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Subnormal operators of finite
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Dmitry V. Yakubovich

Abstract. This paper concerns pure subnormal operators with finite
rank self-commutator, which we call subnormal operators of finite type.
We analyze Xia’s theory of these operators [21]-[23] and give its alterna-
tive exposition. Our exposition is based on the explicit use of a certain
algebraic curve in C?, which we call the discriminant curve of a subnor-
mal operator, and the approach of dual analytic similarity models of
[26]. We give a complete structure result for subnormal operators of fi-
nite type, which corrects and strenghtens the formulation that Xia gave
in [23]. Xia claimed that each subnormal operator of finite type is uni-
tarily equivalent to the operator of multiplication by z on a weighted
vector H2-space over a “quadrature Riemann surface” (with a finite
rank perturbation of the norm). We explain how this formulation can
be corrected and show that, conversely, every “quadrature Riemann
surface” gives rise to a family of subnormal operators. We prove that
this family is parametrized by the so-called characters. As a departing
point of our study, we formulate a kind of scattering scheme for normal
operators, which includes Xia’s model as a particular case.

0. Introduction.
This paper is devoted to an alternative exposition of some aspects
of Xia’s theory of subnormal operators from a different viewpoint. We

make use of the results of [25] and the approach of [26] and give new

623
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results and new connections. The ideas of Xia are exploited much
throughout the paper, but our exposition is independent.

We develop a scattering scheme for normal operators, whose par-
ticular case is Xia’s model, explain the role of the discriminant curve
and the involution on it, and prove a complete structure result, which
gives a two-sided connection between subnormal operators of finite type
and real algebraic curves of a certain class.

The structure theorem we obtain in this paper allows one to prove
an interesting relationship between subnormal operators of finite type
and a certain class of vector analytic Toeplitz operators. This relation-
ship gives rise to a new characterization of quadrature domains. These
results will be presented elsewhere.

Let H be a Hilbert space and L£(H) the space of bounded linear
operators on H. An operator S € L(H) is called subnormal if there is
a Hilbert space K, K O H and a normal operator N € £(K) such that
NH C H and S = N|H. S is called pure if it has no nonzero reducing
subspace on which it is normal. We will say that S is of finite type if it
is pure and rank [S*, S| < oo (here [S*,S] = §*S — §S5*).

Let S be pure subnormal, and put

M = closRange [S™, S],
(0.1) C =1[S*S||M,
A= (S*|M)*.

Xia has shown in [21] that M is invariant for S* and that the pair
of operators C';, A on M completely determines S up to the unitary
equivalence. Operators C, A play an essential role in Xia’s model.
For the case of a subnormal operator of finite type, the set of matrix
parameters (C, A) has been described completely in [25]. The answer
was formulated in terms of the algebraic curve

(0.2) A= {(zw): det(C — (w—A*) (z—A)) =0}.

If C', A correspond to a subnormal operator S, then A is called the
discriminant curve of S.

Here we define a certain class of algebraic curves in C2, which we
call admissible separated curves. An algebraic curve A is in this class
if it has a prescribed behavior at infinity and the real linear manifold
w = z divides each of its irreducible components into two connected
parts. For such curve A, there is a canonical way to define its “halves”
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AL, A_. Let A be the blow-up of A. Each connected component of A
is a compact Riemann surface, obtained from an irreducible component
of A by deleting its singular points and then adding a finite number of
“ideal” points [11].

For any admissible separated algebraic curve A and a matrix-
valued function 2 on A, with integrable log||€2]|, log ||2~}||, we intro-
duce the weighted Hardy class H2(A,, ). We show that the operator
of multiplication by the variable z on H 2(3+, 2) is subnormal of finite
type and that its discriminant curve is A. (We call such subnormal op-
erators simple.) We deduce from this fact that an algebraic curve is the
nondegenerate part of the discriminant curve of a subnormal operator
of finite type if and only if this curve is admissible and separated.

The main structure result we get shows that any subnormal op-
erator of finite type is obtained from a simple subnormal operator by
“glueing” finitely many points of A and then performing a finite rank
perturbation of the Hilbert space structure. Conversely, any such pro-
cedure gives a subnormal operator of finite type.

A criterion for unitary equivalence of subnormal operators of finite
type is given. Roughly speaking, it consists in equality of certain char-
acters (homeomorphisms of fundamental groups of the components of
3+ into suitable groups of unitary matrices). This criterion general-
izes a result by McCarthy and Yang [16], who considered the rationally
cyclic case.

In order to understand better Xia’s model, in sections 1-3 we in-
troduce its generalization. It has an operator theory face and a complex
analysis face, and we study them separately.

The operator theory part of the construction has the form of a
scattering type scheme for normal operators. We say that a tuple
(N,K,H',H, M) is a scattering tuple if K is a Hilbert space, H', H, M
are its subspaces, the operator N : K — K is similar to a normal op-
erator, a direct sum decomposition K = H' + H holds, and NH C H,
NH' ¢ H + M, M Cc H, dimM < oo. With each such tuple we
associate the operator S = N|H.

To formalize the complex analysis context, we introduce what we
call mosaic tuples. A mosaic tuple consists of three matrix-valued func-
tions and a scalar measure, interrelated in a certain way. Each mosaic
tuple gives rise to a projection-valued mosaic p and serves as a pre-
requisite for defining functional model spaces, which consist of analytic
and antianalytic M-valued functions on C\ o(N). The conclusion of
sections 1-3 is that the two settings are equivalent: to each mosaic tu-
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ple corresponds a unique scattering tuple, and vice versa. In a sense,
the mosaic tuple plays the role of the characteristic function in these
constructions. The consideration of a generalized Xia’s model has the
advantage that one can understand well the freedom in choosing pa-
rameters of the mosaic tuple (see Section 5). The class of operators
S which one gets in this way is much more general than the class of
subnormal operators of finite type. For instance, the essential spectrum
of a subnormal operator of finite type always lies on an algebraic curve,
whereas the essential spectrum of an operator of the type considered in
sections 1-3 can be any reasonable finite union of piecewise C'l-smooth
curves.

In sections 1-3, the ideas and approach of dual bundle shift models
[26] are used. The connection with dual bundle shift models is explained
in Section 4. These models have been used in [26] for studying Toeplitz
operators and in [27] to study hyponormal operators. The results of
Section 4 are not used in the sequel.

Then we use the scattering scheme of sections 1-3 to study Xia’s
original model. We show how the properties H' = H+, M = [S*, S|H,
which distinguish it, are connected with the existence of the antianalytic
involution on A. One of the outcomes of our exposition is a concrete
explicit construction of a subnormal S of finite type from matrices C
and A, if it exists.

The proof of the structure results we give consists in two reduc-
tions (whose idea is due to Xia). First we replace the mosaic model
space E2(u) of functions on C \ o(N) by a space of cross-sections of
a certain analytic bundle over 3+. Then, after trivializing this bun-
dle and characterizing the space of its cross-sections (Section 10), we
obtain our main structure results in Section 12. Necessary facts about
weighted vector Hardy spaces over Riemann surfaces, characters and
related topics are given in Section 9.

The relationship between subnormal operators and separated alge-
braic curves is most clear from Lemma 11.4 and its proof. The reader
who just wishes to get an idea of the subject can first look at this
lemma.

It is worth noticing that subnormal operators of finite type turn
out to be unexpectedly close to Toeplitz operators with rational and
similar symbols, which were studied in [18], [24]. In particular, the
results about spectral multiplicity [18] and invariant and hyperinvariant
subspaces [24] extend to subnormal operators of finite type.

Algebraic curves and Hardy classes over these curves also have been
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used intensively in works of Alpay, Fedorov, Livsic, Vinnikov and others
(see [3], [8], [9], [14]). It would be interesting to know a connection
between subnormal operators and the subject of those works.

At the end of the paper, an index of mathematical notation is
given.

1. Mosaic tuples and mosaic model spaces.

Suppose we are given a compactly supported positive Borel mea-
sure v on the complex plane, a finite-dimensional Hilbert space M and
L(M)-valued measurable functions F', £, G on C such that £ =&* >0
v-almost everywhere. Put v = supp v,

de(-) = E()dv("),
and
(1.1) p(u) = F(u) E(u) G(u).

Consider the space

L) = {171 = [ () £(w). £(w) dvfa) < oo}

After factoring by the set of functions f with || f||? = 0, L?(e) becomes
a Hilbert space. Each element of L?(e) has a unique representative f
such that f(-) € Range&(-) v-almost everywhere. Two functions f, g
are equal in L2(e) if and only if £f = &g.

In the setting of sections 1-3, there will be no loss of generality if
we assume that £ is a projection-valued function and F' = F &, G = £G.
Then L?(e) is the direct integral of the spaces £(-)M. We choose the
formally more general setting in order to include the original Xia’s
mosaic.

We make the following assumptions.

M1) The function

(1.2) we) = [ 2y, zechy,

u—z

is projection-valued.
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M2) F*(-)m € L*(e) and G(-) m € L*(e) for any m € M. The op-
erators F'(u)|E(u) M, G*(u)|€(u) M are one-to-one for v-almost every
u.

M3) The family of functions (- — A\)~'G(-)m, m € M, A € C\ v
and the family of functions (- — A)"*F*(-)m, m € M, A € C\ v are
complete in L2(e).

The function p is “piecewise analytic”, that is, it is analytic on
C\7v. We call it a generalized Xia’s mosaic. Since p(oco) = 0, it follows
that ¢ = 0 in the unbounded component of C\ 7.

Define the Cauchy integral

/Cf(z):/ /() dv(t), zeC\7y.

t—z

By (M2) and (M3), the map f —— KFEf, f € L*(e) is one-to-one. Let
KFEL?(e) = {KFEf : f € L?(e)} be the image of this map, with the
norm inherited from L?(e). We need also the following assumption.

M4) The operator

(13) (Pa)() = u(z)ulz),  zeC\y
acts on KFEL?(e) and is bounded.

Definition. We say that (M, F,E,G,v, ) is a mosaic tuple if M1)—
M4) hold.

ExAMPLE. Let M = C!') v = |dz| on 0D, where D = {|z| < 1},
p(z) = z/2m, so that u(z) =1 for |z| <1 and p(z) =0 for |z| > 1. Put
€ =1/2n. Then F, G have to satisfy F(z) G(z) = z on 9D. Let P} be
the Riesz projection, that is, the orthogonal projection of L?(9 D) onto
H?. Then, obviously, P,K = KPy. Therefore M4) holds in this case if
and only if P, extends to a bounded operator on |F| L?(dv), that is, if
and only if |F'| satisfies the Muckenhoupt condition (As).

So M4) has the sense of a vector Muckenhoupt condition. It implies
that P, is a bounded projection on KFEL?(e). In a recent work [20]
by Treil and Volberg, a very explicit form of this condition on 9D has
been found.

To construct more general mosaic tuples, one has to start from a
piecewise analytic projection-valued function g and then find F', &, G,
v (see Section 5 below).
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We introduce the following Smirnov type (closed) subspaces of
KFEL?(e), which will be called mosaic model spaces

E*(p) = PLKFEL?(e) = {u € KFEL*(e): u=puon C\~},

31— ) = (I - ) KFEL(e)
={ueKFEL*(e): u=(1—p)uonC\~}
(we use the notation |- |, 1 for the norm and the identity operator on a
finite-dimensional space).
Functions in E?(p) and E3(1 — p) are analytic on C\ v and take
value 0 at infinity; moreover, the functions in E?(u) are identically
zero in the unbounded component of C \ 7. In general, spaces E?(u),

E2(1 — p) depend on the whole mosaic tuple rather than only on .
Associated to (1.1) is the factorization

p(u) = G (u) € (u) F*(u) .

t—z%
and KG*EL%(e) = {KG*Eg : g € L%(e)}. Then
KG*EL*(e) = (KFEL?(e))"

Kg(z) = / 9 dv(t) , g€ G*EL%(e)

if we use the pairing

def

=(f.9),  figeL’(e).
The following fact will be proved later.

(1.4) (KFEf,KG*Eg)q

Proposition 1.1. The projection P} : KG*EL?(e) — KG*EL?(e) is
given by
(Ppo)2) = (1= () w(z),  zeC\7.

The subspaces
Ey(1 — u*) = PrRG*EL*(e)

={ueKG*€L*(e): u=(1—p")uonC\~},

E'(u*) = (I - P5)KG*EL*(e)

={ueKG*¢L*(): u=p*uon C\~},
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are completely analogous to the model spaces E?(p), E3(1 — p). Func-
tions in B (u*), Ez(l — p*) are antianalytic on C\ «y. Since the maps
f— KFEf, f — KG*Ef, f € L?(e) are one-to-one, we will regard
the four mosaic model spaces as embedded into L?(e).

The most simple case is the above example, where one puts F(z) =

z, G(z) = 1. Then E2(p) = H?, E3(1 — p) = H2(C\ closD) &'

{271 f(z"Y): f € H2), B (u*) = B2, Bo(1 — p*) = HY(C\ closD).

Definition. Subspaces K~'E%(u), K7YE2(1 — p) of FEL*(e) and
K_IEZ(M*), K_IF(%(I — p*) of G*EL%*(e) will be called the spaces of
boundary values of functions in corresponding model classes E*(p),

E3(1—p), B (), By(1 - ).
Put
(1.5) L(z)=(1—p2)M, L'(z)=pz)M,

then
L) =p(z) M,  L'(2)"=Q1-p"(2) M,

and for each z € C\ 7, we have direct sum decompositions
(1.6) M= L(z)+ L'(2) = L(z)* + L'(2)*.

Xia uses the notation M (z), M'(z) instead of L(z), L'(z).
The functions

A7) ()= B ) =

t € C\ v, m,n € M, will be called the Cauchy reproducing kernels.
Basic facts we need about the model spaces are collected in the
following theorem.

Theorem 1.2. Let (M, F,E,G,v,u) be a mosaic tuple. Then

a) Direct sum decompositions

(1.8) KFEL*(e) = Eg(1 —p) + E*(n),

(1.9) KGeL*(e) = B (u*) + By(1 — p*),
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hold, P, is the parallel projection onto E2(p) with respect to the decom-
position (1.8) and Py is the parallel projection onto Ez(l — p*) with
respect to the decomposition (1.9).

b) The following equalities with respect to duality (1.4) hold for
annthilator spaces

BX(w) =E' (), B -p)t =Eo(1—p).

c) The duality (1.4) gives rise to the following representations of
duals

(B*w)" =Eo(t—p7), (B3 —p) =F ().

d) The Cauchy kernels ¢y m, t € C\ vy, m € M are in CFEL?(e)
and generate it. The Cauchy kernels ¢, 1., generate KG*EL?(e). The
reproducing formulas

(1.10) (U, @upm)a = (ut);n) s (Prm,;v)a = (m,v(t)),
hold for allt € C\ vy, m,n € M, u € KFEL*(e), v e KG*EL?(e).
e) Moreover,
span {ym = t € C\y, me L'(t)} = Ef(1—p),
spatl {@em : t € C\y, me€ L(t)} = E*(u),
— SPan {@um : £ €C\y, me L(t)} = Bo(1—p),
SDAT {@upm : 1€ C\y, me L'(1)"} =E ().

f) The operators M,u(z) = zu(z) on E*(u) and Mzu(z) = Zu(z)

on Ez(u*) are subnormal. Their adjoints are given by
(1.12) M;o(z) =zv(z) — (1= u*(2) (Z0(2)],_) -
where v € Eﬁ(l —ur),

(1.13) Mzo(z) = zv(z) — (1= p(2)) (zv(2)| ,_) »

where v € E2(1 — p).
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PROOFS OF PROPOSITION 1.1 AND THEOREM 1.2. It follows from
(1.2) and (1.7) that

o) = [ G5
=K(FOEQ (=) G()m)(2).

Since G(-)m € L*(e) by M2), it follows that ¢ ,, € KFEL?(e). Sim-
ilarly, @.¢m € KG*EL?(e). Take any v € K = G*£L*(e), then
v =KG*Eg for some g € L?(e), and by (1.14) we have

(1.14)

<§0t,m7 v>d = <( - t)_le’g>L2(e)
— /(5(3) (s —t)""G(s) m, g) dv(s)
= (m,v(t)),

which gives the second identity in (1.10). Now suppose that v is orthog-
onal to all reproducing kernels ¢; ,,. Then v(z) = 0 on C\ v, so that
G*Eg = 0, which implies ¢ = 0 by M2). This shows the completeness
of the ¢;,,. The first equality in (1.10) and the completeness of the
@y t,m are proved in the same way. Thus, d) holds true.

Next, one gets from (1.7) that

Puptm = #t,(1—pu(t)m -
For every v € KG*EL2(e) and m € M, t € C\ v,

(m, (Pyv)(t)) = (Pt,m, Ppv)
= (Pt,(1—pu(t))m> V)
= (m, (1 — p*(t))v),

which proves Proposition 1.1.
Now assertion a) of Theorem 1.2 is a direct consequence of the
definitions of the model spaces. Next, it is obvious that
z) — p(t 1—p(z)) — (1 — p(t
oy BE ) 0 p) ()
z—1 z—t
is in B2(p) if m € L(t) and in E2(1 — p) if m € L'(t) (see (1.5)). Since
{¢t.m} generate CFEL?(e), { Pupt.m } generate E2(u) and so on; in this
way we obtain (1.11).
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Next, v € E?(p)* if and only if (v(t),m) = (v, psm) =0,t € C\ v
;m € L(t), if and only if v(t) € L(t)* = u(t)*M, t € C\ v, if and only
ifv e Ez(pﬁ‘). Similarly, E2(1 —p) = Ez(l — p*)1, so that b) has been
checked. The first equality in ¢) is a direct consequence of b) and the
identity
E*(n)* = (KFEL*(e))" /E? ()" .

We obtain that E3(1 — p)* = Ez(pf“) in the same way.
To prove f), we observe that

Mz = MZ‘EQ(N) = P,uMzPu ’

where

MKf ¥ K(2f),  fe FEL ).

One sees that M} = M3, where

M:Kg ¥ K(zg), geGEL(e).

Since M, and M> are normal, M, and M5 are subnormal. Let v =
Kg € Ez(l — p*). Then
Miv(z) = P;MgP;U(Z)
= (PK(z9))(2)
- P: (EU B (1 B “*(Z)) (zv)‘z=3Doo) ’

which proves (1.12). One proves (1.13) in the same way.

2. A scattering type scheme.

Suppose that K is a Hilbert space and N : K — K is a linear

operator. We will apply our scheme only to situations when o(N) def v

has empty interior. Suppose that
Scl) K =H'+ H, where NH C H.
Sc2) There exists a finite-dimensional subspace M of H such that

(2.1) NH CcH + M.

We put S = N|H.
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In this section, we discuss tuples (N, K, H', H, M) subject to Scl),
Sc2). Two more requirements will be added in Section 3. Our aim is
to establish a relationship between tuples (N, K, H', H, M) and mosaic
tuples from Section 1.

The original Xia’s model corresponds to the case when S € L(H) is
pure subnormal, N € £(K) is its minimal normal extension, H' = H~
and M = [S*, S]H (see Section 6.2).

If R is a linear space and W an open subset in @, then we denote
by Hol(W, R) the space of all holomorphic functions f: W — R and
by Hol(W, R) the corresponding space of antiholomorphic functions. If
oo € W, then we put Holy(W, R) = {f € Holy(W, R): f(c0) = 0} and
define Holy(W, R) similarly.

Any linear operator B : K — R gives rise to an operator Wp :
K — Holy(C\ v, R), defined by

(Wpz)(z) = B(N —2) "'z, re K, ze C\~.
The operator Wi “almost diagonalizes” N in the sense that

(2.2) (WpNz)(z) = z (Wpz)(2) — (2 (Wpz)(2)]

rmoo) -

In what follows, we will see how to obtain “almost diagonalization”
operators Wp with good additional properties with respect to the de-
composition K = H' + H.

We put

Liz)y={meM: (N—2)"'meH},

L'(z)={meM: (N—-z2"'meH} (z€e C\y).

Lemma 2.1. For each z € C\ v,

M=L(z)+L'(2).

PROOF. By the definition, L(z) N L'(2) = 0. Take any m € M, and let
(N = 2)7'm = g1 + g2, where g1 € H, go € H'. Put l; = (N — 2) g,
then Iy +1ls =m,and l; € H, I, € H' + M. It follows that I = m—1; €
(H'+M)NH=M,!l, € M, and we are done.
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2.1. Transform U.

Let Py : K — H, Py : K — H' be the coordinate projections
with respect to the decomposition given in Scl), then Py + Py = I.
Put

(2.3) A=PgNPy : K — M

and define p(z) : K — M by

(2.4) p(z) = AN — 2)7 1, zeC\7y.

We define a transform U : K — Hol(C \ v, M) by

(2.5) Ux)(z) =p(z)z, zecK,zeC\y

(note that U = Whn.a).

Lemma 2.2. For all z € C\ v, p(2)? = p(2)Py.

Proor. This is a straightforward calculation. Using that
Py (N — 2) Py = Py (N — 2)

we get

p(2)2 = PyNPy (N — 2)"YI — Py) (N — 2) Py (N — 2) 7!
= PyNPy (N —2)7"
— PyNPpg/(N — 2) 7 P (N — 2) P (N — 2) 7"
= PgNPy/(N — 2)7" = PyNPy (N — 2)~ Pr
= p(z)Py .

Now we define the mosaic p, associated to the tuple (N, K, H',
H, M), by

(2.6) u(z)=p(z)| M : M — M, zeC\7y.
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It follows from the above lemma that u(z)? = u(z), that is, u(z) is a
projection. It also follows that

(0 Pua) () = u(=) (02) (2).
(2.7) - _
(UPwz)(z) = (1 - pw(2)(U)(z), K.

Set
Hol({L}) = {u € Hol(C\ v, M) : u(z) € L(z), z€ C\ v},
and define similarly spaces Hol({L'}), Hol({L+}), etc.
Lemma 2.3.
1) Ifx € H, then Uz € Hol({L'}).
2) If v € H', then Uz € Hol({L}).

3) The operator U “almost diagonalizes” N, that is, it satisfies
(2.2).

4) It diagonalizes S = N|H
(2.8) (ﬁSx) (2) = z(ﬁx) (2), reH.
PROOF. Assertions 1), 2) follow from (2.7). Equality U = W, 4 implies

3). Since g = 0 in the unbounded connected component of C\ ~, it
follows that

(ijx) (z) = 2Ux(z) — (zfjx(z))‘ _ = Ux(z), re H.
Lemma 2.4. One has
Ker u(z) = L(z), Range u(z) = L'(2).

PROOF. Obviously, u(z) m = 0 for m € L(z). If m € L'(z), then

w(z)m = PgN(N — 2)"'m = Pg(N — 2)(N — 2) " 'm =m.
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It follows from Lemma 2.1 that p(z) is the parallel projection onto L'(z)
that corresponds to the decomposition (2.5).

So the transform U “almost diagonalizes” N and has good prop-
erties with respect to the decomposition K = H' + H (see (2.8)). Now
we shall construct a good “almost diagonalization” operator for N*.

2.2. Transform V.

The decomposition K = H' 4+ H gives rise to a dual decomposition
(2.9) K =H, + H,

where we have put H. def H+, H, L {74 We will consider H!, H, as
realizations of the duals to H', H, respectively, and assume S* to be
defined on H,. Then P}, Pj; are parallel projections onto H,, H, with

respect to the decomposition (2.9). Since A* = P}, N*Pj;, we have

(2.10) M, % Range A* C H. .
It is easy to see that
N*H, C H., , N*H, C H, + M, .

Therefore there is a certain symmetry: the tuple (N, K,H'S H, M)
can be replaced by (N*, K, H., H,, M,), which has the same proper-
ties Scl), Sc2). We break (a little) this symmetry and associate with
(N*,K,H,, H,, M,) an operator

(2.11) (Vy)(z) = Pu(N* —2)"ly, yeK,zeC\y,
here P, is the orthogonal projection onto M.

Lemma 2.5.
i) y € H, implies p*Vy =Vy.
i) y € Hy implies (1 — p*)Vy = Vy.

iii) The following intertwining formula holds

(VN*y(2))(2) =2 (Vy(2))(2), y€H., z€C\7.
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ProoF. If y € H, and m € M, then (N — 2)"'u(z) m € H' by Lemma
2.4, which gives (m, p(z)* (‘~/y) (2)) = (N —2)"tu(z) m,y) = 0, so that
i) holds. Similarly, one checks that (1 — u(2)*)Vy(z) = 0 if y € H,
which gives i). Assertion iii) follows from i) in the same way as in
Lemma 2.3.

The following formulas are immediate

U(N — A m=0xm,
(2.12) N( z ’
V(N* = NPl A*m = @uam AeC\y, meM.

3. A model theorem.

In addition to Scl), Sc2), let us assume the following conditions.

Sc3) Spaces (N —z)"1M, z € C\v, as well as spaces (N*—7%) "1 M,,
z € C\ 7, are complete in K.

Sc4) N is similar to a normal operator: there exists a scalar mea-
sure dv, a L(M)-valued Borel function £(-) = £(-)* and a linear iso-
morphism W : K — L2(e), where de = £ dv, that transforms N into
M,

(3.1) WN = M,W.

A condition similar to Sc3) appears in [26] as a hypothesis, which is
necessary for constructing dual analytic models.
Observe that W*~! : K — L?(e) is an isomorphism that satisfies

(3.2) W*IN* = Mz W*t,

Definition. We say that (N, K, H', H, M) is a scattering tuple if Sc1)—
Sc4) hold.

Choose (any) £(M)-valued matrices F'(-), G(-) such that
(3.3)  (Wm)(-)=G()m, (W*1A*m)(-) = F*(-)m, me M.

Next theorem gives a relationship between scattering tuples, mosaic
tuples and corresponding mosaic model spaces.
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Theorem 3.1. Let (N,K,H',H, M) be a scattering tuple. Let W :
K — L?(e) be the operator from Scd), and let F(-), G(-) satisfy (3.3).
Then the mosaic p, given by (2.6), (2.4) coincides with the function
(1.2), and (M,F,E,G,v, 1) is a mosaic tuple. The operators (2.5),
(2.11) admit representations

(3.4) U=KFEW, V=KGEW*".
Moreover,

(3.5) P, =UPgU,

(3.6) Uz, Vg = (z,y), z,y € K,
(3.7) UH'=Ej(1—p), UH=E (),
(3.8) VH' =E(1*), VH=E,(1—u").

In particular, S = N|H is similar to the model operator
USU~" = (M, on E*(n)).

The meaning of this theorem is reflected in the following commu-
tative diagram.

(3.9)
K — H' + H
v g g
[2e)+—— KFPELe) —— Bi(l—p) +  E*p)
]* * * *
L(e)~—— KG-EL3(e) E(r) 4 El—p)
— v v v
K _— Hi + H*

Here <— links spaces that are dual to each other.
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Using the construction of Section 5, one can give many examples of
subnormal operators S with dim [S*, S|H = oo, for which this theorem
produces a model with finite-dimensional “base” space M.

PrROOF OF THEOREM 3.1. By (3.1)-(3.3),

(3.10) W(N =)~ "= (=) G(-_)m,
W*L(N* =N tA*m = (- X)"F*()m, meM.

Hence for any m,n € M,

(W(A)ym,n) = (N = A)"'m, A*n)
= (W(N — X)"tm, W*=1A*n)

_ / (€(2) G(2) (2 — N~ m, F*(2) n) dv(2)

= <(/p(z) (z—=XN)71 du(z))m, n> :

This implies that (1.2) holds and gives M1).

Let us show that F(-)|Range&(-) is one-to-one v-almost every-
where. Suppose it is not so. Then there exists f € L%(e), f # 0 such
that FEf = 0. By (3.10), this implies

(EfFLW*H N = X)) TP A*m) 2y = 0,

for all A € C\ v,m € M. Then Sc3) gives that f L Range W*~! a
contradiction.

The second part of M2) is proved in the same way.

Condition M3) follows from Sc4) and (3.10). Also, (3.10) and (2.12)
show that

(3.11) (Uz)(z) = (KFEWZ)(2), 2€C\7,

whenever z = (N — A\)"tm, m € M, A € C\ v. Therefore (3.11) holds
for all z € K. We obtain the second equality in (3.4) in the same way.
In particular,

U:K — KFEL*(e), V:K — KG*EL%(e)

are isomorphisms.
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Formula (3.5) follows from (2.7). Hence M4) holds. Formula (3.6)
is immediate from (3.4) and (1.4). It follows that V = U*~1, and
therefore Py = ‘~/PI’§‘7_1. Now (3.7), (3.8) follow from the results of
Section 1.

REMARK. Any mosaic tuple (M, F,&,G,v, 1) can appear as a result
of an application of the above theorem. If suffices to put K = L3(e),
H = E?(u), H = E%(1 — p) and to embed M into E?(u) according to
the rule m — p(-) m, m € M. Then U and V are identity maps.

4. Connection with dual bundle shift models.

Let us recall briefly the construction of [26]. Let S : H — H be
a linear operator, and choose an auxiliary operator J : H — R, where
dim R < co. Assume that

Al) Ker(S — z) =0 for all z in C \ gegs(S).
A2) J|Ker(S* — Z) is one-to-one for all z in C\ gegs(S).

Then the ultraspectrum F of S is defined as the antianalytic family
of spaces F = {H(2) : 2 ¢ 0ess(S) }, where H(z) = J Ker(S* — z).

In the setting of [26], the ultraspectrum is an analytic family be-
cause we used there bilinear products. See [27] for a reformulation for
sesquilinear products.

Next, let H, be a realization of the dual space to H. Diagonalizing
transforms

U:H — Hol({H(2)*}), V:H,— Holh({(H(2)")*})
were defined via the formulas
(Uz)(2),m) = (x, hzm) . ((V2)(2),1) = (,924)
v € H, 2€C\0es(S), me H(z), | € H(z)*,

where {h; m}, {9.,} are families of vectors in H,, H, respectively, that
are uniquely determined by the conditions

hym € Ker(S* —%), Jhym =me€ H(z),

(4.1)
(2 =8)g.0=J"1, le H(z)*.
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The vectors g,; were called almost-eigenvectors of S. If the families
{h.m} and {g,;} are complete, then U and V are one-to-one. It has
been shown in [26] that U transforms S into the operator of multi-
plication by the independent variable on the model space UH and V
transforms S* into the operator v — Zv — (Zv)(co) on the model
space V H,. There is a natural duality between UH and V H,, which is
defined in an intrinsic way.

Now let us set up the relationship between the dual analytic models
and the construction of sections 1-3. Assume that (N, K, H', H, M) is
a scattering tuple, and let S = N|H. Put

H,=H'", R=M, J =Py .

Proposition 4.1. For this choice of R, J, A1), A2) are satisfied. The
ultraspectrum of S is given by

(4.2) H(z)=L(z)* =p*(2) M.

It follows that the direct sum decompositions (1.6) give rise to
isomorphisms

1%

H(z)" = (L(z)")" = M/L(2)
(H(2)*)" = L(z)" = M/L(2)*

L'(z),
L'(2)*.

I

We denote them as i, : (L(Z)J‘)* — L'(2), s, : L(2)* — L'(2)*.
Then instead of U, V we can consider the transforms

U:H— Hol({L'(2)}), V:H,— Holy({L'(2)*}),
acting by
(4.3) Us(z) =i, (Uz)(2),  Vy(z) =ie.(Vy)(2).
Proposition 4.2. Operators (4.3) coincide with the transforms (7, 1%
from Section 2.

To prove Propositions 4.1 and 4.2, we need the following fact.
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Lemma 4.3. Let z € C\ 0¢s5(S), and put
hym = p(z)*m, m e L(z)*.

Then Ker(S* —z) = {hym : m € L(2)*} and Jh,nm = m, so that
{h2m} is exactly the family defined in (4.1).

ProoF. For any h € Ker(S* — z), (N* —2Z)h € H},, which gives

(N* —Z)h = Py, N*h = A*h = A*Pyh. .

Therefore h = p(2)*Puh = p(2)*u(z)*Puh = hy ., where m def
w(2)*Pyrh € L(2)1. Next, by (2.10),

(S*=Z)hym =Pua,(N*—Z2) hym = Pg,A"m =0,

for all m € L(2)*. At last, Jh, ., = Pyp(z)*m = p(z)*m = m for
m € L(z)*.

PROOF OF PROPOSITIONS 4.1 AND 4.2. Since S = N|H, Al) holds.
Lemma 4.3 implies A2) and (4.2). Therefore

(Uz(z),m) = (p(z) x,m) = (Ua(z),m),
(Vy(2),0) = (y, (= = N)7'1) = (Vy(2), 1),

for m € H(z) = L(2)t, 1 € H(2)t = L(z). This proves Proposition
4.2.

We also obtain the following fact.

Proposition 4.4. Eigenvectors h, ,, of S* (z € C\ 0ess(S)) are com-
plete. Almost-eigenvectors g, of S (z € C\ 0ess(S)) are also complete.

PrOOF. U : H — E?(p) and V : H, — Eﬁ(l—,u*) are isomorphisms.
Therefore U and V are one-to-one.
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5. How to construct mosaic tuples?

The method we give here is not the most general, but it shows how
much freedom we have.

Let v be a finite union of arbitrary C'-smooth arcs, intersecting
only in their endpoints, such that C\ v has at least two connected
components. Denote the components of C\y by Q1,...,€Q;. We assume
for simplicity that for any of the arcs a that compose v, one has o C
082 N OSYy, for some j # k. Let p: C\ v — L(M) be a projection-
valued analytic function such that g = 0 in the unbounded component
and for each g, p extends to a continuous function on clos 2. Fix an
orientation of each of the arcs of . For a function f in Hol(C\ ), we
denote by f;, fe its interior and exterior limit values on ~.

Put dv = |dz|‘,y and p; = p; — pte. Then (1.2) holds for

1 dz

p:2—m.plw7-

Assume additionally that rankp is constant on each of the arcs 9€2; N
0€);, and that

(5.1) lp(2)|(Kerp(2)) ]| > e > 0,

for z in the interior of these arcs, where ¢ does not depend on z. To
assure that p satisfies this property one can take for u, for instance, a
small perturbation of a locally constant mosaic po “in general position”.

Next let us fix a factorization (1.1) of p. By (5.1), we may assume
that F, F~1, G, G™! are in L®(y; M) and that & is projection-valued.
We will use the Smirnov classes E?($;); we refer to [6], [17] for their
definition. The corresponding classes E?(Q;; M) of M-valued functions
are defined componentwise.

It is easy to see that

KFEL*(e) = {u € ®;E*(Qj; M) :
u(00) = 0 and u;(-) — ue(-) € p(-)M

almost everywhere on 'y} .

Let v € KFEL%*(e), then u; — u, = p1f for some f € L%(dv;M).
Therefore pu € ®;E%(Q;; M), and we have

i Wi — pre Ue = p1(ui + (1 — ) f) -
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Hence M4) holds. It follows that all conditions M1)-M4) hold.
In this example, £?(p) does not depend on the choice of factoriza-
tion (1.1) of p, and

E?(p) = {{i,u(2)} : u€ Mod*(F)},
—2 " . I
Eo(1—p*) = {{ix,v(2)}: v €Modj(Fp)},
where Mod?(F), Mod3(F.) are, essentially, the Smirnov type model
spaces from [26, Section 2] (one has to define Mod3(F ) as a space of
antianalytic functions, see [27]).

We can make the following résumé. If only the family {H(z)} =
{p(z)*M} is given, then only the dual model spaces UH, V H, appear
that correspond to the operators S on H and S* on H,. If the whole

mosaic y is given, then all four model spaces E3(1—pu), E?(u), Fz(p,*),
Ea(l — p*) appear. They serve to model spaces H', H, H], H,.

6. Xia’s model.

Here we show how to specialize the constructions of sections 2 and
3 in order to obtain Xia’s results.

6.1. The discriminant surface.

For the reader’s convenience, we remind the definitions and results
from [25] we will need. Some of the notions discussed are reflected on
the Figure.

Let S : H — H be a subnormal operator of finite type and
N : K — K its minimal normal extension. Define M, C, A by (0.1)
[11]. Let A be the discriminant curve (0.2), A its blow-up [11] and
A= ﬁl U---uJ KT the decomposition of ﬁ/\into irreducible components.
In order to reflect the multiplicities of Aj, sometimes we will write
A = 3’1“ U---u KI%T [25]. Each of ﬁj is a compact Riemann surface,
and we consider them as branched coverings of the z-plane.

Let Ag be the set of regular points of A. Then A\ Ay is finite, and
A is obtained from A by adding a finite number of points. There is a
natural projection of A onto A, which is identical on Ag. The point in
C? that corresponds to a point § € A will be denoted as (z(d), w(d)),
and we write § ~ (z(6), w(d)).
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Let
oc(A)={z€C: det(C — (w—A*)(z—A)) =0, for all w € C} .

Figure.

It is immediate that oc(A) C o(A). For any z € oc(A), A has
irreduciblAe components z = zy and w = Zy. These irreducible compo-
nents of A were called degenerate and all other irreducible components
were called nondegenerate. Let Aqep be the union of degenerate com-

ponents of A and ﬁndeg the union of nondegenerate components.
Let

£+:{6E£ndeg: |7]|<1}, 3—:{563ndeg: |77|>1}7

where 7 is a meromorphic function on &ndeg, defined by n = —dz/dw.
The map § = (z,w) — 0* = (w, Z) is an antianalytic involution on Ay,
and it naturally exte/{lds to A. It interchanges 3_1_ and 3_, because
77(5*) = 7’(5) _17 0 € Andeg-

The curve A was called separated if the set AN {(z,%) : z € C}
divides each nondegenerate component ﬁk into two connected com-
ponents; then these two connected components are ﬁk N 3+ and ﬁk N
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A_. In this case, 0N, = {0 € A:§ = 0*} (we refer to [25] for more
details).
Let R R
A" = Apgeg U U {(z,w) W= ;\}
AEoc (A)

be the algebraic curve obtained from A by excluding from it the “ver-
tical” components z = A. A projection-valued meromorphic function
d —> Q(0) on A’ is defined by

1

Q(z,w)) = —=— (C(Z—A)_1+A*—u)_ du , z ¢ o(A),

where D,, is a small disc centered in w such that Dy, No (C(z — A)~! +
A*) = {w}. We have

Q(61)Q(62) =0, 01 # b2, 2(01) = 2(d2),

(6.1) > Q)=1, forall¢eC\o(A).
z(0)=¢

Put R
Ye = 2(0A4) C C, v={2€C: (2,z) € A}.

Then . is a union of analytic arcs and 7 \ 7. is finite. It follows from
[21]-]23] that
Ye Co(N) C .

Orient the curve 7. according to the positive orientation of the boundary
OA4 of Ay. One can define a function & on 7. (except for a finite
number of points) so that dz = i{(2) |dz| and || = 1 almost everywhere
on .. Then 7((z,%)) = £(2)? almost everywhere on ..

Denote by d; the delta-measure at a point ¢ of C. The following
theorem collects some of the results of [22], [25].

Theorem A. Let (C,A) correspond to a subnormal operator S of finite
type. Then A is separated and all Jordan blocks of C (z—A)~1+A* that
correspond to eigenvalues w such that (z,w) € Endeg are trivial for all
but a finite number of values of z. The involution 6 — 6% maps each
of the nondegenerate components of A onto itself. The mosaic (2.6)
has a representation

(6.2) W= Y Qw).
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Moreover, rank Q(6) = kj, 6 € 3]- N Agp.
There is a finite subset R of C and matrices As, s € R such that
de(-) = E(+) dv(-), where dv = |dz|‘,y + D cerd¢ and

Le(s) (- )71Q((5.9) . s €\ R,
Ay | seER.

(6.3) E(s) =

6.2. Xia’s model as a particular case of mosaic model spaces.

Let S, N be as in Section 6.1, and put H' = H+, M = [S*, S]H.
It is known that S = N*|H’ also is a subnormal operator of finite
type. Let E(-) be the spectral measure of N, and define e by e(-) =
Py E()|M. In [21], Xia considers a unitary operator

W:K — L*(e),
given by
(6.4) WFN)m=f()m, meM,
where f is any bounded Borel function on o (V). In our terminology, we
get the situation of sections 2 and 3, where now H’ L. H and W*~! = W
satisfies both (3.1), (3.2).
Lemma 6.1. (K,N,H' H, M) is a scattering tuple.
PROOF. Properties Scl) and Sc4) are obvious. It is easy to see that
[S*,S] = A*A, where A is defined by (2.3). Therefore PuNH' =
[S*, S]H, which gives (Sc2). It follows, for instance, from [15, Chap-
ter 2, Theorem 1.3] that span{S™M: n > 0} = H. This implies the
first part of Sc3). The second part of Sc3) is proved in [23, Lemma 1].
Since
WA m=W(N*—=S")m=(—A")m, meM,
we see that (3.3) holds if we put

(6.5) F(z)=2z—-A, Gz)=1.
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So now the model spaces are K(- — A)EL%(e) and KEL?(e). We arrive
at the following result, which, besides the representation (6.2) of p, is
essentially contained in Xia’s works [21] and [23].

Theorem 6.2. Let S be any subnormal operator of finite type. Define
F, G by (6.5), u, €, v from Theorem A and W by (6.4). Then W is
unitary, and all conclusions of Theorem 3.1 hold. In particular, p is
alternatively given by

(6.6) 11(2) :/M _

t— =z

Now we have H, = H', H, = H, so that diagram (3.9) acquires
the form

(6.7)
K(-=MNEL(e) ——= E(l—p) 4+ Ep)
/ Iﬁ' & &
L2 (c)«" K — I } H

T oo

KEL¥(c) )+ B -

=

Xia calls the function ﬁaz(z) the analytic representation of a vector
x € K and the function Vx(?) the dual analytic representation of z.

Theorem 6.2 gives an explicit construction of a finite type subnor-
mal operator from matrices C, A. The set of possible pairs (C, A) has
been completely described in [25]. If a pair (C, A) satisfies the criterium
that was given there, define £, de and g from Theorem A and F, G
from (6.5). Then S will be unitarily equivalent to the operator M, on
E?(p).

Looking at diagram (6.7), one notices an interesting phenomenon.
The operator j : K(- — A)EL*(e) — KEL?(e), given by
(6.8) JKG=MNh KR,  heL(e),
is obviously an isometric isomorphism. One sees from diagram (6.7)
that o

j=VUt.
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Therefore the multiplication operator
h— (-—A)h

maps isomorphically K—1E" (u*) onto K~1E2(1—p) and l@‘lﬁﬁ(l )
onto K~1E?(u). So the multiplication by a linear analytic matrix bino-
mial maps certain spaces of boundary values of antianalytic functions
onto spaces of boundary values of analytic functions.

The subsequent exposition is organized as follows. In Section 7, we
replace the model operator M, on E?(u) (see Theorem 3.1) with the
operator of multiplication by z(-) on a function space H;(X), which

consists of analytic cross-sections of a bundle X over 3+. In Section
8, we relate the above-described phenomenon with the involution on
A. In Section 9, we will give a necessary background on weighted
Hardy classes over Riemann surfaces. These facts will permit us to give
a complete characterization of H.(X,) and to prove main structure
results.

7. External Riemann surface models.
Put
X(5) = RangeQ(6),  Y(8) = RangeQ*(5), deA’.

For any component ﬁj of A, X|£j (Y|£J) can be considered as an
analytic (antianalytic) vector subbundle of dimension k; of the trivial
bundle ﬁj x M, where k; is the multiplicity of ﬁj. This can be deduced
from the following simple fact.

Proposition 7.1. Let Q be a domain in C, \g € Q, k € N, and
T1y.., T+ & — M be analytic functions such that r1(A),...,7k(A)
are linearly independent for some A € €. Then there exist analytic
functions q1,...,qr, defined in some disk D, with A\g € D C 2, such
that span{ri(A),...,rx(A)} =span{qi(A),...,q(AN)} for A € D\ {\o}
and q1(N), ..., qx(X) are linearly independent for all A € D.

PRrROOF. The family {r;} can be transformed into the family {q;} by
taking linear combinations with constant coefficients and dividing sev-
eral times by A — Ag. We omit the details.
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We put A’ = A_U Uneooa){0: w(d) = A}, then A’ decomposes
into a disjoint union

3/:£+U3/_U83+

Let
X,=X|A,, VY,=Y|A,, X_=XA_, VY.=Y|A_.
Set
au(®) = Q(8)u(2(8)),  wek(-—AEL(e),
bu(d) = Q*(6) v(z(6)),  veKEL(e),
(6 € A'), and

HA(X,)=aB*(u),  H2(X)=aB3(1-p),

—2 —2 * —2 -2 *
.(Ve) = 0B (), T(Y.) =b Bl — 7).

It follows from (6.2) that functions in H}(X ), Fi* (Y,) vanish on AL
and functions in H7(X_), Fi (Y_) vanish on A,. We have

akK(-—N)EL*(e) = HY(X_) + H(X4),
bKEL*(¢) = H,. (Y_) + H,pe (Yy).

We will need notation for several exceptional sets. Let Polg be the set
of all poles of QQ on A’ and 7 the maximum of orders of these poles. Let

B =2z (Polg)Uz(A"\ Ay) UR,

where R is the set from (6.3), and put B# = z=1(B) N A’. The sets
Polg, B and B # are finite.

Lemma 7.2. Each function in a K(-—A)EL?(e) (bKEL?(e)) is analytic
(antianalytic) on A\ (0A+UPolg) and has poles in points of Polg \OA 4
at most of order T.
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A priori, functions in a K(- — A)EL2(e) and bKEL?(e) may have
jumps on the whole preimage curve z71(v.). This lemma shows that
they have jumps only on A,. Hence the model spaces HA(X ),
H 3 (X _) consist of meromorphic cross-sections of X, X_, respectively,

and Hi (Yy), H .. (Y_) consist of conjugate meromorphic cross-sections
of Yy, Y_. Lemma 7.2 will be proved at the end of this section.

Operations a and b are invertible. By (6.1), the inverses are given
by

@'NQ= > @), 9O = > g0, C(eC\n.

2(6)=¢ z(8)=¢

Define Hilbert norms on a K(- — A)EL?(e) and bKEL?(e) so that a, b
become unitary operators. We arrive at the following fact.

Proposition 7.3. S is unitarily equivalent to the operator of multipli-
cation by z(-) on Hi (X4), and S’ is unitarily equivalent to the operator

of multiplication by Z(-) on Fi (Yy).

We call these representations the external Riemann surface rep-
resentations of S, S'. By (6.1), projections P, and I — Py in these
representations are expressed as

aP,at = (MX+ on a (- — A)EL(e)),
b(I = P,)b~" = (M, onbKEL*(e)),

Wherex_l_:lonﬁJr andx+:00n3’_.

ProoOF oF LEMMA 7.2. For any domain W in C, bounded by a piece-
wise smooth Jordan curve, the Smirnov class E2(W) has the following
properties [6], [17]:

1)

FO = 5z [ 96 ()= 2) s

is in E2(W) for every g € L?(OW, |dz|).

2) Each f € E?(W) has boundary values almost everywhere on

oW, and
1

2mi

JECICEIR
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gives f(w) for w € W and 0 for w € C\ clos W.

3) For any smooth arc v C W, the map f — f|y from E%(W)
into L2(, |dz|) is bounded.

Let f € L?*(e) and g = K(- — A)Ef, u = ag. By (6.3) and the
Privalov—Plemelj “jump” formula [17],

() 1) = Q) Q2 2) f(2).  d=(zw) ez (v).

Bearing in mind (6.1), we see that u; = wu. almost everywhere on
27 1(v.) \ OA,. Note that EY/2f|y,\ B is in L2(|dz||ve, M) and (- —
A) EY/2 is bounded on ~y, \ U for any neighbourhood U of B. Tt follows
that any dp € 27 (7e) \ (83+ U B#), do = (20, wp), has a small neigh-
bourhood W in A that projects homeomorphically onto a disc centered
in zg such that uo (z|W')~! € E2(2(W')) for any connected component
W' of W\ 271 (7.). The above fact 2) easily implies that u is a restric-
tion of a function, analytic in a neighbourhood of dp. So u is analytic
on A"\ (8A4 U B¥).

Now let §y € B#\83+, do ~ (20, wp). Take a small neighbourhood
W of 0y with analytic boundary such that closWNB = {do}. The above
proof and 3) show that the map u —— u|0W is bounded from a IC(- —
A)EL?(e) into L?(OW, |dz|, M). Pick any function s, holomorphic on
clos W, such that s@ is also holomorphic on closW. We assert that
functions su are analytic at &y for all u € a (- — A)EL?(e). Indeed, it
suffices to check that this is true for « in a complete set. By (1.11), the
functions
p(z2)
z—1

where t € C\ v and m € M are complete in K(- — A)EL?*(e). There-

fore the functions u(d) = Q(8)(2(d) — t)_lm are complete in a (- —
A)EL?(e). For every such u, su is analytic at dp.

It follows that the statement of Lemma is true for a (- —A)EL?(e).
The proof for b KEL?(e) is similar.

(pt,m(z) = m,

8. The role of the symmetry on A.
Lemma 8.1 The identity

81)  (z=M)7'QW) =n(0)T'Q* () (w—-A)T", i =(zw)
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holds on Apgeg-

PROOF. We use arguments similar to those of Xia [22, p. 895]. Let
8o = (20, wo) € ﬁndeg NAg and V be a small neighbourhood of 6y in C?.
We assume that VN A is given by equations w = a(z), z = f(w), where
«, (3 are analytic functions. Then the equation of {6* : 6 € VN A} is
w = (3(Z). Since all Jordan blocks of C'(z—A)~!+A* that correspond to
eigenvalue «(z) are trivial by Theorem A, analytic perturbation theory
[4] gives

(w=a(2)) (C—(w=A") (z=8)) |, yevra = ~(=D)T'Q((z,a(2))

the matrix on the left hand side being in fact analytic in V. Let us
apply this equality to a neighbourhood of 4§, pass to the adjoints and
then substitute w — z, z — w. We obtain that

(2 = ) (€ = (0 =A%) (2 = 1) 7| . uyevea
= -Q"((w, B(W)))(w - A*) ™"
It remains only to remark that a(zg) = wg, S(wg) = 2o, and

im Yool dw
(zwyecc\a Z — B(w) dz |5,
(z,w)—do

= 1(do) ™"

Let v € Hi (Y_) and u € H(X_). We define symmetries oy, g
by
(8.2) (a10)(8) = n(8) "1 (2(0) — A) v(6")
(8.3) (ogu) (8) = 7(8) ™ (W(0) — A) u(0"),
for & € Ay (notice that then 0* € A_ c A’). By (8.1) and Lemma

7.2, ayv is a meromorphic cross-section of X, and asu is a conjugate
meromorphic cross-section of Y, .

Theorem 8.2. Let S be a subnormal operator of finite type. Define F',
G by (6.5). Let p, €, v, e be as in Theorem 6.2 and j be defined by
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(6.8). Then the diagram
H(Xy) ——  Eu
M T + P (l) \ | /
ap J e

M) e By B T

“w

is commutative (the embeddings of the mosaic model spaces into L*(e)
are defined by diagram (6.7)). In partucular, j maps isometrically

E%(u) onto Eﬁ(l — w*) and EZ(1 — u) onto Ez(,u*). Spaces E*(u)
and Ez(l — u*) coincide as subspaces of L*(e). Spaces EZ(1 — p) and
Ez(,u*) also coincide as subspaces of L?(e).

The symmetries a1, o also explain the existence of the formulas

for action of S and S* in both model spaces E? (), Ez(l —p*) (see [22,
Theorems 2 and 3]).

PROOF. Let 6 € Ay, 6 ~ (z,w), m € M, and A € C, (z,X) ¢ A. Since
A4 C Apgdeg, the assertion about Jordan blocks in Theorem A implies
that

(€l = 1)L+ A" = D)) = Q) (w—N),
and together with (8.1) and the formula 7(6*) = n(8) ~! this gives

1

Q") (C—(EZ—-A") (A=) m
(8.4) = (@ —A\)"'Q*(6) (z— A 'm
= (@ —XN)"'n(6") (@ - A) Q%) m.

By the results of Section 1, the elements ¢y, span K(- — A)EL?(e).
Since @y m = K(-—A) (- = A)"lm,

(8.5) Jeam(z) = / % m

We will make use of Xia’s formula

(8.6) / % = p(z)"(C = (F-A) (A -A) "

—(C—E-A)YA=A) 1 — V),
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which is valid whenever A, z ¢ o(N) and (A, Z) ¢ A (see [22]). Consider
two subfamilies of the family of functions {@x n,}.

1) Let A ¢ o(N) and m € (1 — p(A))M. Then oy, = (2 —
A)~1u(z) m by (1.7), and by (8.5), (8.6),

joam(z) = (1= p(x))(C ~ (= A) (A= 4)"m.
Since j pa.m € KEL%(e), it follows that j @y ., € Ez(l _fb*) Moreover,
by (6.2), Q*(8)(1 — p(2(8))*) = Q*(d) for § = (z,w) € Ay. By (8.4),

(b orm) (6) = Q*(9)(C = ((8) = A") (A= A)) "'m
= (@~ \)"n(6*) (@ - 1) Q") m,

so that

(arbjoam)(0) = (z=N)7Q@)m = (apam)(8), delA,.

Since the family of functions ¢y ,, we are considering is complete in
E?(p), we conclude that jE?(u) C Fﬁ(l—,u*) and that the left rectangle
in the diagram is commutative.

2) Let A ¢ o(N) and m € p(A)M, @ m = — (2 — A) 71 (1 — p(2))m.

Then
1

Jeam(z) = u(z)"(C—(EZ-A)(A-A) m,

so that j o\ m € E2(u*). Now we obtain from (8.4) that for ¢ € Ay,
d ~ (z,w),

1

(07 eam(9) =Q*()(C - (Z-A)(A=A)) m
= (W —XN)""n(6") (W - A) Q") m
=azapxm(9).

This proves that jEZ(1 — p) C E (1*) and that the right rectangle in
the diagram is commutative.

At last, note that K(- — A)EL%*(e) = E?*(u) & E3(1 — p) implies
KEL%(e) = jE2(u) @ jE2(1 — p). Since jE2(u) C Ea(l — p*) and
. =2, . =2 . .

JEG(L =) © B (), we have jE*(u) = Eo(1 — p) and jEG(1 - p) =
E™ ().
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REMARKS. Suppose we start from a pair (C, A) that satisfies the cri-
terium of [25, Theorem 2] and our aim is to construct the correspond-
ing S. Then (6.2), (6.6) define the same function p, and model spaces

E2(p), E (1*), etc. arise. The proof of (8.6) in [21] uses only (6.6) and
the formula

(C—FZ—-A")(2—A))de(z) =0,

which follows from the hypotheses on C, A. So the fact that E?(u) and

Ez(l — p*) define the same subspace of L?(e) can be deduced directly
from the hypotheses of [25, Theorem 2]. Therefore we can put S to be
equal to M, on E?(u), and we will get all its necessary properties.

It is easier to understand the sense of Theorem 8.2 when A has
no degenerate components. Then formulas (8.2), (8.3) permit us to
define al_l, oy 1 as well. But oy, as are isomorphisms even if there
are degenerate components. In this case, we conclude from (8.2), (8.3)

. . 772
that the value of every function in H ,.(Y_) or H}(X_) on degenerate
components w = const is determined by its values on other components.

9. Analytic functional classes over Riemann surfaces.

This section has an auxiliary character. Our exposition uses the
approaches of [1], [10].

Let R be a (connected) branched Riemann surface over C, whose
boundary R is a finite union of analytic arcs. We assume that R =
R U OR is compactly imbedded into a larger Riemann surface R and
that OR = OR. Let § — 2(d) be the projection of R onto C. We
assume that z(R) is a compact set in C.

From now on, let us fix a base point 0y € R, and let w be the
harmonic measure for R at dy. It is easy to see that w and the arc
length measure |dz(-)| are mutually absolute continuous.

The Nevanlinna class of R is defined as

N(R) = {f € Hol(R) : log|f| has a harmonic majorant} .

The hypotheses on R imply that the unit disc D is its universal covering
space. Let
T:D— R

be a covering map, normalized so that T(0) = dp. The boundary of
R has a finite number of connected components, and the fundamental
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group m1(R) of R is finitely generated. It follows that there exists a
relatively open and dense subset A of 0D such that T extends con-
tinuously to a map from A onto dR. (see [7]). This map will be also
denoted by T. Moreover, w(E) = (2r)~tmi(T~1(F)) for each Borel
subset F of OR; here my is the arc length measure on 0 D.

It is easy to see (using the techniques of [10, Section 3.4]) that
f € N(R) if and only if foT € N(D). Since f € N(R) implies
fID € N(D) for every connected subdomain D of R, it follows that each
function f in NV (R) has non-tangential limit values w-almost everywhere
on OR, and that T lifts these boundary values to boundary values of
foTon0D. Let

NtTD) = {gh™": g,h € H®, g is outer in D}

be the Smirnov subclass of the Nevanlinna class on D, and define the
Smirnov class of R by

NYR)={fEN(R): foTeNT(D)}.
For each natural number k, we denote by N'T(R,CF) the set of CF-
valued functions on R, whose components are in Nt (R).

Let €2 be a Borel measurable selfadjoint nonnegative k£ x k& matrix
function on JR, which is log-integrable, that is,

(9.1) /1og+ max{ [, 2} dw < oo

(here log™ () = max{log(-),0}). Consider the weighted space
L*(0R,w,Q)

with the norm given by ||f||* = [(Q2f, f)dw and the corresponding
weighted H2-space

H*(R; Q) = {f e N*(R,C*): fIOR € L*(0R,w,Q)}.

Let Q = Qo T be the matrix weight on 0D that corresponds to 2; then
(9.1) gives

/1og+ max{[|Q], |7} |dz| < oo
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Hence there exists a matrix function @ on D such that 0,071 ¢
N+(D,C***) and

(9.2) Q=00 ondD

(see [19, Chapter 5, Section 7]). The matrix function O is determined
uniquely, up to a constant left unitary factor.

Let M6b (D) be the group of all linear fractional transformations
of D, and let G be the group of deck transformations, that is,

G:{QOEMéb(]D)): TO(p:T}.

It is known that G is a discrete group and is isomorphic to m(R).
Denote by U(CF) the group of unitary linear transformations of CF.
Since Qo ¢ = Q for all ¢ € G, one deduces from (9.2) that for every
¢ € G there exists a constant matrix a(p) € U(CF) such that

Oop=a(p)O.
It follows that a : G — U(C¥) is a group homomorphism.

Definition. « is called the character that corresponds to the matriz
weight €.

Denote by Chary(R) the set of all group homomorphisms o : G —»
U(CF).

Let o be an arbitrary element of Charg(R). If an analytic CF —
or CF*F — valued function f satisfies f o o = a(p)f, ¢ € G, then f is
called a-automorphic. Put

HZ(R)={f € H*(D,C*): f is a-automorphic},

it is a closed subspace of H?(D, C¥). Informally, we interpret an element
of H2(R) as a multivalued analytic function f on R such that |f] is
single-valued.

Lemma 9.1. Let €2, Q, O be as above, and let o be the character that
corresponds to ). Then the map

fr—0-(foT)

defines an isometric isomorphism of H*(R, ) onto H2(R).
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PrOOF. Let f € Hol(R,C¥). Then f € N*(R,C*) if and only if
O-(foT)e N*T(D,CF). Since for f € NT(R,CF),

= Q(fo o k%ﬂ-— -(fo zlgfl
| o= [ @om. o= [ o (femit g

the above map is an isomorphic isomorphism of H2(R, ) onto its image
in H%(D,C*). A function g € N+ (D, CF) is a-automorphic if and only
if g = O-(foT) for some f € Nt(R,C*) (here we use that the
least harmonic majorant of a G-invariant subharmonic function is also
G-invariant). Therefore the image of our map is exactly H2(R).

Lemma 9.2. The operator M,y of multiplication by z(-) on
L*(0R,w, Q)

1s the minimal normal extension of the operator of multiplication by
z(+) on H*(R, ).

It suffices to prove that

(9.3) /\;Tag;){(z(-)—)\)_lf‘al%: feH*(R,Q)} = L2(0R,w, ).

Let ¢ € L*(OR,w,) be orthogonal to all functions in the left hand
part. Then, by the Hartogs-Rosenthal theorem [12],

3 (Q(8) (0), £(8)) = 0,
d€EOR
2(6)=¢

for almost every ¢ € z(0R) and all f € H?(R,). Take any g €
H?(R,Q) and put here f = ¢ g, ¢ € H*®(R). Since for each ¢ € z(OR)
we can choose ¢ which is analytic on a neighbourhood of R and has
arbitrarily prescribed values in points of 27 1(¢) NOR, we conclude that
1 = 0 almost everywhere on 0R.

Define an operator Sg o on H2(R) by

SRyaf:(ZOT)-f.
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It is obviously subnormal. In our interpretation of H2(R) as a space of
multivalued functions on R, Sk, acts as multiplication by z(-). Some-
times we will write Sg 4,5, to show the dependence on the base point
(50.

Functions in H2(R), considered as multivalued functions on R,
have boundary limit values on OR, which are also multivalued. Let us
fix a Borel subset E of 9D such that T|E is an isomorphism of E onto
OR, and put TI=H = (T|E)~!. We associate with each f € H2(R) the
single-valued function f o T~ on dR.

One has

112y = / o TEP du,
OR

(we use here the norm in H?, given by ||z||> = (2m)~! [ |z]?|dz|.) So
the map f — f o TI=! allows us to consider H2(R) as embedded
isometrically into L2(OR,w, C*).

With this agreement, the map f — O o T[71. f extends the
map of Lemma 9.1 to an isometric isomorphism of L*(OR,w,$)) onto
L*(OR,w,C*). Therefore, by Lemma 9.2, the operator M., of multi-
plication by z(+) on L?(0R,w,C¥) is the minimal normal extension of
the operator Sg q.

From now on, we assume that the Riemann surface é, which con-
tains R, is such that the imbedding R C R induces an isomorphism
between the fundamental groups 71 (R) and 71 (R).

Lemma 9.3. For any o € Charg(R), there exists an a-automorphic
function A : D — C* such that ||A||, ||A7Y|| are bounded in D.

The proof of Lemma 9.3 will be given a little bit later.

Let I be the unit element of Charg(R), that is, I(¢) = I for all ¢ €
G. Then HZ(R) is the set of G-invariant functions in H?(D); this space
is naturally isometrically isomorphic to the unweighted Hardy space
H?(R) = H?(R, I). In the situation of Lemma 9.3, the map f — A-f,
[ € HZ(R), defines a (not necessarily isometric) isomorphism of H?(R)
onto H2(R). Since this isomorphism commutes with M,(.), we obtain
the following fact.

Corollary. All the operators Sg o, o € Charg(R), are mutually simi-
lar.
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Putting O = A in the construction preceding Lemma 9.1, we also
see that each operator Sg q is unitarily equivalent to an operator M, .
on H?(R, ) for a matrix weight €2 such that |||, |27!|| are uniformly
bounded on R.

Definition. Characters a, 3 in Charg(R) are called equivalent (o ~ [3)
if there is a constant u in U(CF) such that B(¢) = ua(p)u* for all
peQG.

The following statement is in a sense analogous to [1, Theorem 6.

Lemma 9.4. Suppose that there is a point in C whose preimage on R
consists of exactly one point. Let o, 3 € Charg(R). The operators Sg,q
and Sgr g are unitarily equivalent if and only if o ~ f3.

Proor oF LEMMA 9.3. Let P : A — R be a universal covering
map for R; we assume A to be a simply connected domain in C. Put
D = P7}(R), then D is connected and simply connected and P|D is

the universal covering map for R. If ¢ : D — D is a conformal map
such that P(¢(0)) = do, then we can set T = P o . Let G be the

group of deck transformations of R. It is eagy to see that the map
gr— ¢ to(g|D) oy is an isomorphism of G onto Gj it gives rise to a

canonical isomorphism between Chary(R) and Charg(R).

Let v be the element of Chary (é) that corresponds to . There
exists a C***_valued y-automorphic function I' on A such that det T # 0
in A; this assertion in fact is a restatement of the fact that every two
analytic bundles over R are isomorphic. This fact follows from the

Grauert theorem [13]. The function A Ly, ¢ is a-automorphic on
D. Since the functions || o P71, [[[~" o P71|| are single-valued and
continuous on R, it follows that A, A=1 are in H°° (D, Ck*k).

Proor oF LEMMA 9.4. Let A, B be the matrix functions that corre-
spond to characters «, (3 as in the above proof of Lemma 9.3, so that
H2(R) = AH?(R), HE(R) = BHZ(R). Let @ : H3(R) — HE(R) be
the isometric isomorphism such that ®Sg o = Srg®. Define a func-
tion p in H?(D,Ck**) by ®(Ac) = p- Ac, ¢ € C*. The hypothesis
implies that there exists a subdomain WV in D such that each point in
(z o T)(W) has only one preimage on R. For any ¢ € W, if g € H2(R)
and g(¢) =0, then g = (z0 T — (2 0 T)(¢))h for a certain h € H2(R),
which implies (®g)(¢) = 0. It follows that ®(f)|W = p- f|W for all
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f € H2(R). One easily deduces that

e(f)=p-f, [feHIR).

Since p - A is f-automorphic, it follows that

(9.4) pop=p>p)pale)™, ped.

The map ® extends to a unitary equivalence of minimal normal exten-
sions [5]. We see from Lemma 9.1 that there exists a unitary operator ¥
on L?(OR,w, C*) such that U|HZ(R) = ® and UM, = Mz(.)\I/. Look-
ing at the action of ¥ on functions (z(-) — A)_l(f o T=1)y, f € H2(R)
and bearing in mind (9.3), we conclude that ¥ f = (po TI=H) f for all
f € L?*(0R,w,CF). Therefore p o T[~1 is unitary almost everywhere
on OR, that is, p is unitary almost everywhere on E. Since [ J e o(E)
has a full measure in 9D, it follows that p is unitary almost everywhere
on 0 D.

We can repeat the whole argument for the operator ®=1f = p
fs [ € Hj(R). Hence p,p~' € H*(D,C***), and p*p = I on ID.
Consider p(z 1) = p*~1(2), 2 € D. We conclude that p(z) = u, 2 € D
for a unitary constant u € U(CF). Then (9.4) gives 8(p) = ua(p) u*,
v eQq.

The converse “if” part of the statement is obvious.

_1'

Lemma 9.5. Suppose Q satisfies (9.1) and [ ||| dw < co. Then the
set of functions on R that are holomorphic on R is dense in H2(R; ).

ProoF. Let f € H?(R;Q) and € > 0; then f o T € H?(R; Q), where
Q = Qo T. We can assume that R is contained in the double R of R
[7]. We make use of the conditional expectation operator E [7]. It is
easy to see that F maps H2(D,) onto H2(R,Q) + N, where N is a
finite-dimensional defect space [7]. If fge H?(R;Q), then E(goT) = g.

Let 7 be a rational function on C, analytic on C \ D, with ||F — fo
Tllg2(p,q) < € Then E7 € H?(R,$) + N. Put r to be the component
of 7 in H%(R,Q). Then E7 is meromorphic on R and r is analytic on
R. We have ||EF — f||g2(r;0) < € and ||r — E¥|| = dist (EF, H*(R; Q) <
|EF — f|| < e. Hence ||r — f[la2(r,0) < Ce, where C is an absolute
constant.
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10. Characterization of H(X).

We assume here that the spectral measure of N has no point
masses. Then dv = |dz||y.. We will use the following notation. If
f is a function on ~. and g its lifting to 83+, that is, g((z,?)) = f(2),
then we will write g = f#, f = ¢° (note that z-projections of different
subarcs of 83+ cannot coincide). If g ii a function on A or 3+, we put

¢ = (g|83+)"; in the latter case g|0A; denotes the boundary limit
values of g. By (6.3), de(-) = £(-) |dz|, and

E#(0) = 5~ £(:(0)) (:(0) — 1) Q)

1

= 5 1(0)/*(2(0) = 4) Q).

(10.1)

for § € DA . Since |n| = 1 on dA,, the last expression allows us to con-
sider £ # as a function, defined and meromorphic on a neighbourhood
of 0A4 in A. We use the sets B, B#, Polg and the natural number 7
that were introduced in Section 7.

Proposition 10.1.
1) For each f € L?(e), the equality f = Q° f holds in L?(e).
2) If 6 € DA, \ Polg and m € M, m = Q(5) m, then E(0)m =0

implies m = 0.

Proor. By (10.1), £f = £Q"f, which gives 1). Statement 2) also is
obvious from (10.1).

Proposition 10.2. The embedding H}(X,) — L*(e), which is the
composition of the isomorphism o= : H2(Xy) — E*(u) with the
canonical embedding of E*(n) into L*(e), defined by (6.7), is given by
feHAX,)— f.

ProOF. Let f = ag, g € E*(u), and h be the image of g in L?(e),
that is, g = K (- — A) £ h. By (10.1) and the Plemelj “jump” formula,

gi — ge = Q"h. Therefore the boundary values of f on 83+ are given
by

(10.2) =09 =Q (g — ge) = Q"h.
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By Proposition 10.1, h = Qh = f* in L?(e).

From now on, let us fix points p; on nondegenerate components
A‘*’, and let w; be the harmonic measure for A;’ at p;. We define the

harmonic measure w for A by w|8A;’ = wj.

Lemma 10.3. For each 6y € 83+, there exists ¢ < 1 such that
Q)] < |2(8) — 2(dp)| =€ in a neighbourhood of dy.

PROOF. By (10.1), [|E#(8)]| ~ |2(8) — 2(dg)| ¢ for some rational c. But
[ €(2) |dz| = I, which implies that ¢ < 1. Now we remark that

Q(6) =n(6)"2(2(8) — A)E#(5),

which gives the statement of the Lemma.

Definition. Any branching point § of 34_ has a neighbourhood VW such
that W\ {0} projects j-to-one onto the z-plane for some j > 2. We put
the order of the branching point § to be equal to j — 1.

Let Br be the set of branching points of 3_4_. Choose 7 € N such
that the orders of these points do not exceed 7, and 7 > 7. Put

P =BruU (PolgnAy).

Fix an analytic function ¢ on a neighbourhood of clos ﬁ_i_, which has
simple zeros in points of P and no other zeros on clos A_|_

Let A be a nondegenerate component of A of multiplicity k;. Fix a
function XJ € HOI(A;_,E (Cki, M)) such that XJ(6) Cki = (5) for all
)€ ﬁj Since analytic vector bundles X |3;F are trivial by the Grauert
theorem [13], such an X ; exists. Moreover, we will assume )Z'j to be

analytic on a neighbourhood of clos 3; in Ej. The map f — )~(jf

is an isomorphism between analytic cross-sections of the trivial vector

bundle A;’ x CF and analytic cross-sections of the bundle X+|A;’.
Define the weight ; by

O = X7 E*X;|0AT .
We put
H2(AT, Q) ={feq "NT(AT;CY): (fl0A}) € L*(2(0A]),v,9)} .
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It follows from (10.1) that Qﬂ@ﬁj is real analytic, except for a finite
number of power-type singularities. The well-known formula

dw = —(2%)_12—9 ds,
n

which expresses the harmonic measure in terms of the Green function
[2], [10] implies that the same is true for the function dv#/dw. By
Proposition 10.1.2), Q; is invertible in points of 8Aj \ B#. Put

-4 Q
= |q| dw

Then there is a scalar function s, analytic in a neighbourhood of
clos A‘*’ such that SQJ and SQ ! are bounded on 8A+ This

1mphes that QJ meets the log- 1ntegrab1hty condition (9.1). Therefore
we can rewrite the above definition as

(10.3) H2(AT,Q;) = —TH2(&+ | |Tﬁ9-)
. T VRN q 7o q du) J )

Functions in this class may have at most poles of order 7 in points of
P.
Let {A;} be all nondegenerate components of A. We define X, Q
by
XIAf=X;,  QPAf =0,

and put

Hol(A ) @Hol (Af,Cv),  XHXA..Q @X H2(AT, Q).

We give X H2 (3+, Q) the Hilbert direct sum norm, defined by norms
of H?-spaces that figure in (10.3).

Theorem 10.4. Suppose that the spectral measure of N has no point
masses. Let IC be a compact subset of Ay such that P C int IC, z(9K) N
z(P)=@. Then

H(X1) = {f € XH2(A},Q):
(10.4) (Hx(z) def Z f(6) is bounded near z(P)},

z(0)==z
deEK
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and the norms in these two spaces coincide.

Some of the points of 271 (z(P)) may lie on OA,, but the values
of f in neighbourhoods of such points are not taken into account in the
above expression for (f)x. Therefore for each f € XH2(AL,Q), (f)k
is meromorphic on z(P) and has on it at most poles of order 7. So the
above condition on f reduces to a finite number of linear conditions.

Spaces H;(X_) and Fi (Y1) can be characterized in the same
way. N
Denote the right hand part of (10.4) by H7 (X ).

Proposition 10.5. The map f — f° defines isometries of H2(X,),
ﬁﬁ (X,) into L?(e) (the norm in ﬁﬁ (X4) is inherited from H2(A L, Q).

PROOF. The first map is an isometry by Proposition 10.2. The second
map is isometric because for f = Xv € XH2(A,,Q),

Hf”%g()g) = /(Ql’v,v> dv = /<€f, F)dv = HfH%z(e) '

PROOF OF THEOREM 10.4. By the above proposition, to prove that
HX(Xy) = H;(Xy), it suffice to check that a complete subset of

HZ(X ) is contained in Itji(XJr), and vice versa.

1) By (1.11), the functions

p(2)
z—1

(pt,m(z) = m,

with ¢ € C\ v and p(t)m = 0 are complete in E?(p). Therefore the
corresponding functions

1

F(8) = (aem)(8) = Q(9)(2(d) —t) "m

are complete in H2(X ). Take any such f. Fix a point z € z(P), and
let us prove that (f)x does not have pole in zy (the most difficult case
is when zg € 7.). We have

(105)  rm(x) = a ' J(2) = (D) + Nz ez),  z€C\7.

By Lemma 10.3, |(f)3+\lc(z)| < |z — 2zp|7¢ in a neighbourhood of zp
for some ¢ < 1. On the other hand, from (6.6) and the fact that
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(z — A)E € L*(|dz|) one can conclude that |¢pm(2)] = o(dist(z,7.)),
z — z9. By (10.5), (f)x(z) cannot have a pole in zj.

Let f = Xg, then g is meromorphic on a domain containing
clos Ay, Therefore f € ¢~ ® N T(A],C"). Since

gl 22 o2 4 w2y = (¢ = t)_lmHLZ(e) <0,

we get that f € fIﬁ(X+)

2) To prove the converse inclusion, take any f € H 3 (X4), which
has the form f = Xg for a function g € ¢~V @ Hol(&}",@kf), where
Kj are neighbourhoods of clos ﬁj Then, obviously,

/(Ql’gb,gl’> dv = /(S)Zbgb,)zbgb>du < 0.

By Lemma 9.5, such functions f = Xg are dense in fIE(X+)

The function a~! f is bounded and analytic on C\v. and takes value
0 at oo. Writing down its Cauchy representations in the components of
C\ 7. and summing them up, we arrive at the formula

IR Sy
0l = 5 KGES),
because f° is the jump of a='f on .. Since f*> € L?(e) and (a=1f)(-) =
() (@=tf)(-) on C\ 7. (see (6.1)), we conclude that a=1f € E?(u).
Thus f € a E*(u) = H3(X ).

11. Simple subnormal operators.

Definitions. A polynomial P(z,w) will be called admissible if it has a

form
P(z,w) = Z Z aij 2w’

i=0 j=0

where n > 0 1s an integer, any, = 1, and aj; = a;5, 0 < 4,7 < n, and P
has no irreducible factors of the type z — zo, w—wg. An algebraic curve
A in CP? is called admissible if it is given by an equation P(z,w) = 0
for some admissible P. We put rank A = n.
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If A = AP U---UAE” is the decomposition of A into the union
of irreducible curves, then rank A = ) k;rank A ;.

One sees from (0.1) that each discriminant curve of the type studied
above without degenerate components is admissible. Also, the product
of two admissible polynomials is admissible.

Lemma 11.1. For each admissible algebraic curve A, the sets z(ﬁ_*_)

-~

and w(A_) are bounded.

PROOF. Let w = wg(z) be all (possibly multivalued) analytic functions
that are defined in a neighbourhood of z = co by the implicit equation
P(z,w) = 0. Put K =}, ;|a;;|. Then (2,w) € A and |z > K imply
|lw| < K (by the triangle inequality). It follows that

wy,(2) = M\ + pr (271,

where A\, pr € C, ¢ > 0 are rational and ¢y are analytic in 0, with
¢r(0) =0 and ¢} (0) = 1. An easy calculus now shows that

—n((z,w))_l = Ccil_t; —0

-~

if w = wg(z) and z — oo. This shows that z(AL) is bounded. The

~

set w(A_) is also bounded, because w(A_) = z(AL).

Now let A be the discriminant surface of a subnormal S of finite
type such that the spectral measure of N has no point masses (but
we allow A to have degenerate components). As before, let ﬁj be the
nondegenerate components of ﬁ, pick points p; € 3;’ and denote by w;

the harmonic measures of ﬁ;’ with respect to p;. Put w = Zj wj. The

> on . is absolutely continuous with respect

corresponding measure w
to the arc length measure.

We can define an H*® (A )-calculus for N: we put
(11.1) FIN) = (fIAL)'(N),  feH®(AL).
Definition. Let N have no point masses. Then S is called simple

if it admits the H°°(3+)—calculus, that is, f(N)H C H for all f €
H>(Ay).
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Choose a function r, which is holomorphic on a neighbourhood of
clos A+ and has zeros exactly in branching points of A_|_ of orders that
are equal to orders of these points. Let IC be the subset of A+ from

Theorem 10.4.
Proposition 11.2.
i) For any f € Hol(AL), (r='f)x is bounded near z(P).

i) If f is meromorphic on Ay and (of)xc is bounded near z(P)
for all p € H®(Ay), then rf € Hol(Ay).

The proof of i) is elementary. When proving ii), one can use the

fact that if dy, ..., d; are points of A that project into the same point
zo and W, ..., W, are their small neighbo/l\lrhoods and 7 is analytic in
W, then for any s € N there is ¢ in H>°(A,) such that ¢ —¢|W, and
©|Wj, j > 1 have zeros of orders > s in §;. We omit the details.

Note that Proposition 11.2 is true for vector-valued functions f €
Hol(Ay, M) as well.
Proposition 11.3. The following are equivalent.

1) S is simple.

2) rQ is analytic on 3+.

3) HX(Xy) = r X H2(AL,QY), where
dv#

QO =|r|—Q.
Il

PROOF. 2) implies 1). If 2) holds, then for every f € H2(Xy), rf

is analytic on A (because functions Q) (=(1) - t)_lm with m € M,
t € C\ v, p(t)m = 0 are complete in H?(X,)). By Proposition 11.2.i)

and (10.4), H*(A,) acts by multiplication on H3(Xy). Therefore S
is simple.

1) implies 3). By Proposition 11.2.i) and (10.4),

rXHY (AL, Q) C HA(X,).
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If f € H2(X4), then (¢f)x has to be bounded near z(P) for all ¢ €
H*(A,). By Proposition 11.2.ii), f is in #~'Hol(A,), and so by
Theorem 10.4, f € r" 1 XH?(A4, ).

3) implies 2). Trivially, because Q(-)m € H}(X) for all m € M.

These arguments imply that for a simple subnormal S, the order
of pole of () at each branching point of A, equals to the order of this
branching point.

We remark that if 1)-3) hold, then the range norm on

r X H? (3_1_, |7 % Q)

coincides with the norm on H7(X,).
The following lemma extends a result by McCarthy and Yang [16,
Theorem 1.12].

Lemma 11.4. Let A be any irreducible admissible separated algebraic
curve, and §) a matriz CFXF _palued log-integrable weight. Define an
operator S on H*(A,Q) by Sf(6) = z(0) f(d) (to define the harmonic
measure, we choose any base point). Then S is a simple subnormal
operator of finite type and rank [S*, S| = krank A.

Proor. Lemma 11.1 implies that S is bounded. By Lemmas 9.1
and 9.2, it is subnormal, and its minimal normal extension is given by

Nf(6) =z(0) £(8), f € L2(0A 1, w, Q). The operator S* acts by

S*f = Pyx, )@, TeH(ALQ),
which gives
Ker[S*,8] = {f: ISf = I5"fII}
(11.2) = {feH}¥A,,Q): zf e H}(A,,Q)}
= {f € H*(A4,Q): w(-) f() € Hol(A,,C")}.

The sum of orders of all poles of w(-) on A equals rank A. By Lemma

11.1, w(-) has no poles on A_. Hence the last expression in (11.2) gives
CodimKer[S*, S] = krank A. By the remark in [25, Section 6], the
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nondegenerate part of the discriminant surface of S coincides with A.
As S trivially admits H* (A )-calculus, it is simple.

Xia’s exposition in [23] uses the notion of a “quadrature domain
on a Riemann surface”. He defines it as a domain D with a boundary,
consisting of rectifiable Jordan curves on a branched Riemann surface
equipped with a projection z(-) onto C such that w(-) = z(-) for some
function w(-), meromorphic on clos D. It is easy to see that (D, z()) is
a quadrature domain on a Riemann surface if and only if D = 3+ for
some irreducible admissible separated algebraic curve A in C2.

Theorem 11.5. A Hilbert space operator is simple subnormal of finite
type if and only if there exist an admissible separated algebraic curve

A = UA?, points p; € 3; and homomorphisms o; € Charkj(ﬁj)
such that S is unitarily equivalent to

(11.3) @SA;‘_7ajapj
J

(see the notation in Section 9). In this case, rank [S*, S] = rank A.

Proor. If S is simple subnormal, then by Proposition 11.3, S is uni-
tarily equivalent to the operator of multiplication by z(-) on the space

H2(A,,Q @Hz (AT, Q%)

where A is the discriminant curve of S and A; are its nondegenerate

components. Then UA? is an admissible separated algebraic curve. By
Lemma 9.1, S is unitarily equivalent to an operator of the form (11.3).
The converse follows from Lemma 11.4.

REMARK. The discriminant curve of a simple subnormal operator has
no degenerate components.

Indeed, let S be simple, and let A = UA? UJAJ“ be the the
discriminant curve of S, where the A; are nondegenerate components
of A and A] are degenerate. Put n = rank A. By Lemma 11.4,

Zk rank A; +ch—n—rank [S*, 5] = Zk rank A;
j
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The following statement answers the questions of simiarity and unitary
equivalence of simple subnormal operators.

Proposition 11.6.

1) Two simple subnormal operators are similar if and only if their
discriminant surfaces coincide and the multiplicities of their irreducible
components also agree.

2) Let S = ©;Sx+ L S" = ®;Sx+ ., be two simple sub-
J ) J

) 7pj
J J
normal operators with the same discriminant curve A = UA]-’ and the

same choice of base points p; € A;L Then S and S’ are unitarily
equivalent if and only if oj ~ a;- for all j.

PRrOOF. 1). The “if” part follows from Theorem 11.5 and Corollary to
Lemma 9.3. The converse follows from the Remark in [25, Section 6].
Let S, S’ be as in 2), and let S’ = L~™'SL, where L is a unitary
isomorphism. Then f(S') = L™Yf(S)L for all f € H®(A,), which
implies that L splits: L = &L;, where for each j, L; is a unitary iso-
morphism between H, 2J_ (3;’) and HEY;_ (3;’) Now the statement follows

from Lemma 9.4.

Let S be rationally cyclic and irreducible. It is easy to see that
then A has only one nondegenerate component Al, A projects home-
omorphically into C and k1 = 1. For this case, the above fact has been
proved by McCarthy and Yang ([16, Theorem 2.2]).

12. Internal Riemann surface models and general structure
theorems.

12.1. Elimination of point masses.

Since N is unitarily equivalent to the operator of multiplication
by z on L3(e), S has no point masses if and only if e(-) is absolutely
continuous with respect to the arc length measure. In general, as follows
from Theorem A, e(-) = e4(+) + e5(-), where e, is absolutely continuous
and ey is a finite sum of matrix point masses. Since N is unitarily
equivalent to M, on L?(e), we have the corresponding orthogonal sum
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decompositions
K=K,®K;, N =N, ® N; .
Put Hy = Pk, H and consider an operator L: H — Hy, given by
Lz = Pk, x, e H.

The following simple fact will be used in the sequel: if 7" is a subnor-
mal operator and T} its restriction to an invariant subspace of finite
codimension, then rank [T, T| < oo if and only if rank [T}, T1] < oc.

Lemma 12.1. The space Hy is closed and L is invertible. The opera-

tor Sy L rLSL-1 on Hy s pure subnormal without point masses, and

rank [S§, Sp] < oo.
Proor. We have
(Lz, L) = ((I — PuPk, Pg)z,z), r€H.

Let t be the maximal eigenvalue of the finite rank self-adjoint operator
Py Py Pg. Since H N Ky = 0, it follows that L is one-to-one, and
therefore ¢ < 1. Hence L is an isomorphism onto its range. Obviously,
LStz = LNz = NLx for ¢+ € H, which implies that N|K, is a normal
extension of Sy with absolutely continuous spectrum. So Sy has no
point masses.

At last, put H; = HNK, and Sy = S|H;. Since rank HS H; < 00,
we have rank Hy© H; < oo, and thus rank [ST, S1] < oo, rank [S§, So| <
00.

So for any operator S we have defined in a canonical way a sub-
normal operator Sy without point masses, which is similar to S.
12.2. Passage to a simple subnormal operator: a finite-dimen-

sional extension.

Here we assume S to be a subnormal operator of finite type without
point masses. Define a linear manifold

(12.1) H=span{f(N)H: fe H®(A,)},
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clearly, H D H.

Proposition 12.2.
l)ﬁ 1s a closed invariant subspace of N, and dim H © H is finite.

2) S d:QfN|IA-j is a simple subnormal operator.

PROOF. Let f € H®(A,), and let U, W be the operators from Section
6.2. By Theorem 10.4, the multiplication by f sends HE(XJF) into

XH2(A,,Q). This action agrees with the action of f(IN), that is, if
€ Hand u=aUx € H}(X,), then

(12.2) fou' =Wf(N)z
(see Proposition 10.2). Let
H(X4) =span{fu: feH®AL), ueHX(X})},

it follows from (12.1), (12.2) that

H = {W_lub cueMH(Xy)}-
Since H2(X;) C H(X,) C XH2(AL,Q), H(X,) is closed and

dim H(X4) © H(X4) < o0.
By Proposition 10.2, the map v — W~ is an isometry from

XH2(A,,Q)

into L2(e). This implies both assertions of 1). Since N is a normal
extension of S and f-H(X;) C H(Xy) for all f € H>*(A4), we obtain
2).

It is clear that H is the minimal closed subspace of K such that
H D H and N|H is simple subnormal.
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12.3. Main structure result.

Let S be a subnormal operator of finite type. Following the above
procedures, we can construct from it an operator Sy without point
masses and then a simple operator Sy. The operator Sy may be called
the canonical simple operator that corresponds to S.

Theorem 12.3. Let S be a subnormal operator of finite type. Let So
be the operator obtained from S by eliminating point masses, and Sy be
the canonical simple operator corresponding to So; suppose that Sy acts
on a space Hy. Then

1) There exist eigenvalues A\, 1 < k < r of ga‘ and corresponding

Jordan chains {@bg\k };"zko of generalized eigenvectors: (5()“ —Xk)@bgk =0,

(§6‘ — Xk) ﬁ\k = wg;;l, j=1,...,mg, such that Sy = §0|H0, where

Hoz{meﬁo:(x,gbik>:0, 1<k<r,0<j<mk}

(the A\ ’s are not necessarily distinct).

2) There is a finite set {u;} and operators l; : Hy — Cl, t; € N,
1 <j < m, with (S(’)‘ — ﬂj)l;f = 0 such that the operator S coincides

with Sy, acting on the renormed space (Ho, || - ||1), where
def =
(12.3) Izl = Nl + D el
7j=1

Conversely, let §0 be any simple subnormal operator of finite type and
let S be obtained from Sy by applying the above procedure, where {wij}

and {l;} are arbitrary finite families with the above properties. Then S
15 a pure subnormal of finite type.

The first part of this theorem is a corrected version of Xia’s The-
orem 3 in [23]. Xia’s formulation is not accurate, because it would
follow from it that every subnormal operator of finite type is simple
(see example 1) below).

If one combines this theorem with Theorem 11.5, he will obtain a
functional model representation of an arbitrary subnormal operator of
finite type. One can call it the internal Riemann surface representation.
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REMARK. If S is obtained from §0 in the way described in the theorem
and S’ is the canonical simple subnormal that corresponds to S, then
S’ may be different from So. For instance, if Sy is the standard shift
operator Syf(z) = zf(z) on H?, then each its restriction S = Sy to an
invariant subspace of finite codimension is simple itself, so that S’ = S
and S’ 75 S().

EXAMPLES. 1) Let S = M, ® M, on H = H*(D) & H?(D + 1/2), then
S is a simple subnormal operator with rank [S*, S| = 2. Put

(o =1(2) o). (Goen.

It is immediate that (S* — 3/4) ¢ = 0, so that

o=y ={(r0): £(3)=0(3)}

is an invariant subspace of S, and Sy = S|Hj is a subnormal of finite
type. The discriminant curve of S is

Az{zu;zl}U{(z—%)w:l}

which implies that A, as a Riemann surface over the z-plane, consists
of two sheaves that cover in a bijective way, respectively, D and D+1/2.
Since Hy is not H* (A, )-invariant, So is not simple. The canonical
simple subnormal operator that corresponds to Sy coincides with S.
One can say that Sy is obtained from S by “glueing” the points of A
over 3/4.

2) Suppose S is a simple subnormal operator, A has only one non-
degenerate component of multiplicity one, and 3+ is simply connected.
By Theorem 11.5, S is unitarily equivalent to the multiplication oper-
ator M, on H%(A,) (for any base point in A ), and let us identify S
with this model. Suppose 3-{— has a branching point d¢ of order 1. For
instance, one can take

SHO = (¢+3) £

on H2. Then A, can be identified with the unit disc, with the z-
projection given by z(¢{) = (¢ + 1/2)%, ¢ € D. Fix a branch of the
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function ¢ (8) = (z(6)—2z(do)) 1/2, then 1) is an analytic homeomorphism
of a neighbourhood of dp onto a neighbourhood of 0. Put

lu= (uow_l)/(O), we HX(A,).

Then (S — 2(8p)) = IMy2 = 0, so that we can put [Jul|? = ||ul|® + |lul?,
w e H2(AL) (see (12.3)). This example shows that the expression for
|l;2]|? in (12.3) may fail to have the form

Z (est u(ds), u(dr))

2(8s)=2(d¢)=n
which was given in [23,Theorem 3].

PROOF OF THEOREM 12.3. 2) We use the notation of Section 12.1.
Put ||z||; = ||L_1x||, x € Hy. By the spectral theorem, there exist
ti e N, G : K — Cl andujG(CsuchthatGNy:p,jyand
21 |G;y||? for all y in K. Put I; = G;L~'. Then

15(So — pj) = G5(S — p) L™ = Gj(N — pj) L~ =0,

|21} = [l + 1P, L™ al)? = l=l® + ) =), @€ Ho .
j=1

This proves the statement.

1) By Section 12.2, Sy is a restriction of So to its invariant subspace
Hj such that dlmHo © Hy is finite. Put R = HO © Hy, then S R C R.
So the statement follows from the linear algebra theorem on the Jordan
structure, applied to the operator Si|R.

Let S!, S? be two subnormals of finite type. Let S§, S2 be the
corresponding subnormals without point masses and S, S2 the corre-
sponding simple subnormals. Then S*, S? are unitarily equivalent if
and only if S§, S2 are unitarily equivalent, S§, S3 are obtained from
g&, 5'3 by passing to the same invariant subspace (in the sense of the
latter unitary equivalence), and S!, S? are obtained from S§, SZ by
the same finite rank perturbation of the norm. We remind the reader
that the question of unitary equivalence of simple subnormals has been
completely answered in Proposition 11.6.
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Notation (some of the entries appear several times).
M, C, A, A Section 0

F.e & G, EXn), B3(1—p), B (u*), Bo(1 — ), L¥(e),
L(z2), L'(z), K, K, KFEL?(e), KG*EL*(e), P, ©t.m, Pxtm,

;1,(2,’), <'7 '>d Section 1

A H, H H, H,, K, M, M,, L(z), L'(2), N, Py, Py,

U7 V7 v ,U(Z), P(Z) Section 2

w Section 3

J,H(z), U,V Section 4

Q7 T7 Z('), w()7 Y Yes 3]7 34—7 3—7 3/7 5*7 3deg7 3ndeg7

oc(A), n(z), u(z), £(2) Section 6.1

€, IC( - A)8L2(6)7 KgL2(e)7 j7 Slv w Section 6.2
—2 —2

a, b, B, HX(X,), HX(X_), Hon (Yy), How(Y2), Polg, |

X7 X:|:7 Y7 Y:i:v T Section 7

a1, Qo Section 8

Chary(R), H2(R), H*(R, ), 1(0R, w, ), Mob (D),

N(R)v N+(R)7 SR,om SR,cx,pv T7 U((Ck) Section 9

BI‘, 8#7 q, va Pv Hz(aj_vgj)v HE(A-HQ)? jz]? )}7

T, Wj, W, Qja 2 Section 10

rank A, r, Section 11

H07 H17 Kav st L Section 12
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