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Di�erential equations

driven by rough signals

Terry J� Lyons

�� Preliminaries�

���� Introduction�

������ Inhomogeneous di�erential equations�

Time inhomogeneous �or non�autonomous� systems of di�erential
equations are often treated rather formally as extensions of the homo�
geneous �or autonomous� case by adding an extra parameter to the
system� however this can be a travesty� Consider an equation of the
kind

����� dyt 	
X
i

f i�yt� dx
i
t �

where the f i are vector 
elds� xt represents some �multi�dimensional�
forcing or controlling term and the trajectory yt represents some 
l�
tered e�ect thereof� In this case the e�ect of such a reduction produces
an equation whose expression involves a derivative of the term xt� In
problems from control� or where noise is involved� or even in algebra
�developing a path from a Lie algebra into a group� this path will rarely
be smooth� so the resulting autonomous system will have a de
ning vec�
tor 
eld which will frequently not be continuous� perhaps it will only
exist as a distribution� In this case the classical theory does not suggest

���
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the correct approach to identifying solutions� and even in highly oscilla�
tory but smooth situations suggests ine�cient algorithms for numerical
approximation to classical solutions�

������ Objectives�

This paper aims to provide a systematic approach to the treatment
of di�erential equations of the type described by ����� where the driving
signal xt is a rough path� Such equations are very common and occur
particularly frequently in probability where the driving signal might be
a vector valued Brownian motion� semi�martingale or similar process�

However� our approach is deterministic� is totally independent of
probability and permits much rougher paths than the Brownian paths
usually discussed� The results here are strong enough to treat the main
probabilistic examples and signi
cantly widen the class of stochastic
processes which can be used to drive stochastic di�erential equations�
�For a simple example see ���� ����

We hope our results will have an in�uence on in
nite dimensional
analysis on path spaces� loop groups� etc� as well as in more applied
situations� Variable step size algorithms for the numerical integration
of stochastic di�erential equations �� have been constructed as a con�
sequence of these results�

������ The It�o map�

Suppose every vector 
eld f i in ����� is Lipschitz with respect to
some complete metric on a manifold M and that the driving signal xt
is continuous and piece�wise smooth� then classical solutions to �����
exist for all time and are unique� by 
xing y�� we may regard ����� as
de
ning a functional �which we will refer to as the It�o map� taking each
smooth path xt �in a certain vector space V � to a unique path based
at y� in a manifold M � By varying the starting point y� and taking the
induced �ow� one may also regard ����� as de
ning a map taking the
path xt to a path in the group of homeomorphisms of M �

We would like to extend this It�o map to a far richer class of paths�
Our intention is to identify a family of metric topologies on smooth
paths for which the It�o map is uniformly continuous �and even di�er�
entiable although we cannot show this here ���� ���� ����� A point in
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the completion of the smooth paths in one of these metrics corresponds
to a path in V with proscribed low order integrals and having 
nite
p�variation for some p ��� As a 
rst application we have the theorem
that the solution to a Stratonovich stochastic di�erential equation of
the classical type is a continuous function of the driving Wiener process
and L�evy area taken as a pair�

������ The fundamental problem	 Lack of continuity�

Before we proceed to develop the technology required to prove the
main results it is useful to consider a simple example which highlights
the obstruction we must overcome�

There is in general no natural extension of the It�o map to all con�
tinuous paths xt� The following very simple example shows that the
It�o map is rarely a continuous function in the uniform topology�

Example ������ Some of the simplest di�erential equations are those

whose solutions can be expressed as exact integrals of the driving term

xt� The simplest nontrivial example is the second iterated integral

�����

X���� t� 	

Z
t�u���

�Z
u��u���

dxu�

�
dxu�

	

ZZ
t�u��u���

dxu� dxu� �

In the one dimensional case� where xt is real valued� we see that X
���� t�

	 �xt � x��
��� and so the functional x� �� X���� � � clearly is contin�

uous in the uniform topology�

The multi�dimensional case is quite di�erent� Let xt 	 �x�t � � � � � x
d
t �

be vector valued and interpret the second iterated integral as the d� d�
matrix de�ned by

�X���� t��ij 	

ZZ
t�u��u���

dxiu� dx
j
u�

�

or better� as a ��tensor

�����

ZZ
t�u��u���

dxu� � dxu� �
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Now decompose this integral into it�s symmetric and anti�symmetric

components Sij � Aij� We see that the symmetric part has a form dif�

fering little from the one dimensional situation

����� Sij 	
�

�
�xit � xi�� �x

j
t � xj�� �

in particular� it is continuous in the uniform topology� The anti�symme�

tric part� which only arises in dimension two and higher� has the form

����� Aij 	
�

�

ZZ
t�u��u���

dxiu� dx
j
u�
� dxju� dx

i
u�

and has a well known geometric interpretation� For any two distinct

coordinates i� j� the projection �xit� x
j
t� of the path into R� is a directed

planar curve� The integral Aij is the area between that curve �xi� � x
j
� �

and the chord from �xit� x
j
t� to �xi�� x

j
�� where multiplicity and orientation

are taken into account in the calculation�

Using this obvious geometric remark� it is trivial to see that A��� t�
is not a continuous function of x� in the uniform topology� Take

xnt 	
�cos �n� t�

n
�
sin �n� t�

n

�
�

then as n converges to in�nity� the area integral converges locally uni�

formly to � t whereas the paths xnt converge uniformly to the zero path�

However� closer examination of the example shows that xnt is con�
verging to zero in p�variation norm for p � �� and a more complicated
example could be given showing that A is discontinuous even for the
��variation norm� This and other considerations suggest that we should
restrict attention to the case where p � �� It is shown in ���� ��� that
the It�o map extends uniquely as a continuous function to all paths of

nite p�variation norm with p � � providing the vector 
elds f i are
smooth enough� In this case one can indeed develop a theory very
similar to the classical one�

Nevertheless� there are important formal examples of equations of
our basic type ����� in which the driving signal fails to have 
nite ��
variation and these have motivated several attempts to treat equations
driven by rougher signals� Easily the most important and successful up
to now has been the approach originating with It�o� which treats equa�
tions driven by Brownian motion or more generally by semi�martingales
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�Brownian paths have 
nite p�variation norm for every p � � but do
not have 
nite ��variation norm� ���� Although It�o�s approach only
constructs solutions as random variables it has lead to an enormous
range of applications and must be regarded as a major achievement of
��th century mathematics�

Although It�o�s approach is not path�wise� it makes it clear that
any deterministic approach to interpreting ����� that only treats paths
of 
nite p�variation norm with p � � is missing its target and failing to
explain the richest class of examples we have�

We have just seen that iterated integrals provide the obstruction
to the continuous extension of the It�o map� The remainder of the paper
is dedicated to showing that they are also lead to the solution of the
problem� We will show that the solution is a continuous function of

the path and its low order iterated integrals in an appropriate variation

norm� The rougher the path the more iterated integrals required and
the more smoothness required of the vector 
elds�

����
� Summary of existing approaches�

The main approaches to the solution of di�erential equations seem
to have two key features�

� A notion of integral �Riemann� It�o� Stratonovich or Skorohod�

� An understanding of change of variable �Fundamental Theorem
of Calculus� It�o�s formulae� etc��

These together allow one to use integral equations to de
ne what
one means by a solution� At this point existence can sometimes be
shown via 
xed point arguments� but in any case one usually wishes to
add a method for constructing solutions �power series� Picard iteration�
which will work under slightly stronger regularity conditions on the
vector 
elds f i and which usually gives the bonus of uniqueness of
solution under these improved regularity assumptions�

Finally one needs to complete the discussion with the observation
that characterisations of di�erential equations via integrals depend on a
choice of coordinates for the underlying space where yt takes its values�
So although the equation ����� gives the impression of being coordinate
independent� the de
nition of a solution may not be� The issue is a real
one� in probability theory the Stratonovich equation has co�ordinate
invariant solutions� while It�o equations do not�
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In this paper we will concentrate on developing the co�ordinate
invariant theory� the full theory is more mathematically challenging�
and although we hope to return to it later we do not have a complete
description at the current time�

������ History�

A number of authors have tried to develop deterministic theories
of integration appropriate for rough paths� attempting to make sense
of
R
Y dX� L� C� Young ��� showed that such integrals make sense

providing both paths are continuous� X has 
nite p�variation and Y
has 
nite q�variation and ��p � ��q � �� For some reason he did not
clinch the nonlinear question and show the existence of solutions of
di�erential equations driven by paths with p�variation less than � and
this was closed o� in ���� ���� F�ollmer ��� �� has written a number
of interesting papers giving deterministic meaning to It�o�s change of
variable formula� F�ollmer also made a verbal conjecture at an Ober�
wolfach meeting several years ago that knowing the L�evy area would
be su�cient to construct solutions to SDE�s� In some sense we prove
his conjecture below�

The case where xt is one dimensional or ��dimensional and of the
form ��xt� t� is special� In this case the stochastic functional is continuous
in the uniform topology � this was established by ���� ���� ���� ����

������ Advantages to a probabilist�

A probabilist� interested in stochastic di�erential equations� might
be tempted to believe that this article has little interest for him �except
as a theoretical curiosity� because he can do everything that he wanted
to do using It�o calculus� So we brie�y mention a few situations where
we believe that the results we develop here have consequences�

The 
rst is conceptual� until now the probabilist�s notion of a solu�
tion to an SDE has been as a function de
ned on path space and lying
in some measure class or in
nite dimensional Sobolev space� As such�
the solution is only de
ned o� an unspeci
ed set of paths of capacity
or measure zero� It is never de
ned at a given path� Given the results
below� the solutions to all di�erential equations can be computed simul�
taneously for a path with an area satisfying certain H�older conditions�
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The set of Brownian paths with their L�evy area satisfying this condition
has full measure� Therefore and with probability one� one may simulta�
neously solve all di�erential equations� over a given driving noise �the
content of this remark is in the fact that there are uncountably many
di�erent di�erential equations��

Related consequences include�

�� Stochastic �ows can be constructed simply� Changing the start�
ing point in the di�erential equation is a special case of changing the
di�erential equation� With a little more work one gets continuity� and
with increasing smoothness of the vector 
elds� increasing smoothness
of the �ow�

�� It can be interesting to solve di�erential equations subject to
boundary conditions other than initial conditions and the construction
of a �ow often allows one to 
nd an initial value so that the result�
ing solution satis
es the boundary condition� However� in the classical
framework� it is tricky to be precise about the sense in which this  solu�
tion! really is a solution� It does not satisfy the predictability condition
necessary for the de
nition of an It�o integral to make sense� the stan�
dard approach involving changing the measure is quite deep� We have
no such problems of interpretation because we use no probability� �al�
though there will always be a problem of existence of solutions to non�
linear boundary problems � and this can be easy or di�cult depending
on the precise problem��

�� Stroock and Varadhan established a support theorem for solu�
tions to stochastic di�erential equations� In one strong and non�trivial
form it says that if we 
x a smooth path in V and look at the solution to
the SDE ����� when the driving noise is Brownian motion conditioned
to be uniformly close to the smooth path� then the random solution
converges in distribution to the deterministic one obtained by driving
the equation with the 
xed path� It is clear that all such theorems
will follow if one establishes the continuity of ����� and that Brownian
motion conditioned to be uniformly close to the smooth path converges
in probability in the metric topology involving the area� Therefore our
results below reduce the problem to one about Brownian motion alone�

�� Not all interesting stochastic dynamical systems are semi�mar�
tingales� It seems completely natural that there are nonlinear systems
forced by random processes that may be Markov or Gaussian but are

�
The vector �elds should be Lipschitz of order greater than two�
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certainly not inside the normal framework� One thinks immediately
of di�usion processes associated with elliptic operators in divergence
form where the coe�cients are not di�erentiable� or of di�usions on
fractals� Both of these frequently have area processes and satisfy our
hypotheses although they are not semi�martingales� Since this article
was written work of Bass� Hambly and Lyons has established that the
class of reversible processes to which this theory applies is really much
wider than the class for which semi�martingale methods can be used�
The iterated Brownian motion �IBM� studied by Burdzy and Adler is
another example ���

�� Numerical algorithms for solving di�erential equations which
adapt their step sizes can be vastly more e�cient than 
xed step algo�
rithms in certain settings� However� the decisions about step size are
most e�ciently made on the basis of previous rough approximations to
the solution� and identi
cation of the sensitive areas where accurate so�
lution is required �e�g� before the trajectory approaches a critical point
to ensure it passes on the correct side�� The choice of step is typically
based on knowledge of the future evolution of the solution and is there�
fore not predictable and constitute illicit information� For example if
non�predictable infomation is used to determine the step size in classical
approaches to solving SDEs numerically then in general these schemes
will converge nicely to the wrong answer� Using the ideas set out below�
and ensuring approximations to the path and area of the driving noise
are correct over every interval it is possible to have a genuine variable
step algorithm that converges to the correct answer for any choice of
the intervals of approximation as the mesh size of the dissection goes
to zero ���

�� Stochastic 
ltering is concerned with the estimation of the con�
ditional law of a Markov process� given observations of some function
of it� The normal formulation �due to Zakai� looks at the case where
the process is of di�usion type and splits into a 
rst part �known as
the signal� and a second part� known as the observation process with
values in a vector space� and whose martingale part has stationary in�
crements independent of the signal� In this case� Zakai showed that it
was possible to completely describe the conditional density of the signal
given knowledge of the observation process� In fact� the density evolves
according to an in
nite dimensional SDE of parabolic type� It is a
commutative equation� and so the relationship between the observation
process and the conditional density is a relatively stable one� On the
other hand� it is really rather rare that real 
ltering problems present
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themselves with the noise in the observation process being independent
of the signal� And the transformation involved in making it so involves
the solution of a generic SDE which will not commute� It follows that
to do robust and stable 
ltering it is important to measure the  area!
process as well as the values of the observation process�

�� Finally we hope that by solving the one dimensional di�erential
equation without using predictability� our ideas might produce a few
pointers to the correct way to treat PDE�s driven by spatial noise� Of
course in that situation predictability assumptions are quite inappro�
priate � at least in the initial assumptions and 
nal conclusions� But at
the moment this remains pure speculation�

���� Background�

������ Preliminaries	 Groups and di�erential equations�

We set out some basic material and notation�

The logarithm of a ow� Throughout this paper we will make
implicit use of the standard identi
cation of autonomous di�erential
equations� �ows� and vector 
elds� If f is a Lipschitz vector 
eld for
some choice of complete Riemannian metric on a manifold then the
autonomous di�erential equation

����� dyt 	 f�yt� dt � y� 	 a �

has a unique solution de
ned for all time� By varying the initial con�
dition� one may associate with it a �ow �t de
ned by �t�y�� 	 yt�
The assumptions ensure the �ow is de
ned for all positive and negative
times and is a homeomorphism� We may use the notation �t 	 exp �tf�
to emphasise that vector 
elds should be regarded� at least formally� as
elements of the Lie algebra of the group of homeo�di�eo�morphisms of
the underlying manifold�

If a homeomorphism � can be realized by �owing along a 
xed
vector 
eld � so that � 	 exp�� we say � 	 log�� In general� it is
not possible for one to construct a logarithmic vector 
eld even for the
smoothest di�eomorphisms homotopic to the identity� equally the log�
arithm need not be unique when it exists� If one has a time varying
di�erential equation such as ������ and one looks at the �ow obtained
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by solving it over a short time then it is useful to be able to deter�
mine if the resulting �ow has a logarithm and express that logarithmic
vector 
eld directly in terms of xs and the f i� ��� �e�g� in numerical
analysis� to solve the time varying and rough equation over a short in�
terval it would be su�cient to solve the smooth and time independent
di�erential equation determined by the logarithmic vector 
eld��

Determining this logarithm as a vector is in fact an analytic ex�
tension of the Dynhin�Campbell�Baker�Hausdor� formula �which in its
algebraic form considers the e�ect of �owing for unit time along one left
invariant vector 
eld on a group and then a second� and tries to 
nd
an expression for the logarithm of the result�� In this paper� we will be
able to construct the logarithm of a �ow driven by a rough signal for a
short period under the hypotheses that the vector 
elds are invariant
vector 
elds on a 
nite dimensional group�

Matrix groups� Recall some very basic facts about Lie groups� Sup�
pose that a topological group G has a connected �nite dimensional

manifold structure� then it is very well known that it is a Lie group
and can always be represented as a real analytic group of matrices� or a
quotient thereof by a discrete group� In this representation� the tangent
space to a point in the group is a linear space of matrices�

The tangent space g at the identity can be made into a Lie algebra
in two equivalent ways�

If a is an element of the tangent space at the identity of a matrix
group� then t �� exp t a �where exp is the power series in the the
matrix� de
nes a smooth path in the group �and hence a direction in
the tangent space over the identity� starting at the identity element�
Consider any other element 	 of the group� The map t �� exp t a 	
de
nes a path and hence a direction in the tangent space over 	� clearly
the induced vector 
eld a� on the group is right invariant� depends
linearly on a� and de
nes an isomorphism between right invariant 
elds
and the tangent space over the identity� We may take the Lie bracket of
these 
elds in the sense of vector 
elds and as this yields another right
invariant vector 
eld we de
ne a Lie algebra structure on the tangent
space� Alternatively� we can use the matrix representation and simply
de
ne A�B� 	 AB�BA� They give the same results� The Lie algebra
of a Lie group is important in many ways and we cannot recall them all
here� However� we mention a couple of basic facts that will be essential�
A group is abelian if a� b� � �� and has nilpotency rank at most n if
a�� a�� a�� � � � an��� an�� � � � �� � � for all elements in the Lie algebra�
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A homomorphism 
 of one Lie group to another induces �by di�er�
entiation� a Lie map d
 from the Lie algebra of the 
rst group to the Lie
algebra of the second� These two maps intertwine with the exponential
map �applied to the vector 
eld or the matrix� and so

����� 
�exp t a� 	 exp t d
�a� �

Conversely� to every 
nite dimensional Lie algebra we may associate a
unique simply connected Lie group� and to every Lie algebra map from
such a 
nite dimensional Lie algebra to the Lie algebra of a Lie group is
associated a unique homomorphism whose derivative is the Lie algebra
map�

Di�erential equations on matrix groups� Suppose we have a
smooth path Xt in the Lie algebra of our matrix group� we may develop
it onto the group� That is we solve the di�erential equation for the path
	t in the group which at time t is always tangential to �dXt�dt�

�� The
di�erential equation has the form

����� d	t 	 �dXt�
��	t�

and since � is a linear map from the vector space carrying Xt to vector

elds on a manifold �the group� it falls into the general category of time
inhomogeneous di�erential equations we introduced in ������

Any time inhomogeneous di�erential equation can be regarded� at
least formally� in the same way if one is prepared to consider the group
of homeomorphisms �or di�eomorphisms� of the manifold� Any vector

eld de
nes a parameterised �ow on the manifold ����� and hence a
tangent vector to the identity map on the group of homeomorphisms�
Consider the �ow �t on that same group de
ned by the inhomogeneous
equation

����� dyt 	
X
i

f i�yt� dx
i
t � xt 	 V � f�y� � V �� TMy �

Now f� �xt is a path in the space of vector 
elds� and �t its development
onto the group of homeomorphisms�

Although there are very big di�erences between this formal in
nite
dimensional setting and the 
nite dimensional one �the vector 
elds
will not in general be smooth enough to form a Lie algebra� etc�� the
abstract picture is very helpful in the following two ways� It suggests
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that there might be a universal object� and also that we could learn
something about the general problem by studying the simpler case of
development of a rough path on a 
nite dimensional Lie group�

De�nition ������ A Lie algebra g containing V is said to be free over

V if it has the universal property that any linear map f of V into a

Lie algebra h extends in a unique way to a Lie algebra map �f of g to h�

Such a Lie algebra exists but is in�nite dimensional�

Now suppose we consider again our basic di�erential equation�
That is� we have a path xt in a vector space V and a linear map f
of V into the Lie algebra h of a Lie group H and we would like to
develop a path yt in H tangential to �f�yt� dxt�

��
Pretend for a minute that we could associate a simply connected

group G with the free Lie algebra g� and that there was a group ho�
momorphism from it to H induced by the Lie algebra map� It would

be su�cient to develop xt in the simply connected group G with Lie

algebra g and use the homomorphism

G
�f

�� H

to produce a path in H � It follows that it would be both necessary
and su�cient to solve our problem in general if we could develop rough
paths from V to this Lie group G alone� However� there is a problem
with this picture � there is no simple analytic object we can call the
free group � but still the picture de
nitely points one in the correct
direction�

Linear di�erential equations� Suppose that Yt takes its values in
a vector space W and that for each x the vector 
elds y �� f�y�x �
W �� W is linear in y� then we say the standard equation ����� is
linear� and observe that the sum of two solutions is a solution� the �ow
is therefore a linear map �which by solving the equation backwards in
time is invertible�� and the solution �ow takes its values in a matrix
group�

Thus we see that to solve a time inhomogeneous linear equation
�which are certainly not linear in the relationship between x and y� is
essentially the same problem as to develop a path in a �nite dimensional
Lie algebra onto the associated �nite dimensional Lie group using the
right invariant extensions of the vector 
elds�
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More generally� we can re�parameterise our problem and reduce
it to a 
nite dimensional linear problem whenever the vector 
elds in
the range of f are smooth enough that one can take Lie brackets and
the resulting Lie algebra is 
nite dimensional� Although this is not the
generic case� the equation

������ dyt 	 f�yt� dxt � xt 	 V � f�y� � V �� TMy �

where the dimension of V is one satis
es the 
nite dimensionality hy�
potheses in a rather trivial way� In this case let d�t 	 f��t� dt be the
�ow de
ned by the autonomous equation� One readily sees that for
smooth xt the solution of ������ can easily be expressed as yt 	 �xt�y��
and that this is uniformly continuous in the forcing term xt� It is gen�
erally true that ������ is uniformly continuous in this way if and only if
the Lie algebra is trivial and the vector 
elds commute� In Section �����
we showed that the iterated integral for the area produced a discontin�
uous It�o map� The associated di�erential equation has a Lie algebra of
the simplest non�commutative type � nilpotent of rank ��

Einstein expansions� Consider a linear di�erential equation� Let
x �� A� �x � V 
�� hom�W�W � be a bounded linear map �of Banach
spaces� and consider the linear equations

dyt 	 A�y� dxt �������

d�t 	 A��� dxt �t �������

for the trajectory and �ow� If the path xt is smooth and yt is the
classical solution� then one may construct a Taylor series expansion for
it �and the operator �t� in terms of iterated integrals of xt�

yt 	 ys �

Z t

s

dyu

	 ys �

Z t

s

A�yu� dxu

������

	 ys �A�ys�

Z
s�u�t

dxu

�

ZZ
s�u��u��t

A�A�yu��� dxu� dxu�

������
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nX
i��

A�A�� � �A�ys���

Z Z
s�u��u������ui�t

dxu� dxu� � � �dxui

�

Z Z
s�u��u������un���t

A�A�� � �A�yu���� dxu� dxu� � � �dxun��

������

and using the boundedness of y on s� t�� the factorial decay of the
iterated integrals� and the geometric growth of the norm of the product
of operators� one quickly shows that the remainder goes to zero with n
and so we have the convergent series

������ �s�t 	 I � A

Z
s�u�t

dxu � AA

ZZ
s�u��u��t

dxu� dxu� � � � �

and observe that the solution can be expressed as a inner product of a
sequence of iterated integrals and  powers! of A�

This expansion �which occurs regularly in the literature over the
last �� years or so� underlines the importance of iterated integrals�
We will see later that we will be able to associate in
nite and rapidly
decaying sequences of iterated integrals in settings where the paths are
not smooth� In this case the series above can be used as a de
nition
of the solution� However� it does not directly extend from the 
nite
dimensional linear setting ������ to the fully nonlinear one ����� �for in
this case the operators in the range of A are unbounded and do not
have a common core�� Additional ideas will be required at that point�

������ Preliminaries	 Rough paths and smooth functions�

In this section we remind the reader of some basic analytic con�
cepts� For our purposes a very convenient way of measuring the smooth�
ness of rough paths is via the p�variation norm 
rst introduced by
Wiener� If we are to solve di�erential equations driven by rough paths�
then it transpires that we must balance this by taking progressively
smoother vector 
elds� For unique solutions in the classical case it suf�

ces that the 
elds be Lipschitz� For our uniqueness results we will
require that the 
elds are Lipschitz of order � � p� Using the obvious
de
nition� one might conclude that there were no non�constant func�
tions satisfying the hypothesis� The de
nition we use follows Stein and
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seems particularly well adapted to the problem in hand� Any bounded
function with n bounded derivatives is Lip�� for � � n�

Paths of �nite p�variation� Suppose Xt is a path taking its values
in a metric space� Following Wiener� one says that the p�variation of
Xt on J is

������ kXkpp�J 	 sup
nX

j

d�Xtj � Xtj���
p� tj� � � � � � tjr 	 J

o
�

De�nition ������ We say that Xt has p�variation controlled by �s� t�
if

������ kXkpp�	s�t
 � �s� t� � for all s � t �

A path is said to be of regular �nite p�variation if  can be chosen to

be continuous near the diagonal� and zero on the diagonal�

Note that

������ kXkpp�	s�t
 � kXkpp�	t�u
 � kXkpp�	s�u


and so in this paper we only consider controlling  that satisfy the
inequality

������ �s� t� � �t� u� � �s� u� �

It makes sense to introduce a distance between two paths� Let Yt denote
a second path�

De�nition ������ We de�ne the distance� between two paths to be

�nite if

kX�Y kp�J	max
n

sup
tj������tjr�J

�X
j

jd�Xtj � Xtj����d�Ytj � Ytj���j
p
���p

�

sup
t�J

d�Xt� Yt�
o
�� �

�
In the more restricted situation where X takes its values in a Banach space there

is a smaller norm where jd�Y�Y ��d�X�X�j is replaced by k�Xtj��
�Xtj

���Ytj���Ytj �k�

In fact it is this distance that we will use later�
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As before we may talk about the distance being controlled by �

It is obvious from standard facts about sequence spaces that this
distance is indeed a metric �and a norm if the original space were a Ba�
nach space� and that the space of paths of 
nite p�variation is complete
in this metric providing the original metric space was complete� The
space of regular paths is a closed subspace� The p�variation of a path
and distance between two paths are monotone decreasing with increas�
ing p� If X is continuous and of 
nite p�variation then X is regular for
all p� � p� If X is not continuous the local p�variation never goes to
zero and the path is never regular�

Example ������ A path of bounded variation on a closed interval has

�nite ��variation� Almost all Brownian paths Xt�� are of regular p�
variation for all p � � but do not have �nite ��variation although the

map t �� Xt���� R
 �� L��"�P� does have �nite ��variation�

Lipschitz functions� In ��� Chapter VI� Stein looked at the general
problem of extending smooth functions from subsets of Euclidean space
to the whole space� In particular� he considers the Whitney theorem
which extends in a norm bounded way the space Lip��� F � of Lipschitz
functions on a closed set F to the whole Euclidean space� In doing so
he introduces a de
nition of Lip��� F � which is valid for any � � � and
not just for � � �� We recall a modi
cation of this de
nition here�
although we modify it slightly to be compatible with our notations� the
resulting norms are equivalent�

De�nition ������ Suppose that V�W are normed vector spaces� k is a

non�negative integer� and that k � � � k��� A function f 	 f� de�ned
on a closed subset F  V and taking values in W belongs to Lip��� F �
if there exist symmetric multi�linear functions �formal derivatives�

f �j��x�� � � j � k taking
j
�
�
V to W and satisfying the natural Taylor

expansion type condition

f �j��xt��v� 	
X
jl�k

f �jl��xs�
�
v �

Z Z
s�u������ul�t

dxu� � � �dxul

�

� Rj�xs�xt��v� �������

for v 	
j
�
�
V and where� as operators on the tensor product� the deriva�



Differential equations driven by rough signals �	�

tives and remainder satisfy

kf �j��x�k �M �������

kRj�x�y�k �M jx� yj��j � x�y 	 F �������

We de�ne the smallest M to be the Lip��� F � norm of the sequence

f �j��x�� � � j � k�

Some remarks are in order�
The terms

������ f �jl��xs�
�
v �

Z Z
s�u������ul�t

dxu� � � �dxul

�
�

are� for smooth paths#conventional integrals� independent of the choice
of path and only depend on the values �xs�xt�� To prove this� ob�
serve 
rst� that the dimension of W is irrelevant� Now consider the
polynomial p�x� of degree k whose Taylor expansion at xs agrees with
ff �j��xs�gj�������k� Expanding p�xt� in terms of iterated integrals� as in
the last section� we see that the expansion formulae is exact at level k
and

������ p�xt� 	
X

��l�k

f �l��xs�
�Z Z

s�u������ul�t

dxu� � � �dxul

�
�

and as the left hand expression does not depend on the path nor can the
right hand side� Similar arguments can be applied to the derivatives of
p�x� to obtain the invariance of the other expressions� An alternative�
more algebraic proof of the result is to observe that the symmetric na�
ture of the ff �j��xs�gj�������k annihilates the antisymmetric components
of a tensor and only these change when one perturbs the path� Either
way� the observation is clear� and will be crucial to us�

The functions ff �j�gj�������k will not in general be unique given
f 	 f�� One only expects this if the set F is thick enough� In other
words a function in Lip��� F � is not a function on F but a sequence of

functions representing formal derivatives and satisfying these complex
Taylor type bounds relating one term with the next� We will see that
an essentially dual idea occurs when one considers paths of 
nite p�
variation where p � �� The de
nition we give above for p�variation� is
in some sense wrong� as it fails to specify enough information�
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De�nition ����
� We have de�ned a Lip��� F � function	 this de�nition
easily extends to i�forms� A sequence f �j��x�� i � j � k is a Lip��� F �
i�form if all the higher Taylor expressions ������ satisfy the estimates

set out in the de�nition above whenever i � j � k�

Both de
nitions make sense if the functions or forms are vector
valued�

Example ������ If � is a ��form on F and � � � � �� then we say it

is in Lip��� F � if one has de�ned a ��form d�

������
�����Xt�� ��Xs��

�

�
�d�� �Xs� �Xt �Xs�

��� � M kXt �Xsk
�

and

������ kd��Xt�� d��Xs�k � M kXt �Xsk
��� �

However� some caution is now required as the resulting multi�linear
maps are only required to have full symmetry in the x�� � � � � xl co�
ordinates� One may compare this approach to de
ning Lip��� F � j�
forms with the alternative approach which simply says a form valued
function is a matrix valued function� and so we have already de
ned
what we mean by Lip��� F �� The two approaches give the same result�

�� The Finite�Dimensional Case � Linear Di�erential Equa�

tions�

���� Multiplicative Functionals � Introduction�

������ Multiplicative functionals � Introductory material and

de�nitions�

Let V be a vector space� and suppose that Xt is a smooth path
in V � The k�th iterated integral Xk

s�t of Xt over a 
xed time interval

s� t� is an element of the tensor product V �k� The sequence of iterated
integrals

�Xk
s�t�

	
k��

is far from being a generic collection of tensors� there are complicated
algebraic dependencies between the terms in the sequence� To fully
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understand the collection of iterated integrals one must treat them as
a single object�

The tensor algebra� We start by recalling some rather elementary
facts about tensor algebras� Consider the space T of sequences a 	
�a��a��a�� � � � � with ak 	 V �k� That is

����� T 	
	M
k��

V �k �

�We take the zero order tensor product to be the 
eld of scalars�� Then
T is an associative algebra with unit� which we shall refer to as the
tensor algebra over V � If a 	 �a��a��a�� � � � � and b 	 �b�� b�� b�� � � � �
are two elements of T then we may de
ne their sum� �tensor� product�
and the action of scalars in the obvious way

�����

a� b 	 �a� � b��a� � b��a� � b�� � � � � �

�a� b�i 	
X

��j�i

aj � bi�j �

�a 	 ��a�� �a�� �a�� � � � � �

The space T with these operations is an associative algebra� Suppose
that a 	 �a��a��a�� � � � � is any element of the algebra with a� � � then
a is invertible using the usual geometric power series approach

�����

a 	 a� ��� b�� b�� � � � � 	 a� �� � c� �

a�� 	
�� c� c� � c� � � � �

a�
� a� 	 R �

where

�����

bi 	
ai

a�
�

� 	 ������� � � � � �

c 	 ��� b�� b�� � � � � �

Now c� 	 �� hence fcjgk 	 � providing k � j� therefore the k�tensor
component of any power series in c and in particular ��c�c��c��� � � is
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a sum including only 
nitely many non zero terms and so has meaning�
Similarly� providing a� � �� we may de
ne the logarithm of a by

����� loga 	 log a� � �� c�
c�

�
�
c�

�
� � � �

Both of these de
nitions are pure algebra� and no analysis is required�
The exponential function is de
ned for all elements of T � but the se�
ries de
ning the k�tensor component involves a genuinely in
nite sum
�which always converges��

����� expa 	 � � a�
a�

�$
�
a�

�$
� � � �

One can check that exp ��a� 	 �expa��� and that exp loga 	 a�
log expa 	 a� etc� Because the space

����� Dn 	
	O

k�n�

V �k

of tensors of degree greater than n form an ideal we may also study the
truncated tensor algebra T �n� obtained by quotienting out by Dn� We
make the identi
cation

����� T �n� 	
nM

k��

V �k �

The full tensor algebra is an adequate algebraic object� but because it
ignores any notion of convergence of the in
nite sequences it is a rather
poor analytic object� We will mainly work with the truncated tensor
algebras T �n� where the analytic and algebraic structures are completely
compatible� the 
ne analytic information will come from understanding
the way objects in these 
nite dimensional quotients piece together�

At this point we record only the basic facts� If m � n� then there
is a natural projection � of T �m� onto T �n� given by

����� � � �a��a��a�� � � � �am� 
�� �a��a��a�� � � � �an� �

The map � is an algebra homomorphism� Moreover� the de
nitions of
log� exp� a�� extend to T �n� and their actions commute with that of �
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so that for example ��expa� 	 exp ���a��� The inclusion � of T �n� into
T �m� given by

������ � � �a��a��a�� � � � �an� 
�� �a��a��a�� � � � �an����� � � � � �

is linear but is not an algebra homomorphism�

The free Lie algebra and free nilpotent groups� One can build
certain Lie algebras inside T �n� and T � The product

������ a� b� 	 a� b� b� a �

de
nes a Lie Bracket on T and T �n�� Of particular interest is the Lie
algebra generated by V � This is comprised of linear combinations of

nite sequences of Lie brackets of elements of V

A 	 �� V � V� V �� V� V� V ��� � � �

where for example V� V� V �� is the linear subspace of V �� spanned by

v�� v�� v��� � vi 	 V �

One may trivially prove that it has the special property that if S is a
linear map from V into a Lie algebraB then there is a unique extension
of the map to a Lie algebra map from A to B� In other words it is the
free Lie algebra we identi
ed earlier� The corresponding Lie algebra
A�n�  T �n� has the same extension property providing one restricts
attention to maps into Lie algebras of nilpotency rank at most n �i�e� all
Lie products involving n or more elements of the algebra are identically
zero��

Theorem ������ Let G�n� 	 expA�n�  T �n� then G�n� is a group

called the free nilpotent group of step n� G��� 	 R and G��� 	 V �
The exponential map from the Lie algebra A�n� to the Lie group G�n�

is one to one and onto� The restriction of the map � to a map from

G�m� �� T �n�� m � n de�nes a group homomorphism from G�m� ��
G�n�� m � n� On the other hand the map � takes G�n� �� T �m�� m � n
but intersects G�m� only at the identity�

Remark ������ The above theorem and indeed everything in ����� is
standard� proofs can be found in� for example� ���� The properties
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of A�n� are by no means all easy to derive� and for example it is an
interesting� nontrivial� and a numerically worthwhile exercise to com�
pute the dimension of A�n�� to 
nd explicit bases for the space �such
calculations go back to Hall and Linden�� and even to decompose the
space into GL�V ��invariant subspaces ��� according to the di�erent
irreducible representations�

Every element of the free Lie algebra is of 
nite degree and an
element of T �n� for some n� We may exponentiate the free Lie algebra
into the full tensor algebra and the map is injective� but the range is
not a group or even multiplicatively closed� On the other hand� we can
introduce the �highly non�separable� Lie algebra of in
nite sequences of
Lie elements� In this case� we see that the exponential map has a range
comprising solely of elements of the tensor algebra which are carried
by each of the projections � � T �� T �n� into the corresponding group
G�n�� This subset of the full tensor algebra is the inverse limit of our
nilpotent groups and is clearly itself a group which we denote G����

De�nition ������ We say an element of the full tensor algebra is group

like if it is an element of G����

Unfortunately this group is very big and its Lie algebra is no longer
the free algebra�

Any attempt to use a linear map from V into the Lie algebra of
a Lie group H to de
ne a homomorphism of this enormous Lie group
G��� �or some part thereof� into the group H in a unique way must
involve analysis� This paper can be viewed as an attempt to provide
this analytic content�

Paths and multiplicative functionals � the de�nition� Let Xt

be a 
xed smooth path in V � and consider the sequence of iterated
integrals

X
�n�
s�t 	 � �

Z
s�u�t

dxu �

Z Z
s�u��u��t

dxu� � dxu� � � � �

�

Z Z
s�u��u������un�t

dxu� � dxu� � � � � � dxun 	 T �n� �

������

Let Xs�t denote the in
nite sequence� Suppose now that one wants to
describe in detail the relationship between the iterated integrals over
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r� t� and those over r� s� and s� t� where s 	 r� t�� If one starts to
calculate in coordinates one will quickly become engulfed in terms and
conclude that this is a horribly complicated thing to do� however this
is really because the main features are best derived without taking co�
ordinates� Now K� T� Chen �� observed two essential features of the
process Xs�t which we now state as a theorem�

Theorem ������ For smooth paths and conventional integrals� the

process Xs�t is multiplicative� That is to say

������ Xr�s �Xs�t 	Xr�t �

Moreover� it is group like� so that for each n�

������ X
�n�
s�t 	 G�n� � log �X

�n�
s�t � 	 A�n� �

Proof� The proof that Xs�t is multiplicative is instructive� Let the
i�th component of Xs�t be denoted by Xi

s�t� etc� Then

Xi
r�t 	

Z Z
r�u��u������ui�t

dxu� dxu� � � �dxui

	
X

��j�i

Z Z
s�uj�������ui�t

�Z Z
r�u������uj�s

dxu� � � �dxuj

�

� dxuj�� � � �dxui

������

	
X

��j�i

�Z Z
r�u������uj�s

dxu� � � �dxuj

�

�

Z Z
s�uj�������ui�t

dxuj�� � � �dxui

	
X

��j�i

Xj
rs �X

i�j
st �

which establishes the multiplicative identity�
To prove that the iterated integral sequence is group like one needs

a di�erent approach� Because iterated integrals are integrals and our
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paths are smooth� it is an easy consequence of the fundamental theorem
of calculus that they satisfy the system of di�erential equations

������

��
�

dX
�n�
��t 	X

�n�
��t � dXt 	 T �n� �

X
�n�
��� 	 � 	 ������� � � � � �

Suppose g is an element of the group G�n� thought of as a sub�manifold
of T �n�� Then left tensor multiplication by g is a linear map of T �n�

which takes the group G�n� to itself� and � to g� It follows that the
derivative of this map takes the tangent space to the group G�n� at �
to the tangent space to g� However the derivative of a linear map is
the map itself� and V is in the tangent space to G�n� at �� Hence any
solution to the di�erential equation dgt 	 gt � dXt 	 T �n� will remain
in the group G�n� if it starts there� It follows that Xs�t is a group like
element�

Remarks ������ The proof of the above result yields a certain amount
of extra information�

�� From the di�erential equation ������ �which of course is of a very
fundamental kind� we observe that the iterated integrals over a 
xed
time interval are insensitive to re�parameterisation of the underlying
path� and by solving the di�erential equation backwards in time we see
that the inverse group element is produced� The map from piecewise
smooth path segment to iterated integral sequence is a homomorphism
of the semi�group of path segments �multiplication is concatenation� to
the group like elements� Identify re�parameterisations of paths� and the
inverse of path segment with the path run in the reverse direction and
one makes the path segments into a group� Chen proved that in this
case the map into the group like elements is injective� Therefore� the
in
nite algebraic sequence Xs�t contains �in code$� all the information
from xu� u 	 s� t� required to determine the solution yt from ys�

�� The proof of the 
rst part of the theorem holds in wide gener�
ality� The 
rst integral identity relies only on additivity of the integral
over disjoint domains of a nice kind� The second term depends on a
multiplicative linearity of the integral� In fact these properties �of lin�
earity and additivity� are so basic that ������ is true for any sensible
choice of integral �It�o� etc�� and in some sense captures what one means
when one talks about an integral� Because the multiplicative property
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seems so widely characteristic of integrals we make it our basic object
of study�

De�nition ������ A multiplicative functional is a map from pairs

�s� t� of real numbers to Xst 	 �X�
st�X

�
st�X

�
st� � � � � in T �n� satisfying

Xrs �Xst 	 Xrt and X�
st � �� We say a multiplicative functional is

geometric if it takes its values in the group like elements�

Suppose that Xt 	 ���X�
t �X

�
t � � � � �X

n
t � 	 T �n� is a path in the

space of n�tensors with unit scalar component� Then we say that
Xs�t 	 �Xs�

�� � Xt is the multiplicative functional determined by
Xt� Conversely� given a multiplicative functional Xs�t and a point x in
T �n�� we say that Xt 	 x�X��t is the path in T �n� starting at x deter�
mined by Xs�t� Given this almost one to one correspondence between
paths and multiplicative functionals in T �n� it is reasonable to question
the sense of introducing the concept of multiplicative functional at all�
However� we will see later that it will be fundamental to the process of
constructing an integral or of solving a di�erential equation that one
can go from an almost multiplicative functional to a multiplicative func�
tional and hence to a path� Almost multiplicative functionals will have
no direct path�wise interpretation�

The logarithmic ow� As a simple application of the algebraic ideas
set out so far� we go back to a question we raised earlier� suppose
that one would like to know how to construct the logarithm of a �ow�
We can easily derive an asymptotic formulae for the logarithm of the
�ow �proving that it converges to a Lie element is of course a di�erent
question�� Recall our basic equation

������ dyt 	 f�yt� dxt �

where f is the linear map from V to a space of vector 
elds and suppose
the 
elds form a Lie algebra �e�g� they are smooth�� Can we construct a

xed vector 
eld which� if we �ow along it for unit time� gives the same
homeomorphism as solving the inhomogeneneous di�erential equation
over the interval s� t�% Now f is a linear map from V into the smooth
vector 
elds on some general target space� Because of the universal
property of A the map f extends to a unique Lie map f� from A into
the vector 
elds with f��v�� v�� v���� 	 f�v��� f�v��� f�v����� The log�
arithm of the �ow should be given by f��log �X��t��� However� this
calculation is formal because one quietly slips from 
nite to in
nite
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sequences� On the other hand one can always compute

f��log �X
�n�
��t �� � where log �X

�n�
��t �

is regarded as an element of An  T �n�� These form a sequence of
explicit and readily calculable vector 
elds providing an asymptotic
expansion for the logarithmic vector 
eld� A number of the optimal
algorithms for solving sde�s numerically are based on this idea ���

Rough and smooth multiplicative functionals� Although our
prime examples were obtained by computing the iterated integrals of
a smooth path� the underlying de
nition of a multiplicative functional
is at present a purely algebraic one� We now wish to consider rough
and smooth multiplicative functionals� Equivalently we wish to con�
sider rough or smooth monic paths in the truncated tensor algebras�
For this we need a notion of distance between tensors in T �n�� For
all further discussion� suppose that V � and more generally V �n are
Banach spaces and that they have compatible norms k � k so that
ku � vk � kuk kvk� and that the norms are invariant under permu�
tations of the indices of the tensors� �Given a norm on V there are
many norms one could take on the tensor products so that this prop�
erty holds�� Let c 	 ��� c�� c�� � � � � cn� be an element of the radical

D
�n�
� 	

nM
k��

V �k

of T �n�� then for any sequence � 	 ���� ��� � � � � of strictly positive
weights we may de
ne a homogeneous distance function

������ kjcjk� 	 max f��i kcik�
��i � � � i � ng �

It is clear that kjc � djk� � kjcjk� � kjdjk� and so we de
ne a met�

ric on the radical by d�c�d� 	 kjc � djk�� The metrics on D
�n�
� are

uniformly equivalent for alternative choices of the constants �� however
this is only true for 
xed and 
nite n� Although the metric is not a
norm if n � � it has the very important property that it has the same
homogeneity properties as our sequence of iterated integrals when we
scale the underlying path�

Consider the element of the radical X
�n�
s�t ���� � generated by the

sequence of iterated integrals of a smooth path �s� Now scale the path�
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then the individual iterated integrals transform according to their de�
gree and

kjX
�n�
s�t �� ��� �jk 	 � kjX

�n�
s�t ���� �jk �

If we are only interested in 
xed n we will frequently take � � � to
avoid complicated expressions� If we wish to prove that the Einstein
expansion for the solution of a linear equation converges one will need
to control the behaviour as n goes to in
nity� For this one requires a
choice of � very well adapted to the problem� In this more critical work
we 
nd �i 	 � �i�p�$ to be an excellent choice� where � � �� p � � are
to be chosen later� For notational convenience� we will use the notation
kj � jk to denote either metric� It will not cause signi
cant confusion�

Suppose that we have a monic path Xt in the truncated tensor
algebra and its associated multiplicative functionalXs�t� Then we could
introduce a distance 	�Xs�Xt� 	 kjXs�t � �jk� In general this will not
be a metric �although it is good enough� because it fails the symmetry
condition and the triangle inequality� However� it is clear from the neo�
classical inequality �see later� that if � � �p p� then it will satisfy the
triangle inequality� For group like elements� it is obvious from Remark
������� the inverse being obtained from the path run backwards and the
invariance of the norm under re�ordering of the tensors� that the inverse
of a group like element has the same modulus as the original element�
In this case it is clearly a metric�

We ignore the fact that this distance is a metric or not �because
it follows that it is always equivalent to one�� In any case we may
follow section ������� and use it to de
ne monic paths and multiplicative
functionals of 
nite p�variation �controlled by a regular super additive
function �s� t� etc�� and to provide a distance between two paths�

Lemma ������ A multiplicative functional Xs�t in T �n� is of �nite

p�variation controlled by  if and only if it satis�es the inequality

kXi
s�tk �

�s� t�i�p

� �i�p�$
� i � n �

The proof is immediate from the de
nition� We include it as a
convenient formulation�
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���� Multiplicative functionals � the �rst main theorems�

Overview� We have introduced the idea of a multiplicative functional
in T �n� of 
nite p�variation without making any direct connection be�
tween the degree n of the multiplicative functional and the roughness
of the path as described by p � ��

The theorems in this section� which are fundamental to our ap�
proach� demonstrate the central role played by the class of multiplica�
tive functionals for which the degree n is the integer part p� of the
variation p�

We have already observed that if we take a smooth path in a vector
space and take its 
rst k iterated integrals then we have constructed
a multiplicative functional of degree k� computing the next iterated
integral gives a method of extending the multiplicative functional to �a
geometric� one of the next degree� This extension map is continuous
as a function of the underlying path in p�variation metric if and only if
p � ��

By way of an extension of this result� the theorems in this section
show by restriction that� for any p � �� if we regard as our basic object
the smooth path and its iterated integrals of degree up to p� then the
higher iterated integrals are uniformly continuous functions in the met�
ric of 
nite p�variation� The uniform continuity allows one to extend
the de
nition of iterated integral to this class�

These results are the 
rst step towards our main theorem that
the It�o map� is uniformly continuous as a function of the sequence
comprising a smooth path and its iterated integrals of degree up to p�
where one takes the metric of 
nite p�variation� So providing a natural
analytic extension of the It�o map to the class of geometric paths of

nite p�variation and degree p��

The application to stochastic Stratonovich di�erential equations
is realized by taking � � p � �� where these results reduce to the
statement that the It�o map is continuous in the pair comprising the
path and its L�evy area�

������ The First Theorem�

Theorem ������ Let X
�n�
s�t be a multiplicative functional in T �n� of

�nite p�variation controlled by a regular �s� t� on an interval J where

�
de�ned by a di�erential equation with smooth enough coe�cients
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n 	 p�� There exists a multiplicative extension X
�m�
s�t to T �m�� m � n

which is of �nite p�variation� the extension is unique in this class�

Moreover� this unique extension satis�es a rather precise estimate�

Suppose that the p�variation norm of X
�n�
s�t is controlled by �s� t� so

that for all pairs of times in an interval we have

������ kXi
s�tk �

�s� t�i�p

� �i�p�$
� i � p �

then� providing � is large enough the same inequality

������ kXi
s�tk �

�s� t�i�p

� �i�p�$
� i � p �

holds in all degrees and p�variation norm ofX
�m�
s�t is controlled by �s� t�

without any sort of factor for all m��

Remarks ������ �� It su�ces for the above theorem that

������ � � p�
�
� � ��	p
���p

�
�
� p� � �

p

�
� �

��
�

where

������ ��z� 	
	X
�

�

nz

is the traditional Riemann zeta function�

�� It is a more or less trivial remark that� in the case where n � p��
if a multiplicative functional of degree n and 
nite p�variation has an
extension to a multiplicative functional of degree m of 
nite p�variation�
then the extension will never be unique� On the other hand in the case
where n � p� the above theorem shows by restriction the existence and
uniqueness of an extension of 
nite p�variation�

In the remainder of this section we outline the proof�

Two key results under�pin our argument� The 
rst is completely
elementary�

�
where x����x��
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Lemma ������ Suppose

D 	 fs 	 t� � t� � � � � � tr 	 tg

is a dissection of s� t�� Then there is a j such that

������ �tj��� tj�� �

��
�

��s� t�

r � �
� r � � �

�s� t� � r 	 � �

Proof�  is super�additive and so when r � �

������
r��X
�

�tj��� tj�� � ��s� t�

and at least one term in a sum is dominated by the mean so the result
is clear� On the other hand when r 	 �

�tj��� tj�� 	 �s� t� � if j 	 � �

A neo�classical inequality�

Lemma ������ The following extension of the binomial theorem holds

������
��
p

�� nX
j��

xj�p

�j�p�$

y�n�j��p

��n� j��p�$
�

�x� y�n�p

�n�p�$
�

where n 	 N� x� y � �� p � ��

We postpone the proof of this inequality which is quite non�trivial�
Notice that since �x�p�$ is roughly �x$���p� the lemma loosely asserts
that we have a sequence of numbers satisfying

P
aj 	 b from the bi�

nomial theorem and
P

a
��p
j � b��p� In general the inequality would be

reversed�

Proof� Existence� Our intention is to proceed by induction� Fix
m � p�� As initial data consider a multiplicative functional

X
�m�
s�t 	 ���X�

st� � � � �X
	p

s�t�X

	p
�
s�t � � � � �Xm

s�t�
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satisfying ������� we wish to construct a multiplicative functional

X
�m��
s�t satisfying the same constraints�

Consider

������
�

Xs�t 	 i�X
�m�
s�t � 	 ���X�

s�t� � � � �X
m
s�t��� �

Of course
�

Xst is not multiplicative� but at least it is in T �m��� Fix a
dissection D 	 fs � t� � � � � � ti�� � tg of s� t� and de
ne

������
�

X
D

s�t 	
�

Xs�t� �
�

Xt��t� � � � � �
�

Xti���t

using the multiplication in T �m��� It su�ces to show the existence of

limmesh�D�
�

�

X
D

s�t � for this limit� if it exists� will surely be multiplica�
tive�

To check this last point observe that if the limit exists over s� u��
then it can be attained via dissections D all of which include a 
xed
t 	 �s� u�� and so we have

������
�

X
D

s�u 	
�

X
D�	s�t


s�t �
�

X
D�	t�u


t�u �

Taking this limit as the mesh size of D converges to zero we see that
we have

������
�
lim
D
�

�

X
D

s�t

	
	
�
lim
D
�

�

X
D�	s�t


s�t

	
�
�
lim
D
�

�

X
D�	t�u
	

�

To prove the convergence of
�

X
D

we see that the di�culty rests in

understanding the terms
��
X

D

s�t

	m�
for

��

X
D

s�t

	j
	 X

j
s�t for all j � m

since X
�m�
s�t is multiplicative�

The heart of our argument is a maximal inequality� the existence of
the limit follows by a secondary argument� Our aim is to prove� under
the induction hypothesis

������

X�m�
u�v 	 f��X�

u�v� � � � �X
m
u�vg 	 T �m� �

X�m�
u�w 	 X�m�

u�v �X�m�
v�w �

kXi
u�vk �

� ��u� v��i�p
��i�p�$

�
� for all u � v� i � m�
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that for any dissection D of s� t�

������
����

X
D

s�t

	j�� � ��s� t��j�p

��j�p�$
� for all j � m� � �

The case where j � m � � is a trivial consequence of our induction

hypothesis� The �m����tensor
��
X

D

s�t

	m�
is the focus of our attention�

Now from the triangle inequality

������ k�XD
st �

m�k � k�XD
s�t �X

D�

s�t �
m�k� k�XD�

st �
m�k �

where D� is any other dissection� Suppose that it is obtained from D
by dropping a single point from the dissection �this trick seems to be
due to L� C� Young�� By choosing the point to omit from the dissection
carefully� and repeating this deletion procedure until we have the trivial
dissection we will obtain our result�

Fix
D 	 fs 	 t� � t� � � � � � tr 	 tg

and use Lemma ����� to choose j so that

������ �tj��� tj�� �

��
�
� �

r � �

�
�s� t� � r � � �

�s� t� � r 	 � �

Let D� be D n ftjg and consider
�

X
D

s�t �
�

X
D�

s�t� Now
�

������

�

X
D

s�t 	
��

Xs�t� � � �
�

Xtj���tj��

	�

X tj���tj

�

Xtj �tj��

� �
�

Xtj���tj�� � � �
�

Xtj���tr�

	
�

X
D�

s�tj��

�

Xtj���tj

�

Xtj �tj��

�

X
D�

tj���t
�

while

������
�

X
D�

st 	
�

X
D�

s�tj��

�

Xtj���tj��

�

X
D�

tj���t

�
To shorten expressions we henceforth drop the use of the � to denote multiplication

in the tensor algebra�
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and so

������
�

X
D

st �
�

X
D�

st 	
�

X
D�

s�tj��
Ztj�� tj tj��

�

X
D�

tj���t
�

where

������ Ztj��tjtj�� 	
�

Xtj���tj

�

Xtj���tj�� �
�

Xtj���tj��

and using the de
nition of
�

X and the multiplicative nature of X one
has

������ Ztj��tjtj�� 	
�
�� � � � ���

mX
�

Xi
tj���tj X

m��i
tj�tj��

�
�

The only products which yield nonzero results in this tensor multipli�
cation are those where the sum of the degrees of the individual factors
is at most m� it follows that we have the reasonably simple expression
for the di�erence

�

X
D

s�t �
�

X
D�

s�t 	 ��� � � ��
�
�� � � � ���

mX
�

Xi
tj���tj

X
�m���i
tj�tj��

�
��� � � ��

	
�
�� � � � ���

mX
�

Xi
tj���tj X

�m���i
tj�tj��

�
�������

We can estimate this di�erence

������
��� mX

�

Xi
tj��tj

Xm��i
tjtj��

��� � mX
�

kXi
tj��tj

k kXm��i
tjtj��

k

and so using our a priori bound ������ for the magnitudes of these
tensors

��� mX
i��

Xi
tj���tj

Xm��i
tj �tj��

���

�
m�X
i��

��tj��� tj�i�p
��i�p�$

� ��tj� tj��
�m��i��p

���m� �� i��p�$

�������
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and by the Neo�Classical inequality� Lemma ������ and superadditivity
this is

�
p�

��
��tj��� tj� � �tjtj���

�m���p

��m� ���p�$
������

�
p�

��
��tj��� tj���

�m���p

��m� ���p�$
�������

We now recall that we chose our j carefully so that ������ held so that
if r � � one has

������
��� mX
i��

Xi
tj��tj

Xm��i
tjtj��

��� � � �

r � �

��m���p p�

�

�s� t��m���p

���m� ���p�$

and if r 	 � one has the similar

������
��� mX
i��

Xi
tj��tjX

m��i
tjtj��

��� � p�

�

�s� t��m���p

���m� ���p�$
�

Successively dropping points we see that

����

X
D

st

	m�
�
��

Xs�t

	m���
�

p�

�

�
� �

	X
r��

� �

r � �

��m���p�� �s� t��m���p

���m� ���p�$

�

	
p�

�

�
� � ��m���p

�
�
�m� �

p

�
� �

��� �s� t��m���p

���m� ���p�$

�
�

������

Observing that as
��

Xst

	m�
	 � and

�
� �

	X
r��

� �

r � �

��m���p�

is monotone in m and 
nite because m� � � p we have

����

X
D

s�t

	m���

�
p�

�

�
� � ��	p
���p

�
�
� p� � �

p

�
� �

�� �s� t��m���p

���m� ���p�$

������
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�where ��z� 	
P	

� ��nz is the traditional Riemann zeta function��
Thus if we choose

������ � � p�
�
� � ��	p
���p

�
�
� p� � �

p

�
� �

��
�

we get the estimate

������
����

X
D

s�t

	m��� � �s� t��m���p

���m� ���p�$
�

for all choices of dissection D� This completes the proof of the maximal
inequality�

Now we must show convergence of the products� It is at this point
that we require our control  on the p�variation to be regular� We will

show that our sequence
�

X
D

satis
es a Cauchy convergence principle�
Consider two dissections D� �D both having mesh size less than �� We
can always 
nd a common re
nement �D of D and �D� We 
x some
interval in tj � tj�� 	 D� then the re
nement �D breaks the interval up
into a number of pieces tj � sj� � � � � � sjr 	 tj�� call the dissection
�Dj � Then� we know from the maximal inequality� how to estimate

��

X
�Dj

tjtj��
�

�

Xtjtj��

	m�

and all terms of degree less than m�� in the di�erence are zero because
X is multiplicative� Therefore

������
���

X
�Dj

tjtj��
�

�

Xtjtj��

�� � �tj� tj��
m��p

���m� ���p�$
�

So the total di�erence�

������
��

X
�Dj

�
�

X
D	m�

is controlled in norm by�X
D

�tj� tj��
�m���p

���m� ���p�$

�

�
�

���m� ���p�$
max
D

��tj�tj���
�m���p��

X
D

�tj�tj��

�
�

���m� ���p�$
max
D

��tj�tj���
�m���p�� �s� t� �

������

�
using a simple extension of the argument used in ������������� which drastically

limited the range of terms which contribute to the di�erence of the products�
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which is independent of �D and by the regularity of  this converges
uniformly to zero as the mesh size of D converges to zero� Applying the

triangle inequality� we have a uniform bound on X
�D�XD as required�

It follows that we have established the existence of a multiplicative
functional satisfying all the requirements of the induction�

Uniqueness� We must show that ifXs�t and Ys�t are two multiplicative
functionals which agree up to the m�th degree� so that Xi

st 	 Y i
st� i �

m� and which are both of regular 
nite p�variation where �m����p � �
then they agree� The following algebraic lemma makes the situation
clear�

Lemma ������ Suppose that Xs�t and Ys�t are multiplicative function�

als in T �m�� which agree up to the m�th degree so that Xi
st 	 Y i

st�

i � m� The di�erence function �s�t

������ �s�t 	Xm�
s�t � Y m�

s�t 	
m�
�
i��

V

is additive

������ �s�t � �t�u 	 �s�u �

Conversely� if Xs�t is a multiplicative functional in T �m�� and �s�t is

additive in V �m� then Xs�t � �s�t is also a multiplicative functional�

Remark ������ This easy result re�ects the nilpotent nature of the
algebraic structures we are interested in� the function �s�t lies in the
centre�

Proof� Use the multiplicative property for Xs�t and Ys�t to observe
that

�Ys�u�
m� 	 �Ys�t � Yt�u�

m�

	 Y m�
s�t � Y m�

t�u � �Xs�t �Xt�u�
m� �Xm�

s�t �Xm�
t�u

	 �Ys�u�
m�������

	 �Xs�u�
m� � �Y m�

s�t �Xm�
s�t � � �Y m�

t�u �Xm�
t�u �

and so our claim is veri
ed

������ �s�u 	 �s�t � �t�u �
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The same identity also makes it clear that if Xs�t is multiplicative on
T �n�� and � satis
es ������ and is in �n�

i V � then Xs�t � �s�t is also
multiplicative�

Suppose X and Y have 
nite p�variation controlled by a regular
 where �m� ���p � �� By assumption� there is a constant so that

������ k�stk � c �s� t��m���p �

and so ���t is a conventional path of 
nite �m � ���p�variation� If
�m����p � � and  is regular� it follows that � is identically zero and
uniqueness follows�

These calculations also establish the remarks we made on the non�
uniqueness of extensions of multiplicative functionals if �m� ���p � �
as in this case perturbing an extension by a continuous additive �s�t
of bounded variation will produce a di�erent extension of 
nite p�
variation�

������ Continuity�

We have shown that the high order multiplicative functionals are
uniquely determined by the low order ones if we impose a p�variation
condition� We also de
ned a natural distance between paths of 
nite
p�variation� The map we have de
ned is continuous� and there is a very
explicit estimate for the modulus of continuity�

Theorem ������ Suppose X and Y are multiplicative functionals in

T �n� of �nite p�variation controlled by  where �n� ���p � �� Suppose
further that for some � � � one has

������ kXi
s�t � Y

i
s�tk � �

�s� t�i�p

��i�p�$
�

for all i � n� Then for a suitable choice of ��

������ � � � p�
�
� � ��	p
���p

�
�
� p� � �

p

�
� �

��

will do� one has

������ kXi
s�t � Y

i
s�tk � �

�s� t�i�p

��i�p�$
�



��� T� J� Lyons

for all i �� where Xi and Y i are� for i � n� the components in V �i

of the multiplicative extension of �nite p�variation�

Proof� Proceed by induction� Suppose n�� � p� Recall how we con�
structed Xm� and Y m� from X�m� and Y �m� by taking the limit of
the products XD� Y D� Recall in particular� that our choice of dissec�
tion in the proof of the maximal inequality depended on  alone and
not on X�n� or Y �n�� So we may select the same coarsening sequence
of dissections in the analysis bounding XD and Y D� We may also use
this sequence of dissections to estimate kXD � Y Dk� As we coarsen
the dissection we have

k�XD � Y D�m�k � k�XD �XD�

�m� � �Y D � Y D�

�m�k

� k�XD�

� Y D�

�m�k �������

Estimate the 
rst term on the right side of the expression�

������ �XD�

s�t �X
D
s�t�

n� 	
X

��j�n

X
j
ti��tiX

n��j
titi��

and

������ Y
j
s�t 	 X

j
s�t �R

j
s�t �

so

��XD�

s�t �X
D
s�t�� �Y D�

s�t � Y
D
s�t��

n�

	
X

��j�n

�Xj
ti���ti

X
n��j
ti�ti��

� �Xj
ti���ti

�R
j
ti���ti

� �Xn��j
ti�ti��

�R
n��j
ti�ti��

��

������

and by exploiting induction and the neo�classical inequality one has

������

k��XD�

s�t �X
D
s�t� �Y

D�

st � Y D
s�t��

n�k

� �� �� ��� p�
�ti���ti��

�n���p

����n� ���p�$

and as before� summing over our carefully chosen and successively coars�
ening partitions one has

������

kXD
s�t � Y

D
s�tk �

� � ��n���p����n� ���p�� ��

��

� p�
�s� t��n���p

��n� ���p�$
�� �� ��� �
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So for

� �
�
� � ��	p
���p

�
�
� p� � �

p

�
� �

��
p� �� �� ���

the result follows� In particular if � � � the required estimate holds�
This completes the induction step and this rather explicit continuity
result follows�

Remark ������ It might be thought that we have introduced a variety
of topologies on the space of paths of 
nite p�variation in the above
theorem� however� they can all be pasted together in the most natural
way�

De�nition ������ We say a pair of paths X and Y in T �n� which have

regular �nite p�variation are at most a distance � apart if

X�Y �s� t�

	 sup
s�t�J

n�X
j

kjXtj �tj�� � Ytj �tj�� jk
p
�
� s � tj� � � � � � tjr � t

o
� � �

sup fkjXt � Ytjk� t 	 Jg � � �

It is elementary that such a distance is complete� and that if a
sequence converges in the sense that we introduced and exploited in
the preceding lemma then it also converges in this new sense�

Consider a sequence U
�n�
t of paths converging to a path U�

t � Then

the p�variation of U
�n�
t � denoted by U

�n�

�s� t�� and U
�n��U���

�s� t� are
continuous and zero on the diagonal because of the regularity of the
paths� We may choose and re�label a subsequence so that

sup
s�t

U
�n��U���

�s� t� � ��n

on J � Consider the new superadditive functional

������ &�s� t� 	 sup
n

U
�n�

�s� t� �
X
n

�n U
�n��U���

�s� t�

and observe that it is continuous �note that the supremum of a sequence
of continuous and uniformly converging functions is itself continuous��
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it is obviously superadditive and zero on the diagonal� it therefore pro�
vides a regular control on the p�variation of all the paths we are con�

sidering� and most importantly� satis
es U
�n��U���

�s� t� � ��n ��s� t��
This essentially concludes the remark� Every convergent sequence in
the weaker sense has a subsequence converging in this stronger domi�
nated sense� and so we see that the notions of convergent sequence must
correspond�

In a metric space� the topology is determined by the convergent
sequences�

������ The neo�classical inequality	 a proof�

Theorem ������ The following inequality holds uniformly in p � �� n

������
�

p�

nX
j��

aj�p b�n�j��p

�j�p�$ ��n� j��p�$
�

�a� b�n�p

�n�p�$
� a� b � � �

Remark ������ For our application we only require this inequality
with some constant in place of ��p� which is independent of a and n�
However� it is interesting to ask what is the best uniform estimate in
all the variables� All numerical evidence and proofs of special cases
suggest the inequality is true with ��p in place of ��p� and that in this
form the inequality is very strongly saturated �with equality to the n�th
degree as p approaches one if a 	 b� When p 	 �� we have equality of
the left and right expressions by the binomial theorem in either form�
When p 	 n we can prove the result in its strengthened form with ��p�

Proof� To prove the inequality in the form stated� it su�ces to estab�
lish that

������
�

p

nX
j��

xj�p ��� x��n�j��p
�n�p�$

�j�p�$ ��n� j��p�$
� p �

because the expression ������ is homogeneous under scaling of a and b�
Moreover� we have an integral expression for the special functions

������

� x$ y$

�x� y�$

���
	

�

�x� y � �� ��x� �� y � ��

	
�

�x� y � ��

Z �

�

ux��� u�y du

�
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We may rewrite the left hand of the expression ������

�

p

nX
�

xj�p ��� x��n�j��p
�n�p�$

�j�p�$ ��n� j��p�$

	
�

n� p

nX
�

xj�p ��� x��n�j��pZ �

�

�uj ��� u�n�j���p du

	
�

n� p

nX
�

�Z �

�

�u
x

�j�p��� u

�� x

��n�j��p
du

�

We now make a substitution� � 	 p�n� �j 	 j�n� Then the individual
terms in the above sum are derived from

������ F	�x� v� 	
�

n �v � ��

x	�
 ��� x����	��
Z �

�

�u	 ��� u���	���v du

�

By the binomial theorem

������
nX
�

F	j

�
x�

�

n

�
� � �

for all n and all x 	 �� ��� If we could also prove that

������
nX
�

F	j �x� v� � � �

for all v � ��n� and for all x then we would have established the stronger
result which we believe is true� To do this it would su�ce to show that

������
� �

�x
�x ��� x��

�

�x
�

�

��

�
F	 � � �

for in this case we could use the maximum principle for sub�parabolic
functions to deduce that any positive linear combination of F	� taken
over varying �� attains its maximum over the region v � ��n� x 	
��� �� on its parabolic boundary� In particular we could conclude thatPn

� F	j �x� v� � �� for all x and for all v � ��n�
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But F	 is not a subsolution� On the positive side� we can prove
that

������
�

v
x	�v ��� x����	��v

�Z
�u	 ��� u���	���v du

���

is a subsolution for any choice of �� We can therefore apply a maximum
principle argument to prove that if �j 	 j�n then

������

nX
j��

v � �

v
F	j �v� u� � sup

u�	���


nX
j��

�

n
� �

�

n

F	j

� �
n
� u
�

	

�

n
� �

�

n

	 n� � �

for v � ��n� We may cross�multiply and substitute to obtain

������
nX
j��

F	j �v� u� �
v �n� ��

v � �
	

p �n� ��

p� n
�

As the inequality v � ��n is equivalent to p � �� we may deduce that
for v � ��n and u 	 �� �� the inequality

������
nX
j��

F	j �v� u� � p

holds� concluding our main argument�
However� it remains to prove that our expression ������ is indeed

a subsolution to the parabolic equation ������� This is elementary� but
relatively delicate�

Because our expression is positive� we may work with its loga�
rithm� Observe that as a general fact a parabolic operator applied to
an exponential has a simple form

������
LeU �	

�

�u
�

�

�u
eU �

�eU

�v

	
� �

�u
�

�

�u
U � jr�U j

� �
�U

�v

�
eU �
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where we de
ne

������ jr�uj
� 	 � jruj� �

To show that the exponential eU is a subsolution it su�ces to show that

������
� �

�u
�

�

�u
U � jr�U j

� �
�U

�v

�
� � �

The log of the expression ������ is

������

� log v �
�

v
log x�

�� �

v
log ��� x�

� log

Z �

�

�u	��� u���	���vdu �

Let us apply our identity for LeU � one term at a time� with U given by
the expression ������ above�

������
�

�x
x ��� x�

�

�x
U 	

�

�x

��
v
��� x�

�
�

�

�x

��� �

v
x
�
	 �

�

v
and

������

x ��� x�



 �
�x

U



� 	 x ��� x�

��
v

�

x
�

�� �

v

�

�� x

��

	
�� � x

v

�� �

x ��� x�
�

On the other hand the expression ������ can also be rewritten as

������ � log v � log
�Z ��u

x

�	��� u

�� x

���	���v
du
�
�

So

�
�

�v
U

	
�

v
�

�

v�

Z �
� log

�u
x

�
������ log

���u
��x

����u
x

�	���u
��x

���	���v
duZ ��u

x

�	��� u

�� x

���	���v
du

	
�

v
�

�

v�

�
� log

� �
x

�
� ��� �� log

� �� �

�� x

��������

�
�

v�

Z �
� log

� �
u

�
������ log

� �� �

�� u

����u
x

�	 ��� u

�� x

���	���v
duZ ��u

x

�	��� u

�� x

���	���v
du
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and applying Jensen�s inequality to the convex function x logx�

������
�
� log

� �
u

�
� ��� �� log

� �� �

�� u

��

in the last integral� and hence the integral itself is always positive�
Collecting the terms together we see that ������ will hold providing we
can show

������ f��� x� 	
�� � x��

x ��� x�
�
�
� log

� �
x

�
� ��� �� log

� �� �

�� x

��
� � �

for all pairs �� x 	 �� ��� This will follow through a study of �f��� x���x�
This derivative is � at x 	 �� If we prove it to be positive for x � � and
negative for x � � then the result follows since f��� �� 	 �� But

������

�f

�x
	 �x� ��

x ��� x� � ��� �x� �� � x�

�x ��� x���

	 �x� ��
�x� ��� � �� � ���

�x ��� x���

and the second factor in the last expression is positive because � 	 �� ���
This completes the proof of the neo�classical inequality�

���� Multiplicative functionals � The basic spaces of paths�

We can now identify the basic classes of objects which drive di�er�
ential equations�

De�nition ������ A p�multiplicative functional is a multiplicative

functional of degree p� and �nite p�variation� taking its values in

T �V ��	p
�� We denote the set of such paths by "�V �p� The elements

of "�V �p with Xs�t 	 G�	p
� for all pairs of times s� t are the geometric
p�multiplicative functionals denoted by "G�V �p�

Within these spaces� we will often re�ne our interest and consider

only multiplicative functionals which are controlled by a given regular

�
The constraint de�ning "G�V �p as a subspace of "�V �p is a purely

algebraic one	 and for this reason it is obvious that it de�nes a closed

subset� On the other hand "G�V �p has a very important analytic in�

terpretation� The class S�V � of piecewise smooth paths can be lifted to
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a subset S�V �p of "�V �p in a canonical way using the �rst p� iterated
integrals and� as we have shown� Chen observed that the embedding is

actually into "G�V �p�

Lemma ������ The closure of S�V �p in "�V �p is "G�V �p�

The proof of this lemma is quite routine and so we only sketch it�
Fix a group�like multiplicative functional X� Suppose that it has 
nite
p�variation controlled by a regular � We must construct piecewise
smooth paths whose iterated integrals approximate it� However� given
an element g of the group G�n� there is always a smooth path whose

rst n iterated integrals at time one agree with g� Among these paths
the one with shortest projected distance in V has been closely studied
���� In any case� its p�variation in a compact neighborhood of the
identity in G�n� will be uniformly comparable� with kjg � �jk� As a
consequence� we see that the paths obtained by taking the original
multiplicative functional� 
xing a dissection� and then replacing the
intermediate segments of the multiplicative functional by these  chords!
re�parameterised so that they are transversed according to the times in
our dissection provide an approximating family of piecewise smooth
multiplicative functionals� The regularity of  ensures convergence�

The class of geometric multiplicative functionals will be of great
importance later� A number of questions that remain open relate to
the possible extension of theorems from "G�V �p to "�V �p� Such an
extension corresponds to the extension from Stratonovich to It�o in the
classical probabilistic setting� In this paper� we will frequently use the
above lemma to obtain results for the geometric p�functionals that we
do not know how to prove more generally� We hope to understand
matters better� and return to this issue in a later paper�

������ Inhomogeneous degrees of smoothness�

Consider the equation

������ dyt 	
X
i

f i�yt� dx
i
t � f��yt� dt �

by taking our driving signal to be �xt� t� everything we said previously
applies� However� this is an analytically wasteful approach as we fail

�
The bound will depend on the values of n and p�
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to take advantage of the smoother character of one of the co�ordinates
in contrast with the others� So we remark now that at the price of
increased notational complexity� one may introduce a notion of multi�
plicative functional Xs�t of 
nite p 	 �p�� � � � � pd� variation controlled
by �

De�nition ������ A path Xs�t in T �V � � � � � � V d� is of �nite p 	
�p�� � � � � pd� variation controlled by  providing the component

������ X
�r������r�
s�t 	 V r� � � � � � V rl �

where ri 	 f�� � � � � dg satis�es

������ kX
�r������r�
s�t k �

�s� t�l��p����ld�pd

�d �l��p��$ � � � �ld�pd�$
�

where

������ lj 	
jfi � ri 	 jgj

l
�

In this case it is easy to see that essentially the same arguments and
de
nitions can be applied to get existence� uniqueness and continuity
theorems� The crucial point is that to get existence� and a uniqueness
theorem� one must know all the components of the multiplicative func�
tional for which l��p� � � � �� ld�pd � �� The arguments vary scarcely
at all�

���� Di�erential equations driven by rough signals � The linear

case�

������ The ow induced by a rough multiplicative functional�

We now draw out some applications of our 
rst theorems on mul�
tiplicative functionals�

Recall that a linear di�erential equation is one where the target
manifold �where yt takes its values� is a Banach space� and the linear
map from the space V carrying the driving signal xt has as its range
vector 
elds that are bounded linear maps

������ x �� A� �x � V 
�� hom�W�W � �
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In our general form an equation can be reparameterised in this way if
the vector 
elds de
ne a 
nite dimensional Lie algebra�

If xt is a smooth path then� as we saw previously� the linear �ow
associated to the linear equation

������

�
dyt 	 A�y� dxt �

d�t 	 A��� dxt �t �

can be recovered as the sum of the convergent Einstein series

������ �s�t 	 I �A

Z
s�u�t

dxu �AA

ZZ
s�u��u��t

dxu� dxu� � � � �

The theorems in the last section associate to any element X in "�V �p a

unique multiplicative functional Xs�t 	 ���X�
s�t� � � � �X

	p

s�t�X

	p
�
s�t � � � ��

of arbitrarily high �and hence of in
nite� degree and 
nite p�variation�
Because the terms Xi

s�t decay like

������
�

�i�p�$

and this is faster than any geometric series grows� the series

������� �s�t 	 I � AX�
s�t �AAX�

s�t � � � �

converges absolutely to an operator in hom �W�W �� Moreover the map�
ping is obviously continuous from "�V �p�

Lemma ������ The map

������� �s�t 	 I � AX�
s�t �AAX�

s�t � � � �

from "�V �p to hom�W�W � respects multiplication� That is to say

�s�t �t�u 	 �s�u�

Remark ������ The fact that we can 
nd a multiplicative extension
of our map from geometric paths to all p�multiplicative paths indicates
that the role of "�V �p relative to "G�V �p is very similar to that of the
enveloping algebra to the Lie group�
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Proof� If s� t� u are in V then

������� �Av��AA t� u� 	 AAAv � t� u � etc�

From this observation� the multiplicative property of X� and the abso�
lute convergence of all the series the result is immediate�

We could state a more abstract form of the above result�

Corollary ������ Suppose A is a bounded map from a Banach space

V into any Banach algebra Q then the map

������� d�t��t 	 �t��tAdxt � �t��t� 	 � �

de�ned on smooth paths in V extends in a unique continuous way to the

geometric multiplicative functionals of �nite p�variation in "G�V �p and
more generally to any regular multiplicative functional of p�variation�
The map is multiplicative on "�V �p�

Although this allows us to give a meaning to ������ for elements of
"�V �p� we only feel ���' con
dent about calling it a solution in the case
where X is an element of "G�V �p� The reason for our nervousness is
that if we apply the functional that we have just identi
ed to an element
of "�V �p that is not geometric� then the resulting operator is no longer
a path in the underlying Lie group� but an element of the enveloping
algebra� In other words� the natural solution to an It�o equation is
not a randomly evolving �ow on the manifold� but rather an evolving
di�erential operator� Only the use of a connection can bring it back to
a �ow�

Iterated integrals for solutions to linear equations�� We have
established that the It�o functional associated to a linear di�erential
equation can be extended to a continuous multiplicative function from
"G�V �p in a unique way� But our solution was a �ow� or a path �t
in the algebra of linear homomorphisms of W to itself� By evaluating
it against a single vector w we get the solution yt 	 �tw which starts
at w� At least in the linear case it would seem that all is complete�
But this is not really the case� The point is that we would like the

�
The remarks in this section are far more signi�cant than the reader might appreciate

on �rst inspection�
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solutions to our equation to be of the same class as the driving signal�
It is obvious from our estimates that the solution yt is a path in W of

nite p�variation� But we have seen that such paths are not the correct
objects with which to drive di�erential equations� we also require the
iterated integrals of low degree�

For smooth driving paths xt we can obviously construct all the
iterated integrals of yt and the joint iterated integrals of xt with yt�
This de
nes a map from S�V � into "G�V �W �p� The question we
aim to answer in this section is the following� can we extend that
de
nition to one valid for any path in "G�V �p� or even to any path
in "�V �p% We only have a general answer in the former case which
we now explain� �Understanding how to make the extension to "�V �p

is the key to generalising It�o�s type of di�erential equation to rougher
paths��

Consider the equation ������ driven by a piecewise smooth path�
The solution is again piecewise smooth� moreover the series solution
converges locally uniformly at the level of derivatives� Therefore we
have the expression for the iterated integrals of y

Y i
s�t 	

ZZ
s�u������ui�t

dyu� � � �dyui

	

ZZ
s�u������ui�t

	X
l���

Al��dX l�
s�u�� � � �

	X
l���

Ali�dX li
s�ui� y

�i
s �

�������

Providing we can justify changing the order of summation of the series
we have the alternative expression

�������
	X
S�r

X
l����li�S

lj��

Al� �� � ��Ali

ZZ
s�u������ui�t

dX l�
s�u�

� � �dX li
s�ui

y�is

where

������� Al� � � � � � Ali � V ��l����li� �� hom�W�i�W�i�

is the obvious induced map�
To obtain the absolute convergence of the series� and the continu�

ous extension of the map to "G�V �p� we must look a bit more closely
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at the expression for

�������

ZZ
s�u������ui�t

dX l�
s�u� � � �dX

li
s�ui �

At this point we exploit in a critical way the fact that we are dealing
with iterated integrals of the classical kind and are not working with
abstract multiplicative functionals� Now

ZZ
s�u������ui�t

dX l�
s�u�

� � �dX li
s�ui

	

ZZ
s�u������ui�t

s�u��������ul��u��l�
���

dxu��� � � �dxui�li ��������

and the domain of integration in this second expression can be parti�
tioned into disjoint simplexes� Given a sequence of distinct real num�
bers u��� 	 v�� � � � � ui�li 	 vS let � be the unique rearrangement of
�� � � � � S so that v�j are monotone decreasing� More generally� con�
sider the set of all rearrangements (l of �� � � � � S that arise as one
reorders sequences u���� � � � � ui�l� satisfying s � u� � � � � � ui � t�
s � u��� � � � � � u� 	 u��l� � etc� until s � ui�� � � � � � ui 	 ui�li �
These are in one to one correspondence with the number of ways to
partition �� � � � � S into exactly i components� The correspondence with
�l�� � � � � li� is achieved by ordering the components according to their
last surviving element� �the component that becomes extinct 
rst is the

rst component etc�� and putting lj equal to the number of elements
in the j�th component� Each element � 	 (l induces a linear map of
V ��l����li� to itself� and this map �� is an isometry� Because the do�
main of integration is the sum of the disjoint simplexes associated with
the rearrangements� and the integral is the sum of the integrals over
these disjoint domains� we have

�������

ZZ
s�u������ui�t

dX l�
s�u� � � �dX

li
s�u� 	

X
���l

��XS
s�t �

As we will see� this expression is easy to estimate� and we can read�
ily conclude that the expression ������� converges absolutely� So for
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smooth paths we have the identity

������� Y i
s�t 	

	X
S�i

X
l����li�S

lj��

Al� � � � � � Ali
X
���l

��XS
s�t y

�i
s �

which has the considerable attraction that the right hand side involves
xt only through it�s associated multiplicative functional and is essen�
tially a function on the in
nite tensor algebra�

However� this expression should carry a government health warn�

ing� Certainly� the right hand side is �as we shall see� de
ned for any
multiplicative functional in "�V �p and is a continuous function on that
space� For piecewise smooth paths� it de
nes a multiplicative functional
because it coincides with the iterated integrals of the piecewise smooth
path yt� using the continuity of the map it also de
nes a multiplicative
functional for any element of "G�V �p� indeed that path is geometric�

It is therefore tempting to assume the expression has a natural
interpretation for any multiplicative functional in "�V �p� but this is a
mistake� The result will not be multiplicative� and so fails the most ba�
sic property we expect of iterated integrals� and their substitutes in the
rougher case� The point is that the expression on the right in �������
is the unique linear function yielding the desired value on group�like
elements in the tensor algebra� However� although the functions on
smooth paths obtained by taking iterated integrals are linearly inde�
pendent �when regarded as elements of the space of functions on the
space of smooth paths�� they are certainly not algebraically indepen�
dent� There are many di�erent algebraic expressions that agree on the
sequences of iterated integrals corresponding to geometric multiplica�
tive paths�

Observe that ������� de
nes a multiplicative map from the group�
like elements in the tensor algebra of in
nite degree into an associative
algebra� Arguing formally� we may di�erentiate to induce a Lie map
from the Lie elements of the tensor algebra into the associative algebra�
Again arguing formally� the tensor algebra is the enveloping algebra of
this embedded Lie algebra� and so exploiting the universal property of
enveloping algebras� there should exist a unique multiplicative extension
of the Lie map to the full tensor algebra�

If there is a unique extension of ������� to a continuous and multi�
plicative map from T �W � it will not be linear� It�s construction would
allow us to give a uni
ed treatment of di�erential equations of It�o and
Stratonovich type� We would then be con
dent that there was good
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sense in extending the It�o functional beyond geometric paths� and al�
lowing any multiplicative functional in "�V �p to be the driving signal�

At the time of writing� we believe we understand the correct ap�
proach to the identi
cation of such an extension in an analytically useful
form� �In the piecewise smooth case each iterated integral of yt solves
a di�erential equation over xt� and we may compute the Lie algebra
associated to it� In fact this Lie algebra is always 
nite dimensional�
Therefore� after a non�linear change of co�ordinates� we may express
the iterated integral as a Taylor series as we have mapped out earlier�
By computing these changes of co�ordinates the new expression would
be multiplicative for all Xs�t in "�V �p�� con
rmation and explicit de�
termination of the formulae one obtains requires calculations we have
not carried through and must wait for a later paper�

Theorem ������ The series ������� and ������� converge absolutely for
any multiplicative functionalXs�t in "�V �p and de�ne continuous func�

tions� The resulting sequence Ys�t 	 fY i
s�tg

n
i�� is of �nite p�variation

and

������� kY i
s�tk � Ki i

i

i$

�s� t�i�p

� �i�p�$

	X
S��

KS iS
�s� t�S�p

�S�p�$
kysk

i �

If Xs�t in "G�V �p is multiplicative� then Ys�t 	 fY i
s�tg

n
i�� is multiplica�

tive� and we have the asymptotically improved bound

������� kY i
s�tk �

�Up �s� t��
i�p

� �i�p�$
�

Proof� Let K 	 kAk be the operator norm of A regarded as a linear
map A � V �� hom�W�W �� The number of partitionings of an ordered
set of S elements into exactly i non�empty subsets is bounded above by

�������
iS

i$

and so

������� kY i
s�tk �

	X
S�i

KS iS

i$
kXS

s�tk kysk
i �
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If Xs�t is in "�V �p and has variation controlled by  then one has the
estimate

�������

kY i
s�tk �

	X
S�i

KS iS

i$

�s� t�S�p

� �S�p�$
kysk

i

	 Ki i
i

i$

�s� t�i�p

� �i�p�$

	X
S��

KS iS
�s� t�S�p �i�p�$

��S � i��p�$
kysk

i

� Ki i
i

i$

�s� t�i�p

� �i�p�$

	X
S��

KS iS
�s� t�S�p

�S�p�$
kysk

i �

showing the series converges absolutely and bounding the individual

terms in a way that makes it clear that Y
�n�
s�t has 
nite p�variation con�

trolled by a multiple of  on any interval where  is bounded� A vir�
tually identical argument shows the uniform continuity of the sequence
under variation of Xs�t� However� the constants in these estimates ex�
plode with the degree�

On the positive side� the continuity ensures that if Xs�t is in

"G�V �p then Y
�n�
s�t is multiplicative� our results in Section ��� and par�

ticularly Theorem ����� then give the much stronger and more useful
estimate that for n � p�  bounded by L� and with

������� Up 	 max
j�	p


kysk
j Kp jp

�j$�p�j

� 	X
S��

KS jS LS�p

�S�p�$

�p�j
�

choosing � large enough� we have

������� kY i
s�tk �

�Up �s� t��
i�p

� �i�p�$

completing the proof of the theorem�

Cross terms� We have therefore seen that for linear equations the It�o
functional can be extended in a unique continuous way as a map from
"G�V �p to "G�W �p� However� for technical reasons that will become
apparent later� we would like also to know that the iterated integrals
between solution and driving noise also exist� This is readily done by
extending the original di�erential equation� in other words we solve the
equation

�������

���
��

dct 	 � ct dxt �

d�xt 	 ct dxt �

dyt 	 A�y� dxt �
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with c� 	 �� �x� 	 x�� The equation is still linear and so we can use the
approach above to construct the iterated integrals of �x and y and see
that they have unique continuous extension to "G�V �p�

In this way we see that if we wish to record the full structure
associated to our di�erential equation we should regard the It
o map as

an extension map lifting paths in "G�V �p to paths in "G�V �W �p�

������ The stochastic example�

What do the results we have proved so far say in the context of
Brownian motion and stochastic di�erential equations%

Suppose that Xt 	 V is a continuous path in Euclidean space�
chosen randomly according to Wiener measure �in which case we say
it is a Brownian path� or more generally according to some measure
which makes the underlying stochastic process a martingale or semi�
martingale �when we say Xt is a martingale or semimartingale path��
Then it is standard ��� that� with probability one� the forward and
symmetric Riemann sums

X
��ito
s�t 	 lim

n
	

k��n�tX
s�k��n

Xk��n � �Xk��n �X�k����n� �

X
��strat
s�t 	 lim

n
	

k��n�tX
s�k��n

Xk��n �X�k����n

�
� �Xk��n �X�k����n� �

�������

converge uniformly in the time co�ordinates and de
ne two distinct
multiplicative functionals

�������
X ito

s�t 	 ���Xs �Xt�X
��ito
s�t � �

Xstrat
s�t 	 ���Xs �Xt�X

��strat
s�t � �

corresponding to the It�o and Stratonovich integrals� A simple Borel�
Cantelli lemma shows that with probability one they are both in "�V �p

for every p � �� The two multiplicative functionals agree in degree one�
so their di�erence is an additive function with values in two tensors� It
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is referred to by probabilists as the quadratic variation process

�������
hX�Xis�t 	

�

�
lim
n
	

k��n�tX
s�k��n

�Xk��n �X�k����n�

� �Xk��n �X�k����n� �

it has 
nite variation with probability one� Exploiting the It�o and
Stratonovich integrals further� one may construct higher order iterated
integrals� These sequences X ito

s�t and Xstrat
s�t de
ne multiplicative func�

tionals of 
nite p�variation and arbitrarily high degree�
By our theorems these higher iterated integrals etc� are continuous

functions of the path and its second iterated integral� The di�erence

between the It
o and Stratonovich equations driven by Brownian motion

depends entirely on the choice of multiplicative functional of degree two

that we use to extend Brownian motion�

To understand clearly the possibilities and choices made in extend�
ing our Brownian path to a multiplicative functional of degree two and

nite p�variation where � � p � �� we must look more carefully at the
symmetric and anti�symmetric components of X�

st�

Decomposing the second integral � the area or anti�symmetric

part� In our discussion of the iterated integrals of a smooth path� we
saw that the symmetric part of the classical second iterated integral of
a smooth path is

�������
�

�
�Xt �Xs�� �Xt �Xs�

and as this is a continuous function in the uniform topology this relation
will hold true for any geometric path� �One readily checks that for the
Stratonovich integral the symmetric component of the second integral
is precisely this continuous extension��

To create a geometric multiplicative functional of degree two it is
therefore su�cient to construct the anti�symmetric two tensor process�
and to be multiplicative this must satisfy the algebraic relationship

������� As�u 	 As�t �At�u �Area �XsXtXu� �

where

������� Area �PQR� �
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is the area of the triangle interpolating the three points P�Q�R� �Ob�
serve that the area associated to a loop formed by taking a chord and
the trajectory of the path along the time interval s� t� would obviously
satisfy this relationship��

De�nition ������ We call an anti�symmetric two tensor process sat�

isfying ������� an area process relative to the path Xs�

Suppose � � p � �� then for any path of 
nite p�variation in V � and
associated area process As�t �having the correct modulus of continuity�
the multiplicative functional

�������
�
��Xt �Xt�

�

�
�Xt �Xs�� �Xt �Xs� �As�t

�
de
nes a geometric multiplicative functional in "G�V ��� The geometric
condition does not imply any sort of uniqueness or canonical choice for
the the area process given the underlying path� this is in contrast to
the unique continuous choice for symmetric component� Even if Xt is
smooth� there are many elements of "G�V �� lying over the path� Con�
sider the multiplicative functional Ys�t 	 ��� �� ��t����s�� constructed
by taking the limit of the increments and second integrals of the smooth
paths exp �n�� i ��t����n��� The result is geometric� non�trivial� and
for smooth enough � will be in "G�R���� however it projects to the
constant path�

The key� then� to de
ning stochastic di�erential equations is the
choice of this area integral� It really is a choice even in the Brown�
ian case� the work ��� demonstrates just how tenuous the connection
between L�evy area and geometric area of smooth paths really is�

The It�o and Stratonovich second iterated integrals only di�er in
the symmetric bracket process� they share a common area process � the
L�evy Area� The Stratonovich multiplicative functional is geometric�

Theorem ������ Let Xt be a semi�martingale and As�t be its L�evy

area� The linear stochastic di�erential equation

������� dyt 	 A�yt� dXt� � B�yt� dt �

where x �� A� � x� in hom�V� hom�W�W ��� and B� � in hom�W�W ��
are bounded operators which can be regarded as the composition of a con�

tinuous function on "�V�R���� and the random multiplicative func�

tional

�������
�
��Xt �Xs�

�

�
�Xt �Xs�� �Xt �Xs� �As�t

�
�
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In particular� all equations can be solved simultaneously with only a

single null set� The equations can be chosen to depend on the path� end

point of the solution etc�

Proof� There is little to say� The driving signal is �Xt� t�� so that if
we consider the inhomogeneous p�variation introduced in �������� �The
cross�iterated integrals against t are all canonically de
ned� we deduce
that the di�erential equation can be extended from the class of smooth
paths in an unique way to "G�V�R���� � The multiplicative functional
�������� with probability one� takes its values in "G�V�R���� ���� We
claim that this construction obtained by taking the composition of the
two maps coincides with the Stratonovich solution which probabilists
construct�

Fortunately� the very continuity of the map from "G�V�R����

ensures this� It is well known that one may solve a Stratonovich dif�
ferential equation in probability� by replacing the semimartingale path
by its dyadic piecewise linear approximations� and then taking the so�
lutions to the equation driven by these piecewise linear equations ����

On the other hand� our de
nition of the L�evy area makes it clear
that it is the limit of the areas associated to these piecewise linear paths�
a Borel�Cantelli argument ���� Sipil�ainen� shows that the rate of con�
vergence is fast enough for the piecewise linear paths� and their iterated
integrals to converge in "G�V�R����� By our continuity results� we
see that our solution and the conventional probabilistic one agree with
probability one�

Finally observe that our solution is obtained by composing a de�
terministic function depending on the coe�cients of the equation with
a random multiplicative functional constructed almost surely� but with
a null set that is independent of the coe�cients of the equation� In par�
ticular we may solve all such equations simultaneously and can choose
the equation so as to depend on the path without di�culty of interpre�
tation� No predictability condition is involved�

Remarks ������ Generalizing the equation� We will in due
course prove that we can develop continuity results in the fully non�
linear situation where the vector 
elds in the di�erential equation are
Lip �� � �� V � so the remarks above apply in much greater generality
than the linear case proven so far�

Remarks ������ Generalizing the noise� There are a number of
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directions in which one could generalize the noise� One should certainly
consider jumps� in general these are a little easier� because pure jump
random processes tend to have 
nite variation for p � �� The area inte�
gral does not come into the picture ���� In another direction� one could
look at other Markov processes as driving processes for dynamical sys�
tems� Here� matters still seem relatively open� except that one can say
there are wide classes of Markov processes which extend� like Brownian
motion� to admit L�evy area processes� and hence Stratonovich di�eren�
tial equations� but which are de
nitely not semi�martingales and cannot
be attacked via the standard It�o theory�

In these situations where the usual theory simply does not apply
��� an alternative approach is required to construct the L�evy area�
Now� L�evy proved� if one takes the piecewise linear approximation to
the path Xs that agrees at �n equally spaced points and look at the
sequence of areas as one re
nes the dyadic partitions� Then if Xs is
Brownian motion� this sequence forms a martingale over the 
ltration
obtained by revealingXs at the �

n equally spaced points� In many other
situations� one can still show that it is a convergent semi�martingale�
The classical martingale techniques are still important � but not the
time ordered 
ltration�

The symmetric part of X�
s�t and It�o Equations� By now a per�

sistent reader might understand enough to guess that constructing dif�
ferent second order multiplicative extensions to Brownian motion is
essentially equivalent to varying our notion of solution to our stochas�
tic di�erential equation� Even so we are at least super
cially surprised
that the distinction between It�o and Stratonovich second integrals is
not in the discontinuous L�evy area� but in the symmetric part� the part
which has a natural continuous choice for all continuous paths$

The di�erence between the It�o and Stratonovich approaches lie in
the symmetric additive functional known as the quadratic variation or
bracket process�

The earlier results about iterated integrals apply to the It�o equa�
tion and it is easy to write down series solutions etc� but now those
series involve the bracket process� To apply our approach we express
our equations in co�ordinate invariant form� An It�o equation

������� dyt 	 f i�yt� dx
i
t � f��yt� dt �

always requires a connection before it makes good sense� but can then
be rewritten in the Stratonovich form

������� dyt 	 f i�yt� dx
i
t � f��yt� dt�rfi f

j dhX�Xii�j��t
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and one can deduce all the theorems one had before� but now the de�
pendence includes the bracket process separately�

Theorem ������ Consider the linear It
o stochastic di�erential equation

�������

������� dyt 	 A�yt� dxt� � B�yt� dt �

where x �� A� � x� in hom�V� hom�W�W ��� and B� � in hom�W�W ��
are bounded operators� This map can be regarded as the composition of

a continuous function on "�V� V ��V�R������ and a random multiplica�

tive functional depending only on the path� its L�evy area� and its bracket

process� In particular� all equations can be solved simultaneously with

only a single null set� The equations can be chosen to depend on the

path� end point of the solution etc�

In particular� this perspective suggests that for robust numerical
solution of stochastic di�erential equations� one should not try to im�
plicitly simulate the bracket process locally as the quadratic variation
of the path� �as one does when one solves an It�o equation directly using
Euler type methods� but treat it separately as a known quantity and
go via Stratonovich methods� We think this is de
nitely true in some
cases� although it is not the whole story� and a complete understand�
ing of di�erential equations driven by �non�geometric� multiplicative
functionals will be required to give a better answer�

�� Integration against a rough path�

In this section we move from the linear#real analytic setting to the
truly non�linear#rough setting� Our objective is to de
ne the integral
of a rough path against a one form�

���� Almost multiplicative functionals � The construction of

an integral�

We have shown in Section ��� that ifXst 	 T �n� is p�multiplicative
�where we will use the convention n 	 p�� then it extends in a unique
way to a multiplicative functional Xst of 
nite p �variation in T �m� for
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all m � n and if Xst is controlled by  in T �n� so that

����� kXj
stk �

�s� t�j�p

� �j�p�$
� for all j � n �

then one has the same estimate for all j ��� �Here � is an appropri�
ately chosen constant depending only on p�� Similar estimates re�ect
the continuity of this extension map�

We will now explain how� with some loss of quantitative control�
this result can be seen as a special case of a more general one concerning
almost multiplicative functionals�

De�nition ������ Suppose Xst is any functional taking values in T
�n��

we say it is of �nite p�variation controlled by  if� for all s� t�

����� kXj
stk �

�s� t�j�p

� �j�p�$
� for all j � n �

In addition we say that such an Xst is an almost multiplicative func�

tional if for any compact interval J there is a � and a K such that for

all s� t and u in J we have

����� k�XstXtu �Xsu�
jk � K �s� u�	 � for all j � n� � � � �

Observations ������ We have already seen an almost multiplicative
functional� The lift �Xst 	 ���X�

st� � � � �X
n
st��� de
ned in the proof of

Theorem ����� is an almost multiplicative functional controlled by 
providing Xs�t 	 ��� � � � �Xn

st� is a multiplicative functional of 
nite p�
variation where n � p�� We see therefore that �ignoring the quality of
the estimates� Theorem ����� is a special case of the following�

Theorem ������ Suppose Xst is a bounded almost multiplicative func�

tional controlled by  on the compact interval J of degree n� Then there

exists a unique multiplicative functional �Xst on J and a constant

C �L�K� ��max
s�t�J

�s� t�� n� �

such that

����� k� �Xst �Xst�
ik � C �L�K� ��max

s�t�J
�s� t�� n��s� t�	 �
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for all i � n� There is at most one multiplicative functional �Xst that

can satisfy ����� regardless of the choice of C� Here �� K and  are the

terms in the de�nition of almost multiplicative and L is the uniform

bound on the components of Xst�

Corollary ������ In addition� if Xst has �nite p�variation controlled

by  then �X has p�variation controlled by C�  where C� only depends

on K� �� max f�s� t�� s� t 	 Jg and n�

Proof of the theorem� We proceed by induction and suppose the
projection of Xst into T

�j� has the multiplicative property� Presuming
for a moment existence of the limit� de
ne �X as follows

����� � �Xst�
j� 	 lim

mesh�D�
�
�Xst�Xt�t� � � �Xtr��t�

j�

and for all i �	 j�� take � �Xst�
i 	 �Xst�

i� In this case it is clear that �X
will be multiplicative on T �j��� If we show the existence of � �Xst�

j��
establish that �X is almost multiplicative� and compare it with Xst we
will have established the induction step� Iterating it completes the
proof�

We proceed in a similar way to before� Let

XD
s�t 	Xs�t�Xt��t� � � �Xtr���t �

where D 	 fs� t�� � � � � tr��� tg is a dissection of s� t�� First we bound

����� �XD
st �Xst�

j� �

independently of the choice of dissection D� and then we will show the
convergence of the products as the mesh size of the dissections tends
to zero� always providing  is regular� Observe 
rst that in the case
where the dissection is trivial� r 	 �� the di�erence in ����� is zero�
Assume the dissection is nontrivial� and choose an interior point ti of
the dissection D so that

�ti��� ti�� �
�

�r � ��
�s� t�

or equals �s� t� in the case where r 	 �� Let D� 	 D � ftig� If we
estimate ��XD

st �X
D�

st ��
j� and the similar terms as we successively

remove all the interior points of the dissection� we may use the triangle
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inequality to estimate ������ we will obtain a bound� which in analogy
with our previous arguments� is easily seen to be dissection independent�
Now

��XD
st �X

D�

st ��
j������

	 �X
D�	s�ti��

s�ti��

�Xti���tiXti�ti��

�Xti���ti���X
D�	ti���t

ti���t

�j������

and the multiplicative nature of X ensures that

����� Xti��tiXtiti�� �Xtiti�� 	 � �� � � � � � �z �
j� terms

�Rj�
ti���ti�ti��

� � � � �

and so

������ ��XD
st �X

D�

st ��
j� 	 R

j�
ti���ti�ti�� �

But the almost multiplicative property then gives the estimate

������ kRj�
ti���ti�ti��

k � K �ti��� ti��
	 � K

� �

r � �

�	
�s� t�	 �

for r � � and the similar estimate for r 	 �� Summing these error
estimates as one drops points from the dissection leads to the� by now�
familiar estimate

������ k�XD
s�t �Xs�t�

j�k � K ��	������ �� � ���s� t�	 �

and the consequential argument that if  is regular� then the XD con�
verge as the mesh size of the dissection goes to zero� In particular we
may de
ne

� �Xs�t�
j� 	 lim

mesh�D�
�
�XD

st �
j� �

It follows that if

������ R
j�
st 	 � �Xst �Xst�

j� �

then

������ kRj�
st k � K ��	������ �� � ���s� t�	 �
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To see that �X is almost multiplicative� observe that

������ � �Xst
�Xtu � �Xsu�

i 	

�����
����

� � i � j � � �

�XstXtu �Xsu�
i

�Rj�
st X

i��j��
tu

�X
i��j��
st R

j�
tu � i � j � � �

and providing kXi
stk � L for all i � n� s� t 	 J we have the estimate

������
k� �Xst

�Xtu � �Xsu�
ik � K �s� u�	

� �LK��	������ �� � ���s� u�	 �

completing the proof that �X is almost multiplicative� but with the new
constant

������ �K � K �� � �L ��	������ �� � ��� �

and a new uniform bound

������ �L � L�K ��	������ �� � �� max
s�t�J

�s� t�	 �

As �X is also almost multiplicative controlled by a multiple of  and
bounded on J this completes the basic induction step� Observing that
the theorem is trivial if j 	 � and repeating the step n times completes
the construction of the multiplicative functional�

To see uniqueness of the functional� it is enough to show that if

one has two multiplicative functionals
�

Xst�
�

Xst and they satisfy

������ k�
�

Xst �
�

Xst�
ik � C �s� t�	 � for all s� t 	 J� i � n �

then they agree for all i � n� The proof is also an induction argument�

x the smallest i for which the two multiplicative functionals di�er�
Then putting

��s� t� 	 �
�

Xst �
�

Xst�
i �

one obtains from the multiplicative property that

��s� u� 	 ��s� t� � ��t� u�
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and hence for any dissection one has the estimate that

��s� t� � �max
D

�ti� ti���
	�� �s� t� �

For regular  on an interval J this forces ��s� t� � � contradicting the
induction hypothesis�

The theorem and its proof only require a boundedness assumption
on X and regularity assumption on �

Proof of the Corollary� Suppose now that X is of 
nite p�
variation controlled by  on T �n�� where n�p � �� Then it is a simple

application of the triang le inequality to see that �X is also of 
nite
p�variation on T �n�� If n � p then one may repeat the uniqueness
induction argument we have just given to deduce that the new mul�
tiplicative functional we have constructed in this theorem agrees with
the unique multiplicative extension of 
nite p�variation we constructed
in Theorem ������

������ Applications and extensions�

A� The map from p�almost multiplicative functional to p�multipli�
cative functional is a uniformly continuous one� However� this is not a
consequence of the result so much as of the proof� Suppose that X� Y
are two almost multiplicative functionals controlled by the sameK�� ��
And suppose that they are close to each other in the sense that

������ k�Xs�t � Ys�t�
ik � ��s� t�i�p � i � p� �

then of course by the triangle inequality

������ k� �Xs�t � �Ys�t�
ik � ��s� t�i�p � C �s� t�	

and for i � p� this looks adequate� But for � � C �s� t�	�	p
�p or less
seriously �s� t�� � the estimate deteriorates� The key to the proof of
a continuity result is to observe that at each stage in the construction of
the multiplicative functional out of the almost multiplicative functional�
we can control the di�erence between the two approximations� We then
obtain the following theorem�



Differential equations driven by rough signals ���

Theorem ������ Suppose that X� Y are two almost multiplicative

functionals controlled by the same K�� �� and that �s� t� � L for

s� t 	 J � Suppose further that X�Y are close in the p�variation sense

so that

������ k�Xs�t � Ys�t�
ik � ��s� t�i�p � i � p� �

then there is a continuous� increasing function ���� depending only on

K�L� �� p and satisfying ���� 	 � so that the associated multiplicative

functionals satisfy

������ k� �Xs�t � �Ys�t�
ik � ����

�s� t�i�p

�i�p�$
�

for all i�

Proof� Because of Theorem ������ it is su�cient that we deal with the
case i � p��

Suppose Xst� Yst are almost multiplicative and multiplicative up
to degree j � p�� and that they satisfy the hypotheses of the theorem�
De
ne �X� �Y by

������ � �Xst�
j� 	 lim

mesh�D�
�
�Xst�Xt�t� � � �Xtr��t�

j�

and for all i �	 j�� take � �Xst�
i 	 �Xst�

i� and similarly for �Y � We will
show that these are close in the sense of the conclusion� Repeating the
argument the required 
nite number of times� the result will follow�

De
ne XD
s�t 	Xs�t�Xt��t� � � �Xtr���t� etc� where

D 	 fs� t�� � � � � tr��� tg �

We will estimate k� �Xs�t� �Ys�t�
j�k by controlling �XD

st � Y
D
st �

j� in a
uniform way and passing to the limit� Now as before we may succes�
sively drop points from the dissection� By making a careful choice of
the point to drop �but note that the choice depends on  alone� and can
be common for both functionals� we have the following two estimates�
because of the almost multiplicativeness we have

������ k�XD
st �X

D�

st �
j�k � K

� �

r � �

�	
�s� t�	 �
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for r � � and the similar estimate for r 	 �� Combining the estimates
for Y we have

������ k��XD
st � Y

D
st �� �XD�

st � Y
D�

st ��j�k � �K
� �

r � �

�	
�s� t�	 �

while using the closeness hypothesis� �and some crude version of the
neo�classical inequality� one obtains

������

k��XD
st � Y

D
st �� �XD�

st � Y
D�

st ��j�k

� A�p� ��� ���
� �

r � �

��j���p

�s� t��j���p �

so combining the two and using the uniform bound that �s� t� � L one
has

������

k��XD
st � Y

D
st �� �XD�

st � Y
D�

st ��j�k

�
�
A�p� ��� ���

� �

r � �

��j���p

� �K L	��j���p
� �

r � �

�	�
�s� t��j���p

and summing this over r yields the required uniform estimate�

B� As a second simple� but rather important corollary of Theorem
������ we see that it is possible to vary one multiplicative functional in
the direction of a second� In particular� suppose that Xst is a multi�
plicative functional of 
nite p�variation controlled by  and that Hst

is a second� and suppose further that k�Hst�
jk � K��s� t��� for all

j � p� and for some � � � � ��p� In this case� the neo�classical
inequality shows HstXst to be of 
nite p�variation an d more ele�
mentary considerations show it to be almost multiplicative� Moreover
k�HstXst �XstHst�

jk � K��s� t�����p� and so Theorem ����� shows
that the multiplicative functional associated to the left or right hand
perturbations of Xst coincide� We denote this modi
cation by XH

s�t�
Although we do not have time in this paper to pursue the matter� it
will be useful if we want to di�erentiate functionals on path space�
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���� Integrating a one�form � A most important almost mul�

tiplicative functional�

Our intention is to solve equations of the type

������ dY 	 f�Y � dX � Y� 	 a �

whereX and Y are multiplicative functionals and where Ys 	 Y�s�Y��
We wish to adopt an approach based on Picard iteration� in other words
we treat our equation as an integral equation and construct a solution
by iterating the function F

������ F �Y �t 	 a�

Z t

�

f�Ys� dXs �

Although such an approach is almost universal� it is apparently un�
natural from a geometric perspective� Every term in our di�erential
equation is meaningful without a choice of co�ordinates for the space
where Y takes its values and one would hope that the solution had the
same properties� However� the functional in ������ certainly involves a
choice of co�ordinate chart� and di�erent choices produce di�erent maps
F �

To succeed in our Picard iteration we now follow up these two
separate but closely related points� We must make sense of the concept
of an integral� and we must understand its behaviour under changes of
variable�

������ Integrating a one form�

We will now prove that a one form can be integrated against a mul�
tiplicative functional in a natural way� We do this via the construction
of an almost multiplicative functional� The reader should be warned
that our methods are currently limited� and in general we can only treat
geometric multiplicative functionals of 
nite p�variation� However� for
the case where the paths have p�variation satisfying p � � �and so de�
gree is n � �� then the next section will extend these results to all
multiplicative functionals� This improvement in the case n 	 � is im�
portant because it allows one to treat the It�o approach to di�erential
equations in common with the Stratonovich approach� We believe our
failure to extend the result to all multiplicative functionals in the gen�
eral case re�ects a lack of understanding on our part� inspection and
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guess work allow one to treat n 	 � but do not point to the general
picture�

But before explaining the analysis� for the sake of precision� we
need some simple notation�

De�nition ������ We say that a multiplicative functional Xs�t 	 T �n�

lies above a path Xt 	 V if X�
s�t 	 Xt �Xs�

It is clear that there always is such a path under any multiplicative
functional and that it is unique� once we have determined its value at
a single time� In what follows we will use the notation �vector font�
normal font� to express this relationship without further mention�

Main Lemma� Notation� A W �valued ��form � on V is a function
on V whose value at any point is a linear homomorphism from V to
W � that is ��v� 	 hom�V�W �� Suppose that � is smooth enough that
one can di�erentiate it� Denote by

������

������
�����

�� 	 � � ���v� 	 hom�V�W � �

�� 	 d� � ���v� 	 hom�V� hom�V�W ��
�	 hom�V � V�W � �

�k 	 d�k�� � �k�v� 	 hom�
k
�
�
V�W � �

Now� the multilinear map �k�v� is not symmetric in all its coe�cients
� and so one must have some convention on the order in which they
appear� We adopt the convention that �k�v� �v�� v�� � � � � vk� is de
ned
so that for smooth paths and conventional integrals

������

Z
s�u�t

�k�xu� �dxu� v�� � � � � vk�

	 �k���xt� �v�� � � � � vk�� �k���xs� �v�� � � � � vk� �

Recall that � is a Lip�� � �� one form with norm at most M providing
that for � � j � � one has the Taylor series style expression

������
�j�xt� �v�� v�� � � � � vj� 	

X
��i���j

�ji�x�� �x
i
��t� v�� v�� � � � � vj�

� Rj�x�� xt� �v�� v�� � � � � vj� �



Differential equations driven by rough signals ��	

where �i�x� and Ri�x� y� are bounded in operator norm on

hom
� iO

�

V�W
�

with the controls

������
k�i�x�k �M �

kRi�x� y�k �Mkx� yk��i �

As we noted �������� the remainder only depends on x�� and xt� and
not on the intermediate smooth path segment� Exploiting this point�
and taking a limit� we see that the identity ������ and estimate ������
hold for any sequence ���xt 	 xi��t� � � � �x

i
��t� arising from a geometric

multiplicative functional�
We are now in a position to de
ne the crucial almost multiplicative

functional which will give us the integral� We start with a de
nition
which is understandable for smooth paths� and then transform it in a
combinatorial way so that it is clear that the functional is the restriction
of a uniformly continuous function de
ned on all paths in "�V �p� This
extension is easily seen to de
ne an almost multiplicative functional
when evaluated on "G�V �p and this completes the de
nition#theorem�
As a warning� this functional �which is linear� de
nitely does not give
an almost multiplicative functional for a general element of "�V �p�

Prede�nition ������ For � a Lip�� � �� one form with values in

W � and Xs�t a geometric multiplicative functional of �nite p�variation
�obtained by taking a sequence of iterated integrals of a smooth path��
de�ne

������

Y i
s�t 	

ZZ
s�u������ui�t

	p
X
l���

�l��Xs� �dX
l�
s�u�

�

� � �

	p
X
li��

�li�Xs� �dX
li
s�ui

� �

Because the �li�Xs� are constants we may equate the expression with

������

Y i
s�t 	

	p
X
l������li��

�l��Xs�� � � � � �li�Xs�

�

ZZ
s�u������ui�t

dX l�
s�u�

� � �dX li
s�ui

�
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Focus attention on
RR

s�u������ui�t
dX l�

s�u� � � �dX
li
s�ui� For our smooth

path one has

������

ZZ
s�u������ui�t

dX l�
s�u�

� � �dX li
s�ui

	

ZZ
V

dXu��� � � �dXu��l�
� � �dXui�� � � �dXui�li

�

where the domain of integration V is given by

������

V 	 s � u� � � � � � ui � t �

s � u��� � � � � � u��l� 	 u� �

���

s � ui�� � � � � � ui�li 	 ui �

But this domain of integration is a product of simplexes and can be

represented as a union of disjoint simplexes obtained by shu�ing� Fix

l 	 �l�� � � � � li� and let u 	 �u���� � � � � u��l� � � � � � ui��� � � � � ui�li� be any

distinct sequence satisfying the constraints of ������� Let �u denote the

permutation that would reorder the numbers u to be increasing� and let

(l denote the range of this function as a subset of the group )klk of

permutations of klk elements where klk 	
P

j�������i lj� We can expand

our integral as a sum

������

ZZ
s�u������ui�t

dX l�
s�u� � � �dX

li
s�ui

	
X
���l

ZZ
s�v������vklk�t

dXv���� � � �dXv��klk� �

Now the group )n acts on �
n
V in the obvious way taking �v�� � � � � vn�

to �v����� � � � � v��n��� It follows that

������

ZZ
s�u������ui�t

dX l�
s�u� � � �dX

li
s�ui

	
X
���l

�
� ZZ
s�v������vklk�t

dXv� � � �dXvklk

�

	
X
���l

��X
klk
s�t �
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and so �nally we have reduced the integral to an expression involving

only the multiplicative functional� Regarding this calculation as moti�

vation� we give our formal de�nition for Ys�t�

De�nition ������ For any multiplicative functional Xs�t in "G�V �p

de�ne�

������ Y i
s�t 	

	p
X
l������li��

�l��Xs�� � � � � �li�Xs�
X
���l

��X
klk
s�t � �

Theorem ������ For any multiplicative functionalXs�t in "G�V �p and
any one�form � 	 Lip� � �� fXu� u 	 s� t�g� with � � p the sequence

Ys�t 	 ���Y �
s�t� � � � �Y

	p

s�t � de�ned above is almost multiplicative and of

�nite p�variation	 if Xs�t is controlled by  on J where  is bounded

by L� and the Lip� � �� norm of � is bounded by M � then the almost

multiplicative and p�variation properties of Y are controlled by multiples

of  which depend only on �� p� L�M �

Proof� Note that we also have the trivial estimate based on the size
of the permutation group that

������

���
ZZ

s�u������ui�t

dX l�
s�u� � � �dX

li
s�ui

��� � j(lj
�s� t�klk�p

� �klk�p�$

� klk$
�s� t�klk�p

� �klk�p�$
�

We must now prove that Ys�t is almost multiplicative when restricted
to "G�V �p� For motivation of our calculations we again start by for�
mally regarding our multiplicative functional as a sequence of iterated
integrals�

Y i
s�u 	

ZZ
s�u������ui�u

	p
X
l���

�l��Xs� �dX
l�
s�u�

� � � �

	p
X
li��

�li�Xs� �dX
li
s�ui

�

	
X

r�������i

ZZ
t�ur�������ui�u

� ZZ
s�u������ur�t

	p
X
l���

�l��Xs� �dX
l�
s�u�

�

� � �

	p
X
lr��

�lr �Xs� �dX
lr
s�ur

�
�
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�

	p
X
lr����

�lr���Xs� �dX
lr��
s�ur��

�

������

� � �

	p
X
li��

�li�Xs� �dX
li
s�ui

�

	
�
Ys�t �

� ZZ
t�u������uj�u

	p
X
l���

�l��Xs� �dX
l�
s�u�

�

� � �

	p
X
lj��

�lj �Xs� �dX
lj
s�uj

�
�	p

j��

�i

This expression looks close to our target� but we must move the ref�
erence point in the second half of the expression from the time point
s to the time point t� This follows from the Taylor type expression�
Consider the terms �l�Xs� dX

l
s�u where u � t� Then again by linearity

of tensor multiplication one gets dX l
s�u 	 �Xs�t � dXt�u�

l and so

	p
X
l��

�l�Xs� �dX
l
s�u�

� 	

	p
X
l��

l�� or lX
i��

�l�Xs� �X
i
s�t � dX l�i

t�u �

	

	p
X
j��

	p
�jX
i��

�ij�Xs� �X
i
s�t � dXj

t�u�������

	

	p
X
j��

�j�Xt� �dX
j
t�u� �

	p
X
j��

Rj�X�� Xt� �dX
j
t�u�

� and so we have

Ys�u 	 Ys�t � Yt�u

� Ys�t �
� 	p
X
l������li��

�X
�

�l��Xs� Xt�� � � � � �li�Xs� Xt�

�
It is exactly at this point that one is assuming the derivatives of the one form

contract with the iterated integrals to produce a result that depends on the path chosen

only through it�s initial and terminal values� In other words� the iterated integrals di�er

from those of the chord Xt�X� by an element in the enveloping algebra�
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�

ZZ
t�u������ui�u

dX l�
t�u� � � �dX

li
t�ui

��i�	p


i��

������

where the sum is over all sequences � where

������ �l 	 f�l�Xs�� R
l�X�� Xt�g

and where for each l� one has� for at least one of lj� that �
l 	 Rl�X�� Xt��

It is then an easy matter to estimate the size of this term and see that
the functional is almost multiplicative�

One has that

���
	p
X

l������li��

�X
�

�l��Xs� Xt�� � � � � �li�Xs� Xt�

�

ZZ
t�u������ui�u

dX l�
t�u�

� � �dX li
t�ui

����

�M i

	p
X
l������li��

��i � �� j(lj �� � jXs �Xtj
����i�� jXs �Xtj

���

�
�t� u��l����l���li��p

� �jlj�p�$

�M i jXs �Xtj
��� �t� u��li����p

�

	p
X
l������li��

��i � �� j(lj �� � jXs �Xtj
����i�� �� � �t� u�������p�i��

where the passage from the 
rst to second expression is based on the es�
timate given above for the iterated integral of iterated integrals� count�
ing the number of �� and by exploiting the inequality

������ �lj �Xs�Xt� � M �� � kXs �Xtk
����

in all but one of the terms in the product� in the latter one uses the fact
that the remainder type term appears at least� once to be more precise

�M i
��t� u���p

���p�$

�
�t� u�li���p

�
� �

��t� u���p
���p�$

�����i��
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� �� � �t� u�������p�i��
	p
X

l������li��

��i � �� j(lj

� �klk�p�$

�M i
��t� u���p

���p�$

���l
�t� u�li���p

�
� �

��t� u���p
���p�$

�����i��

� �� � �t� u�������p�i��
i	p
X
m��

��i � ��m$

� �m�p�$

�
�i p� � ��$ ��i � ��

� ���p�$
M i

��t� u���p
���p�$

���l
�t� u�li���p

�
�
� �

��t� u���p
���p�$

�����i��
�� � �t� u�������p�i��

� K�p� ��M i �s� u��i���p
�
� �

��t� u�
���p�$

�������p���i���
and since � � p and i � � we have the estimate� The functional Yst is
almost multiplicative with power ��p� It is interesting that the const
ant grows so rapidly with the roughness of the path�

To 
nalize the argument� recall that we did some manipulations of
Yst where we used the representation of the terms in the iterated inte�
gral to motivate certain manipulations which were obvious for classical
smooth integrals because of their general properties of linearity and
additivity over disjoint simplexes� It is necessary to convince oneself
that an integrated form of ������ holds when a geometric multiplicative
functional is substituted for the iterated integrals of the smooth path�
This is obvious for geometric multiplicative functionals because the al�
gebraic identities clearly hold on a closed set containing the lifts of the
smooth paths� By de
nition this includes "G�V �p�

As a consequence of this result we can de
ne the integral of a
��form�

De�nition ������ We say that �Ys�t is the integral of the one form �

against X if �Ys�t is the multiplicative functional associated to the almost
multiplicative functional we de�ned above� In this case we write

������

�Ys�t 	

Z
s�u�t

��Xu� �Xu �

� �Y 	 ��X� �X �
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We now have an integral� We also have a change of variable for�
mula�

Corollary ������ Suppose f is a Lip�� map from V �� U then it

induces a natural map of "G�V �p �� "G�U�p providing � � p�

Proof� Apply the above theorem to the di�erential of f �

So just as semimartingales as a class are preserved by smooth maps�
so is "G�V �p�

������ The two step case � p�variation less than ��

The reader may be particularly interested in the special case which
includes stochastic di�erential equations� For this reason we treat in�
dependently the case where one has a multiplicative functional of de�
gree two� the more explicit approach developed here permits a stronger
result� We show that it is possible to integrate any p�multiplicative
functional against a Lip� � �� one form providing � � p� Again our
approach is to construct an almost multiplicative functional and al�
though the result is almost contained in the previous section it seems
worth the e�ort of doing the calculation explicitly in this important
special case to identify the constants and �perhaps%� get a feel for how
to generalise to the general case�

Even in this case there are many terms and the algebra is relatively
complex� Mathematica was used by the author to keep track of some
of the terms in the calculations�

Our basic idea can be summarized by saying we start with a multi�
plicative functional X of degree two which we think of as representing
the integral and second iterated integral of a path X � We write down
the obvious approximation to the integral and iterated integral of the
integral of X against a ��form� This is not multiplicative� but it is
almost multiplicative� The unique multiplicative functional that is ap�
propriately close is regarded as the integral of X against the ��form�

Fix � � p � �� Then Xst is a multiplicative functional on J with
p�variation controlled by  if

kX�
tsk � �t� s���p and kX�

tsk � �t� s���p �

Suppose that � is a ��form that is Lip�� where p� � � � � ��
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By Taylor�s theorem

������
�����Xt�� ��Xs��

�

�
�d�� �Xs� �X

�
st�
��� � M �t� s���p �

So if we wish to approximate the iterated integrals of Y the  integral!
of X against �� it makes sense to consider

Yst 	
n
�� ��Xs� �X

�
st� �

�

�
�d�� �Xs� �X

�
st�� ��Xs�� ��Xs��X

�
st�
o
�

Clearly� Ys�t has 
nite p�variation controlled by �M � We will now
establish the claim that it is also an almost multiplicative functional

Yst 	
n
�� ��Xs� �X

�
st� �

�

�
�d�� �Xs� �X

�
st�� ��Xs�� ��Xs� �X

�
st�
o
�

Ytu 	
n
�� ��Xt� �X

�
tu� �

�

�
�d�� �Xt� �X

�
tu�� ��Xt�� ��Xt� �X

�
tu�
o
�

Yst � Ytu 	
n
�� ��Xs� �X

�
st� �

�

�
�d�� �Xs� �X

�
st� � ��Xt� �X

�
tu�

�
�

�
�d�� �Xt� �X

�
tu��

���Xs� �X
�
st� �

�

�
�d�� �Xs��X

�
st��������

� ���Xt� �X
�
tu� �

�

�
�d�� �Xt� �X

�
tu��

� ��Xs�� ��Xs� �X
�
st� � ��Xt�� ��Xt� �X

�
tu�
o
�

Ysu � Yst � Ytu	
n
�� ��Xs� �X

�
su� �

�

�
�d�� �Xs� �X

�
su�

� ���Xs� �X
�
su� �

�

�
�d�� �Xs� �X

�
st�

� ��Xt� �X
�
tu� �

�

�
�d�� �Xt� �X

�
tu�� �

��Xs�� ��Xs� �X
�
su�

� ����Xs� �X
�
st� �

�

�
�d�� �Xs� �X

�
st��������

� ���Xs� �X
�
su� �

�

�
�d�� �Xs� �X

�
su��

� ��Xs� �X
�
st� �

�

�
�d�� �Xs� �X

�
st�

� ��Xt� �X
�
tu� �

�

�
�d�� �Xt� �X

�
tu��

o
�
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now recalling Taylor�s theorem

��Xt� 	 ��Xs� �
�

�
�d�� �Xs� �X

�
st� � r��t� s� �

kr��t� s�k � M �t� s���p

and

������
d��Xt� 	 d��Xs� � r��t� s� �

kr��t� s�k � M �t� s�������p �

We use these approximations to estimate Ysu�Yst�Ytu� Substituting
both approximations into the ��tensor component of Yst � Ytu� substi�
tuting only the 
rst into the ��tensor component� and expanding out
each term in Xi

s�u within Ysu in terms of Xj
st�X

j
tu using the multi�

plicative proper ty for X one has after a tedious calculation with many
terms �or using Mathematica after a relatively complex set of manipu�
lations� the three terms of di�erent tensor degree in Ysu�Yst �Ytu in
increasing order of complexity�

The zero�th order term is clearly zero�
The 
rst order term is r��s� t�X

�
t�u � r��s� t�X

�
t�u and

kr��s� t�X
�
t�u � r��s� t�X

�
t�uk

�M ��s� t���p �t� u���p � �s� t�������p �t� u���p�

� �M �s� u������p �

������

giving the required estimate�
The second order term breaks naturally �if somewhat painfully�

into a sum of �� terms� which under our assumptions are of � di�erent
magnitudes�

���Xs�� d��Xs�� �X
�
s�t �X

�
t�u�

� ���Xs�� d��Xt�� �X
�
s�t �X

�
t�u�

� �d��Xs�� ��Xs�� �X
�
s�t �X

�
t�u �X�

s�t �X
�
t�u�

������

� ���Xs�� d��Xs�� �X
�
s�t �X

�
s�t �X

�
t�u�

� ���Xs�� r��s� t�� �X
�
t�u �X�

t�u �X
�
s�t�
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� �r��s� t�� ��Xs�� �X
�
t�u�

������

� �d��Xs�� d��Xt�� �X
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s�t �X

�
t�u�

� �d��Xs�� d��Xs�� �X
�
s�t �X

�
s�t �X

�
t�u�

� �d��Xs�� d��Xs�� �X
�
s�t �X

�
s�t �X

�
t�u�

������

� �d��Xs�� r��s� t�� �X
�
t�u �X

�
s�t�

� �d��Xs�� r��s� t�� �X
�
s�t �X

�
t�u�

� �r��s� t�� d��Xs�� �X
�
s�t �X

�
t�u�

������

� �r��s� t�� r��s� t�� �X
�
t�u�

������

and so one has that the norm of the expression above is less than

������
M� ���s� u���p � ��s� u������p � ��s� u���p

� ��s� u������p � �s� u�������p�

and providing �s� u� � � we have the simpler bound

������ ��M� �s� u���p � �s� u� � � �

Recalling our assumption that � is a ��form that is Lip�� where p�� �
� � � we see that both errors are controlled to a degree greater than
one in � This leads us to conclude that Y is an almost multiplicative
functional� Our approach used the multiplicative property� but never
required the geometric property of X� As above we de
ne the integral

������

Z
s�u�t

��Xu� �X �

to be the associated multiplicative functional�
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������ Continuity of the integral�

It is an immediate corollary of our results so far� that the integral

������

Z
s�u�t

��Xu� �X

is a continuous map from �geometric� multiplicative functionals and
Lip� � �� one forms to p�multiplicative functionals� Since it is clear
that the integral of a smooth path produces a geometric functional� it
follows from the continuity of the map that the integral against any
element of "G�V �p produces a multiplicative functional in "G�W �p 
"�W �p�

In more detail� the almost multiplicative functional associated with
a geometric functional

������ Y i
s�t 	

	p
X
l������li��

�l��Xs�� � � � � �li�Xs�
X
���l

��X
klk
s�t �

is clearly continuous in the sense that if X�X �� are multiplicative func�
tionals controlled by  and satisfying

������ k�Xs�t �X
�
s�t�

ik � �
�s� t�

� �i�p�$
�

moreover the kXu �X �
uk � �� and the 
nitely many functions x ��

�l��x� � � � � � �li�x� have a uniform modulus of continuity ����M� p��
so one has the estimate on the almost multiplicative functionals

������

kY i
s�t � Y

�i
s�tk

�
� 	p
X
l������li��

��Mklk j(lj

� ����M� p��
�s� t�jlj�p�i�p

� �jlj�p�$

�
�s� t�i�p

and so we can apply the continuity theorem for the construction of
a multiplicative functional from an almost multiplicative functional to
deduce the following
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Theorem ������ If X�X �� are geometric multiplicative functionals of

�nite p�variation controlled by  with �s� t� � L for s� t 	 J � and � is

a one form with a Lip� � �� norm at most M then there is a function

���� L�M� p� continuous and zero if � 	 � such that if

������ k�Xs�t �X
�
s�t�

ik � �
�s� t�i�p

� �i�p�$
� i � p�

and

������ kXu �X �
uk � � �

then for i � p�

������

����
Z

s�u�t

��Xu� �X �

Z
s�u�t

��X �
u� �X

�
�i���

� ���� L�M� p�
�s� t�i

�i�p�$
�

Similar estimates apply to the variation of the one form�

Corollary ������ If X 	 "G�V �p then

������

Z
s�u�t

��Xu� �X is in "G�W �p  "�W �p �

Continuity in the case p � � for non�geometric functionals� In
the situation where p � � we have the alternative description of our
almost multiplicative functional valid for any X 	 "�V �p� and we may
check the continuity directly in this case as well� We explicitly compute
the changes to the almost multiplicative functional

������
Yst 	

n
�� ��Xs� �X

�
st� �

�

�
�d�� �Xs� �X

�
st��

��Xs�� ��Xs� �X
�
st�
o
�

Suppose that

������ Xs 	 �Xs�e �s � X�
st 	 �X�

st�e �st � X�
st 	 �X�

st�e �st �
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where the approximation errors satisfy

������ e �s � � � e �st � ��s� t���p � e �st � ��s� t���p �

Then

������

Yst � �Yst 	
n
��

��Xs� �X
�
st�� �� �Xs� � �X

�
st�

�
�

�
�d�� �Xs� �X

�
st��

�

�
�d�� � �Xs� � �X

�
st��

��Xs�� ��Xs� �X
�
st�� �� �Xs�� �� �Xs� � �X

�
st�
o

and so

������

k�Yst � �Yst�
ik �

n
��

M ��s� t���p �M ���p �s� t���p

�
�

�
M �� �s� t���p���� �s� t���p

�
�

�
M ��s� t���p�

M� ���� � ���s� t���p

� � ��� � ���s� t���p

� �� �s� t���p�
o
�

with i 	 �� �� �� and providing �s� t� � �� � � �� one has the more
intelligible inequality

������ k�Yst � �Yst�
ik � f�� �M ���� �s� t���p� �M� � �s� t���pg �

with i 	 �� �� �� establishing the continuity of the map into almost
multiplicative functionals�

�� Di�erential equations� putting it all together�

In this section we achieve our main objective of showing that the
It�o functional extends uniquely to a continuous map de
ned on the
rough paths in "G�V �p providing the de
ning vector 
elds are Lip��
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and � � p� This permits� in a reasonably complete way� the solution
of di�erential equations driven by rough �but geometric� multiplicative
functionals� It completely removes the 
nite dimensional Lie algebra
assumption�

The key estimate will be the one we established for the integration
of one forms� this together with a reasonably delicate exploitation of
inhomogeneity will show Picard�s iteration scheme converges� The ar�
gument will be split into a number of distinct steps� But 
rst we must
be precise about our concept or de
nition of a solution$

���� Giving the di�erential equation meaning�

Take a smooth path Xt in V and a linear map f from V into the
Lipschitz vector 
elds on a vector space W � then one may use schoolboy
integration to de
ne a solution to our basic equation� Classically� one
could say the path Yt solves the equation

����� dYt 	 f�Yt� dXt � Y� 	 a �

providing Yt satis
es the integral equation

����� Yt 	 a�

Z
��u�t

f�Yu� dXu �

Observe that we can reformulate this integral identity in a trivially
di�erent way

�����

Xt 	 X� �

Z
��u�t

dXu �

Yt 	 a�

Z
��u�t

f�Yu� dXu �

Consider the one form on V �W with values in V �W de
ned by

����� h��x� y�� �dX� dY � 	 �dX� f�y� dX� �

Then for smooth paths the integral equation ����� can be rewritten as

����� �Xt� Yt� 	 �X�� a� �

Z t

�

h�Xu� Yu� �dXu� dYu� �
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Putting Zt 	 �Xt� Yt� we can say that a solution to ����� is a lift of the
path Xt to a path in V �W satisfying

�����

Zt � Z� 	

Z
��u�t

h�Zu� dZu �

Z� 	 �X�� a� �

Although this transformation may seem essentially trivial in the clas�
sical setting� for us it is not really so� We have no di�culty extending
this characterisation to rough signals�

De�nition ������ Let X 	 "G�V �p be a geometric multiplicative

functional projecting onto the path Xt� and let f be a linear map from

V into the Lip� � ��W � vector �elds� A solution to the equation

����� dY 	 f�Yt� dX � Y� 	 a �

is an extension of X to Z 	 "G�V �W �p such that Z projects onto

Zt 	 �Xt� Yt�� Y� 	 a� and such that Z satis�es �Z 	 h�Zt� �Z�

The main point to notice is that we do not treat the solution as an
independent object� but rather as an extension of the original driving
signal� In particular� we require the existence of cross iterated integrals
between driving signal and solution to be constructed� On the one hand
this seems a bonus� if we can construct integrals between solution and
driving signal so much the better� on the other hand it is essential� we
could not make sense of the integral at all for rough signals without
some cross information between integrand and integrator� The author
is remi nded of those induction arguments which only work if you prove
a stronger result than you were aiming for� In any case� the de
nition
is clearly consistent with the classical one� If X 	 "G�V �p is a smooth
path with its iterated integrals� the classical solution� its iterated inte�
grals� together with the cross integrals with the driving signal� together
satisfy the extended equation�

Our approach requires that the vector 
elds in the equation have
a smoothness related to the roughness of the path� This was necessary
for the integral to make sense� However� as in the classical situation�
the smoothness required of the vector 
elds in the de
nition is less than
that required for uniqueness�

The main purpose of this part of the paper� and indeed of the entire
paper is to prove the following theorem�
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Theorem ������ Suppose that f � V �� Lip��W�W � is a linear map

into Lipschitz vector �elds� Then consider the It
o map X �� �X�Y �
de�ned for smooth paths by

����� dYt 	 f�Yt� dXt � Y� 	 a �

De�ne the one form h by

h��x� y�� �dX� dY � 	 h�y� �dX� dY � 	 �dX� f�y� dX� �

For any geometric multiplicative functional X 	 "G�V �p with � �
p � � there is exactly one geometric multiplicative functional extension

Z 	 �X�Y � 	 "G�V �W �p such that if Yt 	 Y �
��t � a then Z satis�es

the rough di�erential equation

����� �Z 	 h�Yt� �Z �

Moreover this solution to the rough di�erential equation is constructed

by Picard iteration� there is a small interval �� T � whose length can be

controlled entirely in terms of the control on the roughness of X and

of f and the rate so that the convergence of this iteration scheme is

faster than the given exponential rate on the interval� The It
o map is

uniformly continuous and the map X �� Z is the unique continuous

extension of the It
o map from "G�V �p to "G�V �W �p�

Our convergence theorem for Picard iteration requires that � � p�
and constructively produces a unique solution� the extension of Peano�s
theorem to show existence under the weaker hypothesis � � p � � is
open �except in the case where p � �� here a 
xed point argument
can be applied to show existence and A� M� Davie �Edinburgh � pri�
vate communication� has given the author examples to show that the
solution need not be unique � � p ���� �����

We may de
ne Picard iteration as follows

������

Zn�
s�t 	

Z
s�u�t

h�Zn
u � �Z

n �

Zn
� 	 �b� a� �

where Zn is uniquely determined by Zn
� 	 �b� a�� the choice of b is

irrelevant to the de
nition as h does not depend in any way on the 
rst
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coordinate of Z� If we can prove that the multiplicative functionals
Zn converge in "G�V �p� then it is routine from our result about the
continuity of the integration against one forms that the limit will be a

xed point of the functional and so our desired solution�

However� in contrast to the normal contraction mapping argument�
it seems essential to consider a more complicated iteration so that we
might keep track of the joint interactions of more terms�

Step �� Norms on tensor algebras over �nite sums of vector

spaces� There are many di�erent equivalent norms one could use on
the tensor algebra over the space V � W � we will use an induction
argument where a choice adapted to the possibilities for independently
scaling the di�erent coordinates will simplify the proof��

The tensors of 
xed degree over a vector space admit a further
direct sum decomposition if the underlying vector space is already a
direct sum

������
T �n��V �W � 	

nM
j��

�V �W ��j �

�V �W ��j 	 Zj�� � Zj���� � Zj���� � � � � � Z��j �

where Zj�k�k comprises those tensors that are homogeneous of degree
j � k in V and k in W in whatsoever order�

Remark �������Requirement� Let z 	 zj���zj�����zj����� � � ��
z��j represent the decomposition of an element z 	 �V �W ��j � then
the norm on �V �W ��j should be chosen to have the property that
kzk 	 supk�j kz

j�k�kk�

De�nition ������ A multiplicative functional Z in "�V �W �p is con�
trolled by  if

������ kZj�k�k
s�t k �

�s� t�j�p

� �j � k�p�$ �k�p�$
�

for all j � p��

Of course this control is comparable with the one that ignores the
inhomogeneity�

�
See also the earlier section inhomogeneous degrees of smoothness�
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Step �� Rescaling and Tensor Algebras� If S is a linear automor�
phism on V then it induces a natural graded algebra homomorphism �S
on the tensor algebra� taking v��v��� � ��vn to Sv��Sv��� � ��Svn�
Apply this to the scaling operators S�v� 	 � v� Their extensions
act by multiplying the tensors of degree k by �k so that �S �a� 	
��� �a�� �

� a�� � � � � �
n an�� These operators are very important to us�

but the general notation is clumsy� so we shorten it�

De�nition ������ We will use the notation �Xs�t for �S�Xs�t��

Because �S is always an algebra homomorphism �Xs�t is also a
multiplicative functional� leading to the slightly peculiar but correct
notation �Xs�t � �Xt�u 	 �Xs�u�

Consider the linear projections PV � V � W �� V � and PW �
V �W �� W � then if Z is a multiplicative functional in the tensor
algebra over V �W � let X 	 PVZ and Y 	 PWZ be the associated
multiplicative functionals� We will frequently use the notation �X�Y �
for Z to remind the reader of the direct sum structure� however the
multiplicative functional �X�Y � is not determined by X�Y separately�
as it involves cross terms�

It is possible to scale the complementary subspaces of a direct sum
di�erently and we use the shorthand ��X� �Y �st for the multiplicative
functional �S��X�Y �st where S��v �w� 	 � v � �w�

Consider how this inhomogeneous scaling interacts with a control
on the p�variation�

Lemma ���� Let X 	 "�V �p be controlled by �s� t� so that

������ kXj
s�tk �

�s� t�j�p

� �j�p�$

and �X�Y � 	 "�V �W �p be an extension of X� Suppose �X�Y �st is
controlled by K �s� t�� Then �X� �Y �st is controlled by

������ maxf�� �kp�jK � � � k � j � p�g�s� t� �

In particular� if � � K�	p
�p � � then �X� �Y �st is controlled by

�s� t��

Proof� Let Zj
s�t 	 �X�Y �js�t be the component of the multiplicative

functional of degree j and let Zj�k�k
s�t denote the component of this
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tensor of degree j � k in V and k in W � Then by assumption

������ kZj�k�k
s�t k �

�K �s� t��j�p

� �j � k�p�$ �k�p�$
�

therefore

������ k �S���Z
j�k�k
s�t �k � �k

�K �s� t��j�p

� �j � k�p�$ �k�p�$
�

but Zj��
s�t 	X

j
s�t and so

������ kZj��
s�t k �

�s� t�j�p

� �j�p�$
�

without any constant� It follows that �X� �Y �st is controlled by

������ maxf�� �kp�jK � � � k � j � p�g�s� t�

as required�

Step �� The boundedness of the Picard integral operator� As
a simple application of the scaling lemma we have just established� we
prove the following a priori bound�

Lemma ������ Let Z��� be the initial multiplicative functional in the

Picard iteration scheme de�ned recursively by ������� Suppose Z��� is

controlled by �� Then all iterates Z�j� are uniformly controlled by

 	 max f�� K �M� p� ��	p
g�

on the time interval J 	 fu � ��� u� � �g�
Here M is the Lip� � �� norm of f on

n
 � k � ak �

�

�

��
p

�
$
o
�

and K is the constant introduced in Theorem ������

Proof� First we condition the problem� Suppose that the initial point

Z
���
s�t 	 �X�Y ����s�t in our Picard iteration is of 
nite p�variation con�

trolled by �� For any � � � we may choose a regular

 	 max f��p� �g�
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so that ����X�Y ����s�t is controlled by � and a short interval depend�
ing on  where  � �� We choose � 	 K�M� p� ���	p
�p where K is
the function derived in Theorem ������ and M � is de
ned to be the
Lip� � �� norm of the one form h�x� y� restricted to the domain

V �
n
w � kw � ak �

�

�

��
p

�
$
o
�

We now proceed by induction� Suppose that ����X�Y ����s�t is con�

trolled by  where  � �� The control on �Y
���
��t �

� ensures that its

projection onto the path Y
���
u starting at a remains in the ball of radius

����� ���p�$ centred on a� Observe that the multiplicative functional

������

Z
s�u�t

h�����Xu� Y
���
u �� �����X�Y ���� ����X��Y

���
� �t

	 ���� b� a�

equals ����X� ���Y ����s�t where �X�Y ����s�t is the Picard iterate of
�X�Y ����s�t de
ned in ������� By Theorem ������ it is controlled by
K�M� p� �� on the chosen time interval� here K depends only on the
explicit variables �we have arranged that ����X�Y ����s�t is controlled
by  where  � ���

The di�erence in homogeneity between ����X� ���Y ����s�t and our
starting data ����X�Y ����s�t is crucial to the analysis� If the reader

nds the unfamiliar notation di�cult then the equivalent formulation
for smooth paths is

������

���Y
���
st 	

Z t

s

f �Y ���
u � d���Xu �

���Xst 	

Z t

s

d���Xu �

By assumption � � K �M� p� ���	p
�p� so we may apply Lemma �����
to prove that the rescaled functional ����X�Y ����s�t is controlled by
 � �� This concludes the induction� We deduce that all the Picard
iterates ����X�Y �n��s�t are uniformly controlled by this same  � �
on this 
xed time interval�

An obvious extension of the same idea shows that

����X�Y �n��Y �n���s�t
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is also uniformly bounded for a di�erent 
xed choice of ��  and the
time interval� This observation will be useful to us later�

This result only requires the minimal smoothness condition re�
quired to make sense of the equation� It can be interpreted as a com�
pactness result and can probably be used to deduce a Peano theorem
in the general case although we have not pursued the matter�

The main existence result is a more subtle and complicated version
of the same approach�

Step �� A division lemma� Suppose that f is a Lip�� vector 
eld on
W � then there exists a function g which is Lip� � �� on W �W and
such that

������ f i�x�� f i�y� 	
X
j

�x� y�j gij�x� y� �

The function g is not uniquely de
ned� but for example the mean value
of df along the ray from x to y � will do perfectly well� Thus we can
rewrite the classical Picard iteration in the more useful form

������

�Y
�n��
t � Y

�n�
t �

	

Z
��u�t

�Y �n�
u � Y �n���

u � g�Y �n�
u � Y �n���

u � dXu �

The crucial di�erence between the earlier formulation of Picard itera�
tion and the approach here is that we have introduced an expression
which is quasi�linear in �Yn � Yn���� We will really be able to take
advantage of this and push the scaling arguments we introduced above�

Interpreting the integral ������ requires the extra smoothness we
assume for our main theorem on the convergence of Picard�s iterative
scheme�

Step �� De�ning the correct iteration� In fact we consider recur�
sively� a sequence containing a wider series of interrelated objects

������ �Z�n��Y �n��Y �n����X�s�t �

�
Note that if the function f is only de�ned on a subset of Rd then one would need

to apply the extension theorem for Lipschitz functions to use this approach�
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For smooth paths the iteration is de
ned by

������

dZ
�n��
t 	 Z�n�

u g�Y �n�
u � Y �n���

u � dXu �

dY
�n��
t 	 dY �n�

u � dZ�n�
u �

dY
�n�
t 	 dY

�n�
t �

dXt 	 dXt �

where dZ
���
t 	 f�a� dXt� Z

�n�
� 	 �� Y ��� � a� and Y

�n�
� 	 a� Now

������ de
nes a one�form� we can use this to extend the iteration�
in the now obvious way� to functionals �Z�n�� Y �n�� Y �n���� X�s�t in
"G�W �W �W � V �p� The iteration step makes sense because g �and
hence the full one�form� is Lip� � ���

It is obvious for smooth driving paths X and smooth initial esti�
mates for the solution� that projection onto the last two co�ordinates
gives the Picard iteration we studied in Step �� The continuity of the it�
eration procedure makes it clear that this identity extends to geometric
functionals�

We must prove that the sequence of iterations converge as a mul�
tiplicative functional to a functional �I�Y �Y �X�� the continuity will
then show that this is a 
xed point for the equation� The argument
will rely on a careful exploitation of the homogeneity of the various
components�

Step �� The conditioning� The 
rst step is to rescale the coordinates
and condition the problem�

For any choice of � � �� and � � � there is a choice of  �depending
on both parameters� so that if

������ U ��� 	 � �Z����Y ����Y ���� ���X�

where �Z��� 	 �Z���� then U ��� is controlled by �
We now use our estimates to study what happens when we replace

the top line in ������ by

�Z
�n��
t 	 � �

Z
��u�t

�Z�n�
u g�Y �n�

u � Y �n���
u � ��� dXu

and use the new one�form to de
ne a changed recursion involving �Z�n�

	 �nZ�n� etc� In other words we recursively de
ne

������ U �n��� 	 � �Z�n��Y �n��Y �n���� ���X� �
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We will prove by induction that� for any choice of � � � there is a
suitably small choice of � � �� chosen to depend on K �M� p� ���	p
�p

and � alone� so that the sequence of elements in the sequence Un�� are
uniformly controlled by our  on our predetermined time interval� By
rescaling� it will be clear that the increments in the original iteration
converge to zero with a geometric rate giving the overall result�

Step �� The induction step� First 
x the time interval so that  � �
and assume that

������ � � K� �M� p� ���	p
�p �

where M will be chosen later� but only depends on the Lip norms of
various one forms and will be independent of other parameters in this
problem�

We assume as our induction hypotheses that Un�� is controlled by
� Consider the form we must integrate to go from

Un�� to ������� �Zn��Y n��Y n� ���X� �������

d�� ���� �Z
�n��
t 	 �Z�n�

u g�Y �n�
u � Y �n���

u � d���Xu �

dY
�n��
t 	 dY �n�

u � ��n d �Z�n�
u �

dY
�n�
t 	 dY

�n�
t �

d���Xt 	 d���Xt �

������

Although examination of the second line in the expression shows this
form varies with n the e�ect of increasing n is to decrease the Lipschitz
norm� Hence� and because g is Lip � � �� there is a uniform bound
M on the Lip � � �� norms of the forms on the range of paths under
Un��� �Recall that the Un�� are controlled by  and this in turn is
uniformly bounded by one��

Hence there exists K�M� p� ��� independent of our particular mul�
tiplicative functionals� time interval� etc�� so that

������ ������� �Zn��Y n��Y n� ���X�

is of 
nite p�variation controlled by K�M� p� ��� By Step � we observe
that providing � � K� �M� p� ���	p
�p then �Y �n�� Y �n���� ���X� is con�
trolled by  on any interval where  � � without any sort of factor�
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Therefore we can apply the rescaling lemma again� Choose � so that
� � � K �M� p� ���	p
�p and � � K� �M� p� ���	p
�p� Then

������ � �Zn��Y n��Y n� ���X�

is also controlled by � without a constant� This establishes the induc�
tion step�

Step �� Convergence� At the level of paths it is now trivial that we
have convergence� Let

� �Zn�� Y n�� Y n� ���X�

be the path under

� �Zn��Y n��Y n� ���X�

satisfying the initial condition

� �Zn�
� � Y n�

� � Y n
� � �

��X�� 	 ��� a� a� �� �

Then it is clear that for smooth paths� and by continuity� for elements
of "Gp �and geometric multiplicative functionals are all that one will
ever see� the algebraic identity

������ Y
�n��
t 	 Y �n�

u � ��n �Z�n�
u

holds� But � � � and we have just proved that the di�erence process

Z
�n�
t is bounded independently of n on our time interval and so we

have uniform convergence� The convergence is in p�variation� and as

the sequence Y
�n�
t � Y

�n��
u is uniformly bounded in p�variation norm

that bound goes over to the limit�
However� our real objective is not just to construct a path in W

and call it the solution� we want to construct a multiplicative func�
tional� In other words we want to show that the multiplicative func�
tionals �Y �n��X� converge in "G�W � V �p� This is essentially triv�
ial as well� Consider the projection � �Z�n�� Y �n�� ���X� of U �n��� and
�Y �n��� ���X� of U �n���� Let (n be the linear map �z� y� x� ��
���nz � y� x� then the induced map (n on the tensor algebra takes
� �Z�n��Y �n�� ���X� to �Y �n��� ���X� �again this is obvious for smooth
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sequences� and algebraic identities hold on closed sets� and hence ex�
tend to geometric functionals�� But now the convergence is clear� and
uniformly controlled by the �� The uniform nature of the estimates here
on the convergence of Picard iteration prove the It�o map is continuous
since our earlier arguments demonstrate that the 
nite iterations are
certainly continuous�

���� Uniqueness�

To see uniqueness is also relatively straightforward and we do not
dwell on it� We did not need to start our new Picard iteration with
the function that was constant at a and its integral� We could have
started it at two of our  solutions!� in this case our iteration would
have compared the di�erence and shown that it went to zero�
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