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Differential equations

driven by rough signals

Terry J. Lyons

1. Preliminaries.
1.1. Introduction.
1.1.1. Inhomogeneous differential equations.

Time inhomogeneous (or non-autonomous) systems of differential
equations are often treated rather formally as extensions of the homo-
geneous (or autonomous) case by adding an extra parameter to the
system; however this can be a travesty. Consider an equation of the
kind

(1.1) dy: = Zfi(yt) dzy

where the f? are vector fields, z; represents some (multi-dimensional)
forcing or controlling term and the trajectory y; represents some fil-
tered effect thereof. In this case the effect of such a reduction produces
an equation whose expression involves a derivative of the term z;. In
problems from control, or where noise is involved, or even in algebra
(developing a path from a Lie algebra into a group) this path will rarely
be smooth, so the resulting autonomous system will have a defining vec-
tor field which will frequently not be continuous; perhaps it will only
exist as a distribution. In this case the classical theory does not suggest
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the correct approach to identifying solutions; and even in highly oscilla-
tory but smooth situations suggests inefficient algorithms for numerical
approximation to classical solutions.

1.1.2. Objectives.

This paper aims to provide a systematic approach to the treatment
of differential equations of the type described by (1.1) where the driving
signal z; is a rough path. Such equations are very common and occur
particularly frequently in probability where the driving signal might be
a vector valued Brownian motion, semi-martingale or similar process.

However, our approach is deterministic, is totally independent of
probability and permits much rougher paths than the Brownian paths
usually discussed. The results here are strong enough to treat the main
probabilistic examples and significantly widen the class of stochastic
processes which can be used to drive stochastic differential equations.
(For a simple example see [10], [1]).

We hope our results will have an influence on infinite dimensional
analysis on path spaces, loop groups, etc. as well as in more applied
situations. Variable step size algorithms for the numerical integration
of stochastic differential equations [8] have been constructed as a con-
sequence of these results.

1.1.3. The Itd6 map.

Suppose every vector field f* in (1.1) is Lipschitz with respect to
some complete metric on a manifold M and that the driving signal x;
is continuous and piece-wise smooth; then classical solutions to (1.1)
exist for all time and are unique; by fixing yo, we may regard (1.1) as
defining a functional (which we will refer to as the It6 map) taking each
smooth path z; (in a certain vector space V') to a unique path based
at yo in a manifold M. By varying the starting point yo and taking the
induced flow, one may also regard (1.1) as defining a map taking the
path x; to a path in the group of homeomorphisms of M.

We would like to extend this It6 map to a far richer class of paths.
Our intention is to identify a family of metric topologies on smooth
paths for which the It6 map is uniformly continuous (and even differ-
entiable although we cannot show this here [17], [18], [19]). A point in
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the completion of the smooth paths in one of these metrics corresponds
to a path in V with proscribed low order integrals and having finite
p-variation for some p < co. As a first application we have the theorem
that the solution to a Stratonovich stochastic differential equation of
the classical type is a continuous function of the driving Wiener process
and Lévy area taken as a pair.

1.1.4. The fundamental problem: Lack of continuity.

Before we proceed to develop the technology required to prove the
main results it is useful to consider a simple example which highlights
the obstruction we must overcome.

There is in general no natural extension of the I1t6 map to all con-
tinuous paths x;. The following very simple example shows that the
[t6 map is rarely a continuous function in the uniform topology.

Example 1.1.1. Some of the simplest differential equations are those
whose solutions can be expressed as exact integrals of the driving term
x¢. The simplest nontrivial example is the second iterated integral

X2(0,1) :/ </ d:):ul) dxy,
t>u2>0 uz>u1 >0
= // dz,, dx,, .
t>u2>u1>0

In the one dimensional case, where x; is real valued, we see that X2(0,t)
= (wy — 10)?/2 and so the functional x. — X?%(0,-) clearly is contin-
wous in the uniform topology.

(1.2)

The multi-dimensional case is quite different. Let xy = (x}, ..., x})

be vector valued and interpret the second iterated integral as the d X d-
matriz defined by

(x0.0)7 = [[ dl,, da,
t>uzs>u1 >0

or better, as a 2-tensor

(1.3) // dz,, ®dz,, .
t>u2>u1>0
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Now decompose this integral into it’s symmetric and anti-symmetric
components S, AY. We see that the symmetric part has a form dif-
fering little from the one dimensional situation

i L i
(1.4) $' = = (i} — ab) (o] — ).,

in particular, it is continuous in the uniform topology. The anti-symme-
tric part, which only arises in dimension two and higher, has the form

| . : : .
(1.5) AY = — // dwy,, dxi, —dz], dr,,
2 t>u2>u1>0

and has a well known geometric interpretation. For any two distinct
coordinates i, 7, the projection (zt,xz]) of the path into R? is a directed

planar curve. The integral A" is the area between that curve (z°,z”)

and the chord from (%, 27) to (i, x)) where multiplicity and orientation
are taken into account in the calculation.

Using this obvious geometric remark, it is trivial to see that A(0,t)
1s not a continuous function of x4 in the uniform topology. Take

wt: 9

n (cos (n%t) sin(n2t) ) ’

then as n converges to infinity, the area integral converges locally uni-
formly to mt whereas the paths ' converge uniformly to the zero path.

However, closer examination of the example shows that x}' is con-
verging to zero in p-variation norm for p > 2, and a more complicated
example could be given showing that A is discontinuous even for the
2-variation norm. This and other considerations suggest that we should
restrict attention to the case where p < 2. It is shown in [14], [15] that
the It6 map extends uniquely as a continuous function to all paths of
finite p-variation norm with p < 2 providing the vector fields f* are
smooth enough. In this case one can indeed develop a theory very
similar to the classical one.

Nevertheless, there are important formal examples of equations of
our basic type (1.1) in which the driving signal fails to have finite 2-
variation and these have motivated several attempts to treat equations
driven by rougher signals. Easily the most important and successful up
to now has been the approach originating with It0; which treats equa-
tions driven by Brownian motion or more generally by semi-martingales
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(Brownian paths have finite p-variation norm for every p > 2 but do
not have finite 2-variation norm) [12]. Although It6’s approach only
constructs solutions as random variables it has lead to an enormous
range of applications and must be regarded as a major achievement of
20th century mathematics.

Although Ito’s approach is not path-wise, it makes it clear that
any deterministic approach to interpreting (1.1) that only treats paths
of finite p-variation norm with p < 2 is missing its target and failing to
explain the richest class of examples we have.

We have just seen that iterated integrals provide the obstruction
to the continuous extension of the It6 map. The remainder of the paper
is dedicated to showing that they are also lead to the solution of the
problem. We will show that the solution is a continuous function of
the path and its low order iterated integrals in an appropriate variation
norm. The rougher the path the more iterated integrals required and
the more smoothness required of the vector fields.

1.1.5. Summary of existing approaches.

The main approaches to the solution of differential equations seem
to have two key features:

e A notion of integral (Riemann, It6, Stratonovich or Skorohod)

e An understanding of change of variable (Fundamental Theorem
of Calculus, It6’s formulae, etc.)

These together allow one to use integral equations to define what
one means by a solution. At this point existence can sometimes be
shown via fixed point arguments, but in any case one usually wishes to
add a method for constructing solutions (power series, Picard iteration)
which will work under slightly stronger regularity conditions on the
vector fields f* and which usually gives the bonus of uniqueness of
solution under these improved regularity assumptions.

Finally one needs to complete the discussion with the observation
that characterisations of differential equations via integrals depend on a
choice of coordinates for the underlying space where y; takes its values.
So although the equation (1.1) gives the impression of being coordinate
independent, the definition of a solution may not be. The issue is a real
one; in probability theory the Stratonovich equation has co-ordinate
invariant solutions, while It0 equations do not.
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In this paper we will concentrate on developing the co-ordinate
invariant theory, the full theory is more mathematically challenging,
and although we hope to return to it later we do not have a complete
description at the current time.

1.1.6. History.

A number of authors have tried to develop deterministic theories
of integration appropriate for rough paths, attempting to make sense
of [YdX. L. C. Young [32] showed that such integrals make sense
providing both paths are continuous, X has finite p-variation and Y
has finite g-variation and 1/p + 1/¢ > 1. For some reason he did not
clinch the nonlinear question and show the existence of solutions of
differential equations driven by paths with p-variation less than 2 and
this was closed off in [14], [15]. Follmer [6], [7] has written a number
of interesting papers giving deterministic meaning to It6’s change of
variable formula. Follmer also made a verbal conjecture at an Ober-
wolfach meeting several years ago that knowing the Lévy area would
be sufficient to construct solutions to SDE’s. In some sense we prove
his conjecture below.

The case where x; is one dimensional or 2-dimensional and of the
form (%4, t) is special. In this case the stochastic functional is continuous
in the uniform topology - this was established by [26], [27], [28], [29].

1.1.7. Advantages to a probabilist.

A probabilist, interested in stochastic differential equations, might
be tempted to believe that this article has little interest for him (except
as a theoretical curiosity) because he can do everything that he wanted
to do using It6 calculus. So we briefly mention a few situations where
we believe that the results we develop here have consequences.

The first is conceptual, until now the probabilist’s notion of a solu-
tion to an SDE has been as a function defined on path space and lying
in some measure class or infinite dimensional Sobolev space. As such,
the solution is only defined off an unspecified set of paths of capacity
or measure zero. It is never defined at a given path. Given the results
below, the solutions to all differential equations can be computed simul-
taneously for a path with an area satisfying certain Holder conditions.
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The set of Brownian paths with their Lévy area satisfying this condition
has full measure. Therefore and with probability one, one may simulta-
neously solve all differential equations! over a given driving noise (the
content of this remark is in the fact that there are uncountably many
different differential equations).

Related consequences include:

1) Stochastic flows can be constructed simply. Changing the start-
ing point in the differential equation is a special case of changing the
differential equation. With a little more work one gets continuity, and
with increasing smoothness of the vector fields, increasing smoothness
of the flow.

2) It can be interesting to solve differential equations subject to
boundary conditions other than initial conditions and the construction
of a flow often allows one to find an initial value so that the result-
ing solution satisfies the boundary condition. However, in the classical
framework, it is tricky to be precise about the sense in which this “solu-
tion” really is a solution. It does not satisfy the predictability condition
necessary for the definition of an It6 integral to make sense; the stan-
dard approach involving changing the measure is quite deep. We have
no such problems of interpretation because we use no probability, (al-
though there will always be a problem of existence of solutions to non-
linear boundary problems - and this can be easy or difficult depending
on the precise problem).

3) Stroock and Varadhan established a support theorem for solu-
tions to stochastic differential equations. In one strong and non-trivial
form it says that if we fix a smooth path in V' and look at the solution to
the SDE (1.1) when the driving noise is Brownian motion conditioned
to be uniformly close to the smooth path; then the random solution
converges in distribution to the deterministic one obtained by driving
the equation with the fixed path. It is clear that all such theorems
will follow if one establishes the continuity of (1.1) and that Brownian
motion conditioned to be uniformly close to the smooth path converges
in probability in the metric topology involving the area. Therefore our
results below reduce the problem to one about Brownian motion alone.

4) Not all interesting stochastic dynamical systems are semi-mar-
tingales. It seems completely natural that there are nonlinear systems
forced by random processes that may be Markov or Gaussian but are

1 The vector fields should be Lipschitz of order greater than two.
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certainly not inside the normal framework. One thinks immediately
of diffusion processes associated with elliptic operators in divergence
form where the coefficients are not differentiable, or of diffusions on
fractals. Both of these frequently have area processes and satisfy our
hypotheses although they are not semi-martingales. Since this article
was written work of Bass, Hambly and Lyons has established that the
class of reversible processes to which this theory applies is really much
wider than the class for which semi-martingale methods can be used.
The iterated Brownian motion (IBM) studied by Burdzy and Adler is
another example [1].

5) Numerical algorithms for solving differential equations which
adapt their step sizes can be vastly more efficient than fixed step algo-
rithms in certain settings. However, the decisions about step size are
most efficiently made on the basis of previous rough approximations to
the solution, and identification of the sensitive areas where accurate so-
lution is required (e.g. before the trajectory approaches a critical point
to ensure it passes on the correct side). The choice of step is typically
based on knowledge of the future evolution of the solution and is there-
fore not predictable and constitute illicit information. For example if
non-predictable infomation is used to determine the step size in classical
approaches to solving SDEs numerically then in general these schemes
will converge nicely to the wrong answer. Using the ideas set out below,
and ensuring approximations to the path and area of the driving noise
are correct over every interval it is possible to have a genuine variable
step algorithm that converges to the correct answer for any choice of
the intervals of approximation as the mesh size of the dissection goes
to zero [8].

6) Stochastic filtering is concerned with the estimation of the con-
ditional law of a Markov process, given observations of some function
of it. The normal formulation (due to Zakai) looks at the case where
the process is of diffusion type and splits into a first part (known as
the signal) and a second part, known as the observation process with
values in a vector space, and whose martingale part has stationary in-
crements independent of the signal. In this case, Zakai showed that it
was possible to completely describe the conditional density of the signal
given knowledge of the observation process. In fact, the density evolves
according to an infinite dimensional SDE of parabolic type. It is a
commutative equation, and so the relationship between the observation
process and the conditional density is a relatively stable one. On the
other hand, it is really rather rare that real filtering problems present
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themselves with the noise in the observation process being independent
of the signal. And the transformation involved in making it so involves
the solution of a generic SDE which will not commute. It follows that
to do robust and stable filtering it is important to measure the “area”
process as well as the values of the observation process.

7) Finally we hope that by solving the one dimensional differential
equation without using predictability, our ideas might produce a few
pointers to the correct way to treat PDE’s driven by spatial noise. Of
course in that situation predictability assumptions are quite inappro-
priate - at least in the initial assumptions and final conclusions. But at
the moment this remains pure speculation.

1.2. Background.
1.2.1. Preliminaries: Groups and differential equations.
We set out some basic material and notation.

The logarithm of a flow. Throughout this paper we will make
implicit use of the standard identification of autonomous differential
equations, flows, and vector fields. If f is a Lipschitz vector field for
some choice of complete Riemannian metric on a manifold then the
autonomous differential equation

(16) dyt = f(yt) dt? Yo =a,

has a unique solution defined for all time. By varying the initial con-
dition, one may associate with it a flow m; defined by m(yo) = v.
The assumptions ensure the flow is defined for all positive and negative
times and is a homeomorphism. We may use the notation 7, = exp (tf)
to emphasise that vector fields should be regarded, at least formally, as
elements of the Lie algebra of the group of homeo(diffeo)morphisms of
the underlying manifold.

If a homeomorphism 7 can be realized by flowing along a fixed
vector field ¢ so that m = exp ¢, we say ¢ = logw. In general, it is
not possible for one to construct a logarithmic vector field even for the
smoothest diffeomorphisms homotopic to the identity; equally the log-
arithm need not be unique when it exists. If one has a time varying
differential equation such as (1.6), and one looks at the flow obtained
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by solving it over a short time then it is useful to be able to deter-
mine if the resulting flow has a logarithm and express that logarithmic
vector field directly in terms of x4 and the f, [3]. (e.g. in numerical
analysis, to solve the time varying and rough equation over a short in-
terval it would be sufficient to solve the smooth and time independent
differential equation determined by the logarithmic vector field).

Determining this logarithm as a vector is in fact an analytic ex-
tension of the Dynhin-Campbell-Baker-Hausdorff formula (which in its
algebraic form considers the effect of lowing for unit time along one left
invariant vector field on a group and then a second, and tries to find
an expression for the logarithm of the result). In this paper, we will be
able to construct the logarithm of a flow driven by a rough signal for a
short period under the hypotheses that the vector fields are invariant
vector fields on a finite dimensional group.

Matrix groups. Recall some very basic facts about Lie groups. Sup-
pose that a topological group G has a connected finite dimensional
manifold structure, then it is very well known that it is a Lie group
and can always be represented as a real analytic group of matrices, or a
quotient thereof by a discrete group. In this representation, the tangent
space to a point in the group is a linear space of matrices.

The tangent space g at the identity can be made into a Lie algebra
in two equivalent ways.

If a is an element of the tangent space at the identity of a matrix
group, then ¢ — expta (where exp is the power series in the the
matrix) defines a smooth path in the group (and hence a direction in
the tangent space over the identity) starting at the identity element.
Consider any other element p of the group. The map ¢ — exptap
defines a path and hence a direction in the tangent space over p; clearly
the induced vector field a* on the group is right invariant, depends
linearly on a, and defines an isomorphism between right invariant fields
and the tangent space over the identity. We may take the Lie bracket of
these fields in the sense of vector fields and as this yields another right
invariant vector field we define a Lie algebra structure on the tangent
space. Alternatively, we can use the matrix representation and simply
define [A, B] = AB — BA. They give the same results. The Lie algebra
of a Lie group is important in many ways and we cannot recall them all
here. However, we mention a couple of basic facts that will be essential.
A group is abelian if [a,b] = 0, and has nilpotency rank at most n if
la1, [az, [as, - .. [@n—1,an]]...]] = 0 for all elements in the Lie algebra.
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A homomorphism v of one Lie group to another induces (by differ-
entiation) a Lie map dv from the Lie algebra of the first group to the Lie
algebra of the second. These two maps intertwine with the exponential
map (applied to the vector field or the matrix) and so

(1.7) v(expta) =exptdr(a).

Conversely, to every finite dimensional Lie algebra we may associate a
unique simply connected Lie group, and to every Lie algebra map from
such a finite dimensional Lie algebra to the Lie algebra of a Lie group is
associated a unique homomorphism whose derivative is the Lie algebra
map.

Differential equations on matrix groups. Suppose we have a
smooth path X; in the Lie algebra of our matrix group, we may develop
it onto the group. That is we solve the differential equation for the path
p¢ in the group which at time ¢ is always tangential to (dX;/dt)*. The
differential equation has the form

(1.8) dpy = (dXt)" (pt)

and since * is a linear map from the vector space carrying X; to vector
fields on a manifold (the group) it falls into the general category of time
inhomogeneous differential equations we introduced in (1.6).

Any time inhomogeneous differential equation can be regarded, at
least formally, in the same way if one is prepared to consider the group
of homeomorphisms (or diffeomorphisms) of the manifold. Any vector
field defines a parameterised flow on the manifold (1.6) and hence a
tangent vector to the identity map on the group of homeomorphisms.
Consider the flow m; on that same group defined by the inhomogeneous
equation

(1.9)  dy, = Zfi(yt) dxt zy €V, fly):V —TM, .

Now f() x¢ is a path in the space of vector fields, and 7, its development
onto the group of homeomorphisms.

Although there are very big differences between this formal infinite
dimensional setting and the finite dimensional one (the vector fields
will not in general be smooth enough to form a Lie algebra, etc.) the
abstract picture is very helpful in the following two ways. It suggests
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that there might be a universal object, and also that we could learn
something about the general problem by studying the simpler case of
development of a rough path on a finite dimensional Lie group.

Definition 1.2.1. A Lie algebra g containing V is said to be free over
V' if it has the universal property that any linear map f of V into a
Lie algebra b extends in a unique way to a Lie algebra map f of g to h.
Such a Lie algebra exists but is infinite dimenstonal.

Now suppose we consider again our basic differential equation.
That is, we have a path x; in a vector space V and a linear map f
of V into the Lie algebra f of a Lie group H and we would like to
develop a path y; in H tangential to (f(y;) day)*.

Pretend for a minute that we could associate a simply connected
group G with the free Lie algebra g, and that there was a group ho-
momorphism from it to H induced by the Lie algebra map. It would
be sufficient to develop zy in the simply connected group G with Lie
algebra g and use the homomorphism

a-LH

to produce a path in H. It follows that it would be both necessary
and sufficient to solve our problem in general if we could develop rough
paths from V to this Lie group G alone. However, there is a problem
with this picture - there is no simple analytic object we can call the
free group - but still the picture definitely points one in the correct
direction.

Linear differential equations. Suppose that Y; takes its values in
a vector space W and that for each z the vector fields y — f(y)z :
W — W is linear in y, then we say the standard equation (1.1) is
linear, and observe that the sum of two solutions is a solution; the flow
is therefore a linear map (which by solving the equation backwards in
time is invertible), and the solution flow takes its values in a matrix
group.

Thus we see that to solve a time inhomogeneous linear equation
(which are certainly not linear in the relationship between x and y) is
essentially the same problem as to develop a path in a finite dimensional
Lie algebra onto the associated finite dimensional Lie group using the
right invariant extensions of the vector fields.
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More generally, we can re-parameterise our problem and reduce
it to a finite dimensional linear problem whenever the vector fields in
the range of f are smooth enough that one can take Lie brackets and
the resulting Lie algebra is finite dimensional. Although this is not the
generic case, the equation

(1.10) dys = f(yz) dzy e €V, fly):V—TM,,

where the dimension of V' is one satisfies the finite dimensionality hy-
potheses in a rather trivial way. In this case let df; = f(6;) dt be the
flow defined by the autonomous equation. One readily sees that for
smooth x; the solution of (1.10) can easily be expressed as y; = 04, (yo)
and that this is uniformly continuous in the forcing term z;. It is gen-
erally true that (1.10) is uniformly continuous in this way if and only if
the Lie algebra is trivial and the vector fields commute. In Section 1.1.4
we showed that the iterated integral for the area produced a discontin-
uous It6 map. The associated differential equation has a Lie algebra of
the simplest non-commutative type - nilpotent of rank 2.

Einstein expansions. Consider a linear differential equation. Let
x — A()z : V — hom(W, W) be a bounded linear map (of Banach
spaces) and consider the linear equations

(1.11) dyy = A(y) dxy
(]_]_2) dﬂ't = A() dl’t Tt

for the trajectory and flow. If the path z; is smooth and y; is the
classical solution, then one may construct a Taylor series expansion for
it (and the operator 7;) in terms of iterated integrals of x;.

t
yt=ys+/ dy.
S

(1.13)
t
=ys+ / A(yu) dx,,
=ys+ A(ys) / dx,,
s<u<t
(1.14

)
+ // A(A(Yyu,)) dzy, dzy,

s<uy <u2<t
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_ éA(A(. . -A(ys)))/ / dz,, dz,, - dz,,

s<uy<uz<---<u; <t
(1.15)

+ / / A(A( - A(Yyu,))) day, day, -+ - dxy,,
s<ur <uz< - <Up4+1<t

and using the boundedness of y on [s,t], the factorial decay of the
iterated integrals, and the geometric growth of the norm of the product
of operators, one quickly shows that the remainder goes to zero with n
and so we have the convergent series

(1.16) wsyt:I-i—A/ da:u+AA// i, A, + -
s<u<t s<ur<uz<t

and observe that the solution can be expressed as a inner product of a
sequence of iterated integrals and “powers” of A.

This expansion (which occurs regularly in the literature over the
last 50 years or so) underlines the importance of iterated integrals.
We will see later that we will be able to associate infinite and rapidly
decaying sequences of iterated integrals in settings where the paths are
not smooth. In this case the series above can be used as a definition
of the solution. However, it does not directly extend from the finite
dimensional linear setting (1.11) to the fully nonlinear one (1.1) (for in
this case the operators in the range of A are unbounded and do not
have a common core). Additional ideas will be required at that point.

1.2.2. Preliminaries: Rough paths and smooth functions.

In this section we remind the reader of some basic analytic con-
cepts. For our purposes a very convenient way of measuring the smooth-
ness of rough paths is via the p-variation norm first introduced by
Wiener. If we are to solve differential equations driven by rough paths,
then it transpires that we must balance this by taking progressively
smoother vector fields. For unique solutions in the classical case it suf-
fices that the fields be Lipschitz. For our uniqueness results we will
require that the fields are Lipschitz of order v > p. Using the obvious
definition, one might conclude that there were no non-constant func-
tions satisfying the hypothesis. The definition we use follows Stein and
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seems particularly well adapted to the problem in hand. Any bounded
function with n bounded derivatives is Lip[vy] for v < n.

Paths of finite p-variation. Suppose X; is a path taking its values
in a metric space. Following Wiener, one says that the p-variation of
Xion Jis

(117)  |IX|[, = sup { S d(Xy, Xy ) by <o <t € J}.
J

Definition 1.2.2. We say that X; has p-variation controlled by w(s,t)
if

(1.18) ||X||£ (5.4] S w(s,t), forall s <t.

A path is said to be of reqular finite p-variation if w can be chosen to
be continuous near the diagonal, and zero on the diagonal.

Note that

(1.19) IXIE o+ X2 < X2

i[s,u]

and so in this paper we only consider controlling w that satisfy the
inequality

(1.20) w(s,t) +w(t,u) <w(s,u).

It makes sense to introduce a distance between two paths. Let Y; denote
a second path.

Definition 1.2.3. We define the distance?® between two paths to be
finite if

1/p

||X7Y|IP,J:maX{ sSup (Z|d(th7th+1)_d(nj7}/;j+1)|p) ’

tjy <<tj . €J N

supd(Xt,Yt)} < 0.
teJ

2 In the more restricted situation where X takes its values in a Banach space there

is a smaller norm where |d(Y,Y)—d(X,X)| is replaced by ||(th_’_1 —th )—(Ytj_’_1 —Ytj )| -

In fact it is this distance that we will use later.
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As before we may talk about the distance being controlled by w.

It is obvious from standard facts about sequence spaces that this
distance is indeed a metric (and a norm if the original space were a Ba-
nach space) and that the space of paths of finite p-variation is complete
in this metric providing the original metric space was complete. The
space of regular paths is a closed subspace. The p-variation of a path
and distance between two paths are monotone decreasing with increas-
ing p. If X is continuous and of finite p-variation then X is regular for
all p’ > p. If X is not continuous the local p-variation never goes to
zero and the path is never regular.

Example 1.2.1. A path of bounded variation on a closed interval has
finite 1-variation. Almost all Brownian paths Xi(w) are of regular p-
variation for all p > 2 but do not have finite 2-variation although the
map t — X;(+), Rt — L2(Q,P) does have finite 2-variation.

Lipschitz functions. In [24, Chapter VI] Stein looked at the general
problem of extending smooth functions from subsets of Euclidean space
to the whole space. In particular, he considers the Whitney theorem
which extends in a norm bounded way the space Lip(vy, F') of Lipschitz
functions on a closed set F' to the whole Euclidean space. In doing so
he introduces a definition of Lip(y, F') which is valid for any v > 0 and
not just for v < 1. We recall a modification of this definition here;
although we modify it slightly to be compatible with our notations; the
resulting norms are equivalent.

Definition 1.2.4. Suppose that V,W are normed vector spaces, k is a
non-negative integer, and that k < v < k+1. A function f = fo defined
on a closed subset F C 'V and taking values in W belongs to Lip(~, F)
if there exist symmetric multi-linear functions (formal derivatives)

f9)(x), 0 < j <k taking éV to W and satisfying the natural Taylor
1

expansion type condition

FO (@) (v) = Z f(j+l)($s)(v®/ / dmul---dwu,>

J+Hi<k s<uy < - <uy <t
(1.21) + Rj(xs, xt)(v) .

J
forv e ®V and where, as operators on the tensor product, the deriva-
1
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tives and remainder satisfy

(1.22) 1F 9 (@) < M,
(1.23) IRj(zy)| <Mz —-y|"™7, zyecF.

We define the smallest M to be the Lip(y, F') norm of the sequence
f9(@), 0<j <k

Some remarks are in order.
The terms

(1.24) f(j'H)(a}s)(U ®/ / ATy, ---dwu,> 5

s<uy <---<u <t

are, for smooth paths/conventional integrals, independent of the choice
of path and only depend on the values (xs,x¢). To prove this, ob-
serve first, that the dimension of W is irrelevant. Now consider the
polynomial p(x) of degree k whose Taylor expansion at x, agrees with
{f(j)(ms)}jzo,___,k. Expanding p(x;) in terms of iterated integrals, as in
the last section, we see that the expansion formulae is exact at level &
and

1) pe)= 3 O ([ [ dwades).

0<i<k s<Uy < <ty <t

and as the left hand expression does not depend on the path nor can the
right hand side. Similar arguments can be applied to the derivatives of
p(x) to obtain the invariance of the other expressions. An alternative,
more algebraic proof of the result is to observe that the symmetric na-
ture of the { f () (s)}j=0,... x annihilates the antisymmetric components
of a tensor and only these change when one perturbs the path. Either
way, the observation is clear, and will be crucial to us.

The functions {f (7)}j=17m7k will not in general be unique given
f = fo- One only expects this if the set F'is thick enough. In other
words a function in Lip(y, F') is not a function on F' but a sequence of
functions representing formal derivatives and satisfying these complex
Taylor type bounds relating one term with the next. We will see that
an essentially dual idea occurs when one considers paths of finite p-
variation where p > 2. The definition we give above for p-variation, is
in some sense wrong, as it fails to specify enough information.
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Definition 1.2.5. We have defined a Lip(y, F') function; this definition
easily extends to i-forms. A sequence fU)(x), i < j < k is a Lip(y, F)
i-form if all the higher Taylor expressions (1.21) satisfy the estimates
set out in the definition above whenever i < j < k.

Both definitions make sense if the functions or forms are vector
valued.

Example 1.2.2. If 0 is a 1-form on F and 1 < v < 2, then we say it
is in Lip(y, F') if one has defined a 2-form df

(1:26) [|6(X0) —0(X,) — 5 (@0) (X.) (X, — X,)

| < MIIX, - X, |7

and
(1.27) ld6(X2) — dO(X) ]| < MI|X, — X,

However, some caution is now required as the resulting multi-linear
maps are only required to have full symmetry in the x,...,2; co-
ordinates. One may compare this approach to defining Lip(y, F) j-
forms with the alternative approach which simply says a form valued
function is a matrix valued function, and so we have already defined
what we mean by Lip(y, F'). The two approaches give the same result.

2. The Finite-Dimensional Case - Linear Differential Equa-
tions.

2.1. Multiplicative Functionals - Introduction.

2.1.1. Multiplicative functionals - Introductory material and
definitions.

Let V be a vector space, and suppose that X; is a smooth path
in V. The k-th iterated integral Xit of X; over a fixed time interval
[s,t] is an element of the tensor product V®*. The sequence of iterated
integrals

(X500

is far from being a generic collection of tensors; there are complicated
algebraic dependencies between the terms in the sequence. To fully
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understand the collection of iterated integrals one must treat them as
a single object.

The tensor algebra. We start by recalling some rather elementary
facts about tensor algebras. Consider the space T of sequences a =
(ap, @y, az,...) with a; € V¥, That is

(2.1) T=VveE.
k=0

(We take the zero order tensor product to be the field of scalars.) Then
T is an associative algebra with unit, which we shall refer to as the
tensor algebra over V. If @ = (ap,a1,as9,...) and b = (bg, b1, bs,...)
are two elements of T' then we may define their sum, (tensor) product,
and the action of scalars in the obvious way

a+b=(a+bo,a1+b,a+bs,...),

(2.2) (a@b)i= ) a;@biy,
0<;<i
aa=(xag,xar,aas,...).

The space T" with these operations is an associative algebra. Suppose
that @ = (ag, a1, as,...) is any element of the algebra with ag > 0 then
a is invertible using the usual geometric power series approach

G,:ao(l,bl,bz,...):a0(1+C),

(2.3) 1— 2 _ B4
a = cte c , ag € R,
ao
where
bi = & )
ao
(2.4) 1=(1,0,0,...),

C:(O,bl,bz,...).

Now c¢p = 0, hence {¢’}; = 0 providing k < j; therefore the k-tensor
component of any power series in ¢ and in particular 14+c+c?+c3+- - - is
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a sum including only finitely many non zero terms and so has meaning.
Similarly, providing ag > 0, we may define the logarithm of a by

2 63

(2.5) logazloga0+1+c—5+§+---

Both of these definitions are pure algebra, and no analysis is required.
The exponential function is defined for all elements of T', but the se-
ries defining the k-tensor component involves a genuinely infinite sum
(which always converges).

2 0,3

a
(2.6) expa=1ta+ s+ 4

One can check that exp (—a) = (expa)~! and that exploga = a,
logexp a = a, etc. Because the space

(2.7) D,= ) V&
k=n+1

of tensors of degree greater than n form an ideal we may also study the
truncated tensor algebra T(") obtained by quotienting out by D,,. We
make the identification

(2.8) T = PHVer.
k=0

The full tensor algebra is an adequate algebraic object, but because it
ignores any notion of convergence of the infinite sequences it is a rather
poor analytic object. We will mainly work with the truncated tensor
algebras T'(™ where the analytic and algebraic structures are completely
compatible, the fine analytic information will come from understanding
the way objects in these finite dimensional quotients piece together.

At this point we record only the basic facts. If m > n, then there
is a natural projection m of T("™) onto T™ given by

(29) T (ao,al,az,. . .,G,m) — (ao,al,ag, .. .,G,n) .

The map 7 is an algebra homomorphism. Moreover, the definitions of
log, exp, a~ ! extend to 7(™ and their actions commute with that of 7
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so that for example 7(expa) = exp (7(a)). The inclusion ¢ of (™) into
T(™) given by

(2.10) t: (ag,a1,as,...,a,) — (ap,a1,a2,...,0,,0,0,...).
is linear but is not an algebra homomorphism.

The free Lie algebra and free nilpotent groups. One can build
certain Lie algebras inside T(™) and T. The product

(2.11) [a,bj]=a®b-b®a.

defines a Lie Bracket on T' and T . Of particular interest is the Lie
algebra generated by V. This is comprised of linear combinations of
finite sequences of Lie brackets of elements of V'

A=0pVaV.Vie[V,[V,V]]®---
where for example [V, [V, V]] is the linear subspace of V®3 spanned by
[v1, [v2, v3]], v,eV.

One may trivially prove that it has the special property that if S is a
linear map from V into a Lie algebra B then there is a unique extension
of the map to a Lie algebra map from 2 to 8. In other words it is the
free Lie algebra we identified earlier. The corresponding Lie algebra
A < T(™) has the same extension property providing one restricts
attention to maps into Lie algebras of nilpotency rank at most n (i.e. all
Lie products involving n or more elements of the algebra are identically
zero).

Theorem 2.1.1. Let G™ = expA™ < T then G™ is a group
called the free nilpotent group of step n. GO = R and GV = V.
The exponential map from the Lie algebra A™ to the Lie group G™
15 one to one and onto. The restriction of the map ©™ to a map from
G — 7™ m > n defines a group homomorphism from G(™) —s
G  'm > n. On the other hand the map ¢ takes G™ — T(™) m > n
but intersects GI™) only at the identity.

REMARK 2.1.1. The above theorem and indeed everything in 2.1.1 is
standard, proofs can be found in, for example, [22]. The properties
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of A™ are by no means all easy to derive, and for example it is an
interesting, nontrivial, and a numerically worthwhile exercise to com-
pute the dimension of A™), to find explicit bases for the space (such
calculations go back to Hall and Linden), and even to decompose the
space into GL(V)-invariant subspaces [22] according to the different
irreducible representations.

Every element of the free Lie algebra is of finite degree and an
element of T for some n. We may exponentiate the free Lie algebra
into the full tensor algebra and the map is injective, but the range is
not a group or even multiplicatively closed. On the other hand, we can
introduce the (highly non-separable) Lie algebra of infinite sequences of
Lie elements. In this case, we see that the exponential map has a range
comprising solely of elements of the tensor algebra which are carried
by each of the projections m : T — T(™ into the corresponding group
G(™), This subset of the full tensor algebra is the inverse limit of our
nilpotent groups and is clearly itself a group which we denote G*).

Definition 2.1.1. We say an element of the full tensor algebra is group
like if it is an element of G,

Unfortunately this group is very big and its Lie algebra is no longer
the free algebra.

Any attempt to use a linear map from V into the Lie algebra of
a Lie group H to define a homomorphism of this enormous Lie group
G®™) (or some part thereof) into the group H in a unique way must
involve analysis. This paper can be viewed as an attempt to provide
this analytic content.

Paths and multiplicative functionals - the definition. Let X,
be a fixed smooth path in V, and consider the sequence of iterated
integrals

x" =1+ / d:):u—}—/ / A2y, @ dxy, + - -

s<u<t s<ur<ug<t
(2.13)

+/ / dzy, @ day, ® - @ dx,, € TM,
s<uy <ug < <, <t

Let X, ; denote the infinite sequence. Suppose now that one wants to
describe in detail the relationship between the iterated integrals over



DIFFERENTIAL EQUATIONS DRIVEN BY ROUGH SIGNALS 237

[r,t] and those over [r,s| and [s,t] where s € [r,t]. If one starts to
calculate in coordinates one will quickly become engulfed in terms and
conclude that this is a horribly complicated thing to do, however this
is really because the main features are best derived without taking co-
ordinates. Now K. T. Chen [5] observed two essential features of the
process X, ¢ which we now state as a theorem.

Theorem 2.1.2. For smooth paths and conventional integrals, the
process X, ¢ ts multiplicative. That is to say

(214) th X Xs,t - Xr,t .
Moreover, it is group like, so that for each n,

(2.15) xMea™,  log(x\)eam.

Proor. The proof that X, ; is multiplicative is instructive. Let the
i-th component of X ; be denoted by X7 ,, etc. Then

s,t)

T
X, = / / dz,, dz,, - dz,,
r<ur <uz <---<u; <t

ST )

OS]S’L S<Uj+1<"'<ui<t r<u1<~~~<uj<8
(2.16)
cdy,,, - day,

S (/ / Aoy, - da, )

0<5<i r<uy < <uy<s

Y

s<ujt1<--<u; <t

_ E { J i—j
- er ® Xst ’
0<j<i

which establishes the multiplicative identity.
To prove that the iterated integral sequence is group like one needs
a different approach. Because iterated integrals are integrals and our
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paths are smooth, it is an easy consequence of the fundamental theorem
of calculus that they satisfy the system of differential equations

ax{V = x{W @ dx, e T™
(2.17) ’ !
X{" =1=(1,0,0,...).

Suppose ¢ is an element of the group G(™ thought of as a sub-manifold
of T . Then left tensor multiplication by ¢ is a linear map of 7™
which takes the group G(™ to itself, and 1 to g. It follows that the
derivative of this map takes the tangent space to the group G at 1
to the tangent space to g. However the derivative of a linear map is
the map itself, and V is in the tangent space to G(™ at 1. Hence any
solution to the differential equation dg; = g; ® dX; € T will remain
in the group G if it starts there. It follows that X+ is a group like
element.

REMARKS 2.1.1. The proof of the above result yields a certain amount
of extra information.

1) From the differential equation (2.17) (which of course is of a very
fundamental kind) we observe that the iterated integrals over a fixed
time interval are insensitive to re-parameterisation of the underlying
path, and by solving the differential equation backwards in time we see
that the inverse group element is produced. The map from piecewise
smooth path segment to iterated integral sequence is a homomorphism
of the semi-group of path segments (multiplication is concatenation) to
the group like elements. Identify re-parameterisations of paths, and the
inverse of path segment with the path run in the reverse direction and
one makes the path segments into a group. Chen proved that in this
case the map into the group like elements is injective. Therefore, the
infinite algebraic sequence X, ; contains (in code!) all the information
from x,, u € [s,t] required to determine the solution y; from ys.

2) The proof of the first part of the theorem holds in wide gener-
ality. The first integral identity relies only on additivity of the integral
over disjoint domains of a nice kind. The second term depends on a
multiplicative linearity of the integral. In fact these properties (of lin-
earity and additivity) are so basic that (2.14) is true for any sensible
choice of integral (It0, etc.) and in some sense captures what one means
when one talks about an integral. Because the multiplicative property
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seems so widely characteristic of integrals we make it our basic object
of study.

Definition 2.1.2. A multiplicative functional is a map from pairs
(s5,t) of real numbers to Xy = (X%, XL, X2,...) in T™ satisfying

X, s ® Xot = Xyt and XY, = 1. We say a multiplicative functional is

st —
geometric if it takes its values in the group like elements.

Suppose that X; = (1, X}, X?,...,X) € T(™ is a path in the
space of n-tensors with unit scalar component. Then we say that
X,: = (Xs)7! @ X; is the multiplicative functional determined by
X¢. Conversely, given a multiplicative functional X ; and a point @ in
T™)  we say that X, = ® Xo,¢ is the path in T starting at @ deter-
mined by X, ;. Given this almost one to one correspondence between
paths and multiplicative functionals in 7() it is reasonable to question
the sense of introducing the concept of multiplicative functional at all.
However, we will see later that it will be fundamental to the process of
constructing an integral or of solving a differential equation that one
can go from an almost multiplicative functional to a multiplicative func-
tional and hence to a path. Almost multiplicative functionals will have
no direct path-wise interpretation.

The logarithmic flow. As a simple application of the algebraic ideas
set out so far, we go back to a question we raised earlier, suppose
that one would like to know how to construct the logarithm of a flow.
We can easily derive an asymptotic formulae for the logarithm of the
flow (proving that it converges to a Lie element is of course a different
question). Recall our basic equation

(2.18) dyr = [f(yt) dxy

where f is the linear map from V to a space of vector fields and suppose
the fields form a Lie algebra (e.g. they are smooth). Can we construct a
fixed vector field which, if we flow along it for unit time, gives the same
homeomorphism as solving the inhomogeneneous differential equation
over the interval [s,t]? Now f is a linear map from V into the smooth
vector fields on some general target space. Because of the universal
property of 2 the map f extends to a unique Lie map f, from 2 into
the vector fields with f,([v1, [ve,v3]]) = [f(v1), [f(v2), f(v3)]]. The log-
arithm of the flow should be given by fi(log(Xo)). However, this
calculation is formal because one quietly slips from finite to infinite
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sequences. On the other hand one can always compute
follog (X)), where log (X{7)

is regarded as an element of A" C T(™). These form a sequence of
explicit and readily calculable vector fields providing an asymptotic
expansion for the logarithmic vector field. A number of the optimal
algorithms for solving sde’s numerically are based on this idea [4].

Rough and smooth multiplicative functionals. Although our
prime examples were obtained by computing the iterated integrals of
a smooth path, the underlying definition of a multiplicative functional
is at present a purely algebraic one. We now wish to consider rough
and smooth multiplicative functionals. Equivalently we wish to con-
sider rough or smooth monic paths in the truncated tensor algebras.
For this we need a notion of distance between tensors in T(). For
all further discussion, suppose that V, and more generally V®" are
Banach spaces and that they have compatible norms || - || so that
lu ® v|| < ||u||[|v], and that the norms are invariant under permu-
tations of the indices of the tensors. (Given a norm on V there are
many norms one could take on the tensor products so that this prop-

erty holds). Let ¢ = (0, ¢y, €2,...,¢,) be an element of the radical
D(()") — @ YOk
k=1

of T(, then for any sequence A = (A1, Ag,...) of strictly positive
weights we may define a homogeneous distance function

(2.19) llelllx = max {(A [les )2 1< i< n}.

It is clear that [||c + d|||x < ||lc|||x + |||d]||x and so we define a met-

ric on the radical by d(e,d) = |||c — d|||x. The metrics on D(()n) are
uniformly equivalent for alternative choices of the constants A\, however
this is only true for fixed and finite n. Although the metric is not a
norm if n > 1 it has the very important property that it has the same
homogeneity properties as our sequence of iterated integrals when we
scale the underlying path.

Consider the element of the radical X 8(7?(7]) — 1 generated by the
sequence of iterated integrals of a smooth path ns. Now scale the path,
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then the individual iterated integrals transform according to their de-
gree and

11X (en) — 1| = e [|XT () — 1]

If we are only interested in fixed n we will frequently take A = 1 to
avoid complicated expressions. If we wish to prove that the Einstein
expansion for the solution of a linear equation converges one will need
to control the behaviour as n goes to infinity. For this one requires a
choice of X\ very well adapted to the problem. In this more critical work
we find \; = [ (i/p)! to be an excellent choice, where 5 > 0, p > 1 are
to be chosen later. For notational convenience, we will use the notation
Il - ||| to denote either metric. It will not cause significant confusion.

Suppose that we have a monic path X; in the truncated tensor
algebra and its associated multiplicative functional X ;. Then we could
introduce a distance p(X,, X;) = ||| X+ — 1|||. In general this will not
be a metric (although it is good enough) because it fails the symmetry
condition and the triangle inequality. However, it is clear from the neo-
classical inequality (see later) that if 8 > 2P p? then it will satisfy the
triangle inequality. For group like elements, it is obvious from Remark
2.1.1., the inverse being obtained from the path run backwards and the
invariance of the norm under re-ordering of the tensors, that the inverse
of a group like element has the same modulus as the original element.
In this case it is clearly a metric.

We ignore the fact that this distance is a metric or not (because
it follows that it is always equivalent to one). In any case we may
follow section 2.1.1., and use it to define monic paths and multiplicative
functionals of finite p-variation (controlled by a regular super additive
function w(s,t) etc.) and to provide a distance between two paths.

Lemma 2.1.1. A multiplicative functional X, ; in T™) s of finite
p-vartation controlled by w if and only if it satisfies the inequality

w(s,t)/P

1 X5 el < BT , <

The proof is immediate from the definition. We include it as a
convenient formulation.
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2.2. Multiplicative functionals - the first main theorems.

Overview. We have introduced the idea of a multiplicative functional
in 7(") of finite p-variation without making any direct connection be-
tween the degree n of the multiplicative functional and the roughness
of the path as described by p > 1.

The theorems in this section, which are fundamental to our ap-
proach, demonstrate the central role played by the class of multiplica-
tive functionals for which the degree n is the integer part [p| of the
variation p.

We have already observed that if we take a smooth path in a vector
space and take its first k iterated integrals then we have constructed
a multiplicative functional of degree k; computing the next iterated
integral gives a method of extending the multiplicative functional to (a
geometric) one of the next degree. This extension map is continuous
as a function of the underlying path in p-variation metric if and only if
p <2

By way of an extension of this result, the theorems in this section
show by restriction that, for any p > 1, if we regard as our basic object
the smooth path and its iterated integrals of degree up to [p] then the
higher iterated integrals are uniformly continuous functions in the met-
ric of finite p-variation. The uniform continuity allows one to extend
the definition of iterated integral to this class.

These results are the first step towards our main theorem that
the Itd6 map® is uniformly continuous as a function of the sequence
comprising a smooth path and its iterated integrals of degree up to [p]
where one takes the metric of finite p-variation. So providing a natural
analytic extension of the Itd0 map to the class of geometric paths of
finite p-variation and degree [p].

The application to stochastic Stratonovich differential equations
is realized by taking 3 > p > 2; where these results reduce to the
statement that the It0 map is continuous in the pair comprising the
path and its Lévy area.

2.2.1. The First Theorem.

Theorem 2.2.1. Let Xg? be a multiplicative functional in T™ of
finite p-variation controlled by a regqular w(s,t) on an interval J where

1 defined by a differential equation with smooth enough coefficients
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n = [p]. There exists a multiplicative extension Xé?) to T™), m >n
which is of finite p-variation, the extension is unique in this class.

Moreover, this unique extension satisfies a rather precise estimate.
Suppose that the p-variation norm of XS(Z) is controlled by w(s,t) so
that for all pairs of times in an interval we have

, w(s, t)i/P .
2.20 X< 77—, 1< p,
( ) || ,t“ ,3 (Z/p)'
then, providing (3 is large enough the same inequality
(2.21) 1XE || < wis,t)'/7 >
. i ——,  i>p,
T B(i/p)!

holds in all degrees and p-variation norm osz(Zf) is controlled by w(s,t)
without any sort of factor for all m.?

REMARKS 2.2.1. 1) It suffices for the above theorem that

2.22) 6> 32 (14 26000 (C(%) 1)),
where
(2.23) ((2) = 3 ni

1

is the traditional Riemann zeta function.

2) It is a more or less trivial remark that, in the case where n < [p],
if a multiplicative functional of degree n and finite p-variation has an
extension to a multiplicative functional of degree m of finite p-variation,
then the extension will never be unique. On the other hand in the case
where n > [p] the above theorem shows by restriction the existence and
uniqueness of an extension of finite p-variation.

In the remainder of this section we outline the proof.

Two key results under-pin our argument. The first is completely
elementary.

2 Wwhere z!=T(z+1)
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Lemma 2.2.1. Suppose

D={s=ty<t1 <---<t, =t}
is a dissection of [s,t]. Then there is a j such that

2w(s,t)
(224) w(tj_l, tj_|_1) S r—1 ’

w(s,t), r=2.
PROOF. w is super-additive and so when r > 2

r—1

(2.25) > w(tj—1,tipr) < 2w(s,t)

and at least one term in a sum is dominated by the mean so the result
is clear. On the other hand when r = 2

w(tj—lvtj—i-l) = (.U(S,t), ifj=1.

A neo-classical inequality.

Lemma 2.2.2. The following extension of the binomial theorem holds

1y2 pi/r yn=3)/p (z +y)™/P
@ () 2 G (=Dt = o
wheren € N, z,y >0, p > 1.

We postpone the proof of this inequality which is quite non-trivial.
Notice that since (z/p)! is roughly (z!)'/?, the lemma loosely asserts
that we have a sequence of numbers satisfying > a; = b from the bi-

nomial theorem and ) ajl-/ P < p1/P. In general the inequality would be
reversed.

Proor. Existence. Our intention is to proceed by induction. Fix
m > [p]. As initial data consider a multiplicative functional

Xs(,??) = (1, X2 x 7l

sty sty

+1 m
xWH L xm)
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satisfying (2.32), we wish to construct a multiplicative functional
X S(ZLH) satisfying the same constraints.

Consider

—~

(2.28) X =i( X)) = (1,XL,,...,. X", 0).

s,t? s,

Of course )A(st is not multiplicative, but at least it is in 7"*1 . Fix a
dissection D = {s <t; <---<t;—1 <t} of [s,t] and define

D _ _
(2.29) X1 =Xst, ® X411, ®- @ Xy, 1t

using the multiplication in T("+Y) | Tt suffices to show the existence of
D

limyy,esh(D)—0 X s,t» for this limit, if it exists, will surely be multiplica-
tive.

To check this last point observe that if the limit exists over [s, u],
then it can be attained via dissections D all of which include a fixed
t € (s,u), and so we have

D . DnN[s,t] — DN[t,u]
(230) Xs,u = Xs,t ® Xt,u

Taking this limit as the mesh size of D converges to zero we see that
we have

) ~ D ) — DN[s,t] ) ~ DN[t,u]
(2.31) (l%linoxs,t) = (}plinoxs,t ) ® (lljlin)OX ).

D
To prove the convergence of X we see that the difficulty rests in

~D ~D . .
understanding the terms (Xsyt)m—i_1 for (Xsyt)J = X, forall j <m
since X S(T) is multiplicative.

The heart of our argument is a maximal inequality, the existence of
the limit follows by a secondary argument. Our aim is to prove, under
the induction hypothesis

xm={1,X},.....X0"}eT™,

U,V

X =X o X[

(2.32)

7
1 X0 0

forall u < v, 1 <m,

w(u,v))P
= (S )



246 T. J. Lyons
that for any dissection D of |[s, ]

(w(5, )P/

, forall j <m+1.
B3 /p)! B

@33) (X))l <

The case where 57 < m + 1 is a trivial consequence of our induction

m+

_D
hypothesis. The (m+1)-tensor (X ;) " is the focus of our attention.

Now from the triangle inequality
(2.34) IXCD™ ] < X0 — X )™ P+ (X )™,

where D’ is any other dissection. Suppose that it is obtained from D
by dropping a single point from the dissection (this trick seems to be
due to L. C. Young). By choosing the point to omit from the dissection
carefully, and repeating this deletion procedure until we have the trivial
dissection we will obtain our result.
Fix
D={s=ty<t1 <---<t, =t}

and use Lemma 2.2.1 to choose j so that

)
( w(s,t), r>3,
(235) w(tj_l,tj+1) < r—1
w(s,t), r=2.
D _D

Let D' be D\ {t;} and consider )A(s’t - X, ;. Now?®

~D —~ — —~ —
Xs,t = (XS,t1 e th—z,tj—1)th—1,tj thytj+1
(2'36) ’ (th+17tj+2 T th—lytr)
D~ _ _ _ D¥
- XS,tj—1th—lvtj thatj+1th+1,t ’
while
D' _ D _ Dt
(237) Xst = S,tj,]_ thflat]?kl th+1,t
3

To shorten expressions we henceforth drop the use of the ® to denote multiplication

in the tensor algebra.
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and so

D D’ D~ _. Dt
(238) Xst - Xst = Xs,tj,]_ Zt] 1t tj+1th+1,t ’
where
(2.39) Ziy atityen = Xyt Xty ot — Xyt

and using the definition of X and the multiplicative nature of X one
has

m

- | —
(2.40) Zy, i, = (0,...,0,§ Xi . th,tm')'
1

The only products which yield nonzero results in this tensor multipli-
cation are those where the sum of the degrees of the individual factors
is at most m; it follows that we have the reasonably simple expression
for the difference

m-+1)—t
0 ZXtJ 1tJ t(J t—;"l) )(17"')
(m+1)—i
(2.41) ( 0 ZXtJ L, X ) .

We can estimate this difference

m
42) |, X Z AN el
1

and so using our a priori bound (2.32) for the magnitudes of these
tensors

m
1 m+1—1
H Z thfl,tj th b+l
=1

(2.43)

SR (@t )77 wlty, ty40) D0
< ;) ( B(i/p)! ) ( B((mil—z’)/p)! )
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and by the Neo-Classical inequality, Lemma 2.2.2, and superadditivity
this is
(W(tj—lv t) + w(tjtjpr)) e
((m+1)/p)!

P (w (ty 1 J+1))( 1)/
S ((m +1)/p)!

We now recall that we chose our j carefully so that (2.35) held so that
if 7 > 2 one has

(2.44) <

Tb|’t3

(2.45)

2\ (m+1)/p p_2 w(s,t)(m-kl)/p
< (=) 5 B((m+ 1)/p)!

+1—i
2 46 HZXtJ 1t; ’thj—o—l Z

and if » = 2 one has the similar
p2 w(s7t)(m+1)/p
B B((m+1)/pt-

(2.47) HZX% o X

Successively dropping points we see that

—

1™ = (Xo)™
2, & (m+1)/py [ w(s, £)m+D/p
S%(H;(r:) ' )(ﬁ(((mt)—l-l)/p)!)

) m w(s, (m+1)/p
=5 (o (e(" ) - 0)) (s )

Observing that as (Xst)mH =0 and

()

is monotone in m and finite because m + 1 > p we have

(2.48)

—~

1(Xo)™

(e () ) SR

(2.49)
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(where ((z) = >.7°1/n” is the traditional Riemann zeta function).
Thus if we choose
+1
_ > 2 /e (LY
(2.50) B> p*(1+2 (¢( g )-1)),

we get the estimate
(s,t)(m+1)/p

((m+1)/p)t’

for all choices of dissection D. This completes the proof of the maximal
inequality.

Now we must show convergence of the products. It is at this point
that we require our control w on the p-variation to be regular. We will

~D ..
(2.51) [(x)™ < 5

show that our sequence X satisfies a Cauchy convergence principle.
Consider two dissections D, D both having mesh size less than 6. We
can always find a common refinement D of D and D. We fix some
interval in [t;,t;41] € D; then the refinement D breaks the interval up
into a number of pieces t; < s; < --- <s; = t;1; call the dissection
ﬁj. Then, we know from the maximal inequality, how to estimate

- D;

(X

and all terms of degree less than m+1 in the difference are zero because
X is multiplicative. Therefore

'

th+1)m+1

titi+1

. D; = w(t- t. l)m-l-l/p
2.52 X X, | g Bt
( ) H titiy1 t;t;+1H = ﬁ((m+1)/p)!
So the total difference?
_D; D
(2.53) (x —-x )"

is controlled in norm by
( Z (.()(tja tj+l)(m+1)/p>
" B((m+ 1)/p)!
1 m _
max(w(t;,ti+1)) TP Cw(t tia)

= Blm+D/p) B ~

1
max(w(t;tjp1)) " TP w(s, 1),

= Blm+ D/p)t "B

using a simple extension of the argument used in (2.38)-(2.40) which drastically

(2.54)

limited the range of terms which contribute to the difference of the products.
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which is independent of D and by the regularity of w this converges
uniformly to zero as the mesh size of D converges to zero. Applying the
triangle inequality, we have a uniform bound on X? — X P as required.
It follows that we have established the existence of a multiplicative
functional satisfying all the requirements of the induction.

Uniqueness. We must show that if X ; and Y ; are two multiplicative
functionals which agree up to the m-th degree, so that X!, = Y}, i <
m, and which are both of regular finite p-variation where (m+1)/p > 1
then they agree. The following algebraic lemma makes the situation
clear.

Lemma 2.2.3. Suppose that X and Yy are multiplicative function-
als in T which agree up to the m-th degree so that X!, = Y73,
i < m. The difference function W, ;

m—+1
(2.55) U= X[ Y e @ v

(2
1s additive
(256) !ps,t + Spt,u = Sps,u .

Conversely, if X, s a multiplicative functional in T+ and Y, is
additive in VO™ then X, 4+ W, 4 is also a multiplicative functional.

REMARK 2.2.1. This easy result reflects the nilpotent nature of the
algebraic structures we are interested in, the function ¥, ; lies in the
centre.

ProoF. Use the multiplicative property for X, ; and Y, to observe
that

=Y Y (X ® X)X X
(2.57) = (You)"t
= (Xs,u)m+1 + (Ys7,7Z+1 - X$t+1) + (YtTZ—H - XZL“)

and so our claim is verified

(2'58) Ws,u = ¥t + Wt,u .



DIFFERENTIAL EQUATIONS DRIVEN BY ROUGH SIGNALS 251

The same identity also makes it clear that if X ; is multiplicative on
T+ and ¥ satisfies (2.56) and is in ®?+1V, then X, ; + ¥, is also
multiplicative.

Suppose X and Y have finite p-variation controlled by a regular
w where (m + 1)/p > 1. By assumption, there is a constant so that

(2.59) 1@t || < cw(s,t)mHD/P,

and so ¥y, is a conventional path of finite (m + 1)/p-variation. If
(m+1)/p > 1 and w is regular, it follows that ¥ is identically zero and
uniqueness follows.

These calculations also establish the remarks we made on the non-
uniqueness of extensions of multiplicative functionals if (m + 1)/p <1
as in this case perturbing an extension by a continuous additive ¥, ;
of bounded variation will produce a different extension of finite p-
variation.

2.2.2. Continuity.

We have shown that the high order multiplicative functionals are
uniquely determined by the low order ones if we impose a p-variation
condition. We also defined a natural distance between paths of finite
p-variation. The map we have defined is continuous, and there is a very
explicit estimate for the modulus of continuity.

Theorem 2.2.2. Suppose X and 'Y are multiplicative functionals in
T™) of finite p-variation controlled by w where (n+1)/p > 1. Suppose
further that for some € < 1 one has

w(s, t)¥/P

v(i/p)t

for all i < n. Then for a suitable choice of v,

(2.60) X5 =Yl <e

1
_ S 3,2 /(P11
(2.61) v>3p (1+2 (g( ; ) 1))
will do, one has

; , w(s,t)i/p
(2.62) X5, - i | < e T

v(@i/p)!
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for all i < oo where X* and Y are, for i > n, the components in V&
of the multiplicative extension of finite p-variation.

PROOF. Proceed by induction. Suppose n+ 1 > p. Recall how we con-
structed X™*! and Y™ from X (™) and Y™ by taking the limit of
the products X, Y. Recall in particular, that our choice of dissec-
tion in the proof of the maximal inequality depended on w alone and
not on X or Y (") So we may select the same coarsening sequence
of dissections in the analysis bounding X? and Y. We may also use
this sequence of dissections to estimate || X — YP|. As we coarsen
the dissection we have

IXP =Y Py < (XP - X2t - (vP -y )

(2.63) (XD -y PhymE

Estimate the first term on the right side of the expression.

(2.64) (X2 = X2 = > X X
1<j<n

and

(2-65) Yth = Xg,t + Rg,t )

SO

(X3 — X0 — (Yoy -y )+

S,

. bl i
= Z (Xgi—lyti Xti-;i+1j
(2.66) 1<j<n
—(XJ o +RJ1 . )(Xn+1 J+Rn+1—3))

titit1 titit1
and by exploiting induction and the neo-classical inequality one has
(X3 — X320 (Vg =Y.
(2.67) ti 1 tiiq)m+D)/p
< (26 +€2) p? o i i+1) ,
72((n +1)/p)!

and as before, summing over our carefully chosen and successively coars-
ening partitions one has

L 20D ((n + 1)/p) ~ 1)
,YZ
9 (.U(S, t)(n+1)/p

Y+ )/p)!

1% — Y3l <

(2.68)
(2e+¢€%).
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So for
7> (142000 (é(MTH) ~1))p? 2c+e?)

the result follows. In particular if € < 1 the required estimate holds.
This completes the induction step and this rather explicit continuity
result follows.

REMARK 2.2.2. It might be thought that we have introduced a variety
of topologies on the space of paths of finite p-variation in the above
theorem; however, they can all be pasted together in the most natural
way.

Definition 2.2.1. We say a pair of paths X andY in T™ which have
reqular finite p-vartation are at most a distance € apart if

wSY (s,1)

= sup { (Y I1Xy 0 = Yoy llF), s Sty <<t <t <e,

teJ ;
s,te j

sup {[|[X; = Yilll, t € J} <e.

It is elementary that such a distance is complete, and that if a
sequence converges in the sense that we introduced and exploited in
the preceding lemma then it also converges in this new sense.

Consider a sequence Ut(") of paths converging to a path U?. Then

the p-variation of U, ™ denoted by wV"’ (s,t), and WV U (s,t) are
continuous and zero on the diagonal because of the regularity of the
paths. We may choose and re-label a subsequence so that

(n) () _
sup w/ VT (s,8) < 47"
s,t

on .J. Consider the new superadditive functional

(2.69) U(s,t) =sup ¥ (5,0) + Y 27wV VY (5,1

n

and observe that it is continuous (note that the supremum of a sequence
of continuous and uniformly converging functions is itself continuous),
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it is obviously superadditive and zero on the diagonal; it therefore pro-
vides a regular control on the p-variation of all the paths we are con-
sidering, and most importantly, satisfies Wt Ut (s,t) < 27™4)(s,t).
This essentially concludes the remark. Every convergent sequence in
the weaker sense has a subsequence converging in this stronger domi-
nated sense, and so we see that the notions of convergent sequence must
correspond.

In a metric space, the topology is determined by the convergent
sequences.

2.2.3. The neo-classical inequality: a proof.

Theorem 2.2.3. The following inequality holds uniformly inp > 1, n
(2.70) Z

REMARK 2.2.3. For our application we only require this inequality
with some constant in place of 1/p? which is independent of a and n.
However, it is interesting to ask what is the best uniform estimate in
all the variables. All numerical evidence and proofs of special cases
suggest the inequality is true with 1/p in place of 1/p? and that in this
form the inequality is very strongly saturated (with equality to the n-th
degree as p approaches one if a = b. When p = 1, we have equality of
the left and right expressions by the binomial theorem in either form.
When p = n we can prove the result in its strengthened form with 1/p.

al/Ppn—=3)/p - (a4 b)™/P
G/ ((n—=g)/p)! = (n/p)t

a,b>0.

Proor. To prove the inequality in the form stated, it suffices to estab-
lish that

LS il (1 — gy (=i (n/p)!
2 pg 1-2) G/ (- )/t =P

because the expression (2.70) is homogeneous under scaling of ¢ and b.
Moreover, we have an integral expression for the special functions
zlyl \-! 1
((x+y)!> @ty + ) B+ 1,y +1)
(2.72) 1

(x+y+1)/0 u” (1 —u)Y du
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We may rewrite the left hand of the expression (2.71)

LS il (1 — )=/ (n/p)!
p 2 A= e )

./L'J/p (]_ — ./L-)(n_j)/p

1 n
e PR '
nEPS /(uﬂa—u)"—ﬂ)l/pdu
0

n

0

u

1 1
B n-l-pZ /01 (u)j/p(l —U)(n—j)/p

€T 1—=x«

We now make a substitution: v = p/n, #; = j/n. Then the individual
terms in the above sum are derived from

1 xG/V (1 _ x)(l—G)/V

n (U + 1) /Ol(ue (1 _ u)l—@)l/v du .

(2.73) Fo(z,v) =

By the binomial theorem

(2.74) Y F, (g; %) =1,

for all n and all = € [0,1]. If we could also prove that

(2.75) zn:ng (x,v) <1,

for allv > 1/n, and for all z then we would have established the stronger
result which we believe is true. To do this it would suffice to show that

(2.76) (% (z (1 - z)) a% - %)Fg >0,

for in this case we could use the maximum principle for sub-parabolic
functions to deduce that any positive linear combination of Fy, taken
over varying 6, attains its maximum over the region v > 1/n, z €
(0,1) on its parabolic boundary. In particular we could conclude that
>0 Fo,(x,v) < 1, for all z and for all v > 1/n.
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But Fy is not a subsolution. On the positive side, we can prove
that

(2.77) L (1— x)(l—G)/v(/(ue (1 — w)i=0)/v du>_1

v

is a subsolution for any choice of 8. We can therefore apply a maximum
principle argument to prove that if §; = j/n then

1
n n — 41 1

v+1 n
Z v F@j(vvu’) < sup Z F@j (57“’)

=0 uell =0

n

|
n
=n-+1,

1
n

for v > 1/n. We may cross-multiply and substitute to obtain

- v(in+l) pn+1)
2.79 > Fy(v,u) < — ,
( ) 7=0 GJ(U U)_ ’U+]_ p+n

As the inequality v > 1/n is equivalent to p > 1, we may deduce that
for v > 1/n and u € [0, 1] the inequality

(2.80) Zn:Fej (v,u) <p

holds, concluding our main argument.

However, it remains to prove that our expression (2.77) is indeed
a subsolution to the parabolic equation (2.76). This is elementary, but
relatively delicate.

Because our expression is positive, we may work with its loga-
rithm. Observe that as a general fact a parabolic operator applied to
an exponential has a simple form

U
0 0 y_ o

LeV = — _

(2.81) ¢ 811,(’0811, ov
' ) , OUN g
= (a2 5a U+ Vel — 55 )
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where we define

(2.82) IVoul®> = ¢|Vul?.

To show that the exponential eV is a subsolution it suffices to show that
0 0 oU

2.83 —p—U UP?- =) >0.

( ) (8u¢0u + 1V, Ul 01}) -

The log of the expression (2.77) is

0
—logv + —logx + log (1 — x)

v
1
_ log/ (W1 — u)=) .
0

Let us apply our identity for LeV, one term at a time, with U given by
the expression (2.84) above.

(2.84)

0 0 0 /0 0 /1-86 1
285) G-y =g (L0-2)-5 (=)=
and
0 2 g1 1—-60 1 2
e |5 0] =e -0 (5 - )

(2.86)

On the other hand the expression (2.84) can also be rewritten as

s —go—ton ([ ((2)(24)) ).

So
0

ov

Lo (e (G) oo () () (125) )

LN

(2.88)
_ % _ Ul—z(elog(g> - (1—9)1°g(i:j~>>

. /(910g (%)-i—(l—@) log (i:i)) ((%)9 (tz)l—e)w .

' JE G
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and applying Jensen’s inequality to the convex function z logx,

(2.89) (910g (g) +(1-0) 10g(1_9>>

1—wu

in the last integral, and hence the integral itself is always positive.
Collecting the terms together we see that (2.83) will hold providing we
can show

£ () v o (1)) 20

for all pairs 0, « € [0, 1]. This will follow through a study of (0, x)/0x.
This derivative is 0 at x = 6. If we prove it to be positive for x > 6 and
negative for x < 6 then the result follows since f(6,60) = 0. But

af B
%—(fﬂ 0)

(2.90) f(0,z) =

r(l—2z)+(1—-22z)(0 —x)
(z (1 —x))?
(x —0)%+ (0 — 6%
(z (1))

and the second factor in the last expression is positive because 6 € [0, 1].
This completes the proof of the neo-classical inequality.

(2.91)

= (z —0)

2.3. Multiplicative functionals - The basic spaces of paths.

We can now identify the basic classes of objects which drive differ-
ential equations.

Definition 2.3.1. A p-multiplicative functional is a multiplicative
functional of degree [p] and finite p-variation, taking its values in
T(V)IPD. We denote the set of such paths by Q(V)P. The elements
of QV)P with X, ; € G ) for all pairs of times s, t are the geometric
p-multiplicative functionals denoted by QG(V)P.

Within these spaces, we will often refine our interest and consider
only multiplicative functionals which are controlled by a given reqular
w.

The constraint defining QG(V')P as a subspace of Q(V)P is a purely
algebraic one; and for this reason it is obvious that it defines a closed
subset. On the other hand QG(V')P has a very important analytic in-
terpretation. The class S(V') of piecewise smooth paths can be lifted to
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a subset S(V), of Q(V)P in a canonical way using the first [p] iterated
integrals and, as we have shown, Chen observed that the embedding is

actually into QG(V)P.
Lemma 2.3.1. The closure of S(V'), in Q(V)? is QG(V)P.

The proof of this lemma is quite routine and so we only sketch it.
Fix a group-like multiplicative functional X. Suppose that it has finite
p-variation controlled by a regular w. We must construct piecewise
smooth paths whose iterated integrals approximate it. However, given
an element g of the group G(™) there is always a smooth path whose
first n iterated integrals at time one agree with g. Among these paths
the one with shortest projected distance in V' has been closely studied
[30]. In any case, its p-variation in a compact neighborhood of the
identity in G will be uniformly comparable® with ||lg — 1|]|. As a
consequence, we see that the paths obtained by taking the original
multiplicative functional, fixing a dissection, and then replacing the
intermediate segments of the multiplicative functional by these “chords”
re-parameterised so that they are transversed according to the times in
our dissection provide an approximating family of piecewise smooth
multiplicative functionals. The regularity of w ensures convergence.

The class of geometric multiplicative functionals will be of great
importance later. A number of questions that remain open relate to
the possible extension of theorems from QG(V)? to Q(V)P. Such an
extension corresponds to the extension from Stratonovich to It6 in the
classical probabilistic setting. In this paper, we will frequently use the
above lemma to obtain results for the geometric p-functionals that we
do not know how to prove more generally. We hope to understand
matters better, and return to this issue in a later paper.

2.3.1. Inhomogeneous degrees of smoothness.
Consider the equation

(2.92) dy = Zfi(yt) day + fO(y) dt

by taking our driving signal to be (zy,t) everything we said previously
applies. However, this is an analytically wasteful approach as we fail

5 The bound will depend on the values of n and p.



260 T. J. Lyons

to take advantage of the smoother character of one of the co-ordinates
in contrast with the others. So we remark now that at the price of
increased notational complexity, one may introduce a notion of multi-
plicative functional X, of finite p = (p1,...,pq) variation controlled
by w.

Definition 2.3.2. A path X,; in T(VI @ ---@® V%) is of finite p =
(p1,--.,paq) variation controlled by w providing the component

(2.93) XTI ey @V,

where r; € {1,...,d} satisfies

w(s7 t)ll/p1+"'+ld/l7d

(r1,...,7)
(2.94) [ Xl < 50 afpa)l
where
(2.95) I = He: ri =g}l .

l

In this case it is easy to see that essentially the same arguments and
definitions can be applied to get existence, uniqueness and continuity
theorems. The crucial point is that to get existence, and a uniqueness
theorem, one must know all the components of the multiplicative func-
tional for which I1/p1 + -+ + l3/ps < 1. The arguments vary scarcely
at all.

2.4. Differential equations driven by rough signals - The linear
case.

2.4.1. The flow induced by a rough multiplicative functional.

We now draw out some applications of our first theorems on mul-
tiplicative functionals.

Recall that a linear differential equation is one where the target
manifold (where y; takes its values) is a Banach space, and the linear
map from the space V carrying the driving signal z; has as its range
vector fields that are bounded linear maps

(2.96) x— A()z:V — hom (W, W).
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In our general form an equation can be reparameterised in this way if
the vector fields define a finite dimensional Lie algebra.

If x; is a smooth path then, as we saw previously, the linear flow
associated to the linear equation

(2.97) { dyy = A(y) dwy ,

dﬂ't = A() d.Tt Tt

can be recovered as the sum of the convergent Einstein series

(2.98) st =1+A / dz, + AA // ATy, ATy, + - - -
s<u<t s<ui<uz <t

The theorems in the last section associate to any element X in Q(V)P a
unique multiplicative functional X, = (1, X3,,..., Xs[{’g, X£{22+1, .
of arbitrarily high (and hence of infinite) degree and finite p-variation.

Because the terms X;,t decay like

1
(i/p)!

and this is faster than any geometric series grows, the series

(2.99)

(2.100) mop =1+ AX;, +AAX], + -

converges absolutely to an operator in hom (W, W). Moreover the map-
ping is obviously continuous from Q(V')P.

Lemma 2.4.1. The map
(2.101) mep =1+ AX], + AAXZ , + -

from Q(V)P to hom (W, W) respects multiplication. That is to say
Tst Tty — s, u-

REMARK 2.4.1. The fact that we can find a multiplicative extension
of our map from geometric paths to all p-multiplicative paths indicates
that the role of Q(V)P relative to QG (V)P is very similar to that of the
enveloping algebra to the Lie group.
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PRrROOF. If s,t,u are in V then
(2.102) (Av)(AAtQu) = AAAv®tQu, etc.

From this observation, the multiplicative property of X, and the abso-
lute convergence of all the series the result is immediate.

We could state a more abstract form of the above result.

Corollary 2.4.1. Suppose A is a bounded map from a Banach space
V into any Banach algebra Q) then the map

(2.103) ATty t = Teo t Adat Tto,to = 1,

defined on smooth paths in V' extends in a unique continuous way to the
geometric multiplicative functionals of finite p-variation in QG (V)P and
more generally to any regular multiplicative functional of p-variation.
The map is multiplicative on Q(V)P.

Although this allows us to give a meaning to (2.97) for elements of
Q(V)P, we only feel 100% confident about calling it a solution in the case
where X is an element of QG(V)P. The reason for our nervousness is
that if we apply the functional that we have just identified to an element
of Q(V)P that is not geometric, then the resulting operator is no longer
a path in the underlying Lie group, but an element of the enveloping
algebra. In other words, the natural solution to an It6 equation is
not a randomly evolving flow on the manifold, but rather an evolving
differential operator. Only the use of a connection can bring it back to
a flow.

Iterated integrals for solutions to linear equations.® We have
established that the Itd6 functional associated to a linear differential
equation can be extended to a continuous multiplicative function from
QG(V)P in a unique way. But our solution was a flow, or a path m
in the algebra of linear homomorphisms of W to itself. By evaluating
it against a single vector w we get the solution y; = mw which starts
at w. At least in the linear case it would seem that all is complete.
But this is not really the case. The point is that we would like the

6 The remarks in this section are far more significant than the reader might appreciate

on first inspection.
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solutions to our equation to be of the same class as the driving signal.
It is obvious from our estimates that the solution y; is a path in W of
finite p-variation. But we have seen that such paths are not the correct
objects with which to drive differential equations, we also require the
iterated integrals of low degree.

For smooth driving paths x; we can obviously construct all the
iterated integrals of y; and the joint iterated integrals of x; with ;.
This defines a map from S(V) into QG(V @ W)P. The question we
alm to answer in this section is the following: can we extend that
definition to one valid for any path in QG(V)P, or even to any path
in Q(V)P? We only have a general answer in the former case which
we now explain. (Understanding how to make the extension to Q (V)P
is the key to generalising I1t0’s type of differential equation to rougher
paths).

Consider the equation (2.97) driven by a piecewise smooth path.
The solution is again piecewise smooth, moreover the series solution
converges locally uniformly at the level of derivatives. Therefore we
have the expression for the iterated integrals of y

s<uy <---<u; <t

/ / ZAll (dxth,,) ZA’ (dxt,,) v

s<uy < <y <t 11=1 h=1

Providing we can justify changing the order of summation of the series
we have the alternative expression

@15 Y. Y ateeat [[ o axt,axt, e
S=T11+'l"'|>-lli=5 s<uy <---<u; <t
iz
where
(2.106) Ab @ ..o @ Al ettt hom (WO, W)

is the obvious induced map.
To obtain the absolute convergence of the series, and the continu-
ous extension of the map to QG(V)P, we must look a bit more closely
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at the expression for

I l;
(2.107) / / axb, .dXU,

s<uy <---<u; <t

At this point we exploit in a critical way the fact that we are dealing
with iterated integrals of the classical kind and are not working with
abstract multiplicative functionals. Now

[ axb,axt,

s<uy <---<u; <t

(2108) = // d'Tul,l o d'TUzll )

s<ur <---<u; <t
s<uy,1 <---<upy =u1,1,

and the domain of integration in this second expression can be parti-
tioned into disjoint simplexes. Given a sequence of distinct real num-
bers ui1 = vi,...,u;;;, = vs let ™ be the unique rearrangement of
1,...,S5 so that v;; are monotone decreasing. More generally, con-
sider the set of all rearrangements II; of 1,...,S that arise as one
reorders sequences up 1,...,u;;, satisfying s < u; < --- < u; < t,
s <wupy < - < wup = upy,, ete until s < Usp < voe < Uy = Ugg,.
These are in one to one correspondence with the number of ways to
partition 1,...,S into exactly ¢ components. The correspondence with
(l1,...,1;) is achieved by ordering the components according to their
last surviving element, (the component that becomes extinct first is the
first component etc.) and putting /; equal to the number of elements
in the j-th component. Each element 7 € II; induces a linear map of
YUt th) to itself, and this map 7* is an isometry. Because the do-
main of integration is the sum of the disjoint simplexes associated with
the rearrangements, and the integral is the sum of the integrals over
these disjoint domains, we have

(2.109) / / dXxl,, ---dXbi, =) X5,
s<uy <---<u; <t n€ll,

As we will see, this expression is easy to estimate, and we can read-
ily conclude that the expression (2.105) converges absolutely. So for
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smooth paths we have the identity

(2.110) Y7, = i Yoo A @AN Y XS P

S=tgy4tl;=8 m€ell
I;>1

which has the considerable attraction that the right hand side involves
x¢ only through it’s associated multiplicative functional and is essen-
tially a function on the infinite tensor algebra.

However, this expression should carry a government health warn-
ing. Certainly, the right hand side is (as we shall see) defined for any
multiplicative functional in Q(V')? and is a continuous function on that
space. For piecewise smooth paths, it defines a multiplicative functional
because it coincides with the iterated integrals of the piecewise smooth
path y;, using the continuity of the map it also defines a multiplicative
functional for any element of QG(V)?; indeed that path is geometric.

It is therefore tempting to assume the expression has a natural
interpretation for any multiplicative functional in Q(V)P, but this is a
mistake. The result will not be multiplicative, and so fails the most ba-
sic property we expect of iterated integrals, and their substitutes in the
rougher case. The point is that the expression on the right in (2.110)
is the unique linear function yielding the desired value on group-like
elements in the tensor algebra. However, although the functions on
smooth paths obtained by taking iterated integrals are linearly inde-
pendent (when regarded as elements of the space of functions on the
space of smooth paths), they are certainly not algebraically indepen-
dent. There are many different algebraic expressions that agree on the
sequences of iterated integrals corresponding to geometric multiplica-
tive paths.

Observe that (2.110) defines a multiplicative map from the group-
like elements in the tensor algebra of infinite degree into an associative
algebra. Arguing formally, we may differentiate to induce a Lie map
from the Lie elements of the tensor algebra into the associative algebra.
Again arguing formally, the tensor algebra is the enveloping algebra of
this embedded Lie algebra, and so exploiting the universal property of
enveloping algebras, there should exist a unique multiplicative extension
of the Lie map to the full tensor algebra.

If there is a unique extension of (2.110) to a continuous and multi-
plicative map from T'(W) it will not be linear. It’s construction would
allow us to give a unified treatment of differential equations of It6 and
Stratonovich type. We would then be confident that there was good
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sense in extending the It0 functional beyond geometric paths, and al-
lowing any multiplicative functional in Q(V)P to be the driving signal.

At the time of writing, we believe we understand the correct ap-
proach to the identification of such an extension in an analytically useful
form. (In the piecewise smooth case each iterated integral of y; solves
a differential equation over z;, and we may compute the Lie algebra
associated to it. In fact this Lie algebra is always finite dimensional.
Therefore, after a non-linear change of co-ordinates, we may express
the iterated integral as a Taylor series as we have mapped out earlier.
By computing these changes of co-ordinates the new expression would
be multiplicative for all X, in Q(V)P); confirmation and explicit de-
termination of the formulae one obtains requires calculations we have
not carried through and must wait for a later paper.

Theorem 2.4.1. The series (2.110) and (2.105) converge absolutely for
any multiplicative functional XS . in Q(V)P and define continuous func-

tions. The resulting sequence Ys; = {Y, t}z o 18 of finite p-variation
and

it w s, t w
2.111 Kz— KSiS
(2111) ¥l < Z/p, SZ )

|| ysll' -

If X, p in QG(V)? is multiplicative, then Yy, = {Y} }i is multiplica-
tive, and we have the asymptotically zmproved bound

_ Wyuls )/

PrOOF. Let K = ||A|| be the operator norm of A regarded as a linear
map A : V — hom (W, W). The number of partitionings of an ordered
set of S elements into exactly ¢ non-empty subsets is bounded above by

iS
(2.113) T
and so
. /A :
(2.114) 1Y < 30K o X3 el

S=t
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If X, is in Q(V)? and has variation controlled by w then one has the
estimate

Yl < ZKS ]

B it w(s, t)i/P w(s t)5/7 (i/p)! i

(2.115) =K i! z/p )! SZ::O ((S+1)/p)! i
i ﬁ w(svt)i/p S w(s ) i
<K R L

showing the series converges absolutely and bounding the individual
terms in a way that makes it clear that YS(?) has finite p-variation con-
trolled by a multiple of w on any interval where w is bounded. A vir-
tually identical argument shows the uniform continuity of the sequence
under variation of X ;. However, the constants in these estimates ex-
plode with the degree.

On the positive side, the continuity ensures that if X, is in

QG(V)P then YS(?) is multiplicative; our results in Section 2.2 and par-
ticularly Theorem 2.2.1 then give the much stronger and more useful
estimate that for n > p, w bounded by L, and with

47 ( = KSjSLS/P)p/j
(4)»/9 (S/p)! ’

(2116) U, = max [|y.[ K
J<[p]

choosing (3 large enough, we have
_ WUyw(s, )7
p(i/p)!

completing the proof of the theorem.

(2.117)

Cross terms. We have therefore seen that for linear equations the It6
functional can be extended in a unique continuous way as a map from
QG(V)? to QG(W)P. However, for technical reasons that will become
apparent later, we would like also to know that the iterated integrals
between solution and driving noise also exist. This is readily done by
extending the original differential equation, in other words we solve the
equation

dCt = OCt dl’t 5
(2118) di’t = C¢ dl’t ,
dys = A(y) dzy
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with ¢y = 0, £g = xo9. The equation is still linear and so we can use the
approach above to construct the iterated integrals of & and y and see
that they have unique continuous extension to QG (V).

In this way we see that if we wish to record the full structure

associated to our differential equation we should regard the Ité6 map as
an extension map lifting paths in QG(V)P to paths in QG(V & W)P.

2.4.2. The stochastic example.

What do the results we have proved so far say in the context of
Brownian motion and stochastic differential equations?

Suppose that X; € V is a continuous path in Euclidean space,
chosen randomly according to Wiener measure (in which case we say
it is a Brownian path) or more generally according to some measure
which makes the underlying stochastic process a martingale or semi-
martingale (when we say X; is a martingale or semimartingale path).
Then it is standard [11] that, with probability one, the forward and
symmetric Riemann sums

k/2" <t
XSZ,,tltO — nli)nc}o Z Xk/zn ® (Xk/2n — X(k+1)/2n) ,
s<k/2m
(2.119)
k/2m <t
Xpjon + X n
2,strat __ 1. k/2 (k+1)/2
s<k/2nm

converge uniformly in the time co-ordinates and define two distinct
multiplicative functionals

9120 X;t,? = (17 X — X, st,,éto) )
( ' ) Xstrat _ (1 X.—- X X2,stra,t)
s,t - ’ s ty s,t )

corresponding to the It6 and Stratonovich integrals. A simple Borel-
Cantelli lemma shows that with probability one they are both in Q(V')?
for every p > 2. The two multiplicative functionals agree in degree one,
so their difference is an additive function with values in two tensors. It
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is referred to by probabilists as the quadratic variation process

k/2" <t

1
(X, X)spe =75 lm D" (Xpjen — X(geg1y2n)
(2.121) 2nm00 Lot

® (Xpon — X(kt1)/27) 5

it has finite variation with probability one. Exploiting the It6 and
Stratonovich integrals further, one may construct higher order iterated
integrals. These sequences X1'? and X354 define multiplicative func-
tionals of finite p-variation and arbitrarily high degree.

By our theorems these higher iterated integrals etc. are continuous
functions of the path and its second iterated integral. The difference
between the Ito and Stratonovich equations driven by Brownian motion
depends entirely on the choice of multiplicative functional of degree two
that we use to extend Brownian motion.

To understand clearly the possibilities and choices made in extend-
ing our Brownian path to a multiplicative functional of degree two and
finite p-variation where 2 < p < 3, we must look more carefully at the
symmetric and anti-symmetric components of X?2.

Decomposing the second integral - the area or anti-symmetric
part. In our discussion of the iterated integrals of a smooth path, we
saw that the symmetric part of the classical second iterated integral of
a smooth path is

(2'122) % (Xt - Xs) ® (Xt - Xs)

and as this is a continuous function in the uniform topology this relation
will hold true for any geometric path. (One readily checks that for the
Stratonovich integral the symmetric component of the second integral
is precisely this continuous extension.)

To create a geometric multiplicative functional of degree two it is
therefore sufficient to construct the anti-symmetric two tensor process,
and to be multiplicative this must satisfy the algebraic relationship

(2123) As,u = As,t + At,’u, + AI‘G& (XS Xt Xu) s
where

(2.124) Area (PQR),
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is the area of the triangle interpolating the three points P, @, R. (Ob-
serve that the area associated to a loop formed by taking a chord and
the trajectory of the path along the time interval [s, t] would obviously
satisfy this relationship).

Definition 2.4.1. We call an anti-symmetric two tensor process sat-
isfying (2.123) an area process relative to the path Xs.

Suppose 2 < p < 3, then for any path of finite p-variation in V', and
associated area process A, ; (having the correct modulus of continuity)
the multiplicative functional

1
(2.125) (1, Xi— Xi 5 (Xo— X,)© (X — X,) + As,t)

defines a geometric multiplicative functional in QG(V)?. The geometric
condition does not imply any sort of uniqueness or canonical choice for
the the area process given the underlying path, this is in contrast to
the unique continuous choice for symmetric component. Even if X; is
smooth, there are many elements of QG(V)? lying over the path. Con-
sider the multiplicative functional Y5 ; = (1,0, %(t) — ¢ (s)) constructed
by taking the limit of the increments and second integrals of the smooth
paths exp (n?wi(t))/(nr). The result is geometric, non-trivial, and
for smooth enough 3 will be in QG(R?)?, however it projects to the
constant path.

The key, then, to defining stochastic differential equations is the
choice of this area integral. It really is a choice even in the Brown-
ian case, the work [25] demonstrates just how tenuous the connection
between Lévy area and geometric area of smooth paths really is.

The 1t6 and Stratonovich second iterated integrals only differ in
the symmetric bracket process, they share a common area process - the
Lévy Area. The Stratonovich multiplicative functional is geometric.

Theorem 2.4.2. Let X; be a semi-martingale and A, be its Lévy
area. The linear stochastic differential equation

where v — A(, ) in hom (V, hom (W, W)), and B() in hom (W, W),
are bounded operators which can be regarded as the composition of a con-
tinwous function on Q(V,R)?>*®1 and the random multiplicative func-
tional

1
(2.127) (1, Xp— Xoo5 (Xe = X) ® (Xi = X,) + As,t) .
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In particular, all equations can be solved simultaneously with only a
single null set. The equations can be chosen to depend on the path, end
point of the solution etc.

PROOF. There is little to say. The driving signal is (X, 1), so that if
we consider the inhomogeneous p-variation introduced in (2.3.1), (The
cross-iterated integrals against ¢ are all canonically defined) we deduce
that the differential equation can be extended from the class of smooth
paths in an unique way to QG(V, R)2*1. The multiplicative functional
(2.127), with probability one, takes its values in QG (V,R)?*<! [23]. We
claim that this construction obtained by taking the composition of the
two maps coincides with the Stratonovich solution which probabilists
construct.

Fortunately, the very continuity of the map from QG(V,R)*te!
ensures this. It is well known that one may solve a Stratonovich dif-
ferential equation in probability, by replacing the semimartingale path
by its dyadic piecewise linear approximations, and then taking the so-
lutions to the equation driven by these piecewise linear equations [11].

On the other hand, our definition of the Lévy area makes it clear
that it is the limit of the areas associated to these piecewise linear paths,
a Borel-Cantelli argument ([8], Sipildinen) shows that the rate of con-
vergence is fast enough for the piecewise linear paths, and their iterated
integrals to converge in QG(V,R)?*%!. By our continuity results, we
see that our solution and the conventional probabilistic one agree with
probability one.

Finally observe that our solution is obtained by composing a de-
terministic function depending on the coefficients of the equation with
a random multiplicative functional constructed almost surely, but with
a null set that is independent of the coefficients of the equation. In par-
ticular we may solve all such equations simultaneously and can choose
the equation so as to depend on the path without difficulty of interpre-
tation. No predictability condition is involved.

REMARKS 2.4.1. (GENERALIZING THE EQUATION. We will in due
course prove that we can develop continuity results in the fully non-
linear situation where the vector fields in the differential equation are
Lip (2 +¢,V) so the remarks above apply in much greater generality
than the linear case proven so far.

REMARKS 2.4.2. GENERALIZING THE NOISE. There are a number of
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directions in which one could generalize the noise. One should certainly
consider jumps; in general these are a little easier, because pure jump
random processes tend to have finite variation for p < 2. The area inte-
gral does not come into the picture [31]. In another direction, one could
look at other Markov processes as driving processes for dynamical sys-
tems. Here, matters still seem relatively open, except that one can say
there are wide classes of Markov processes which extend, like Brownian
motion, to admit Lévy area processes, and hence Stratonovich differen-
tial equations; but which are definitely not semi-martingales and cannot
be attacked via the standard Ito theory.

In these situations where the usual theory simply does not apply
[10] an alternative approach is required to construct the Lévy area.
Now, Lévy proved, if one takes the piecewise linear approximation to
the path X that agrees at 2™ equally spaced points and look at the
sequence of areas as one refines the dyadic partitions. Then if X is
Brownian motion, this sequence forms a martingale over the filtration
obtained by revealing X at the 2" equally spaced points. In many other
situations, one can still show that it is a convergent semi-martingale.
The classical martingale techniques are still important - but not the
time ordered filtration.

The symmetric part of ngt and Ito Equations. By now a per-
sistent reader might understand enough to guess that constructing dif-
ferent second order multiplicative extensions to Brownian motion is
essentially equivalent to varying our notion of solution to our stochas-
tic differential equation. Even so we are at least superficially surprised
that the distinction between [t0 and Stratonovich second integrals is
not in the discontinuous Lévy area, but in the symmetric part; the part
which has a natural continuous choice for all continuous paths!

The difference between the 1t6 and Stratonovich approaches lie in
the symmetric additive functional known as the quadratic variation or
bracket process.

The earlier results about iterated integrals apply to the It6 equa-
tion and it is easy to write down series solutions etc. but now those
series involve the bracket process. To apply our approach we express
our equations in co-ordinate invariant form. An It6 equation

(2.128) dys = f'(ys) dz + fO(ye) dt
always requires a connection before it makes good sense, but can then
be rewritten in the Stratonovich form

(2.129) dyy = f*(ye) daf + fO(ye) dt + Vg f7d(X, X))
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and one can deduce all the theorems one had before, but now the de-
pendence includes the bracket process separately.

Theorem 2.4.3. Constider the linear Ité stochastic differential equation
(2.126)

where x — A( , ) in hom (V, hom (W, W)), and B( ) in hom (W, W),
are bounded operators. This map can be regarded as the composition of
a continuous function on Q(V, VRV, R)2+<LL and a random multiplica-
tive functional depending only on the path, its Lévy area, and its bracket
process. In particular, all equations can be solved simultaneously with
only a single null set. The equations can be chosen to depend on the
path, end point of the solution etc.

In particular, this perspective suggests that for robust numerical
solution of stochastic differential equations, one should not try to im-
plicitly simulate the bracket process locally as the quadratic variation
of the path, (as one does when one solves an It6 equation directly using
Euler type methods) but treat it separately as a known quantity and
go via Stratonovich methods. We think this is definitely true in some
cases, although it is not the whole story, and a complete understand-
ing of differential equations driven by (non-geometric) multiplicative
functionals will be required to give a better answer.

3. Integration against a rough path.

In this section we move from the linear/real analytic setting to the
truly non-linear/rough setting. Our objective is to define the integral
of a rough path against a one form.

3.1. Almost multiplicative functionals - The construction of
an integral.

We have shown in Section 2.2 that if X € T(" is p-multiplicative
(where we will use the convention n = [p]) then it extends in a unique
way to a multiplicative functional X, of finite p -variation in 7™ for
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all m > n and if X,; is controlled by w in 7™ so that

w(s,t)f/p

Bi/p)

then one has the same estimate for all j < co. (Here (3 is an appropri-
ately chosen constant depending only on p). Similar estimates reflect
the continuity of this extension map.

We will now explain how, with some loss of quantitative control,
this result can be seen as a special case of a more general one concerning
almost multiplicative functionals.

(3.1) 1X2,]I < for all j <,

Definition 3.1.1. Suppose X is any functional taking values in T,
we say it is of finite p-variation controlled by w if, for all s,t,

) j/p
(3.2) | X2, < % , forall j <n,

In addition we say that such an X is an almost multiplicative func-
tional if for any compact interval J there is a 8 and a K such that for
all s,t and w in J we have

(3.3)  |[(Xst Xto — Xsu)j|| < Kw(s,u)e, forallj <n, 6>1.

OBSERVATIONS 3.1.1. We have already seen an almost multiplicative
functional. The lift Xy, = (1, XL,..., X7, 0) defined in the proof of
Theorem 2.2.1 is an almost multiplicative functional controlled by w
providing X = (1,..., X7) is a multiplicative functional of finite p-
variation where n > [p]. We see therefore that (ignoring the quality of
the estimates) Theorem 2.2.1 is a special case of the following.

Theorem 3.3.1. Suppose X is a bounded almost multiplicative func-
tional controlled by w on the compact interval J of degree n. Then there
exists a unique multiplicative functional X on J and a constant

L,K,0 t
C( s 3 7$%§w(87 )7”)7

such that

(3.4) (X — Xo)¥|| < C (L, K, 0, max (s, 1), n) w(s,t)?,
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for all © < n. There is at most one multiplicative functional X, that
can satisfy (3.4) regardless of the choice of C. Here 0, K and w are the
terms in the definition of almost multiplicative and L s the uniform
bound on the components of X;.

Corollary 3.1.1. In addition, if X has finite p-variation controlled
by w then X has p-variation controlled by Cy1 w where Cy only depends
on K, 0, max{w(s,t), s,t € J} and n.

PRrROOF OF THE THEOREM. We proceed by induction and suppose the
projection of X, into T'U) has the multiplicative property. Presuming
for a moment existence of the limit, define X as follows

(35) (XSt)j+1 - meslflli(rlr)l)—)o (XStl Xt1t2 Y Xtrflt)j—’—l

and for all i # j +1 take (X,;)* = (X4)". In this case it is clear that X
will be multiplicative on TU+Y) . If we show the existence of (X,;)7*1,
establish that X is almost multiplicative, and compare it with X, we
will have established the induction step. Iterating it completes the
proof.

We proceed in a similar way to before. Let

XsD,t = XS,t1Xt1,t2 o 'Xtr—lvt ’
where D = {s,t1,...,t,_1,t} is a dissection of [s,t]. First we bound
(3.6) (XD - X )t

independently of the choice of dissection D, and then we will show the
convergence of the products as the mesh size of the dissections tends
to zero, always providing w is regular. Observe first that in the case
where the dissection is trivial, » = 2, the difference in (3.6) is zero.
Assume the dissection is nontrivial, and choose an interior point t; of
the dissection D so that

w(ti—1,tiy1) < w(s,t)

(r—2)
or equals w(s,t) in the case where r = 3. Let D' = D — {t;}. If we
estimate ((XZ — XL2'))7*! and the similar terms as we successively
remove all the interior points of the dissection, we may use the triangle
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inequality to estimate (3.6); we will obtain a bound, which in analogy
with our previous arguments, is easily seen to be dissection independent.
Now

(3.7) (X5 - x5+
= (XftT£sl,ti_1] (Xti—latiXtiati+1
DN(ti+1,t]\4
(3.8) — Xy ) Xt

and the multiplicative nature of X ensures that

1
(39) XtifltiXtitzﬁkl - Xtiti+1 = (0 0 R]fl,tl7t1+17 . )
j+1 terms
and so
! . s 1
(310) ((Xg - XSDt ))J+1 = R‘Zil,ti,ti+1 °

But the almost multiplicative property then gives the estimate

ti 1 7tl 7t1+1

2 (4
(3.11)  ||RIt | < K w(tioy, tisy)? gK( 2) w(s, )’

r —
for r > 3 and the similar estimate for r = 3. Summing these error
estimates as one drops points from the dissection leads to the, by now,
familiar estimate

(3.12) (X0 — Xo ) < K (2°(C(0) = 1) + D w(s, 1),

and the consequential argument that if w is regular, then the X con-
verge as the mesh size of the dissection goes to zero. In particular we
may define

X, )t = i XDyi+1
( 7t) meshl(IlI)l)—>0( St)

It follows that if

(3.13) R = (X,, — X))t

then

(3.14) IRG < K (2°(¢(0) = 1) + D w(s, )’
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To see that X is almost multiplicative, observe that

0, 1<g+1,

~ ~ ~ . (XstXtu - Xsu)z
(3.15)  (Xut Xpu — Xou)' = +RIF X+
+Xsit_(j+l) jol . i>j+1.

tu

and providing || X%,|| < L for all i < n, s,t € J we have the estimate

||(XstXtu - Xsu)ZH < Kw(s,u)e

(3.16) +2LK(2°(c(0) — 1) + 1) w(s,u)’,

completing the proof that X is almost multiplicative, but with the new
constant

(3.17) K<K((1+2L(2°¢&(0)—1)+1)),
and a new uniform bound

(3.18) L<L+K(2%c¢(0)—1)+1) max w(s,t)?.

As X is also almost multiplicative controlled by a multiple of w and
bounded on J this completes the basic induction step. Observing that
the theorem is trivial if j = 0 and repeating the step n times completes
the construction of the multiplicative functional.

To see uniqueness of the functional, it is enough to show that if

one has two multiplicative functionals X st X st and they satisfy

(319)  [[(Xu— X)) < Cuw(s,t)?, forallsted, i<n,

then they agree for all © < n. The proof is also an induction argument,
fix the smallest ¢ for which the two multiplicative functionals differ.
Then putting

P(s,t) = (X g — Xat)'

one obtains from the multiplicative property that

b(s,u) = (s,t) + (L, u)
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and hence for any dissection one has the estimate that
P(s,1) < (mgx W(tistir1))"tw(s, 1) .

For regular w on an interval .J this forces 1 (s,t) = 0 contradicting the
induction hypothesis.

The theorem and its proof only require a boundedness assumption
on X and regularity assumption on w.

PrROOF OF THE COROLLARY. Suppose now that X is of finite p-
variation controlled by w on T, where n/p < 6. Then it is a simple
application of the triang le inequality to see that X is also of finite
p-variation on 7. If n > p then one may repeat the uniqueness
induction argument we have just given to deduce that the new mul-
tiplicative functional we have constructed in this theorem agrees with

the unique multiplicative extension of finite p-variation we constructed
in Theorem 2.2.1.

3.3.1. Applications and extensions.

A) The map from p-almost multiplicative functional to p-multipli-
cative functional is a uniformly continuous one. However, this is not a
consequence of the result so much as of the proof. Suppose that X, Y
are two almost multiplicative functionals controlled by the same K, w, 6.
And suppose that they are close to each other in the sense that

(3.20) 1(Xsp = Yo'l <ew(s, )7, i <[p],
then of course by the triangle inequality
(3.21) (Xt — Vi)'l < cw(s, t)P + Cw(s,t)®

and for i < [p] this looks adequate. But for ¢ < C w(s,t)?~[P1/P or less
seriously w(s,t) > 1 the estimate deteriorates. The key to the proof of
a continuity result is to observe that at each stage in the construction of
the multiplicative functional out of the almost multiplicative functional,
we can control the difference between the two approximations. We then
obtain the following theorem.
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Theorem 3.1.2. Suppose that X, Y are two almost multiplicative
functionals controlled by the same K,w,0, and that w(s,t) < L for
s,t € J. Suppose further that X,Y are close in the p-variation sense
so that

(3.22) 1(Xoe = Yool <ew(s, )P, i< [p],

then there is a continuous, increasing function §(g) depending only on
K,L,0,p and satisfying 6(0) = 0 so that the associated multiplicative
functionals satisfy

(3.23) (Xt = Ya)'ll < (e)

for all 7.

PROOF. Because of Theorem 3.1.1, it is sufficient that we deal with the
case ¢ < [p].

Suppose X, Y are almost multiplicative and multiplicative up
to degree j < [p]; and that they satisfy the hypotheses of the theorem.
Define X, Y by

3.24 X))t = 1 Xy Xoopo - X J+l
( ) (Xst) meshl(%l)_)o( t1 <Nt to tr_lt)

and for all i # j +1 take (X)" = (X,)*, and similarly for Y. We will
show that these are close in the sense of the conclusion. Repeating the

argument the required finite number of times, the result will follow.
Define XSL,’t = X0, Xty 0o Xy etc. where

r71)t7
D= {S,tl,...,tr_l,t}.

We will estimate ||(X,,; — Ys0)7 1| by controlling (XX — Y2)/*1in a
uniform way and passing to the limit. Now as before we may succes-
sively drop points from the dissection. By making a careful choice of
the point to drop (but note that the choice depends on w alone, and can
be common for both functionals) we have the following two estimates;
because of the almost multiplicativeness we have

' 2 \?
(3.25) l(x2 - X2V < K () wis0’.
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for r > 3 and the similar estimate for » = 3. Combining the estimates
for Y we have

’ o 2 6
(3.26) (X5 -¥D) - (XB —Y2 )W <2K (=) ws.t)’,
r —
while using the closeness hypothesis, (and some crude version of the
neo-classical inequality) one obtains

(X5 -YD)— (XL -Y))
(3.27) 1 >(j+1>/p

< Ap) (e +¢%) (5

w(s, t)UTD/P
so combining the two and using the uniform bound that w(s,t) < L one
has

(X5 -Y)7}) - (XSIZ' — Ys?’))jﬂH
(3.28) < (A(p) (e +€?) (i) e
2

A2 K LO-G+D/p ( 2>9) w(s, 1) +D/2
r —

and summing this over r yields the required uniform estimate.

B) As a second simple, but rather important corollary of Theorem
3.1.1, we see that it is possible to vary one multiplicative functional in
the direction of a second. In particular, suppose that X is a multi-
plicative functional of finite p-variation controlled by w and that H;
is a second; and suppose further that ||(H.)’| < K(w(s,t))? for all
Jj < [p] and for some ¢ > 1 — 1/p. In this case, the neo-classical
inequality shows H X to be of finite p-variation an d more ele-
mentary considerations show it to be almost multiplicative. Moreover
|(HyXs — X Hy)?|| < K(w(s,t))?TYP, and so Theorem 3.1.1 shows
that the multiplicative functional associated to the left or right hand
perturbations of X coincide. We denote this modification by X ft
Although we do not have time in this paper to pursue the matter, it
will be useful if we want to differentiate functionals on path space.
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3.2. Integrating a one-form - A most important almost mul-
tiplicative functional.

Our intention is to solve equations of the type
(3.29) dY = f(YV)dX, Yo=a,

where X and Y are multiplicative functionals and where Y, = Yy, +Y).
We wish to adopt an approach based on Picard iteration, in other words
we treat our equation as an integral equation and construct a solution
by iterating the function F'

(3.30) F(Y)—a+ /t F(Va) dX, .

Although such an approach is almost universal, it is apparently un-
natural from a geometric perspective. Every term in our differential
equation is meaningful without a choice of co-ordinates for the space
where Y takes its values and one would hope that the solution had the
same properties. However, the functional in (3.30) certainly involves a
choice of co-ordinate chart, and different choices produce different maps
F.

To succeed in our Picard iteration we now follow up these two
separate but closely related points. We must make sense of the concept
of an integral, and we must understand its behaviour under changes of
variable.

3.2.1. Integrating a one form.

We will now prove that a one form can be integrated against a mul-
tiplicative functional in a natural way. We do this via the construction
of an almost multiplicative functional. The reader should be warned
that our methods are currently limited, and in general we can only treat
geometric multiplicative functionals of finite p-variation. However, for
the case where the paths have p-variation satistying p < 3 (and so de-
gree is n < 2) then the next section will extend these results to all
multiplicative functionals. This improvement in the case n = 2 is im-
portant because it allows one to treat the It6 approach to differential
equations in common with the Stratonovich approach. We believe our
failure to extend the result to all multiplicative functionals in the gen-
eral case reflects a lack of understanding on our part, inspection and
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guess work allow one to treat n = 2 but do not point to the general
picture.

But before explaining the analysis, for the sake of precision, we
need some simple notation.

Definition 3.2.1. We say that a multiplicative functional X, € T
lies above a path Xy € V if X |, = Xy — X,.

It is clear that there always is such a path under any multiplicative
functional and that it is unique, once we have determined its value at
a single time. In what follows we will use the notation (vector font,
normal font) to express this relationship without further mention.

Main Lemma. Notation. A W-valued 1-form ¢ on V is a function
on V whose value at any point is a linear homomorphism from V to
W, that is 9(v) € hom (V, W). Suppose that ¢ is smooth enough that
one can differentiate it. Denote by

It =9, 9t(v) € hom (V, W),
92 =d9,  9%(v) € hom (V, hom (V, W))
(3.31) = hom(VeV,W),

k
Ik = d9*-1, 9%(v) € hom ((? V,W).

Now, the multilinear map 9¥*(v) is not symmetric in all its coefficients
- and so one must have some convention on the order in which they
appear. We adopt the convention that ¥%(v) (vi,va,...,vx) is defined
so that for smooth paths and conventional integrals

/ 19k(xu) (dzy,ve, ..., V)
(3.32) s<u<t

=9 (xy) (va, ..., vk) — 9 Y(w,) (va, ..., 0k) .

Recall that ¥ is a Lip(y — 1) one form with norm at most M providing
that for 1 < j < v one has the Taylor series style expression

W (z¢) (v1,v2,...,05) = Z 9t (1) (a:f)yt, V1,02, ..., 0;)
(3.33) 0<i<y—j

+ Rj(l'o,xt) (?)1,1}2, .. .,Uj) 5
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where ¥¢(x) and R*(z,y) are bounded in operator norm on

7
hom ( Q. W)
1
with the controls
19 (@)l < M,
1B (z, y)|| < M|z —y[["*.
As we noted (1.2.2), the remainder only depends on z(, and x, and
not on the intermediate smooth path segment. Exploiting this point,
and taking a limit, we see that the identity (3.33) and estimate (3.34)
hold for any sequence (1,x; = wg,t, ce wf),t) arising from a geometric
multiplicative functional.

We are now in a position to define the crucial almost multiplicative
functional which will give us the integral. We start with a definition
which is understandable for smooth paths, and then transform it in a
combinatorial way so that it is clear that the functional is the restriction
of a uniformly continuous function defined on all paths in Q(V)P. This
extension is easily seen to define an almost multiplicative functional
when evaluated on QG (V)P and this completes the definition/theorem.
As a warning, this functional (which is linear) definitely does not give
an almost multiplicative functional for a general element of Q(V)P.

(3.34)

Predefinition 3.2.1. For 9 a Lip(y — 1) one form with values in
W, and X, a geometric multiplicative functional of finite p-variation

(obtained by taking a sequence of iterated integrals of a smooth path),
define

YZ

s;t = // Z 1911 dXélul)

(3 35) S<’U/1<---<ui<tl1_

Zﬁl ) (dXL,,)

=1

Because the 9'i (X,) are constants we may equate the expression with
= Z RACOLILERES

(3.36) iy
/ / daxi, ---dXh, .

s<uy <---<u; <t
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Focus attention on [[ _. _ . _ dX[}, ---dXJ, . For our smooth
path one has

/ / dXéful . -dxggui

— //qu1,1 o dXyy o dXy,, o d X,
1%

where the domain of integration V' is given by
V=a=s<u <~ <u; <t,

s<ury <---<uy, =Uui,
(3.38)

s <y < e < Uj = U

But this domain of integration is a product of simplexes and can be
represented as a union of disjoint simplexes obtained by shuffling. Fix
L= (l1,...,0) and let u = (1,1, UL L,y Uids--.,Ui,) De any
distinct sequence satisfying the constraints of (3.38). Let m, denote the
permutation that would reorder the numbers u to be increasing, and let
II; denote the range of this function as a subset of the group ¥y of
permutations of ||l|| elements where ||I|| = > l;. We can expand
our integral as a sum

/ / Xl ---dXl,

s<uy <---<u; <t

- Z // AX oy 0y A Xy -
TEIL s <ur <oy <t

J=1,....i

(3.39)

Now the group %, acts on @V in the obvious way taking (vy,...,v,)
to (Vr(1), - +»VUn(n))- It follows that

// dXél,-’u,]_ e dXél,’u,l

s<uy <---<u; <t

(3.40) = Z 7T( // dXy, - 'dX“nLn)

WEH[_ S<’U]_<---<’U||”|<t

= Y nxl)

‘II'EHI_
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and so finally we have reduced the integral to an expression involving
only the multiplicative functional. Regarding this calculation as moti-
vation, we give our formal definition for Y ;.

Definition 3.2.2. For any multiplicative functional X, , in QG(V)?
define,

[v]
(3.41) vi= Y "X)e-00h(X) Y o(xl.

l1,..,0;=1 TFEHl_

Theorem 3.2.1. For any multiplicative functional X , in QG(V)? and
any one-form 6 € Liply — 1,{ Xy, u € [s,t]}] with v > p the sequence
Y. = (LY, .. .,Kg[ﬁ]) defined above is almost multiplicative and of
finite p-variation; if X, is controlled by w on J where w is bounded
by L, and the Lip[y — 1] norm of 0 is bounded by M, then the almost
multiplicative and p-variation properties of Y are controlled by multiples
of w which depend only on ~v,p, L, M.

Proor. Note that we also have the trivial estimate based on the size
of the permutation group that

121/ p

axl, ---dXxh | s P

(3.42) 3<“1<[-[u-<t o | < T B [tl/p)!
| 12]|/p
el e

< Ik 5 G

We must now prove that Y, ; is almost multiplicative when restricted
to QG(V)P. For motivation of our calculations we again start by for-
mally regarding our multiplicative functional as a sequence of iterated
integrals.

/ / 219’1 o) (dXl, ) Zwl ) (dX,)

s<ur<---<u; <ul1=1 li=1

SR

T=lenl py, g < <u<u s<uy < <<t 1L

Z 9 (X,) (aXL,))

l,=1
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(3.43)
lr 1 lr 1
® Z 9l (X,) (dX b )
r+1—
219’ ) (dX1i,,)
;=1
[p]

= (Ys,t ® (// > o (X,) (dX],,)
t<u1<---<Uj<ul1_

Z 99 (X,) (dXY4,)) [p_]o)

l;=1

This expression looks close to our target, but we must move the ref-
erence point in the second half of the expression from the time point
s to the time point t. This follows from the Taylor type expression.
Consider the terms 9*(X,) dX| , where u > ¢. Then again by linearity

of tensor multiplication one gets dX! , = (X, ® dX;,)" and so

[p] 1-1 or i . .
Zﬂl (XL ,) =Y Y ONX) (XD, ©dX],})

=1 =0
[p] [pl-7

(3.44) - IH(X,) (XE, ®dX],)
=1 =0
L T ,

=Y (X)) (dX],) + D R (Xo, Xy) (dX],)

j=1 j=1

L and so we have

}fs,u: s,t®}ft,u
(]
+Ys,t®( > (Zﬂ’l(Xs,Xt)®---®[5’”(X3,Xt)

li,..l,i=1 B

1 It is exactly at this point that one is assuming the derivatives of the one form

contract with the iterated integrals to produce a result that depends on the path chosen
only through it’s initial and terminal values. In other words, the iterated integrals differ

from those of the chord X;— X, by an element in the enveloping algebra.
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(3.45)

)

dXxh

t,u,1

t<u;<---<u;<u

where the sum is over all sequences (8 where
(3.46) g e {0(X,), RN (X0, X)}

and where for each [, one has, for at least one of [;, that 8! = RY( Xy, X¢).
It is then an easy matter to estimate the size of this term and see that
the functional is almost multiplicative.

One has that

H % (Zﬁll (X, Xp) ® -+ ® B (X5, Xy)

I1,...,0;=1 16]
- / / axp, --dxj,, )|

t<u; <---<u;<u

. [p] . .
<MY (@ D)) (1 X - XY X, X

I1,..,l;=1

w(t,u)(ll+...+l+...li)/p
B (1l/p)!
< MX, — Xe| "7 w(t, u) /P
[p] ' ' '
Y@ D) I (1 X — X (L w(t ) DRy

l1,..,0;=1

where the passage from the first to second expression is based on the es-
timate given above for the iterated integral of iterated integrals, count-
ing the number of 3, and by exploiting the inequality

(3.47) B (X, Xp) < M (14 || X, — X771

in all but one of the terms in the product, in the latter one uses the fact
that the remainder type term appears at least, once to be more precise

rw(t,u)t/P I+i1/p w(t, w)t/P\v—1yi-1
<Ml(%>w(t,u)+ /(1+<%) )
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L - (] 2i_1 11
e IV

rw(t, u)YP\ v I+im1/p w(t, u)/Pyr-1yi-1
<ot (Zr ) e (1 (MREE) )

ip]
: w(t. u)—D/pyi-t w
(1+w(t,u) ) mz::l S
G[p] + )12 —1) . w(t,u)/P\r-1 .
< M (Far) e

. (1 + (%)7_1>i_1 (14 wl(t, u)(v—l)/p)i—l

< K(p,B) Mt w(s,u)Y+i-1/p <1 + (

w(t, u) ) (’7—1)/23) 2(i—1)
(1/p)!
and since v > p and ¢ > 1 we have the estimate. The functional Yy, is
almost multiplicative with power v/p. It is interesting that the const
ant grows so rapidly with the roughness of the path.

To finalize the argument, recall that we did some manipulations of
Y.: where we used the representation of the terms in the iterated inte-
gral to motivate certain manipulations which were obvious for classical
smooth integrals because of their general properties of linearity and
additivity over disjoint simplexes. It is necessary to convince oneself
that an integrated form of (3.44) holds when a geometric multiplicative
functional is substituted for the iterated integrals of the smooth path.
This is obvious for geometric multiplicative functionals because the al-
gebraic identities clearly hold on a closed set containing the lifts of the
smooth paths. By definition this includes QG (V).

As a consequence of this result we can define the integral of a
1-form.

Definition 3.2.3. We say that Y.s,t is the integral of the one form 0

against X iff’s’t s the multiplicative functional associated to the almost
multiplicative functional we defined above. In this case we write

ffs,t - / H(Xu) 5Xu ’
(348) s<u<t

Y =0(X)6X .
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We now have an integral. We also have a change of variable for-
mula.

Corollary 3.2.1. Suppose f is a Lip[y] map from V. — U then it
induces a natural map of QG(V)P — QG(U)P providing v > p.

PRrROOF. Apply the above theorem to the differential of f.

So just as semimartingales as a class are preserved by smooth maps,
so is QG(V)P.

3.2.2. The two step case - p-variation less than 3.

The reader may be particularly interested in the special case which
includes stochastic differential equations. For this reason we treat in-
dependently the case where one has a multiplicative functional of de-
gree two, the more explicit approach developed here permits a stronger
result. We show that it is possible to integrate any p-multiplicative
functional against a Lip[y — 1] one form providing v > p. Again our
approach is to construct an almost multiplicative functional and al-
though the result is almost contained in the previous section it seems
worth the effort of doing the calculation explicitly in this important
special case to identify the constants and (perhaps?) get a feel for how
to generalise to the general case.

Even in this case there are many terms and the algebra is relatively
complex. Mathematica was used by the author to keep track of some
of the terms in the calculations.

Our basic idea can be summarized by saying we start with a multi-
plicative functional X of degree two which we think of as representing
the integral and second iterated integral of a path X . We write down
the obvious approximation to the integral and iterated integral of the
integral of X against a 1-form. This is not multiplicative, but it is
almost multiplicative. The unique multiplicative functional that is ap-
propriately close is regarded as the integral of X against the 1-form.

Fix 2 < p < 3. Then X is a multiplicative functional on J with
p-variation controlled by w if

IXel Sw(t, )7 and  [IXE < wit,s)*?.

Suppose that 0 is a 1-form that is Lip[y] where p — 1 <y < 2.
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By Taylor’s theorem

< M w(t,s)/?.

(349 [ocxn) - 60x.) - 5 (@0) (X.) (X2)

So if we wish to approximate the iterated integrals of Y the “integral”
of X against 6, it makes sense to consider

Yoo = {100X0) (X2 + 5 (d6) (X,) (X2),00X.) © 0(X,) (X3)}

Clearly, Y, ; has finite p-variation controlled by 2 M w. We will now
establish the claim that it is also an almost multiplicative functional

Yoo = {1,00X0) (X2 + J (d6) (X,) (X2),0(X.) ©.0(X.) (X2) }.
Yo = {1,000 (XA4) + 3 (d0) (X,) (X2,),0(X) @ 0(X,) (X2}

Voo © Yo = {1,00X,) (X}) + 3 (d6) (X,) (X3) + 0(X,) (XA,)
+ 3 (d6) (X) (X2,),
(351) (0(X2) (k) + 5 (d0) (X.)(X2)
® (0(X) (XA) + 5 (d60) (X) (X2,)

+0(X,) ®0(X,) (X23) +0(X) ®0(X,) (X2},

Yo — Yo ® Y= {0,00X,) (X[,) + 3 (d6) (X,) (X2,)
— (0(X) (XL,) + 5 (d6) (X,) (X2)
FO(X) (XD) + 3 (d6) (X0) (X2,)),
0(X,) @ 0(X,) (X7,)
(352) —(B0X) (X1 + 5 (9) (X.) (X2)
© (0(X) (X1) + 5 (@) (X.) (X2,)
FO(X,) (Xh) + 5 (d0) (X,) (X2)

FO(X) (Xh) + 5 (d6) (X)) (X2))}
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now recalling Taylor’s theorem

0(X0) = 0(X.) + 5 (d0) (X.) (X}) + (s, 5),

||T1(t7 S)H < Mw(ta 8)7/p
and
d0(X,) = dO(X,) + ra(t, )

(3.53)
||T2(t7 S)H < Mw(tv S)(’Y_l)/p :
We use these approximations to estimate Yy, — Y5 ® Y. Substituting
both approximations into the 1-tensor component of Y ® Yz, , substi-
tuting only the first into the 2-tensor component, and expanding out
each term in X7, within Yy, in terms of X7,, X/, using the multi-
plicative proper ty for X one has after a tedious calculation with many
terms (or using Mathematica after a relatively complex set of manipu-
lations) the three terms of different tensor degree in Yy, — Yy @ Yz, in
increasing order of complexity.
The zero’th order term is clearly zero.

The first order term is r1(s,t) X/}, + 72(s,t) X7, and

Ir1(s,) Xy, +72(s, ) X7, |

< M (w(s, )P w(t,w) 7 + w(s, )0/ w(t, u))
(3.54)
< 2]\/_[(4,(37U})("H-l)/p7

giving the required estimate.

The second order term breaks naturally (if somewhat painfully)
into a sum of 15 terms, which under our assumptions are of 5 different
magnitudes.

(6(X,) ® dO(X,)) (X5, © X7,)

+(0(X,) @ dO(Xy)) (X1, © X7,)

+ (dI(X,) ® 0(X,)) (X, @ X7\, + X7, © X[,,)
+(0(X5) @ dO(Xy)) (X, © X5, ® X;,)

(3.55)

+ (0(Xs) @ r1(s, 1)) (X7, + X} @ X))
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(3.56)
+ (r1(s, 1) ® 0(Xy)) (X7,,)
+ (dO(X,) ® dO(Xy)) (X2, ® X7,)
+ (dO(X,) @ dI(X,)) (X], ® X2, ® X[ ,)
+ (dO(X,) @ r1(s,t)) (X, ® XZ))
(3.58) + (dO(X,) @ r1(s,t)) (X, ® X7,)
+ (ri(s,t) ® d(Xy)) (X, © X7,)
(3.59)

+ (ri(s,t) @ ri(s,) (X7)
and so one has that the norm of the expression above is less than

M2 (5w(s,u)*P + 3w(s, u) TP £ 3u(s,u)/P

(3.60)

and providing w(s,u) < 1 we have the simpler bound
(3.61) 15 M2 w(s,u)/?, w(s,u) <1.

Recalling our assumption that 6 is a 1-form that is Lip[y] where p—1 <
v < 2 we see that both errors are controlled to a degree greater than
one in w. This leads us to conclude that Y is an almost multiplicative
functional. Our approach used the multiplicative property, but never
required the geometric property of X. As above we define the integral

(3.62) | ecxix.

s<u<t

to be the associated multiplicative functional.



DIFFERENTIAL EQUATIONS DRIVEN BY ROUGH SIGNALS 293
3.2.3. Continuity of the integral.

It is an immediate corollary of our results so far, that the integral

(3.63) / 0(X,) 56X

s<u<t

is a continuous map from (geometric) multiplicative functionals and
Lip[y — 1] one forms to p-multiplicative functionals. Since it is clear
that the integral of a smooth path produces a geometric functional, it
follows from the continuity of the map that the integral against any
element of QG(V)P produces a multiplicative functional in QG(W)P C
Q(W)P.

In more detail, the almost multiplicative functional associated with
a geometric functional

[p]
(3.64) vi= Y oX)e--e0X)Y nxl)
ll,...,li:]. 7761_[[_

is clearly continuous in the sense that if X, X', are multiplicative func-
tionals controlled by w and satisfying

w(s,t)
p(i/p)!’
moreover the || X, — X/ || < ¢, and the finitely many functions x —

9 (2) ® - - ® ¥ (x) have a uniform modulus of continuity o (e, M, p),
so one has the estimate on the almost multiplicative functionals

(3.65) I(Xse = XL ) <€

Ve =Yl

(]
s <3 ey

l1,..,0;=1
CL)(S, t)|l|/p—l/p

(& M) =5

)w(s,t)i/p

and so we can apply the continuity theorem for the construction of
a multiplicative functional from an almost multiplicative functional to
deduce the following
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Theorem 3.2.2. If X, X', are geometric multiplicative functionals of
finite p-variation controlled by w with w(s,t) < L for s,t € J, and 0 is
a one form with a Lip[y — 1] norm at most M then there is a function
d(e, L, M, p) continuous and zero if € = 0 such that if

B67)  (Xew— X < 2B
’ B (i/p)!

and

(3.68) IX. - Xl <e,

then for i < [p]

H( / 0(X,) X — / H(X;)éX’)i

C&Gg) s<u<t s<u<t

w(s,t) .

(i/p)!

< d(e,L,M,p)

Similar estimates apply to the variation of the one form.

Corollary 3.2.2. If X € QG(V)? then

(3.70) / 0(X,)6X s in QG(W)P C Q(W)P .

s<u<t

Continuity in the case p < 3 for non-geometric functionals. In
the situation where p < 3 we have the alternative description of our
almost multiplicative functional valid for any X € Q(V)P, and we may
check the continuity directly in this case as well. We explicitly compute
the changes to the almost multiplicative functional

Vo= {1,60X,) (X1 + 5 (d6) (X,) (X7)
(3.71)
0(X,) ©0(X,) (X3) }.

Suppose that

(3.72) X, = X,+e0,, XL=XL+ely, X%=X%+e2,,
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where the approximation errors satisfy

(3.73)  e05<ce, ely < ew(s, t)/?, €24 < ew(s,t)?/P.
Then
Yo — Y = {0,

0(Xs) (X)) — 0(Xs) (X3)

. Ly () (x3) L) () (32
0(X,) ® 0(X,) (X%) - 0(%,) @ 0(X,) (X2) |
and so
(¥ = Yoyl < {0,
Mew(s, )P + M ew'/?P w(s, t)}/?
+ %M (cw(s, )/P)1= 1 (s, t)2/P
(3.75) + %Msw(s,t)z/p,

M2 (% +e)w(s, t)¥/P
+2(e% +e)w(s, t)>/?P
+ 3 w(s, t)YP },

with ¢ = 0,1,2, and providing w(s,t) < 1, € < 1, one has the more
intelligible inequality

(3.76)  ||(Yar — Yar)¥|| < {0,3M " Lw(s, )P, 7 M? e w(s, t)¥/?},

with ¢ = 0,1,2, establishing the continuity of the map into almost
multiplicative functionals.

4. Differential equations, putting it all together.
In this section we achieve our main objective of showing that the

It6 functional extends uniquely to a continuous map defined on the
rough paths in QG(V)P providing the defining vector fields are Lip[y]
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and v > p. This permits, in a reasonably complete way, the solution
of differential equations driven by rough (but geometric) multiplicative
functionals. It completely removes the finite dimensional Lie algebra
assumption.

The key estimate will be the one we established for the integration
of one forms; this together with a reasonably delicate exploitation of
inhomogeneity will show Picard’s iteration scheme converges. The ar-
gument will be split into a number of distinct steps. But first we must
be precise about our concept or definition of a solution!

4.1. Giving the differential equation meaning.

Take a smooth path X; in V and a linear map f from V into the
Lipschitz vector fields on a vector space W, then one may use schoolboy
integration to define a solution to our basic equation. Classically, one
could say the path Y; solves the equation

(4.1) dY, = f(Y,)dX,, Yo=a,

providing Y; satisfies the integral equation

(4.2) Y, =a+ / F(Ya)dX, .

o<u<t

Observe that we can reformulate this integral identity in a trivially
different way

X = Xo + / dXy ,

0<u
(4.3) <u<t

Y, =a+ / F(Y.) dXo .

o<u<t

Consider the one form on V & W with values in V' & W defined by
(4.4) h((z,y)) (dX,dY) = (dX, f(y) dX).

Then for smooth paths the integral equation (4.3) can be rewritten as

(4.5) (X, Ys) = (Xo,a) + /0 t h(Xu,Yy) (dXy, dYy) .



DIFFERENTIAL EQUATIONS DRIVEN BY ROUGH SIGNALS 297

Putting Z; = (X, Y;) we can say that a solution to (4.1) is a lift of the
path X; to a path in V @& W satisfying

Zo— Zo = / W(Z) dZ
(46) o<u<t
Z() = (X(), CL) .

Although this transformation may seem essentially trivial in the clas-
sical setting, for us it is not really so. We have no difficulty extending
this characterisation to rough signals.

Definition 4.1.1. Let X € QG(V)P be a geometric multiplicative
functional projecting onto the path Xy, and let f be a linear map from
V into the Lip[y — 1, W] vector fields. A solution to the equation

(4.7) dY = f(V,)dX, Yo=a,

is an extension of X to Z € QG(V & W)P such that Z projects onto
Zy = (Xt, Ys), Yo = a, and such that Z satisfies 6Z = h(Z;) 0Z.

The main point to notice is that we do not treat the solution as an
independent object, but rather as an extension of the original driving
signal. In particular, we require the existence of cross iterated integrals
between driving signal and solution to be constructed. On the one hand
this seems a bonus, if we can construct integrals between solution and
driving signal so much the better; on the other hand it is essential, we
could not make sense of the integral at all for rough signals without
some cross information between integrand and integrator. The author
is remi nded of those induction arguments which only work if you prove
a stronger result than you were aiming for. In any case, the definition
is clearly consistent with the classical one. If X € QG (V)P is a smooth
path with its iterated integrals, the classical solution, its iterated inte-
grals, together with the cross integrals with the driving signal, together
satisfy the extended equation.

Our approach requires that the vector fields in the equation have
a smoothness related to the roughness of the path. This was necessary
for the integral to make sense. However, as in the classical situation,
the smoothness required of the vector fields in the definition is less than
that required for uniqueness.

The main purpose of this part of the paper, and indeed of the entire
paper is to prove the following theorem.
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Theorem 4.1.1. Suppose that f : V. — Lip[y, W, W] is a linear map
into Lipschitz vector fields. Then consider the Ité map X — (X,Y)
defined for smooth paths by

(4.8) dYy = f(Vy) d Xy, Yo=a.
Define the one form h by
h((z,y)) (dX,dY) = h(y) (dX,dY) = (dX, f(y) dX).

For any geometric multiplicative functional X € QG((V)P with 1 <
p < 7y there is exactly one geometric multiplicative functional extension
Z = (X,Y)cQG(V @ W)P such that if Y, = Y§', + a then Z satisfies
the rough differential equation

(4.9) §Z = h(Y;)6Z.

Moreover this solution to the rough differential equation is constructed
by Picard iteration, there is a small interval [0,T] whose length can be
controlled entirely in terms of the control on the roughness of X and
of f and the rate so that the convergence of this iteration scheme is
faster than the given exponential rate on the interval. The Ité map s
uniformly continuous and the map X — Z is the unique continuous

extension of the Itd map from QG(V)P to QG(V & W)P.

Our convergence theorem for Picard iteration requires that v > p,
and constructively produces a unique solution; the extension of Peano’s
theorem to show existence under the weaker hypothesis v > p — 1 is
open (except in the case where p < 2; here a fixed point argument
can be applied to show existence and A. M. Davie (Edinburgh - pri-
vate communication) has given the author examples to show that the
solution need not be unique v < p [14], [15]).

We may define Picard iteration as follows

Z)t = / h(ZM)6Z™,
(4.10) s<u<t
Zy = (b,a),

where Z™ is uniquely determined by Z7' = (b,a); the choice of b is
irrelevant to the definition as h does not depend in any way on the first
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coordinate of Z. If we can prove that the multiplicative functionals
Z"™ converge in QG(V)P, then it is routine from our result about the
continuity of the integration against one forms that the limit will be a
fixed point of the functional and so our desired solution.

However, in contrast to the normal contraction mapping argument,
it seems essential to consider a more complicated iteration so that we
might keep track of the joint interactions of more terms.

Step 1. Norms on tensor algebras over finite sums of vector
spaces. There are many different equivalent norms one could use on
the tensor algebra over the space V @& W; we will use an induction
argument where a choice adapted to the possibilities for independently
scaling the different coordinates will simplify the proof.!

The tensors of fixed degree over a vector space admit a further
direct sum decomposition if the underlying vector space is already a
direct sum

(v W:nV W)®J
) TV o W) j@)(@)

(Vo W)® = 700 g Zi-1l g 7i-22 g ... 704

where Z7~%F comprises those tensors that are homogeneous of degree
J—FkinV and k in W in whatsoever order.

REMARK 4.1.1.~REQUIREMENT. Let z = 290 4 20— L1 4 23-22 4 ... 4
2% represent the decomposition of an element z € (V & W)®7/, then
the norm on (V @& W)®’ should be chosen to have the property that

1] = supg; [|277%*]].

Definition 4.1.2. A multiplicative functional Z in Q(V & W)P is con-
trolled by w if

I < w(s, t)i/P
~ B —k/p)(k/p)]

(4.12) ||Z§;k’k

for all j < [p].

Of course this control is comparable with the one that ignores the
inhomogeneity.

1 . . .
See also the earlier section inhomogeneous degrees of smoothness.
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Step 2. Rescaling and Tensor Algebras. If S is a linear automor-
phism on V then it induces a natural graded algebra homomorphism S
on the tensor algebra, taking v @ Vs ®- - - ®w,, to Sv1 @ SV, ®- - ® Sv,,.
Apply this to the scaling operators Sc(v) = ewv. Their extensions
act by multiplying the tensors of degree k by &* so that S. (a) =
(1,eai,e?as,...,e"a,). These operators are very important to us,
but the general notation is clumsy, so we shorten it.

Definition 4.1.2. We will use the notation ¢ X, for S’E(Xs,t).

Because S is always an algebra homomorphism e Xy 1s also a
multiplicative functional, leading to the slightly peculiar but correct
notation € X, ; ® € Xy o, = € X 4.

Consider the linear projections Py : V& W — V | and Py :
Ve W — W; then if Z is a multiplicative functional in the tensor
algebra over V@ W, let X = PyZ and Y = Pw Z be the associated
multiplicative functionals. We will frequently use the notation (X,Y)
for Z to remind the reader of the direct sum structure, however the
multiplicative functional (X,Y) is not determined by X,Y separately,
as it involves cross terms.

It is possible to scale the complementary subspaces of a direct sum
differently and we use the shorthand (¢ X, ¢ Y )y for the multiplicative
functional S.4(X,Y )y where Sep(v + w) = v + ¢ w.

Counsider how this inhomogeneous scaling interacts with a control
on the p-variation:

Lemma 4.1. Let X € Q(V)P be controlled by w(s,t) so that

w(s,t)j/p

B(j/p)!

and (X,Y) € Q(V & W)P be an extension of X. Suppose (X,Y )st is
controlled by K w(s,t). Then (X, QY )s is controlled by

(4.13) 1%,

| <

(4.14) max {1, p"/T K : 1<k <j<I[p]}w(s,t).

In particular, if ¢ < K~PVP < 1 then (X,¢Y)y is controlled by
w(s,t).

PROOF. Let Zg,t = (X,Y)gyt be the component of the multiplicative
j—Fk.k
s,t

functional of degree j and let Zj denote the component of this
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tensor of degree j — k in V and k in W. Then by assumption
(K w(s,1))7/?

=K.k
(119) 122N GG e
therefore

& gi—hk r (Kw(s, )P
(4.16) 1S16(Z7 ;") < ¢ TG koL

. :
but Z2, = X7, and so

< w(s7 t).]/p

~ B/t
without any constant. It follows that (X, ¢ Y )y is controlled by

(4.17) 1Z%

’

(4.18) max {1,¢" K : 1<k <j<[plw(st)

as required.

Step 3. The boundedness of the Picard integral operator. As
a simple application of the scaling lemma we have just established, we
prove the following a priori bound.

Lemma 4.1.2. Let Z(") be the initial multiplicative functional in the
Picard iteration scheme defined recursively by (4.10). Suppose Z(©) is
controlled by wg. Then all iterates Z9) are uniformly controlled by

w = max{l,K (Mvpa ’Y)[p]}WO

on the time interval J = {u: w(0,u) < 1}.
Here M is the Lip[y — 1] norm of f on

for w-ar<3(2)1.

and K 1is the constant introduced in Theorem 3.2.1.

Proor. First we condition the problem. Suppose that the initial point
Z s(?t) = (X, Y©®),; in our Picard iteration is of finite p-variation con-
trolled by wg. For any € > 0 we may choose a regular

w=max{e P, 1} wy
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so that (e 71X, Y(O))s,t is controlled by w, and a short interval depend-
ing on w where w < 1. We choose ¢ = K (M, p,v)"Pl/P where K is
the function derived in Theorem 3.2.1, and M, is defined to be the
Lip[y — 1] norm of the one form h(z,y) restricted to the domain

Vx{w: ||w—a||<%(%>!}.

We now proceed by induction. Suppose that (¢7'X,Y ("), is con-
trolled by w where w < 1. The control on (Y})(g))l ensures that its

projection onto the path Yu(o) starting at a remains in the ball of radius
(1/58) (1/p)! centred on a. Observe that the multiplicative functional

/ (e X0, YY) 6(c X, YO (e~ X0, Y,),

(419) s<u<t

= (7" b,a)

equals (671X, e Y W), , where (X,Y ("), ; is the Picard iterate of
(X, Y©®),; defined in (4.10). By Theorem 3.2.1, it is controlled by
K(M,p,v)w on the chosen time interval; here K depends only on the
explicit variables (we have arranged that (671X, Y (), ; is controlled
by w where w < 1).

The difference in homogeneity between (e 1 X, e 1Y), ; and our
starting data (5_1X,Y(0))s,t is crucial to the analysis. If the reader
finds the unfamiliar notation difficult then the equivalent formulation
for smooth paths is

t
Y = [,
(4.20) ;
s—let:/ de 71X, .

By assumption ¢ < K (M, p,v)~P//P  so we may apply Lemma 4.1.1
to prove that the rescaled functional (5_1X,Y(1))s,t is controlled by
w < 1. This concludes the induction. We deduce that all the Picard
iterates (¢71X,Y (™), ; are uniformly controlled by this same w < 1
on this fixed time interval.

An obvious extension of the same idea shows that

(e7ix, Y™ yr+h) |
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is also uniformly bounded for a different fixed choice of €,w and the
time interval. This observation will be useful to us later.

This result only requires the minimal smoothness condition re-
quired to make sense of the equation. It can be interpreted as a com-
pactness result and can probably be used to deduce a Peano theorem
in the general case although we have not pursued the matter.

The main existence result is a more subtle and complicated version
of the same approach.

Step 4. A division lemma. Suppose that f is a Lip[y] vector field on
W, then there exists a function g which is Lip[y — 1] on W x W and
such that

(4.21) Film) = fiy) =D (x—y) g% (z,y).

J

The function g is not uniquely defined, but for example the mean value
of df along the ray from z to y 2 will do perfectly well. Thus we can
rewrite the classical Picard iteration in the more useful form

(D —y )

(4.22) _ / (Yu(n) o Yu(n—l)) g(yu(n)7 Yu(n—l)) dX, .

o<u<t

The crucial difference between the earlier formulation of Picard itera-
tion and the approach here is that we have introduced an expression
which is quasi-linear in (Y, —Y,,—1). We will really be able to take
advantage of this and push the scaling arguments we introduced above.

Interpreting the integral (4.22) requires the extra smoothness we
assume for our main theorem on the convergence of Picard’s iterative
scheme.

Step 5. Defining the correct iteration. In fact we consider recur-
sively, a sequence containing a wider series of interrelated objects

(4.23) (zM ) y®™ vy x) .

2 Note that if the function f is only defined on a subset of R? then one would need

to apply the extension theorem for Lipschitz functions to use this approach.
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For smooth paths the iteration is defined by
dZ£n+1) — Z’I(Ln)g(yu(n),yu(n—l)) qu 7

dY;(n+1) _ dY(n) + dZ(n) 7
(4.24) “ *

dXt - dXt )

where dZ,El) = f(a)dXy, Zén) =0, Y® =g, and Yo(n) = a. Now
(4.24) defines a one-form; we can use this to extend the iteration,
in the now obvious way, to functionals (Z(™ Y™ Y= x) , in
QG(W @ W @& W @ V)P. The iteration step makes sense because g (and
hence the full one-form) is Lip[y — 1].

It is obvious for smooth driving paths X and smooth initial esti-
mates for the solution, that projection onto the last two co-ordinates
gives the Picard iteration we studied in Step 3. The continuity of the it-
eration procedure makes it clear that this identity extends to geometric
functionals.

We must prove that the sequence of iterations converge as a mul-
tiplicative functional to a functional (I,Y,Y, X), the continuity will
then show that this is a fixed point for the equation. The argument
will rely on a careful exploitation of the homogeneity of the various
components.

Step 6. The conditioning. The first step is to rescale the coordinates
and condition the problem.

For any choice of # > 1, and € < 1 there is a choice of w (depending
on both parameters) so that if

(4.25) U =zW y® yO ~1x)
where Z() = 3Z(1) | then U© is controlled by w.
We now use our estimates to study what happens when we replace
the top line in (4.24) by
ZNt(n-l-l) —ef / Zén) g(YISn),YISn—l)) et dX,
0<u<t

and use the new one-form to define a changed recursion involving Z ™)
= " Z(") etc. In other words we recursively define

(4.26) Ut = (zm ym yh-b —1x),
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We will prove by induction that, for any choice of 8 > 1 there is a
suitably small choice of ¢ < 1, chosen to depend on K (M, p,~)~[Pl/p
and 3 alone, so that the sequence of elements in the sequence U™~ ! are
uniformly controlled by our w on our predetermined time interval. By
rescaling, it will be clear that the increments in the original iteration
converge to zero with a geometric rate giving the overall result.

Step 7. The induction step. First fix the time interval so that w < 1
and assume that

(4.27) e < K1 (M,p,~) /7,

where M will be chosen later, but only depends on the Lip norms of
various one forms and will be independent of other parameters in this
problem.

We assume as our induction hypotheses that U™~! is controlled by
w. Consider the form we must integrate to go from

(4.28)  U™'  to  ((ef)lzntLyntlyn elX)

d(€ /8)_1 Zé’n-f—l) — ZN'[(L”) g(Yu(n),Yu(n—l)) d€_1Xu ,

dy," = dy, ™ + g dz(™M

d€_1 Xt = d€_1Xt .

Although examination of the second line in the expression shows this
form varies with n the effect of increasing n is to decrease the Lipschitz
norm. Hence, and because ¢ is Lip [y — 1] there is a uniform bound
M on the Lip [y — 1] norms of the forms on the range of paths under
U™ 1. (Recall that the U™ ! are controlled by w and this in turn is
uniformly bounded by one).

Hence there exists K (M, p,y), independent of our particular mul-
tiplicative functionals, time interval, etc., so that

(4.30) ((eB)~r 2" Y™ Y™ e ' X)
is of finite p-variation controlled by K (M, p,~v)w. By Step 3 we observe

that providing e < K1 (M, p,y)~PV/P then (Y™, Yy (=1 ¢=1X) is con-
trolled by w on any interval where w < 1 without any sort of factor.
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Therefore we can apply the rescaling lemma again. Choose ¢ so that
Be < K (M,p,v)~Pl/P and e < Ky (M, p,~)~Pl/P, Then

(4.31) (ZznHh yntl yn e71X)

is also controlled by w, without a constant. This establishes the induc-
tion step.

Step 8. Convergence. At the level of paths it is now trivial that we
have convergence. Let

(zmHl yrHl vy em1lX)
be the path under
(Z™tL yntl yn e71X)
satisfying the initial condition
(ZpFh YL ye e 1X,) = (0,a,a,0).

Then it is clear that for smooth paths, and by continuity, for elements
of QGP (and geometric multiplicative functionals are all that one will
ever see) the algebraic identity

(4.32) Y =y 4 g Z(m

holds. But 8 > 1 and we have just proved that the difference process

Zt(n) is bounded independently of n on our time interval and so we
have uniform convergence. The convergence is in p-variation, and as
the sequence Yt(n), Yu(nH) is uniformly bounded in p-variation norm
that bound goes over to the limit.

However, our real objective is not just to construct a path in W
and call it the solution, we want to construct a multiplicative func-
tional. In other words we want to show that the multiplicative func-
tionals (Y™, X) converge in QG (W @ V)P. This is essentially triv-
ial as well. Consider the projection (Z(,Y ™ ¢=1X) of U™ and
(Y(»+1) e=1X) of UMY, Let II,, be the linear map (2, y, ) —
(6~"z 4y, z) then the induced map II,, on the tensor algebra takes
(ZM), Y™ e=1X) to (YD =1 X) (again this is obvious for smooth
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sequences, and algebraic identities hold on closed sets, and hence ex-
tend to geometric functionals). But now the convergence is clear. and
uniformly controlled by the 8. The uniform nature of the estimates here
on the convergence of Picard iteration prove the It6 map is continuous
since our earlier arguments demonstrate that the finite iterations are
certainly continuous.

4.2. Uniqueness.

To see uniqueness is also relatively straightforward and we do not
dwell on it. We did not need to start our new Picard iteration with
the function that was constant at a and its integral. We could have
started it at two of our “solutions”, in this case our iteration would
have compared the difference and shown that it went to zero.
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