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Average decay of Fourier
transforms and geometry

of convex sets

Luca Brandolini, Marco Rigoli and Giancarlo Travaglini

Abstract. Let B be a convex body in R?, with piecewise smooth
boundary and let X, denote the Fourier transform of its characteris-
tic function. In this paper we determine the admissible decays of the
spherical LP-averages of ¥ p and we relate our analysis to a problem in
the geometry of convex sets. As an application we obtain sharp results
on the average number of integer lattice points in large bodies randomly
positioned in the plane.

1. Introduction.

Given a convex body B, that is, a compact convex set with non
empty interior in R™, we denote by x , its characteristic function. The
study of the decay of the Fourier transform

R
B

as |£| — oo, in terms of the geometric properties of B, is a fascinating
and by now classical subject (see [18, Chapter VIII] for basic results,
related problems and references). For instance, it is well known that,
when the boundary is smooth with everywhere strictly positive Gauss-
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Kronecker curvature, the order of decay of X, in a given direction is
independent of this latter.

This situation is far from being typical, as one can easily check by
considering either a cube or any convex body with a smooth boundary
containing flat points. Furthermore, a number of problems requires
some sort of “global information” on the decay of X (§) which is not a
direct consequence of the presently known directional estimates.

In this setting, the study of the spherical LP-averages

([ Relooras)”

n—1

turns out to be quite useful.

We point out that the L? case has been investigated by various
authors, notably [14], [15], [19], [13], [12]; while for general p’s and
B a polyhedron, a detailed analysis with applications to problems on
lattice points and on irregularities of distributions can be found in [3].
We note that the L! case is also naturally related with the summability
of multiple Fourier integrals (see e.g. [2] or [4] ), moreover, F. Ricci and
one of us (G. Travaglini) have recently shown that the general L? case
is connected to boundedness of Radon transforms (see [16]).

Throughout this paper, unless otherwise explicitly stated, we con-
sider convex bodies B in R? with piecewise smooth boundary. More
precisely, we assume that 0B is a union of a finite number of regular
arcs, each one of them being C'*° in its interior.

According to a more general result of Podkorytov [13], (see also
[19] ) the L*-average decay of 5 satisfies

27 1/2
(1) (| Rowerrds) ™ <coor,
0
where, from now on,
© = (cosf,sinf), 6 €0,27),

p > 1landc,cq,ca,...,denote positive constants independent of p which
may change from line to line.

It is an easy consequence of a result of Montgomery [12, p. 116]
that (1.1) is sharp. Namely, for any B,

: siof 771 5 o\ 12
(1.2) lim sup p (/ X5 (pO)] d9> >0.
0

p—>00
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We stress that in the L? case the order of decay is independent of B.
The aim of this paper is to study the general LP case where the results
turn out to depend on the shape of B.

It is worth to begin with the case of a polygon P. It has been
proved in [3] that

([ ipterran)”

cp~2log(1+p), whenp=1,
<
| ep i/, when 1 < p < o0.

(1.3)

Here we prove

2m
| R0l do > cp?tog 1+ )
0

and, for each 1 < p <

27 1/p
(1.4) lim sup p1+1/p(/ Xp(pO)F d9> >0.
0

p—>00

Next, we consider the case when B is not a polygon. We show that

27 1/p
(1.5) lim sup p3/2(/ X5 (PO) d9> >0,
0

p—>00

whenever 1 < p < oo (note that, when p = 2, (1.4) and (1.5) agree with
(1.2)). These results, when compared with (1.1) and (1.3), completely
describe the case 1 < p < 2. As for p > 2, an easy interpolation
argument between p = 2 and p = oo gives

27 1/
(| Roloa)™ <cpiiir,
0

for every 2 < p < oo. Contrary to the case 1 < p < 2, in the range
2 < p < oo every order of decay between p~3/2 and p~1~/? is possible.
More precisely we exhibit, for any 2 < p < oo and 1 +1/p < a < 3/2,
a corresponding convex body B such that

27 N 1/p
art< ([ Rpwords)” <cope.
0
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When 1+ 1/p < a < 3/2 such examples are constructed so to have,
for a suitable v > 2, a piece of the curve of equation y = |z|7 in its
boundary. As a side-product, we obtain a result on the average decay
of the Fourier transforms of singular measures supported on the above
curves (see Proposition 3.17 below).

The different results for p < 2 and p > 2 are due to the follow-
ing fact. When B is not a polygon, its boundary 0B must contain
points with positive curvature and for 1 < p < 2 they give the relevant

contribution to
27 N 1/17
(| Ratwerra)™.

On the other hand, when 2 < p < oo the main contribution is given by
the flat points (if any), as one may guess considering the L case.

We summarize the main results discussed so far in Figure 1. For
p > 1 and a > 0 the point (1/p,a) is marked black if and only if there
exists B satisfying

27 N 1/17 3
([ Rotwe)ras) ™ <cp
0

and

27 1/p
limsuppa</ |§(\B(p®)|pd9) > 0.
0

p—>00

Figure 1.
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It is natural to ask whether (1.4) and (1.5) can be turned into
estimates from below. As a matter of fact, a negative answer is given
by the two simplest examples of convex bodies in R?: the square (see
Lemma 3.12) and the disc (because of the zeroes of the Bessel function
J1). On the other hand, we show that, for any 1 < p < oo and for some
polygons P, we have

27 1/
([ Roteywds) ™ = coprir,
0

while, if B is neither a polygon nor a body too “similar” (see Definition
3.3) to a disc, then

27
| Rptwe)lds= o2,
0

The above results are organized in our main theorem of Section 2. We
stress that such general LP estimates hold provided 0B is piecewise
smooth. In Section 4 we shall see that in the framework of arbitrary
convex bodies one can find very “chaotic” situations.
A basic tool in some of our proofs is the following known fact.
Let Sy = sup,cp @ -O. For 6 > 0 sufficiently small we define, see
Figure 2, the set

(1.6) Ap(6,0) ={r € B:Sy—d <z -0 < Sy}.

Figure 2.
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Then (see Lemma 3.8, [5], or [13])

Xp(PO) < c(lAp(p™",0)| + |AB(p~" 0+ 7)),

where | K| denotes the Lebesgue measure of a measurable set K.
As a consequence, for each p > 1,

(1.7) (/0% Ry (0O da) Y c(/o

providing a way to estimate the average decay of X from above. More-
over we shall see (cf. also [5]) that (1.7) can be reversed under additional
assumptions on B.

Observe that the right hand side of (1.7) does not involve any
Fourier transform and the problem of estimating

([ 1aseora)”,
0

as 0 —» 0, is indeed a genuine problem in the geometry of convex sets.
To the best of our knowledge, such a problem has never been considered
before and the closest area in the field is perhaps the study of floating
bodies (see e.g. [17]). In Section 5 we shall investigate the admissible

decays of
2 1/
([ 1an@orao)™,
0

as 6 — 0, mostly as a consequence of the similar problem for X B

We end the paper by applying some of the previous results to a
problem on the number of lattice points in a large convex planar body
pB.

Elementary geometric considerations show that

27

1/
Ap(p~t o) o)

card (pB N Z*) ~ p?|B]
and
(1.8) card (pBNZ?%) — p?|B| = O(p)
as p — oo. The improvement of (1.8) and the related problems consti-

tute a whole area of research (see e.g. [11] or [8]), where the pointwise
estimate (1.8) is often substituted by mean estimates.



AVERAGE DECAY OF FOURIER TRANSFORMS 525

Here we consider a large convex body pB randomly positioned in
the plane. More precisely, for o € SO(2) and t € R? we study the
discrepancy

Dp(p,o,t) = card ((po~(B) —t) N Z*) — p*| B,

where po~1(B)—t is a rotated, dilated and translated copy of B. Since
this function is periodic with respect to the variable ¢ we restrict this
latter to T? = R?/Z2. Kendall ([10]) has proved L? estimates related
to the above discrepancy (see also [3]). Here we prove that if B is a
convex planar body with piecewise smooth boundary, different from a
polygon, then, for any 1 < p < 2,

(1.9) c1pt? < ||Dg(p, -, zrso@)xT2) < c2 pH?.

We do not know whether (1.9) holds for some p > 2. We point out
that, in general, it is false when p = oo. Indeed, as a consequence of
Hardy’s Q-result for the circle problem (see [7] or [11]) we have, for a
disc D,

lim sup p_l/z(logp)_l/4 |Dp(p, -, ')||Loo(s’o(2)><’]r2) >0.
pP—00
2. Statement of the main result.

Let ¥ be the unit circle in R%2. For any complex measurable func-
tion g on ¥ and for any p > 1, let

lolis = ([ la@ras)"”,

where df is the normalized Lebesgue measure. As usual we set

19l (5,) = esssup |g(O)].
oc3;

Let B be a convex body in R?; ¢ : [1,+00) — R a non-increasing
function and let 1 < p < co. We say that ¢ is an optimal estimate of
the p-average decay of X, whenever

) [[Xg (P )z < cplp),
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11) lim su ||XB(p')||LP(21)
p—ro0 e(p)

Similarly, ¢ is a sharp estimate of the p-average decay of ¥ p bro-
vided

>0.

c1e(p) <IXp(P)llLez) < caplp)-

Our main result essentially concerns the case ¢(p) = p~* and the fol-
lowing definition will be useful.

Definition 2.1. When ¢(p) = p~* is an optimal or sharp estimate of
the p-average decay of SZB we say that the p-average decay of SZB has
optimal order a or sharp order a respectively.

With this preparation we state our main result.

Theorem 2.2. I) Let 1 < p < oo and define

1 3 1
Sz{(—,a):1<p<2,a:—ora:1+—},
p 2 p

1 1 3
T={(.a): 2<p<oo, 1+ -<a< )
D D 2

The following are equivalent:

i) There exists a convexr body B with piecewise C*° boundary such
that the p-average decay of SZB has optimal order a.

ii) (1/p,a) € SUT.

1) Let p = 1. If P is a polygon then p(p) = p~2log (1 + p) is
an optimal estimate for the 1-average decay of X . If B is any other
convex body with piecewise C'°° boundary, then the 1-average decay of
Xp has optimal order 3/2.

Moreover it will be clear from the proof that this result still holds
after substituting the word “optimal” with the word “sharp”.

The above theorem will be obtained as a consequence of the fol-
lowing somewhat more informative results.

In the first Proposition we cover the case 1 < p < 2 when B is not
a polygon.



AVERAGE DECAY OF FOURIER TRANSFORMS 527

Proposition 2.3. Let 1 < p < 2 and let B be a convex body with
piecewise C™ boundary. Suppose B is not a polygon, then 3/2 is the
optimal order of the p-average decay of X 5. Moreover, 3/2 is the sharp
order of the p-average decay of SZB for some, but not for all, bodies B.

The above Proposition follows from Lemma 3.1, Lemma 3.2, Lem-
ma 3.6 and the example of the disc.
We now consider the case of a polygon.

Proposition 2.4. Let P be a compact convex polygon with non empty
interior. Then ¢(p) = p~2log (1 + p) is a sharp estimate of the 1-
average decay of Xp. If 1 < p < oo, then 1+ 1/p is the optimal order
of the p-average decay of Xp. Moreover, 1+ 1/p is the sharp order of
the p-average decay of X, for some, but not for all, polygons P.

This is a consequence of Lemma 3.9, Lemma 3.10, Lemma 3.11 and
Lemma 3.12.
Finally, for 2 < p < 0o, we have

Proposition 2.5. Let 2 < p < oo, then the following are equivalent:

j) There exists a convexr body B with piecewise C° boundary such
that the p-average decay of SZB has optimal order a.

jj) 1+1/p<a<3/2.

The above Proposition follows from Lemma 3.2, Lemma 3.13 and
Lemma 3.16.

3. Lemmas.
The following lemma is contained in [13, p. 63].

Lemma 3.1. Let B be a conver body in R?. Then
2w 1/2
([ RuteoPas) " <cpr2,
0

We now prove the following result.
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Lemma 3.2. Let B be a convex body in R? with piecewise C™ boundary
0B. Assume B is not a polygon then, for any p > 1,

27 1/p
limsupp3/2</ |§(\B(p®)|pd9> > 0.

p—>00 0

PRrROOF. It is enough to prove the lemma when p = 1. Let I' be an arc
in 0B where the curvature is strictly positive. We examine two cases.

i) There exists an open interval U of angles 6 such that for every
6§ € U there is exactly one point o(f) € I' whose tangent is orthogonal to
© = (cosf,sinf) (this may happen since 0B is only piecewise smooth).

ii) There exists an open interval U of angles 6 such that for every
0 € U there are exactly two points 01(0),02(0) € 0B whose tangent is
orthogonal to ©.

We proceed with the proof in case i).
We apply [1, Theorem 1] (see also [13]) to obtain

1 . .
(1) Rp(p©) =~ p¥/2 OO () 4 1,

i
where K (P) denotes the curvature at P € 0B and |E,| < cp~2. We
remark that although [1, Theorem 1] is stated for sets with smooth
boundary, in the bidimensional case it still holds true for sets having a
piecewise smooth boundary. From (3.1) we have

27 N 1
P3/2/ X, (p©)]d6 > %/ KY2(0(0))df — 1 p~ /2 > ¢y > 0.
0 U

We now turn to ii).
As in the previous case we obtain

2

~ I 2mip©-0: (8) i /A —

XB(p@):_%p 3/226 2mwip©-o;(6)+ z/4K 1/2(0'j(9))+Ep-
j=1

We consider three subcases.

a) Suppose first there exists a neighborhood U C U where

K(o1(0)) # K(02(0)) -
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Then

2w
o [ Ryp00) a9
0
1

> 2—/ |K—1/2(o-1(9)) — K—1/2(J2(9))| df — ¢ p—1/2 > > 0.
T Ju

b) Suppose there exists a neighborhood U C U where the vectors
© and o3(0) — o1(0) are not parallel. Let A;(0) = K~1/2(0;(0)). We
have

27
2 [ Ralpe)]dt

1 2 .

> %ﬁ ‘ 26_2“’)@"”(9)1‘1]‘(9) do — Clp—l/z

Uvlis

1 .

=90 /{7 |A1(0) + Ag(0) e~ 2P0 (2O =1 (0D g _ ) p=1/2
1 .

2 5] /,7<A1(9> + Ay(6) 72O O O)) | — ey /2

1 )
=M= %‘ /~ Ay (0) e 2mirO-(72(0) =1 (0)) d9\ —cp 2
U

We claim that the last integral tends to zero as p tends to infinity.
Observe that © - 07(0) = 0 since © is normal to 0B at the point o;(0).
Hence

(3.2) d% (O - (05(0) — 1(0))) = (—sinf, cos) - (02(0) — 01(0))

is different from zero since (—sin#,cosf) is not orthogonal to o9(0) —
o1(0). Integration by parts shows that the integral vanishes as p —
+o0.

¢) We suppose now that for every 8 € U the points o1(0), o2(0)
have the same curvature and that © and o2(0) — 01(f) are parallel. In
this case the quantity (3.2) vanishes so that

A=0-(02(0) - 01(0))
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is constant. Let K(0) = K(01(0)) = K(02(6)), then

27
v 1 - —27e —
p3/2/ Xp(p©)|do > 2—/~K V2(0) |1 4 e 2™ df — ¢q p~ /2
0 T Jou
1 )
> |1+e—2ﬂzp)\|/ K—1/2(9) dg—C]_ p—1/2,
2T i

and since
limsup |1 + e~ 2™} >0,

p——+o00

the proof is complete.

The result of the previous lemma can be strengthened under simple
geometric hypothesis on the boundary. The following definition may be
useful.

Definition 3.3. We say that a convex body B is a cut disc if it is not
a polygon and if its boundary OB is the union of a finite number of
segments and of a finite number of couples of antipodal arcs of a given
circle.

We now need a technical lemma.

Lemma 3.4. Let I and J be two neighborhoods of the origin in R
and let f € C*(I), g € C3(J). Assume f(z) < 0, f"(x) > 0, for

x €I, glx) >0, ¢"(x) < 0 for x € J; also suppose f(0) = —1,
g(0) = 1, f'(0) = ¢'(0) = 0. Finally we assume the existence of a
such that

)
g
bijection H I—J
(=

i) f'(x) = ¢'(H(2)),

ii) the curvature of the graph of f at (x, f(x)) equals the curvature
of the graph of g at (H(x),g(H(z))),

iii) the segment joining the points (x, f(x)) and (H(z),g(H (x))) is
orthogonal to the tangent lines at these points.

Then the graphs of f and g are two (antipodal) arcs of equal length
in the same circle.

PROOF. By our assumptions,

i) ['(z) = ¢'(H(x)),
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o @ g'(HE)
(14 (f"(2)?)32 1+ ( ( (z )))2)3/2’
iii) (x — H(x)) + (f(z) — g(H(2)))f'(z) =

Then i) and 11) imply f"(z) = —g”(H(z)), while differentiating i)
one gets f"'(z) = ¢"(H(x)) H' x) Because of the other assumptions,
this implies H(x) = —x and

Then iii) becomes

2242 () f/(z) = 0,

which gives the equation of a circle.
Lemma 3.4 can be restated in the following, more geometrical, way.

Lemma 3.5. Suppose B is a convex body with piecewise C'°° boundary
which 1s not a cut disc, then OB contains a reqular point P with unit
exterior normal © such that either there is no other reqular point in
0B with unit exterior normal —©, or, if such a point QQ exists, at least
one of the following facts happens: i) P — Q is not parallel to ©, ii) the
curvatures of 0B at P and at Q differ.

The following is a strengthened version of Lemma 3.2.

Lemma 3.6. Suppose B is a convex body with piecewise C'° boundary
which is neither a polygon nor a cut disc, then, for 1 <p < 2,

27 1/p
c1p P < (/ X5 (PO d9) SOV
0

PRrROOF. The estimate from above is contained in Lemma 3.1. On the
other hand the estimate from below holds in cases i), ii)-a, ii)-b of the
proof of Lemma 3.2. Our assumptions and Lemma 3.5 exclude the case
ii)-c. This ends the proof .

The forthcoming lemma is probably known. However, since we
have not found a suitable reference, we provide an elementary argument.
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Lemma 3.7. Let f : R — [0,+00) be supported and concave in
[—1,1]. Then, for every || > 1,

(3:3) 7o) < |§|( ( 2|1§|>+f(_1+ﬁ>>'

PrOOF. It is enough to prove (3.3) when £ > 1. The assumption on
the concavity of f allows us to integrate by parts obtaining

Y 1 - 1 —7TZ
7O < 5 FO) + 52 1( 1++—\/ () e=2m6 gy

Let « be a point where f attains its maximum. Then f will be non-
decreasing in [—1, &) and non-increasing in [, 1]. We can assume 0 <
a < 1,so0that f(—1%) < f(—=14+1/(2€)). To estimate f(17) we observe
that when @ < 1 —1/(2¢§), one has f(17) < f(1 —1/(2¢)). On the
other hand, since f is concave, in case &« > 1 —1/(2¢) we have

F07) < £l <270 <21 (1= 57)

To estimate the integral we observe that, by a change of variable,

1 ' 14+1/(2¢) 1 '
I = / f/(t) e—27rz§t dt = _/ f/ (t . _) e—27rz§t dt .
-1

—141/(26) 2¢
So that
21 = /1 f1(t) e dt — /1“/(25) f (t - i) e 2T d
~1 —141/(26) 2§

—14+1/(2¢) ,
_ / f/(t) e—27rz§t dt
—1

+ /_1 (f’(t) —f (t — 21—5)) e 2

141/(2€)
141/(26) )
/ o —2migt
+ /1 f (t §> e dt

=hL+1L+15.
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To estimate I; from above we note that
—1+1/(2¢) 1 1
< ! = — — ) — 1t < _ _
ni< [ r@d= (<1 gg) —ra <51+ 57).

since 0 < o < 1.

The estimate for I3 is similar in case @« < 1 —1/(2¢). If a >
1—-1/(2¢), then

a+1/(2¢) 1 1+1/(2¢) 1
< ey = o ey =
|1r3|_/1 f (t 2£>dt /a f (t 2£>dt

+1/(2¢)
=2f(@) = (1= 3¢) ~ F07)
< 2f(a)
< 4f(0)
<arli- )

As for I, since f’ is non increasing, we have

pis [ () - rw)a

141/(26)
— (1~ i) ~f1) = fOT) (-1 i)

1 1
Ao 2o+ 2)
<f(1-5 ) -1+ 5
ending the proof. Note that no constant c is missing in (3.3).

REMARK. A different proof of the above lemma can be modeled on an
argument similar to that of Lemma 3.15 below.

The following result is similar to [5, Theorem 6.1] (see also [13,
Lemma 3]). Our proof is based on the previous lemma.

Lemma 3.8. Let B be a conver body in R?, © = (cosf,sinf) and
Sp = supyep - O. For p>1 we set (see Figure 2 with p~! in place of
0)

Ap(p™h0)={ze€B: So—pt<z-0<Sy}.
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Then
X5 (pO) < c(|As(p™",0)| + [Ap(p~ ", 0 + 7)),

where |E| denotes the Lebesqgue measure of a measurable set E.

Proor. Without loss of generality we choose © = (1,0). Then

+oo( +oo ) omin €
Xr(&1,0) = / / Xp (21, 22) dre | €™ ™18 dgy
(3.4) B roo Moo B

= h(&),
where h(s) is the lenght of the segment obtained intersecting B with

the line 7 = s. Observe that h is concave on its support, say [a, b]. We
can therefore apply Lemma 3.7 to obtain, after a change of variable,

he) < |§1_1| (h’(b_ 2 |1§1|> +h(a+ 2|1§1|)>
<c(Ap(l&]™h )] +[Ap(l&l™ )

We now consider polygouns.
The following lemma appears in [3]; here we give a different, more
geometric, argument based on the previous lemma.

Lemma 3.9. Let P be a compact polygon in R*. Then

2L 1/p cp~?log(1+p), whenp=1,
65 ([ Reora) "<y
0 cp /P when p > 1.

Proor. Without loss of generality we can assume that the polygon
is convex, lies in the left halfplane and that the points (0,—1) and
(0,1) are vertices. By Lemma 3.8 we reduce the problem to estimat-
ing |Ap(1/p,0)| in a suitable right neighborhood of zero. A simple
geometric consideration shows that

cp~t for 0 <0 <cipt,

Y

[Ap(p™",0)] < {

C2 P_le_l ) for C1 P_l S 0 S Cs3,

which implies (3.5) by integration.
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We still have to check sharpness of the estimates in (3.5). This is
not entirely trivial since parallel edges of P (if any) give the same con-
tribution to the decay of X, so that cancellations may occur. Actually
this does not happen for p = 1, but it may happen for p > 1, as shown
in the next three lemmas.

Lemma 3.10. Let x, be the characteristic function of a compact con-
vex polygon P in R? with non empty interior. Then

27
!/ R0 (pO) 0> cplog (1 + p).
0

PRrOOF. Let L;j = [P}, Pj+1], j =1,...,5, be the edges of the polygon
P and let [; be their lengths. Then, with the aid of the divergence
formula, we obtain

R0 = [ ot

1

— _ —2mipO-t O - vt dt'
2mip /ap ‘ V)

—27ip©-Pji1 —2mipO-P;

S
1 e —e
- = O-v. L,
47r2p2§; e P -F)

where dt’ is the 1-dimensional measure and v; 1s the outward unit nor-
mal to L;. The argument is divided in three cases.

Case 1. Suppose there exists an edge, say L, which is not parallel to
any other edge. We can suppose P; = (0, —1) and P, = (0,1).

Because of these assumptions there exists a right neighborhood
U(0) C [0,27) such that

inf [© - (Piyx;—P;)| > 0
9612(0)| (J+1 J)|—C> )

for each 7 > 2. Hence

2m —27ip®©-Py _ ,—27ip0©-P;
~ C1 (& € Co
o) do > 2 bw WW——
./0 Xp(pO)l P* Ju(o) ' ©-(P,— P) . p?
Zc_;; ‘Cosesin(27.rpsin9)‘d9_c_z
p* Ju(o) sin ¢ P
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c
>afl
P~ Jo

>cp?log(1+p).

812
n Wpu‘d

02

Case 2. Suppose there exists a couple of parallel edges of different
length. Let My = [Q1, R1] and My = [Q2, R2] be such a pair.

We can assume Q1 = Hy + (0,—aq), Ry = Hy + (0,a1), Q2 =
Hs + (0, —az), Ry = Hy + (0, az) with as > a1 > 0.

Then, arguing as above,

27
/ (0 0)] do
0

—27ip0©-Q;

—e” ' C2
z ‘ 0.1, ° l~‘d9— 2
U(0) Z ©-(Qj — Rj) ’ p?
U(0) a; sin 6 p
. 0_32’</ 4 sin(27rpa1u,)‘du_/04 sin (2mp ag u) ‘d ) CZ
p 0 alu 0 asu P
> % (L log(arp) — —log(azp)) — &
—{ —log(a; p) — — log (a - —
= 2 \a glaip s glaz p 2

>cp?log(1+p).

Case 3. Suppose the edges of P are pairwise parallel and with the same
length. Let My = [Q1, R1] and M2 = [Q2, R2| be one of these couples.
We can assume Q1 = H+(0,—-1), Ry = H+(0,1), Q2 = —H + (0, —1),
Ry = —H + (0,1). Then

2w
| Retwe)a
0

2 —27ip®-Q; _ ,—2mipO-R;
Cl/ ‘Ej@ v o S ’
i -
P Juw = ©-(Q; — R;)

sin (2mpsinf)

C2
2
p

do —

v

v

‘d@——

sin 0

%/ ‘cos(27rp@-H)
(0)
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Let H = (hy,ha) and © - H = hy cosf + hgsinfl. We choose ¢ so that
©-H = |H|sin (0 + ¢). Since hy # 0 we have ¢ # 0 and for symmetry
reasons we can restrict ourselves to the case 0 < ¢ < /2.

We obtain

27
| Retoolas
0

sin (2mpsin ) ‘ g
sin p?

C1
Z —

‘ cos (2mp |H|sin (0 + ¢))
P~ Ju(o)

Observe that choosing a sequence p,, so that p,|H|sin ¢ is close to an
integer we immediately get

c ‘ sin (27 p,, sin 0

27
/ Xp (pn ©)]dO = )‘dQZcp;QIOg(I—}—pn),
0

7 Ju (o) sin 0
that is, we have proved that p=2log (1+p) is an optimal estimate of the
l-average decay of X,. To get the full statement of the lemma we must
deal with the values of p close to those annihilating cos (27p |H|sinp).

We begin with the case 0 < ¢ < 7/2. Let 0 < e < 7/2 — ¢
such that [0,e] C U(0) and let {[aj,b;]} be the collection of intervals
determined by the choice

o1 .3

j+ 540 jtg-0
a; = arcsin | —5—— | — ¢, b; = arcsin (7> —
! (2MH|> ! 2p |H

and j = [2p|H|sineg] + 1,...,[2p|H|sin (¢ + €)] for some sufficiently
small 6 > 0. We observe that on each [a;, b;] we have

| cos (2mp |H|sin (0 + ¢))| > 6" > 0.
As a consequence

(20
/ ‘cos (27p |H|sin (6 + ¢)) w‘d@
U(0)

sin 0

1 (Y
> ¢ / | sin (27 p sin )| do
3.6 = N b
(3.6) zj: sinbj /g,

psinb;

1
!/ .
>co E psinbj/p | sin (27 u)| dw .

j sm ajy
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Using the elementary inequality
sin (bj + ¢) —sin (a; + ¢) < sinb; —sina;
and the above definition of a; and b; we see that the quantity
psinb; — psina;

is bounded away from zero and therefore

psinb;
/ [sin (27 w)|du > ¢ > 0.
p

sin aj

Now the choice of b; implies

psinb;

1
Z - >clog(1+p).
J

Indeed, let k = j — [2p |H|sing], so that we have to estimate

= pSIN DLy [2p]H]sin o]

from below. The choice of b; shows that

k42

SN b4 (2] H| sin ] < 2 | H|

and therefore the last term in (3.6) is greater than

CZ

The case ¢ = /2 is similar. We fix € > 0 so that [0,e] C U(0). Next,
we consider the collection of intervals {[a;, b;]} with

cp

1
6221{;——{—2 26310g(1+p)
k=1

p sin bk+ [2p|H| sin p]

o1 .3
Jjt+5+0 Jt5—0
™ . 2 ™ . 2
aj = - —aresin [ ———— ], bj = — —arcsin | ————
2 29 |H| 2 29 |H]
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and j = [2p|H|sin(7/24+¢€)+1],...,[2p|H]|] for some sufficiently small
d > 0. As before on each [a;, b;] we have

| cos (2mp |H|sin (6 + ¢))| > 6" > 0.

Using the fact that

T . . 11—z
5~ arcsin x = 2 arcsin 5

one deduces the estimates

1 E
2p|H|~j—5 -0 , 20|H| =j—5+9
p|H| ’ a p|H|

aj%

and consequently the required result.

Lemma 3.11. Let x, be the characteristic function of a compact poly-
gon P in R%2. For anyp > 1

27 1/p
lim sup p1+1/p(/ Xp(pO)F d9> > 0.
0

p—>00

PrROOF. We can suppose that one of the sides of P is vertical. We
assume the following facts, which will be proved in the sequel:

(3.7) there exists p, — +oo so that [X, (o, 0)| > ° ,
Pk
¢
3.8 VX < .
(5:5) VRO < 7o

Next we consider

27 R €/ Pk R
| Reeoranz [z me)pas.
0 0

By choosing ¢ sufficiently small we can make (p cos @, py sin ) close to
(pr,0) so that (3.8), (3.7) and the mean value theorem imply

~ C1
X O)>—.
Rp ()] 2
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Hence,
27 €/ Pk L
/ |§(\P(pk@)|pd920/ pptdo > cp P
0 0

We now prove (3.7).
First we recall, see (3.4), that

Sep(élv 0) = 7'\l’(fl) ’

where h(t) is the length of the chord given by the intersection of P
with the line z; = ¢. Observe that h(t) is a piecewise linear function,
continuous at any point except at least one of the extremes of the
support. Split

h(t) = b(t) +9(t),

where b(t), g(t) and h(t) share the same support, b(¢) is linear inside
the support and ¢(t) is continuous on R. Our choice forces b(t) to be
discontinuous in at least one of the extremes (recall that at least one
side of P is ortogonal to (1,0)), while g(¢) must be piecewise linear.
__ An explicit computation gives a sequence py —> +o00 such that
B()] = e, while

1
L+&¢

9(&)| < ¢

This proves (3.7).
In order to prove (3.8) we observe that, for any unit vector wu,

d . 0 _omit
e _ 7 mig-x g
50 Xp (&) aufpe T
= —27rz'/(u-x) e 2mIET I
P
= —27r2'/ ((u-z)xp(x)) e 2™ iy
R2

and (3.8) follows since the function x — (u - ) xp(7) has bounded
variation.

The following lemma is taken from [3]. We reproduce the short
proof.
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Lemma 3.12. i) Let P be a polygon having an edge not parallel to any
other. Then, if 1 < p < o0,

2m 1/
([ Retoorrds) ™ = ot
0

ii) Let Q be the unit square [—1/2,1/2]%. If 1 < p < 400 and if k
1S a positive integer, then

27 1/
(/ X (K©)[P d9> U< k821 )
0

PROOF. i) Arguing as in the first case in the proof of Lemma 3.10 we
are reduced to bounding

1 [«

p?P

p

sin (2mpu) du

0 u

from below. A computation ends the proof of this case.

ii) We have

/27r Ry (K@) db = 8/7T/4 ‘sin (mk cos @) sin (mk sin ) ‘P 0
0 0

7wk cos 0 mksin 0

p

/4
ck_2p/ ‘sm(ﬂkcosﬁ) "
0

sin 0

IN

/4 0 p
: < ck™?% i in? (= ‘ P
(3.9) <ck /0 sin (27rk sin (2>> 6~P do
Ek1/2 w/4
< ck—2p/ kP 0P dp) + ck—2p/ 0~P dp
0 k—1/2

< kP21

The forthcoming results will be used in the proof of Proposition
2.5.

Lemma 3.13. Let 2 < p < 400 and let s < 1+ 1/p. Then the p-
average decay of )?B has optimal order s for mo convex body B with
piecewise C° boundary.
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PROOF. Lemma 3.1 and the theorem on the decay of the Fourier trans-
form of a function of bounded variation imply this lemma when p = 2
and p = oo respectively. When 2 < p < oo we have

</027r |5€B (PO d9) " - </027r |5€B (p @)|2 |5<\B (p @)|p_2 d9> "

27rA 1/p
([ Rptee)Ps) " praie
0

IN

Lemma 3.14. Let P = (sg,s5) be a given point in the graph of the
function t = s, with 0 < a < 1. Let ¢ = arctan (a s ") be the slope
of the corresponding tangent line and let, for a small positive ¢,

t = a—1 o a
asy (s — so) + s cosp

be parallel to the above tangent line, at distance 6. Here we assume that
this last line and the curve t = s® intersect in two points A = (s1,s})
and B = (s2,55) (see Figure 3). We denote by d(0) the distance between
A and B. Then d'(9) is a convex function of 6.

Figure 3.
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PROOF. Since d(0) = (s2 — s1)/cos g it is enough to check that the
functions h(d) = s3 — s and

S0 — 81

k(8) =

+ dtan
CoS

have convex derivatives.
We start with h(d). By the definition of the point B we have

a __ a—1 «a
s§ =asg " (s2—s0) +s§f — —,
oS

that is

(R(5) + 50)* =  s2~ L 1(8) + 5% — e

Differentiating the above with respect to  we get

1
cos ’

a (h(0) + s0)* L (6) = as§h! () —

which implies A/(0) > 0 since 0 < a < 1. Further differentiations show
that A" (6) < 0 and A" (0) > 0.

We now turn to k(d), which is the distance between the points A
and C in Figure 3. In order to prove that the negative function k" ()
increases with  we observe that

(3.10) K'(8) = —K (4) (L+ (K(6))*)*/2

where K (A) denotes the curvature at the point A. Now it is easy to
check that K (A) decreases as A moves towards O (that is as 0 grows).
On the other hand, by convexity, k'(5) decreases too. Therefore, by
(3.10), k" (9) increases and this ends the proof of the lemma.

The following result is related to [5, Lemmas 6.2 and 6.3].
Lemma 3.15. Let f : R — R be supported in [—1,1], such that

feC®R\{1}), f € C(R), f and f" are concave in [b,1) and f'(b) = 0,
1'(17) = —0o. Then, for || > 1,

~ 1 1
(3.11) 712 e /(1= 53a1)
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The constant ¢ depends only on the supremum of |f(t)| on R and on
the variation of f'(t) outside a neighborhood of t = 1.

PROOF. We write

1
for = [ e

1 ' / —2mit§
:2m,£/_1f(t)e 2SIt

1 h . 1t .
— 27”5 /_1 f/(t) e—27rzt§ dt + 27”5/[) f/(t) e—27rzt§ dt
=1,(§) + I2(¢) .

Since f’ is of bounded variation on [—1,b] we have |I1(£)| < c|€]72
where ¢ depends only on the variation of f’. Morover, f concave on
[b,1] and f/(17) = —oo imply

A= o(le (1 57g))
so that
n©1=o(le (1 57g)) -

To analyze I>(§) we proceed as follows: we assume £ > 0 (the case
¢ < 0 is similar) we write £ = [{] +n and let 0 = (1 —617)/(6&) (this
choice will be appreciated later on, while estimating I5(£)). Then

1)1 = g [ 1l
o L ! gl e27ri(t o0)€
~ vl [ Croyememeal
> ore| [ Croyesere oo
1
— 5z &) + 1O+ T(©)]
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where
jo/(4§)—o
15(6) = /b (—'(t)) cos (2 (t + o) €) dt
A€l-1 L(+1)/(48)—0o 4[¢]-1
no=-y [ (I O)eos(zr(t+0) ) di= 3 ;.
=70 Jj/(4&)—o J=Jjo

15(6) = / (— (1)) cos (2 (t + o) €) dt
1-1/(6¢)

with jo the smallest even integer such that jo/(4€&) — o > b. First we
observe that |I3(€)| < ¢/ and therefore its contribution is negligible.
We consider 1,(¢) and we show that

4g)-1
(3.12) L&)=Y 4;>0.

J=Jjo
Indeed,

i) A4[§]_1 > 0, A4[§]_2 <0, A4[§]_3 < 0, A4[§]_4 > 0, A4[§]_5 > 0,
A4[§]_6 <0,...

11) |AJ| < |Aj.|_1| so that A4[§]_1+A4[§]_2 > 0, A4[§]_3+A4[§]_4 <0,
A4[€]_5 + A4[§]—6 > 0, .«

i) [Agpg—1 + Agfg)—2| 2 [Aujg)—s + Agfg-a| = [Adjg)—5 + Aae)—6]

The validity of i) is obvious, while ii) depends on the monotonicity
of f’. As for iii) we note that the concavity of f’ implies

|Aggej-1] — [Aagg)-3] 2 [Aagg)—2| — [Aspgg-al = -
By i), ii), iii) it follows that the sum
(Ajo + Ajot1) + (Ajot2 + Ajora) + -+ (Aagg—2 + Aagg-1)

shares the sign of its last term (Ag—2 + A4pe)—1), thereby proving

(3.12).
Hence,
14(§)+15(€) 2 I5(€) 2/1_1/(65)(_f’(t)) cos (27 (t+0) &) dt > % f(1_61_£> ,
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since cos (27 (t + o) &) > 1/2 on the domain of integration.

Lemma 3.16. For each

1 1 1 3
(—,a)ET:{(—,a>: 2 <p< oo, 1-|-—<a<—}
D D D 2

there exists a convex body B with piecewise C*° boundary such that the
p-average decay of X has sharp order a.

PrOOF. Let B be a convex body symmetric with respect to the vertical
axis and assume that its boundary 0B satisfies the following conditions.

i) OB passes through the origin and it is of class C'* in any other
point.

ii) OB coincides with the graph of the function y = |z|” in a neigh-
borhood of the origin (the exponent v = v(p,a) > 2 will be chosen
later).

iii) 0B has strictly positive curvature out of the above neighbor-
hood.

We first prove that [X,(p©)| < cp~ =17 for any © € ¥;. This
bound seems to be quite obvious since |&3|717/7 is the order of decay
of X5 (0,&2), that is, the decay associated to the flattest point in 0B.
However, a proof seems to be necessary (in order to check that the
constant does not depend on ©), and the argument will be needed in
the sequel.

Let ¢ = 6+ /2. We choose ¢ > 0 sufficiently small and we assume
e < || < mw—e. Since 0B has strictly positive curvature away from the
origin, by Lemma 3.8 we have,

ROl <c(|ap(r~ v = 2) |+ [as (s 0+ T)|) < ep2,

fore < |y <7 —e.

Symmetry enables us to consider only the case 0 < ¢y < e. The
assumptions on the curvature of dB show that the contribution of
|Ap(p~t, 4 + 7/2)| is not larger than ¢ p~3/2 so that it suffices to con-
sider Ag(p~t,1 — n/2) (which is a cap close to the origin).

We set more notation. For any 0 < ¢ < ¢, we consider the straight
line with slope 1 and tangent to the curve y = 27 at a point (z,z]).
Then Ag(p~!,1 — m/2) is the set enclosed between the line y = r(z) =
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yal Nz —zo) + 2 + (peosy) ™! and the curve y = x7. Let us call

and xo the abscissae of the two points where they intersect (see Figure
4).

Figure 4.
Since tanty = vzl ' we have
(3.13) crp < xg_l <.
We further split the interval 0 < ¢ < e into 0 < ¢ < ¢p~ 1/ and
cp~ 11/ < 4p < ¢ for some suitable constant c.
Assume

(3.14) 0< 9 <ep 7,

Since 1) is positive, [Ap(p~t, ¢ — m/2)| < cp~twy. We recall that zs is
the largest solution of the equation

2 =~y x) N w — x0) + x] + (pcostp) L.

We now estimate xs. This gives a bound for |Ag(p~1,¢ — 7/2)| since
the assumption ¢ > 0 yields x9 > |z1|. To do this we observe that
(3.14) implies that the above equation has no solutions for x > k p=1/7
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for k sufficiently large. Indeed, (3.13) and (3.14) imply z¢ < c3 p~ /7
and therefore

27 —yxd " (@ — wo) — a] — (peos )T
> a7 — ey pm TV — ey pmt = (peostp) !
> p U (p 7 2)Y = ca pM 7w — cq — (cosyp)™Y)
>0,

when p'/7 z is larger than a suitable k. Then z, < k p~'/7 and
(3.15) |Ap(phv = 5)|Sep™ VT, for0 <y <epm

Next, let ¢ p~'+1/7 < 4 < e. Then (3.13) and a suitable choice of the
constant ¢ imply x; > 0. We want to show that

Y — vzl e —z) — x] — (pcosip)

becomes positive whenever |z — x| > c5 p~1/? xé—v/? Towards this
aim one checks the inequality

2

(3.16) 14+u)?—1—vyu> guz,

which holds true for v > 2 and v > —1. Then

Y=yl (& —z0) — x] — (pcostp)

= (o4 (. —z0))" — vzl " (z — x0) — z] — (pcosyp)™?

—_ ¥ —_
::rg((1+$ x0> —’Yx xo—l)—(pcosw)_1
Zo

Y (T~ %02 -1
> 7—( ) — (pcos
= %05 7o (pcosyp)
> 7T 2 1 — (pcosyp)~t
=3 5P P
>0

for a suitably large c5. Consequently

3.17 z— xo| < c5p 32 zl=1/?
( P 0 ]
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for any x7 < x < x5. This and (3.13) show that
(3.18) ‘AB (p—l »— E)‘ < cg p~32 2=/ 0-1)
7 2 — 9

for ¢ p~'+1/7 < 4 < e. Then (3.15), (3.18), the assumptions on the
curvature of 0B and Lemma 3.8 yield

(3.19) %5 (PO)] < crp Y7

for any ©.
We now study the estimates of the LP-norm, 2 < p < +o00. Because
of the symmetry of B it is enough to bound

T2 1/p =7 /24eptt TV R 1/p
(] Rateorras)”<(/[ % (0O)P do)

—m/ —m/2

—m/24¢€ R 1/p
+(/ R (00 d0)

—7r/2—|—cp(1—"/)/"/
/2 R 1/p
([0 Rye)ra)
—7/2+e
=L +1,+15.

By the assumptions on the curvature of 0B we have I3 < cg p_3/2.
Furthermore, by (3.19),

cp(l—'y)/'y 1/p
I]_ S Cr p_1_1/7</ dw) S Co p_l_l/p_1/7+1/(7p) .
0

In order to estimate I we observe that Lemma 3.8, (3.18), the assump-
tions on the curvature of 9B and the choice v > 2 give

i 1/p
Iy < c1o 0_3/2</ PpPR="/(27=2) dlb)
cp(L=1)/~

( 2y — 2
11 p732, for p < 77_ 5
2 —2
<{ c11p732 (logp)=D/@7=2) | for p= 7’7_ -
29 —2

cpy p i Y/P=1/v+1/(vp) | for p >
\ ’Y B 2
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In particular, for p > (2v—2)/(y — 2),

27 N 1/p
(3.20) (/0 X (PO dg) < ¢yp p /P ()

Observe that (3.20) cannot be obtained interpolating between L? and
L°°. Moreover, we shall see in a moment that the above estimates are
sharp and therefore

||>?B (P')HLP(El)

(3.21)
4 2y =2
p_3/2, for p < 7 ;
vy—2
~ 4 p_3/2(10g p)(7—2)/(27—2) , forp= 27 -2 ;
v—2
p~1=1/p=1/7+1/(vp) for p > 27— 2 .
\ V-2

When p < (27—2)/(v—2) the estimate from below follows from Lemma
3.6. We shall now prove the estimates from below in (3.21) when p >
(27 —2)/(y — 2). Indeed, (3.17) can be reversed so that, by (3.13),
x ¢ (z1,z2) implies

—1/2 1-—v/2
|z — @o| > c13p” a7

whence

1 ™
‘AB(;,w - 5)‘ > 15 p 32 p 2=/ CO=D)

for ¢ p= /7 < 4) < e. To prove this, we argue as for the estimate from
above, after substituting (3.16) with the inequality

(14+u)? —1—yu<y?27u?,

valid for v > 2 and —1 < w < 1. The restriction v < 1 causes no
troubles since the monotonicity of the curvature of y = z7 implies
Ty — xo < T — 1 for ¢ p~ /Y <) < ¢, so that

1< PTT oy

Zo

if v <z < xs.
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To estimate SZB, let 1 be fixed in cp~ /7 < 4) < ¢ and recall
that 0 = ¢ — /2. By Lemma 3.8 the decay of X, (p©) depends on the
shape of 0B at the point (z¢, z§), see Figure 4, and at the “opposite”
point. The latter will turn out to give a negligible contribution because
of our assumption on the curvature of 0B outside the origin. Then, if
¢ € C§°(R?), ¢(z) = 1 in a neighborhood of the point (xg,z§), Lemma
3.14 allows us to apply Lemma 3.15 so to obtain

([ Rstoorran)”

([ . Rateras)”

p—1+1/v

Y

Y

(/Cslﬂ/v [Cxp]" (PO) P d@b) "

([ L a=axweyras)”

p*1+1/"/

€ 1 T\ |P 1/p _
2014(/ AB(—WP——)‘ dw) —C15p 3/2
cp*1+1/‘f 1Y 2

> 16 p LT Y/P/ L/ (p) |

We recall that the above holds whenever p > (2 — 2)/(y — 2). This
ends the proof once we observe that when p > (2y—2)/(y—2) we have
(2p—2)/(p—2) <y < oo and therefore the range of the exponent

111
14+ -4 = - —
Py

is the open interval (1+ 1/p,3/2).

The proof of the previous lemma can be used to get a result for
singular measures supported on the curve y = |z|7, v > 2.

Proposition 3.17. Let do be the measure on the curve y = |z|7, v > 2,
induced by the Lebesgue measure on R?. Let k € C§°(R?), k(t) =1 in
a neighborhood of the origin and let dy = k(t) do. Let £(p~1,0) be the
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length of the chord as in Figure 4. Let 1 < p < oo, then

1o~ M zeo.20)) = ldp(o )| Lecsy)

( 2v—2
_ _ _ 2y -2
rQ p 2 (log p) =AY for p = s
2y —2
p_l/p_1/7+1/(7p)7 fofr*p> v 5 A
\ Y —

4. A remark on the average decays associated to arbitrary
convex sets.

Let C be the space of convex bodies in R? endowed with the Haus-
dorff metric 67 defined by

6" (C, D) = max { sup inf |z — y|,sup inf |z — ,
(C, D) {sup il lo =yl sup inf o~ y}

for C,D € C. A weak version of Blaschke selection theorem (see [9])
shows that (C,0%) is locally compact and therefore of second category
(not meager) by Baire theorem. We fix n € N. On C we consider the
functional

27 N l/p
©,8) = (| RpO)F )
0
and we observe that
HIXe () ey — 1Xp () lleeeyl S 1Xo(n) = Xp () |lLes,)
< |caD],

implies continuity of ®,,.

Next, let 1 <p <2 and 3/2 <y <14 1/p. Let B be a convex set
with piecewise smooth boundary. The results in the previous section
show that the family {®,,} satisfies

¢, (B) =0(n™7),
when B is a polygon and

n~ 7 =o0(®,(B)),
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if B is not a polygon nor a cut disc. Therefore, the sets
Ay ={BeC: ¢,(B)=0(n"")}

and
A, ={BeC: n7"=0(2,(B))}

are dense in C. A similar argument also applies when p > 2.

We now use the following result due to Gruber, [6].
Lemma 4.1. Let T be a second category topological space.

i) Let a1, a,-+- € RY and let ¢1,pa, -+ : T — RY be continuous
functions such that

A={zeT: ¢,(x) =0(a,) as n — +oo}

1s dense in T'. Then for all, but a meager subset of x’s belonging to T,
the inequality ¢, (z) < ay, holds for infinitely many n.

ii) Let 81, B2, € RT and let 11,12, - : T — R be continuous
functions such that

B={xeT: B,=o0(n(zr)) as n — +oo}

15 dense in T'. Then for all, but a meager subset of x’s belonging to T,
the inequality (3, < ¥, () holds for infinitely many n.

By way of summary we have.

Proposition 4.2. Let 1 <p <2 and 3/2 <y <y <1+ 1/p or let
2<p<ooand 1+ 1/p <y < v2 <3/2. Then there exists a meager
set £ C C such that for all B € C\ € there exist two sequences ny, my,
satisfying

27 1/p
([ Rotmeoyras) ™ =
0

and

27 N 1/p B
(/ |XB(mk@)|pd9> <my "*.
0



554 L. BRANDOLINI, M. RiGoLl AND G. TRAVAGLINI
5. A result on the geometry of convex sets.

At this point, little effort is needed to prove the following result,
which may be of independent interest.

Theorem 5.1. Let Ap(9,60) be as in (1.6) and let 6 < 1/2.
If B is a polygon, then

27 1

1
¢1 6 10g<6) </ Ap(8,0)do < ¢50 1og(5) ,
while if B s not a polygon
2
¢ 092 < Ap(0,0)do < ¢y 6%/2.
0

Let 1 < p < oco. Then the following are equivalent.

i) There exist a > 0 and a convex body B with C? boundary such
that

27 1/p
c10% < (/ Ap(6,0)P d9> < cpd®.
0

ii) The pair (1/p,a) belongs to the set S UT, where

1 3 1
Sz{(—,a):1<p<2,a:—ora:1+—},
p 2 p

1 1 3
T={(.a): 2<p<oo, 1+ -<a< )
D D 2

The proof of this theorem is largely a consequence of results in the
previous section. Actually, the present problem is simpler since Ag(9, 6)
is positive and no cancellation can arise. We sketch the argument for a
reader specifically interested in this result.

Proor. We split the proof into several steps. We assume 6 > 0
sufficiently small.
Step 1. Upper bound when 1 < p < 2

27

1/2
( AB(6,9)2d9> <532,
0
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for any B.
This has been proved by Podkorytov in [13, p. 60].

Step 2. If P is a polygon, then

¢1 82 log (%) < /27r Ap(8,0) df < c3 6 log (%) :
0

2m 1/p
¢ 61H/P < (_/ Ap(9,0)? d9> < ey 8MTYP for 1 <p < oo.
0

These estimates are easy consequences of the argument in Lemma 3.9.

Step 3. Upper bound when 2 < p < o0

27 1/
(,/ Ap (57 9)p d9> ’ < ¢ 51+1/p )
0

for any B.
The case p = oo is obvious; the case 2 < p < oo follows as in
Lemma 3.13.

Step 4. Admissible decays when 2 < p < oo.
For any 2 < p < oo and any 1+ 1/p < a < 3/2 there exists B such
that

2m 1/p
c10% < (/ Ap((s,e)pde) <y b
0
This is precisely the content of Lemma 3.16.

Step 5. Lower bound for 1 < p < oo when B is not a polygon

27

v
([ As(,00d0) TS esd,
0

Indeed, if B is not a polygon, there exists a regular arc in @B which
does not coincide with its chord. Then, at any point in this arc one
can apply the following elementary observation. Let f € C?[—1,1] be
a real function satisfying f(0) = f(0) = 0 and 0 < f"(x) < 2¢ for
any z € [—1,1]. Writing f(z) = ¢ for x = z1 and © = x2, we have

|.T1—$2| 2 2\/5/6.
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6. Lattice points in large convex planar sets.
From the Introduction we recall the following:

Definition 6.1. Let o € SO(2) and t € T?. The discrepancy function
Dg(p,0,t) is defined by

Dis(p,o,t) = cand ((po 1 (B) =) N Z2) — (B
= 3 X, iy ()~ PPIBI.

mez?
We prove the following result.

Theorem 6.2. Assume B is a convex body in R? with piecewise O™
boundary, which is not a polygon. Let 1 < p < 2, then
C1 P1/2 < ||Dz(p, ')||LP(SO(2)><T2) < co Pl/z-

PROOF. The estimate from above is easy (and essentially known).
Indeed a computation gives

Dg(p;o,)"(m) = p*Xz(po(m)),

for any m € Z2, m # 0 (please note that the hat symbol in the left
hand side and in the right hand side refer to the Fourier transform on
T? and on R? respectively). Hence, by Lemma 3.1,

/ / |Dg(p,0,t)|*dt do = p* > Rgpo(m)) do
50(2) JT? SO(2) 0
'S [ Relpotm)Pdo
mz0750(2)
<p* ) lpm|?
m#0
=cp.

Therefore, whenever 1 < p < 2,

IDB(p, -, )lrrso@yxr2) < |DB(p, - )lr2(so@ <2y < c2p™?.
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On the other hand, for any m € Z2, m # 0,

DB (p, -, )Lr(so@)xr2) > |1DB(0s s )1 (so@)xT?)

— / Dy (p,0,1)] dt do
s0(2) J12

6.1
(6.1) > [ 0 D50, o

0 [ Rplpotm)|do.
50(2)

We split the argument for the estimate from below into three cases.

First case. Suppose B is not a cut disc (see Definition 3.3). Then,
making use of Lemma 3.6, (6.1) implies

I1DB(p, 5 )lLr(so@xT2) = €1 p2.

Second case. Suppose we have a disc D. First assume

Let m = (1,0), then, by (6.1), and the asymptotic of Bessel functions,

IDp(p, -5 )lLeso@yxr2y > pJ1(27p)
=771 pY 2 cos (27rp — Zﬂ') + O(1)

> ¢ pt/?,

On the other hand, when

lo, 1o ‘
mm‘p n_10

nez

we choose m = (2,0), then

_ 3
Db (p, - MLrso@xrz = 7 p*/? cos (47TP 1 W) +0(1) > cp'?.
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Third case. Suppose B is a cut disc, coming from a given disc D.
Without loss of generality we can assume

{(cosf,sinf): |f| < aor|r—0|<a}CIB,
for a small o > 0. Let
cosf  sinf Q
U= { (—sin@ cos@) LR 5}
Then, for m = (1,0) or m = (2,0),
1Dg(p, -, ')||LP(SO(2)><T2)

> 02 [ Ralpotm)]do

>0t [ 1Rpatm)lde =52 [ Ry (oatm)ao]

Now the third case is a consequence of the second one if we prove that

| Roalortm)lde <.

Indeed D\ B looks like in the following picture and therefore, by apply-
ing Lemma 3.8 to each one of the connected components of D\B, we
get

R (0o ()| < e,

uniformly in ¢ € U.

Figure 5.
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