus

(27) c| > 535N%)\.

We now repeat the argument from [7]. First we dispense with a minor
technicality. Namely, we have

(28) T>07%6.
To see this note that .
NIa<cl
6 = ¢ 54’

since C'7*/§% is a bound for the number of -separated tubes which can
intersect Ty at angle less or equal than 7. Hence, since NA > §—12¢,

> (0—1536N)\)1/4(530_)1/4 > 5—266,

proving (28). Now, as in [7] we choose a family of 2-planes II; through
¢ corresponding to a maximal (0/7)-separated set of directions perpen-
dicular to £ and consider their 100 J-neighborhoods I1:°%°. Then every
tube T,,,, m € C is contained in some I1}°% and a point at distance
p from £ belongs to at most C max {7/p, 1} [11°0%s. This is clear geo-
metrically, see also Lemma 3.1 below. For each k, let Cy be the tubes
in C which are contained in II}°%. Let Z,, be the points in Y;, which
are at distance at least 0°7 from the axis £. Using (28) and standard
geometrical facts, the complement of Z,, in Y,, is contained in a disc
of radius = 6%, so (22) and the “two ends property” (5) imply that

1y -3
Zn| 2 (log5)  AlTml-
Lemma 1.2 implies (using (10)) that

‘ 9 Zm‘ > 05pL|Cp| 9202
mECk
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Therefore, since no point of any Z, can belong to more than
C 6 I1;°%%s, we have

o3| Y 2

meCy

> 262€p—1|ck| 62)\2
k

Z 62€p—1|c|62)\2
> 5%p INo 6 A3,

by (27).

We now note the following (this is the punchline!). Let Cy be the
constant in (2).

Claim. If z € R?, then there are at most (2/¢) 4 Coo-separated lines
L e A" such that x € E,.

Namely, suppose we have M such lines £. For each of them there is
a line m = my at distance less or equal than o from £ such that z € Y,,.
Thus

1) pa(z) < 2N.
2) ply j(w) > eN for each m.

Note the m’s are 2 Cy o-separated by (2), since T} intersects T, at
angle less or equal than o. It follows by (2) that no tube can intersect
two different T},,’s at angle less or equal than o. Accordingly property
2) implies that pa(z) > MeN, hence M < 2/e by property 1) This
proves the claim.

Now take a maximal 4 Cy o-separated subset B C A’. By the claim
and then Lemma 2.2, we have

2
B> =) By > 8%pTHBINo s A®,
€ len
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or in other words
)
(29) |E| > 6% p INA3E,(A) =,
o

since of course &£,(A) and E4¢,(A) are comparable. If we take the
geometric mean of (29) and (26) we get (18).

A slab of thickness ¢ is a ¢-neighborhood of a 2-plane. What we
actually use below is the following corollary of Lemma 2.1.

Lemma 2.3. Assume A is a 0-separated subset of G and for each f € A
the tube Ty satisfies (3) and (5).

Assume in addition that all tubes Ty, £ € A are contained in a slab
of thickness ¢ and in a p-neighborhood of a line. Let p = p,(A) and
define m = m(A) via

m(A) = maxm(A,e),

(30) ces

where m(A,e) &t e A: O(e, ") <0}
Then
(31) |B] 2 69 (mp) 2N £5(A) % '

PROOF. Fix a number o > §. Note that all the lines in A make an
angle less or equal than ¢ with a fixed 2-plane. We will use this fact
to get a lower bound on &,(A). Namely, let A* be the set of angles
¥ 1 e A. Clearly

Es(A)

m

Es(A*) 2

On the other hand, A* is contained in a ¢-neighborhood of a great
circle on the 2-sphere, which implies that

E,(A%) 2> ZE4(A"),

when o > ¢. Also £,(A*) 2 £,(A*) if 0 > 7 (this is true for any set on
the 2-sphere), so we may conclude that
Eo(A™) o E5(A7)
o ~Y ¢ 7




A MIXED NORM ESTIMATE FOR THE X-RAY TRANSFORM 579

for all o, and therefore

50("4*) > 55("4) )

o ~ mqo

The result now follows from Lemma 2.1.

Corollary. Under the assumptions of Lemma 2.3, suppose that for
each £ € A a subset Y, C Ty N E is given, with

il > (log ) AIT.

Let E = UyeaYy. Then estimate (31) holds also for E, i.e.

|E| > 6925 (mp)~Y2\2 &5(A) % .

PROOF. The idea is to apply Lemma 2.3 with E replaced by E and A

replaced by
A ( log %) - .

In order to do this we must make the following remarks:

e (5) does not quite hold anymore. However, it holds if we replace
the exponent 10 on the right hand side by 6. The reader can easily
check that this does not make any difference.

e The definition of the number p,(A) depended in principle on A
and F as well as \A. However, in fact it depends only on A4 by the
corollary to Lemma 1.1.

Accordingly we can apply Lemma 2.3 as indicated, obtaining

)_855(,4) % .

1

18] > 56 (mp) /23?10 5

The factor (log(1/6))~8 may of course be incorporated into the §°2¢

factor, so we are done.

REMARK. The considerations in Section 2 generalize immediately to
higher dimensions. In particular, Lemma 2.1 is true in R" with the same
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proof provided we define £,(A) = ¢" ! times the maximum possible
cardinality for a o-separated subset of A, define p using 100 X w X
1008 x -+ x 1006 rectangles and replace the factor d/c by (6/0)" 2.

3. Main argument.

The argument in this section will be based on considering families
of tubes which intersect a plate, rather than a tube as in the previ-
ous section. Lemmas 3.1 and 3.2 below record some geometrical facts
relevant in this situation.

Lemma 3.1. Suppose that ¢ € (0,7/2), 0 € (§,7/2), w < o and R
is a 100 x w x 1009 rectangle. Let 11 be the 2-plane of R, let {0} be
a mazximal (pw + 6)/o-separated subset of (¢/2,¢), and for each k let
HkjE be the two 2-planes through the axis of R which make an angle 0y

with 11, and H:’C(MJJF&) their C (¢ w + &)-neighborhoods. Then:

i) Let T, be a tube which intersects R and such that £ makes an
angle less or equal than o with the axis of R and the 2-plane spanned
by £ and the axis direction of R makes an angle between (¢ — 6)/2 and

¢ with the 2-plane 11. Then Ty is contained in some slab Hki’c((pw—'_d).

ii) A point at distance greater or equal than p from 11 is contained
in <max{¢po/p,1} slabs Hki’c(¢w+6).

PROOF. i) First let II; and II; be 2-planes passing through the axis
of R and making angle less or equal than  with each other. Let 7,
be the o-neighborhood of the axis of R. Then every point of 7, N Ils
will be within B¢ of I1;. Accordingly (take 8 = (¢pw + ) /o) it suffices
to show that Ty is contained in a C (¢ w + §)-neighborhood of some
plane passing through the axis of R and making an angle between ¢ /2
and ¢ with II. On the other hand, let II’ be the plane spanned by /¢
and the axis direction of R. Let II” be the plane parallel to II" which
passes through the axis of R. The distance between IT" and ITI” is then
< ¢w+ 9 and therefore T} is contained in the C' (¢ w + §)-neighborhood
of I1".

ii) Choose coordinates so that II is the xy plane and the axis of

R is the y axis. Assume a = (z,y,2) is in n HZ’C(MSM)’S, say. Then

(assuming ¢ < 7w/4; otherwise some minor changes in the argument are
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required) we have
2| = (sinb) [z + O (pw +0)
for each k and therefore, arranging the #;’s in increasing order,

pw+0

(n—1) ] < (On = 01) [2] S (pw +9),

so || So/(n—1). Then

o
A 2 g,
which implies
o 5 27

~n-—1

since obviously
n—1< idd .
~ow+0

This is equivalent to the statement.

Lemma 3.2. Suppose that o € (§,7/2), ¢ € (0,7/2) and R is a
100 x w x 1009 rectangle. Let £ be a line and assume that £ makes an
angle greater or equal than o — § with the axis direction of R and that
the 2-plane spanned by ¢ and the axis direction of R makes an angle
greater or equal than ¢ — d with the 2-plane of R. Then

) w 03
|TgﬂR|§m1n{52;,¢a+6}.

Proor. Choose coordinates so the axis direction of R is the y direction,
the 2-plane of R is parallel to the xzy plane and the origin belongs to
T,NR. If p=(x,y,z) is a point of T, then the assumptions mean that

o] + lyl + |2l S 07" (o] + 12]) + 0,

(32) :
2] + |2l S ¢ |2l + 6

and therefore

(33) 2| + [yl + |2] S (po) el + 0704
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If p e T, N R then (32) and (33) imply
2] + Jy] + |2] S min {0~ (w +9), (po) 10},

or in other words T, N R is a subset of T, with diameter

gmin{w g }

o do
The lemma follows.

The next lemma estimates the measure of the union of a “large”
family of tubes intersecting a rectangle.

Lemma 3.3. Suppose o > 1006, ¢ € (§,7/2), w < o, R is a 100 X
w x 1006 rectangle and C is a family of lines. Assume that if £ € C
then Ty intersects R, ¢ makes an angle less or equal than o with the
axis direction of R, and the 2-plane spanned by £ and the axis direction
of R makes an angle in ((¢p — 0)/2,¢) with the 2-plane of R. Assume
furthermore that if £ € C then T, satisfies (3), (5). Let p = p,(C)
and define m = m(C) via (30). Assume that for each £ € C a subset
Y, CTyNE s given, with

1\ -3
|Ye| > <logg) ATy .
Let E = U,Y,. Then E is contained in a slab of width C (¢ o + ) and

0
wo—+06

(34) ] > 69 (mp) /> A2 £5(C)

PrOOF. It follows by Lemma 1.0 that E is contained in a slab of
width C' (¢ o +0) — namely, the C (¢ o +0)-neighborhood of the 2-plane
of R. We now prove (34). We first dispense with a couple of minor
technicalities. First of all, we can assume that all the lines in C actually
make an angle between 60 and o with the axis direction of R, since
we can always achieve this by replacing o by 67¢o for a suitable 5 > 0
and replacing C by a subset C" with &5(C') 2 &5(C). Second, we can
assume ¢o > 673§, To see this, suppose that ¢ o < §73¢ 4. Then all
the tubes in C are contained in a C §'~3¢-neighborhood of a 2-plane.
Accordingly (34) follows immediately from the corollary to Lemma 2.3.
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Now we consider the main case where ¢po > 673¢ 6. Let Z, be the
points in Y, which are at distance greater or equal than 5%¢ ¢ o from
the 2-plane of R and E = UpZ,. Since ¢po > §3¢4, it follows from
(33) that the set of points of Ty which are within 62¢ ¢ o of the 2-plane
of R is contained in a C'0%-disc. Thus the complement of Z, in Y, is
contained in a C' §°-disc. So property (5) implies

2> A(los3) 1Tl

Now consider a subdivision into 2-plane neighborhoods Hg(w¢+5) as in
Lemma 3.1, relative to the rectangle R, and with the given value of o.
Let Cy be the tubes which are contained in a given Hg(¢w+6). By the

corollary to Lemma 2.3,

= w . B )
B 0] 2 6% np) 2N Es(Cn) [

Notice that no point of F is in more than C 8¢ sets of the form E N
ch(w¢+5) by

Lemma 3.1.ii). So if we sum over k we get
|E| > |E]

> §¢ Z ‘E N Hg(“’?s‘i“s)‘
k

)
wo+0

> 69 (mp)TH2 A E5(C)
k

_ [ 6
> 5Ce (mp) 1/2,\255(6) wh Lo .

In order to apply Lemma 3.3 we need to find sufficiently large
families of tubes which intersect a suitable rectangle. This is done in
the next lemma, which is analogous to Lemma 2.2 in Section 2. The
quantities pa, p’y , were defined in (19), (20).

Lemma 3.4. Assume that A C G is 6-separated and that the tubes
Ty satisfy (3) and (5), and furthermore that A is good in the sense of
Lemma 1.4. Fix 5 and suppose that B is a subset of A with

52 (lg5) 14
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and that for each ¢ € B, a subset
Y, CTynEn{z: pa(x) <2N}n{z: 1 () >eN}

1$ given, with

il > (log 1)~ AITi].

Let 0 = 06U~V and let m = m(A). Then for some line £ € B there
are a number ¢ € (§,7/2), a 2-plane 11 and a set of lines D C BN
D(¢,Cy0~%0) such that

U Y, C HC(6_25¢0+6)
meD

and

(35) ‘ U Ym‘25C55Nm_1/2)\7/25\/3s/¢0+5.

meD

Proor. Let C be associated to B as in the definition of “good” preced-
ing Lemma 1.4. We will show that the conclusion holds for any ¢ € C.
So fix a line 4y € C.

By (14) and part ii) of the corollary to Lemma 1.1, T, must be
contained in a plate P relative to B of width w < max {1004, 6**c} and
B-tube density dg(P) > §"p, where p = p,(A).

Claim. For some ¢ > 6, there is a set Dy C A with
12¢ w /2 3/2 -1 o
|Do| 2 0 N(pg> A max{5 (¢0+5),—},
w
such that if £ € Dy then Ty intersects P, £ makes an angle less or equal

than o with the axis of P, and the 2-plane spanned by ¢ and the axis
direction of P makes an angle less or equal than ¢ with the 2-plane of

p.

To prove the claim, let ¥ be the set of lines £ € B such that T, C P
and Z = U{Y, : £ € ¥}. Then, since |X| > §© pw/J, we have

(36) |Z| 2 6% M 6w,
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by Lemma 1.2. We will now show that also
(37) 1Z] 2 0% X% p.

Namely, let X* be the set of directions of lines in X. It is clear that the
maximum possible cardinality for a d-separated subset of ¥* is < w/J.
Accordingly, by definition of dg(P) there must be a direction e such
that 6(£*,e) < & for > 6"p lines £ € 3. Denote this set of > §7p lines
by X’. It is clear that no point can belong to more than a bounded
number of the (essentially parallel) tubes Ty, £ € ¥'. Accordingly

€ 1y =3
|Z|z€§m|z56p(1og5) 262

and (37) follows.
Taking the geometric mean of (36) and (37) we conclude that

12 2 8% | |5 X2 6.

Next, each point z € Z belongs to Y, for some line m such that 7T;,, C P.
By definition of Y,,, there are 2 N lines £ € A such that T contains x
and ¢ makes an angle between 0°c and o with the line m. We denote
this set of lines £ by A(z). Since the width of P is less or equal than
max {62¢0,100 6} it follows that all lines £ € Uzcz.A(2) make an angle
between 00 /2 — C'6 and 20 + C'§ with the axis of P. For each £ €
UzezA(z), the 2-plane spanned by £ and the axis direction of P makes a
certain angle ¢, depending on ¢ with the 2-plane of P. We can now use
the pigeonhole principle to obtain a common value of ¢,. Namely, by
the pigeonhole principle there are a number ¢ € (0, 7/2) and a subset
F C Z with |F| > 6°|Z|, so that if x € F then there is a subset
A(z) C A(x) with cardinality at least N§°, which consists of lines ¢
such that ¢y € ((¢ —9)/2,¢).

To summarize: there is a subset F' C P with measure greater or

equal than
5% [PW y\3/2 52
6 Y

so that if z € F' then there is a set (which we denoted A(x)) of N&°
lines £ € A such that T) contains x and ¢ makes an angle in (6°0/2 —
C 4,20+ C0) with the axis of P and the 2-plane spanned by £ and the
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axis direction of P makes an angle in ((¢ —9)/2, ¢) with the 2-plane of
P. We define Dy = UzepA(x). By Lemma 3.2, we have

)
|TgﬂP|§(5_2€min{ , 22},
po+9 o
for any £ € Dy. From this we conclude in a standard way (see the argu-
ment at the beginning of the proof of Lemima 2.2 that the cardinality
of Dy must be

1/2 o
> §l2e w 3/2 -1 bl
>0 N(p(S) A max{é (¢U+6),w},
proving the claim.

It follows by (15) in the definition of good (applied with §* = §—¢o,
r as large as possible subject to 0" > ¢, and j as large as possible
subject to 67¢ > w) that there is a plate P’ containing Ty, with width
w’ < §~w which intersects at least

6135N(p %)1/2 232 max {5—1 (po +0), %}

tubes Ty with £ € B such that £ makes an angle less or equal than = ¢¢
with the axis of P’ and the 2-plane spanned by £ and the axis direction
of P’ makes an angle less or equal than 6~ ¢ with the 2-plane of P’.
We can pigeonhole to obtain a number 7 < §~¢¢ and a choice of

54 N (p )" X2 max {07 (g +8), 2.

of these tubes T, for which the 2-plane spanned by ¢ and the axis
direction of P’ makes an angle in ((7 —0)/2,7) with the 2-plane of P,
and we let D be the lines £ corresponding to the latter set of tubes T}.
It is easy to see that D C D(¢p, C4d~%0): this follows since i) each tube
in D intersects the plate P’ at angle less or equal than 0~ ¢o to its axis
and therefore (since w’ < §=%0) also at angle < 070 to the direction
of £y and ii) since w’ < 0~ °0, every point of P’ is within C'6~¢ o of
£y. 1t remains to observe that U,,ccYm C [IC07*¢0+9) where IT is the
2-plane of P’ and to prove (35). For this we apply Lemma 3.3, with R
there equal to P’ and o there replaced by 6 o and ¢ there equal to 7.
We conclude in the first place that

U Ym C HC(T(S_EJ-HS) C HC(6_5¢5_50+5) )
meD
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Note also that ps (D) < 6 %p,(D) < §~“p by the corollary to
Lemma 1.1 and then (10). Hence by (34),

‘ U Ym‘ > 6% (pm) /2 \?2 (N(p %) 1/2)\3/2 max {5_1(¢ o+0), %}52>
meC

)
/T+
pm)~1/2)\2 <N<p %) 1/2)\3/2 max {5_1(¢ o+96), %}52)

J

(=)

g

> 5C€

~

g
-
+
S

= 60 Nm~L/2)\7/2 (%) i max {5_1(¢U +6), %}62

J

g
<
+
S

(38) > 6O Nm~Y2N2§5\Jo\/po+ 6.

Inequality (38) may be seen as follows: if w ¢ > ¢ then

(w)1/2max{5_1(¢0+5),%}52 d

5 weo+9
w 1/2 )
> = -1 2 2
N(é) o+ )8 [
> 5o /oo +7.
On the other hand if w¢ < ¢ then
w 1/2 _ o )
(5) " max{s7M @ +0), 7 }e? wh o
w 1/2 o
> (2 2 -1 —
~<5) 5 \/5 (po+0) -

> 0o/ po+6.

This proves (38), hence (35).
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Now we need a simple lemma. Here we let

fi(e) = sup sup — f

L:4r=e a€l |T£(CL)| Ti(a)
be the Kakeya maximal function as defined in [1].

Lemma 3.5. Suppose that § < o < 100 and that {Sj}jﬂil are slabs with
respective thicknesses less or equal than C (¢J o+9). Let f = Zj Xg. -
J

Fiz ey € S?. Then

azj(qﬁja-l—é)l 1

{e € D(eo,0): f5(e) 2 A}S 3 0g 5 -

Proor. If Z;.Vil(qﬁj o + ) > o there is nothing to prove. It follows
that we can assume M < 1/6.

First consider the case where there is just one slab S, with thickness
S ¢o + 6. Then the set {e € D(eg,0) : f§ > A} is contained in the
intersection of D(eg, o) with a (C (¢ o + 6)/A)-neighborhood of a great
circle, so its measure is < o (¢po + d)/A. Since M < 1/, the general
case now follows from the Stein — N. J. Weiss result on summing weak
type 1 estimates.

In the next corollary we use the notation £* = direction of the line
¢, and if C is a set of lines then C* = {£*},cc.

Corollary. Let {Ey}2, be a family of subsets of the unit ball in R3,
such that Ej is contained in a C (¢ o + 0)-slab. Let C be a family of

lines and assume that for each £ € C a subset K(£) C {1,...,M} is
given, and that the following holds

(39) If dist (63,£2") > Co,  then K(£1) NK(Lly) = @ .

Let E() = Ugexc(e)Er, and assume that for every £ € C, we have [Ty N
E()| > 6° \|Ty|. Then

(40) o> (ppo+0) > 6 AE(C).
k
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PROOF. Because of property (39) it suffices to show (40) assuming that
C* is contained in a single o-disc, and in that case it is immediate from
Lemma 3.5 since (D, Xg, )* 2 6% on a d-neighborhood of C*.

Proor orF LEMMA 0. We start by fixing a maximal d-separated subset
¥* of , and for each e € ¥* we choose (exactly) m d-separated lines
¢ with ¢£* = e and so that the tubes T} satisfy (3) and (5). We then
choose a “good” subset by Lemma 1.4. We denote this last set of lines
by A. Note that

(41) Es(A) > 6°m |
and also
(42) £5(C*) > 6% |0,

if C is any subset of A with |C| > §°|A|. Furthermore, the quantity
m(A) defined by (30) is < m.

We choose N and o = §0~1¢ as in the proof of Lemma 2.1 so that
the set

def j
Y, ET,nEn{zr: pa(z) <2N}N{x: 1y 4(z) > eN}

will have measure greater or equal than

(log %) _2)\ |T%| ,

for a set of £ € A with cardinality greater or equal

(1) "1

and we let B be this set of £’s. We also let {{;} be a maximal §~¢o-
separated subset of B and let 7; be the tube of length Cs and radius
Cg 0~ ¢ 0 concentric with T, v, Here Cg is a large constant which is chosen
as follows: let C4 be as in Lemma 3.4 and make Cy large enough that
if d(£,4;) < (Cy+2)6=°0 and T}, intersects T, at angle less or equal
than 07 ¢ then Tj, is contained in 7;. It is easy to see that this is
legitimate.

We will define subsets Fj, C E by a recursive construction. The
logic here is similar to [1, p. 154]. The Fj will have the following
properties:
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1) Each Fy, is assigned to a unique 7, j = j(k).

2) The Fj, assigned to a given 7; are disjoint and are contained in

Jy o

EEBHD(EJ' ,(C4+2)5750')

(In particular, this implies they are contained in 7;, by choice of Cj).

3) Each F}, is contained in a C (§72¢ ¢y, o + §)-slab for a certain
¢r < /2, and satisfies

|Fr| > 69 Nm~ Y2 A25 /o \/oro+ 6.

4) oY (pro +0) > 69 N[0

To start the recursion, let Fy = @ and assign it to some arbitrary
7j. If F} has been defined for ¢ < k — 1, then for each tube in B, we let

Y, = Y)\U{F;: i <k, F; assigned to T;
(43) for some j with £ € D(¢;,(Cs+2)0"°0)}.

We throw out all £ € B such that |Y,| < |Y,’|/2. If half the lines in B
are thrown out, we stop the induction. Otherwise, we let By be the
remaining lines and note that the family By and the sets Y, satisfy the
hypotheses of Lemma 3.4, since

| 1y -3

Yol 2 5 1V0| = (log5) AT,
It follows that for some ¢ € By there is a set Fy, C U{Y,, : m €
B N D({,C46~%0)} and with property 3). We choose j so that £ €
D(¢;,20~°0) and assign Fj, to this 7;. Then clearly Fj, is contained
in U{Y,, : m € D(¢;,(Cs +2)6 %0)}. It follows using (43) that Fj
is disjoint from Fj; if ¢ < k and F; is also assigned to 7;. This gives
property 2).

It remains only to observe that when the induction stops property
4) will hold. This follows from the corollary to Lemma 3.5. Namely, if
the induction stops at stage k then at stage k we have a subset C C B
of “thrown out” lines, with

1 1 1\ -2
> Bl > = -
€12 51812 3 (1os5) IAl.
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and therefore also £5(C*) 2 §%¢|Q| by (42). If £ € C, then we let

E(l) = U{F; : i < k, F; assigned to 7;
for some j with £ € D(¢;,(Cy +2)6 0)}.

Since ¢ is thrown out we have

1 1\ 2
(44) |TgﬂE(£)|2§(1og5> ATy

We say that the F; in (44) are used in forming E(¢). If C7 is a suitable
constant then each set Fj is contained in a C7(d~2¢¢;0 +6)-slab, and if ¢
and m are lines with dist (£*,m*) > C70~¢ o, then no £; can be within
(Cy+2) 6% 0 of both £ and m, so no F; is used in forming both E(¥)
and E(m). This gives the property (39) (with o replaced by C'§~%0).
Accordingly (40) with o replaced by C' ¢ o implies

6—602(6—26 bi 0+ 5) Z 5% )\ 5% |Q|7
i<k

which gives 4).

Next, using properties 3) and 4) we have

D IE| 2 SN mT PN 5y (o (gro +6) 12
k k

> SN m Y225 ( Y (g +0)) i
k

> 66‘st—1/2 /\7/25(/\ |Q|)1/2
_ 6C€Nm—1/2 )\45 |Q|1/2 )

Let E; = U{F} : F}, assigned to 7;}. Then
DBl = ) |l
j k
by the disjointness property 2). On the other hand, we have

Ej C U Y?
EED(ZJ‘ ,(C4+2)(5_EU)
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and since the {{;} are §~®o-separated this implies (see the proof of the
claim at the end of the proof of Lemma 2.1) that no point is in more
than C. E;’s. We conclude that

(45) |E| 2 |E;| 2 69°Nm™ 2 At |2
J

As in the proof of Lemma 2.1 (see (26)), we also have

]2 V)Y g o A
LeB
hence | |
A2
E| > §2e TP AR
Bl > 6%

by (41). If we combine this with (45) we get
B Am|Q[\1/2
> 5Ce 1/2 y4 1/2y1/2
Bl 2 997 (Vm =2 g0 (S
— 50 \3/2 1/ Q34 6172

and the proof of Lemma 0 is complete.

4. Proofs of the theorems.

PROOF OF THEOREM 2. This is essentially the same as [7, Section 3.
The argument may appear simpler here however due to our attempt at
abstraction in [7].

The idea is to induct downward on 0. There is a technical point
which must be dealt with first. Namely, in the preceding sections it was
convenient to assume that F was contained in the unit ball but this is
now inconvenient, since we will want to use a rescaling argument. We
take care of this issue in the next lemma.

Lemma 4.1. Assume that Theorem 2 is true for a certain value of §.
Then the following variant is also true for the same value of . Here
the constants C and C. are the same as in (4) and (B is a numerical
constant.
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Let Q be a subset of S?\ £ 1, let E be a subset of R®, and A > 0.
Assume that for each e € Q) there are m 6-separated lines {£;}7",, and
points {a;}7L, with a; € £;, such that |Ty; (a;) N E| > X Ty, (az)|. Then

1\ -1
B> 0! (log 5) 5O \B/2 /4 Q34 51/2

PROOF. Let k and « be small constants chosen in that order. Subdivide
R3 in cubes, R = Ujezs@; where Q; is the cube centered at xj with
sidelength k. Denote E; = (Q; N E) — kj, i.e. Ej is the part of E
contained in (), translated to the origin. Then E; is contained in the
unit ball, and since any tube Ty(a) intersects only a bounded number
of cubes @), one has the following: let m;(e) be the maximum possible
cardinality for a d-separated set of lines £ in the e direction such that
Te N Ej| > aX|Ty|. Then 3 . mj(e) > m for all e € €.

Hence also
Z/ mj(e)de > m|Q].
j Q

Note that m;(e) < 072 for any j and e. Accordingly there are numbers
{n;} such that

1\ -1
/ m;(e) de 2, (log —) / m;j(e) de
{e€Qipn; <mj(e)<2u;} 0/ Ja

and therefore

m ||
j 10g5

where ; = {e € Q: p; < mj(e) <2p;}. Because of the hypothesis
that Theorem 2 is true with the given 9, we then get

(46) B =" |By| 2 Co 69 A2 6123 i/t 0,2
J J

where the implicit constant is purely numerical. On the other hand,
clearly p; < m and [Q;]| <[] for any j. Accordingly

S s S Bl mI9 e
e J = m3/4|Q1/4 ™~ 1 1
J j m3/4|Q[1/4 logg 10g5
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If we substitute this into (46) we get the result.

PROOF OF THEOREM 2. As has already been mentioned the proof is
by induction on d. By Lemma 2 we can choose C' and A, so that if (3)
and (5) hold then

|E| > AT 602 \5/2 1/ |Q)3/4 5172

Next we choose §p small enough that if 6 < dy then
1\ —26
(47) 2772 (log g> §0e=e) 5 §5C¢

Theorem 2 is trivial when § > 0y provided C¢ is large enough, so we
can define a constant C, by the following requirements:

e Theorem 2 is true with the given constant C. provided § > 4.
o C. >2A,.

Fix § < dp and assume that Theorem 2 has been proved with this
value of C. for parameters 6, § > 6!~¢. Then under the assumptions of
Theorem 24, one of the following must happen:

1) There is a subset Q C Q with measure greater or equal than
|€2]/2, such that if e € € then there are m/2 d-separated lines £ with
direction e such that (3) and (5) hold.

2) There is a subset Q C Q with measure greater or equal than
|€2]/2, such that if e € € then there are m/2 d-separated lines ¢ with
direction e such that (3) holds and (5) fails.

~ In case 1), we simply apply Lemma 0 with £ and m replaced by
2 and m/2 (more precisely, we use the second requirement on C¢),
obtaining the estimate

|E|> A-1§C¢ \5/2 (%) 1/4 (%)3/451/2 > 1hCe AB/2 g 1/4 |Q|3/4 512
which is the necessary inequality (4).

In case 2), we let E be E dilated by a factor 6=°. Fix e € Q and
one of the m/2 tubes in (2). Because of the hypothesis that (5) fails,
there is a subtube of length 6° which intersects E in measure greater
or equal than

%A(log %>_10|Tg|.
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The dilation of this tube is a tube T, of length 1 and radius 6 def 51—
which intersects E in measure greater or equal than

% A (log é) _1055 IT|.

Thus (after dilation) for each e € Q we have m/2 6'~-separated £’s
generating such 7'’s. By the inductive hypothesis and Lemma 4.1 we
have

_ “1_c,
57 1| = [B) = 50 (1og 5 ) 3¢

(o (o) () ()
2 ) 2 2
or equivalently

B| > 2_7/2ﬁ05_1<10g %)_26606(1—6) A3/2 g 1/4 |Q|3/4 51/2
> Ce_l 606 )\5/2 m1/4 |Q|3/4 51/27

where the last line follows from (47). This finishes the proof of Theorem
2.

ProoF oF THEOREM 1. Fix § and define
Xsf()=To|~" | f.
Ty

The first step is to prove

(48) 1Xs flloony S0 1fllp »

when f is supported in the unit disc, with p, ¢, as in Theorem 1.

A well-known argument (in this case it can be carried out by
interpolation with L> and then with the result of [3]) shows that a
bound like (48) which is insensitive to 6 ¢ factors need only be proved
for characteristic functions. So fix a set E, let f = x,, and define
N = || Xsf|lLorr. We claim that for some M there is a set  C S* with

a1z (los5) " (37)"
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such that e € 2 implies
|XsF (e, )ler = M.

To see this, note that Xsf is roughly constant on discs of radius ¢, in
the sense (say) that if X5f(£y) = p, then Xs5f(£) = p on a subset of
D(£y,d) with measure > §*. Hence also

[ X, de > 8 1 Xsf (e, ],
D(eo,é)

for any ey € S?, so that

sup [ Xsf (e, )[4, < 572N

So if we let
J={e€S?: CTIN? < || Xsf(e,)||}, <C62N},

then
[ Xss(e ) dez 0.
J

Split the integral over J into the regions €; where ||X5f(e,-)||qL; €
(27,279%1) and note that there are < log (1/§) relevant values of j. Hence
the claim holds for some M = 27/ and Q = ;.

Next, by a similar argument there are m and X\ with m§2\" >
5 M7 and Q C Q with |Q] > 6% |Q| such that if e € Q then Xsf (e, z) > A
for a set of z of measure at least m 62. Equivalently, if e € Q then there
are m o0-separated lines ¢ with direction e and with |E N Ty| > X |Ty|.
We conclude by Theorem 2 that

|E| Z 505}\5/2 (m 52)1/4 |Q|3/4
— 506 (m (52 /\7’)1/4 |Q|3/4
N)Sq/4

Z 5CeMr/4<_
M

— 6C€N5/2 :

so we have proved (48). To finish the proof of Theorem 1 we have to
trade the ¢ factor for € derivatives. This is a standard argument. We
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choose a C§° function v with suppy C D(0,1/1000), and a Schwarz
function p such that p has compact support not containing the origin,
such that ot .
PEL= v h €O
320

where 1;(z) = 23¢(27x), pj(x) = 23 p(27z). It is easy to see that this
is possible. Here are details since we don’t have a reference at hand:
start with a C§° function ¢ supported in D(0,1/2000) with ¢(0) # 0.
By multiplying ¢ by a character we can insure that qAS does not vanish
identically on any sphere centered at 0. Let ¢o = ¢ % ¢ where ¢(z) =
¢(—x). Then bs = |$2. Let ¢p = Y ; $20T; where {T}} is an appropriate
finite set of rotations. By a compactness argument we can arrange that

@@ be nonzero on D(0,2) say. Next choose a partition of unity of the
oo

formo{xj}j:_oo where x;(€) = xo (277 €). Define p; via g; = x; /1;,
J 2 0.

Furthermore, let v be a C§° cutoff function equal to 1 on
D(0,1/100) and supported in D(0,1/10).

In proving Theorem 1 we can suppose that f is supported in
D(0,1/1000) and ||f||p, = 1. Then in the first place,

(49) > 2% lpj * fllp < Ce
i

if (say) n < €/2; this follows easily using the definition of the Sobolev
space and the support property of p. In the second place, using the
support properties we have

F=nxf+Y vix(r-(pj* 1),
j

on supp f, and therefore

IXf] < X(In*f|)+ZX(|¢j s (v-(pi* )))-

The first term is less or equal than C pointwise. For the remain-
ing terms, we use that X(|y; * g|)| < CXj,|g| pointwise if suppg C
D(0,1/10), where §; = 277. This is clear from the definitions and the
compact support of 1. Applying (48) with € in (48) taken to be small
compared with the current €, we obtain

X (g (v (o * D zgny S N Xs; (- pj =+ I

Lipr < 2" lv-pjfllp
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with n < €/2. Theorem 1 now follows by (49).

CONCLUDING REMARKS. 1) The following is an easy corollary of The-
orem 1 or 2:

Let E be a Borel subset of R® and assume that for each e € S2,
there is a Borel set L. C et with Hausdorff dimension at least 3 such
that for each x € L., some segment of the line through z in the e
direction is contained in E. Then the Hausdorff dimension of E is at
least 5/2 + 3/4.

Here et is the orthogonal complement of e in R3. We omit the

proof. It follows a standard pattern originating (to the author’s knowl-
edge) in [1].

2) We make a few remarks about the open question of whether
or not the exponent 5/2 in the Kakeya problem can be improved. For
example, let E be a compact set containing a unit line segment /. in
every direction e. Is its Minkowski dimension (i.e.

5

3 — lim sup M ,
0—0 log 0

E° = §-neighborhood of E) strictly greater than 5/2? Theorem 2 shows
that the enemy is the case where the lines “stick together” in the sense
that d(le,le) ~ |e — €| up to 6—° factors. The reason is that if this
condition fails in too dramatic a way, then the sets E° will contain
not just one but many J-tubes per direction and Theorem 2 will be
applicable with a large value of m. For example, one can reduce in this
way to the case where the following condition (x) is satisfied:

() For any € > 0 there is a sequence of § going to 0 such that the
set (e,e’) € % x S%:d(l.,Le) < & has measure greater or equal than
5¢ 62,

At the opposite extreme, if the inequality d(£., £.) ~ |e — €’| holds
in the strict sense that

(50) d(le, o) < Cle—¢,

for all e and €’ then it is easy to show using Rademacher’s theorem on
almost everywhere differentiability of Lipschitz functions (e.g. [4]) that
FE will have positive measure.
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We indicate the proof (in R") assuming that for each e, E contains
a segment of /., with length 1 which intersects the plane z,, = 0; only
minor modifications are required to treat the general case. First let
U C R" be open and let F' : U — R™ be any Lipschitz function.
We claim that if € > 0 then there are a subset Y C U with positive
measure, and a linear map 7' : R — R™ such that

|F(z) = Fy) =T(z —y)| <elz—yl,

for all z € Y, y € Y. Namely, let DF(a) be the derivative of F' at a
given by Rademacher’s theorem. By the Lusin and Egoroff theorems
there is a positive measure subset Y; such that DF(a) is continuous on
Yy as a function of a, and furthermore the difference quotients

|F'(z) — F(a) — DF(a)(z — a)|
|z — al

converge to 0 as * — a uniformly over a € Yy. Let § be small enough
and let a be a point of density of Yy. Let Y = Y, N D(a,d). Let
T = DF(a). Then for z,y € Y, the properties of Yy imply

|F(z) — F(y) = T(z — y)|

< |F(z) = F(y) — DF(y)(z — y)| + |[DF(y)(z —y) — T(z — y)|

<e |.T - y| )
as claimed.

Now parametrize (an appropriate subset of) projective space via

e = (£1), £ € R*~! and define a family of maps F; from a suitable
subset of R*~! to R*~1 by letting (F3(£),t) be the intersection point
between £, and the plane x,, = t. Note that F}(§) = Fy(§) +t&. Fy is

Lipschitz, so we can choose Y and a linear map 7 so that Y has positive
measure and

[Fo(§) — Fo(n) =T —n)| <el§—nl, &neY,
where € 1s to be determined. We then have

|F:(§) — Fi(n) = (I +T) (=) < el —nl,

when £, n € Y, where [ is the identity map. Hence Fj is bilipschitz on Y
provided that € ||(¢ I +T)~ || < 1, which will be the case for all ¢ except
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a set of measure less or equal than C e (=1 We are free to choose €
small, so the result follows using the fact that a bilipshitz image of a set
of positive measure has positive measure and then Fubini’s theorem.
However, it appears difficult to replace the strict sense condition
(50) with a similar condition (e.g. (*)) which is weak enough to be
useful, even if one asks only for the weaker conclusion dim (F) > 5/2.

Acknowledgments. Wilhelm Schlag pointed out an inaccuracy in
a preliminary version of the paper, and Terry Tao pointed out some
obscurities in the exposition.
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