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Construction of non separable
dyadic compactly supported

orthonormal wavelet bases
for L°(R") of arbitrarily

high regularity

Antoine Ayache

Abstract. By means of simple computations, we construct new classes
of non separable QMF’s. Some of these QMF’s will lead to non separa-
ble dyadic compactly supported orthonormal wavelet bases for L?(R?)
of arbitrarily high regularity.

1. Introduction.

In the most general sense, wavelet bases consist of discrete families
of functions obtained by dilations and translations of well chosen fun-
damental functions [8], [9]. In this paper we will focus on compactly
supported dyadic orthonormal wavelet bases for L?(R?), they are of the
form

{274 (Vw1 — kg, 20ao — 1) ¢ G ki i €7, i =1,2,3).

I. Daubechies has constructed compactly supported wavelet bases for
L?(R) of arbitrarily high regularity, generalising the classic Haar basis
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38 A. AYACHE

[6]. The most commonly used method to construct compactly sup-
ported wavelet bases for L?(R?) of arbitrarily high regularity, is the
tensor product method [9]. It leads to the scaling function p(z1, z2) =
v1(x1) p2(z2) and to the fundamental wavelets

wa($1,$2) = 801(371) ¢2($2) )
Vy(w1, 2) = P1(71) P2(x2) 5

and

Ye(w1,2) = P1(21) Pa(w2),

(where @y (respectively ¢s) is a scaling function for L?(R) and v (re-
spectively 1)5) is the corresponding fundamental wavelet). The scaling
functons and the wavelets that result from the tensor product method
are called separable. In this paper, we will also call separable the scaling
functions and the wavelets that are the images of separable scaling func-
tions and wavelets by an isometry of L?(R?) of the type f(z) — f(Bx)
(B € SL(2,7)).

Let us now give an outline of the present article.

In the second section, by means of simple computations we con-
struct new classes of bidimensional non separable QMF’s (Theorems
2.2 and 2.3).

In the third section, we show that some of these QMF’s gener-
ate non separable, compactly supported, orthonormal wavelet bases for
L?(R?) of arbitrarily high regularity. These wavelets will be constructed
by two methods:

The first method consists in perturbing the separable 1. Daubechies
QME’s (Theorem 3.4). Thus it leads to wavelets that are close to the
I. Daubechies separable wavelets with the same number of vanishing
moments (for the L norm).

The second method permits to construct wavelets that are not near
to the I. Daubechies separable wavelets (Theorem 3.5).

All the results of the second section and some of the results of the
third section may be adapted to multidimensional compactly supported
orthonormal wavelets bases for L?(R% x R%2) of dilation matrix

Ay 0

0 Ay )’
where for ¢ = 1,2, A; is a matrix d; X d; such that all the eigenvalues A
of A; satisfy [A| > 1 and A; Z% C Z% [2].
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2. New classes of non separable QMF’s.

A d-dimensional QMF is a trigonometric polynomial on R?, Mq(€)
such that

My(0) =1,
(2.1) Z |Mo(¢ +ms)>=1.
s€{0,1}4

The conjugate filters are 2¢ — 1 trigonometric polynomials on R?,

Ml(é)v SRR MZd—l(é.)

such that the matrix

U(f) = (Mk(f + TFS))se{o,l}d,ke{o,...,zd—l} )

is unitary for all £ € R?.

When d = 1, we will take My (£) = —e~% My(€ + 7).

If p(x) is a compactly supported scaling function with d vari-
ables, there exists a unique d-dimensional QMF My(&) such that the
Fourier transform of ¢(x) satisfies $(£) = My(271¢) ¢(271€). Thus,
we have a one-to-one correspondance between the multiresolution anal-
yses for L2(R?) with a compactly supported scaling function and the
d-dimensional QMF’s that satisfy the A. Cohen’s criterion [3], [4].

A. Cohen’s criterion is satisfied when |[My(£)| > 0, for all & €
[—7/2,7/2]%

One can notice that, in general, it is not clear that one may always
associate compactly supported wavelets to a multidimensional multires-
olution analysis, even if its scaling function is compactly supported [7].
In this paper this difficulty will be solved by ad hoc constructions (The-
orems 2.2 and 2.3).

The bidimensional QMF that corresponds to a separable wavelet
basis is also said separable. It can be written

(2.2) M(&1,&2) = mi(a11 &1 + a1z &) ma(a &1 + a2 éa),

where (a;;) belongs to SL(2,Z) and my(x), ma(x) are two monodimen-
sional QMEF’s.

Let us now study a class of bidimensional QMF’s , which is rather
easy to construct. This class seems to be a natural extension of the
class of the separable QMF’s for (a;;) = Io.



40 A. AvAcHE
2.1. The class of the semi separable QMF’s.
Theorem 2.1. Let a(x), b(x), m(z) be three monodimensional QME ’s

and a(x),b(x), m(z) their conjugate filters. If c(x) is a trigonometric
polynomial, we set

celw) = 3 (e(e) + el + )
and .
Co(z) = 5 (c(z) —clz+m)).
Then
(2.3) My (&1, 62) = a(€1) me(&2) + b(€1) mo(&2),

15 a bidimensional QMF called a semi separable QMF and its conjugate
filters are

Mi(&1,82) = a(&1) {m}e(€2) + b(€1) {M}o(§2),
(2.4) My (&1, &2) = a(&r) me(&2) + B(fl) mo(&2) ,
M3(&1, &) = a(é) {m}e(&2) + (&) {m}o(&2).

If a # b and if m(x) has at least three non vanishing coefficients, then
My(&1,&2) is non separable.

PROOF. An obvious calculus shows that My(&1,&2) is a QMF and that
Mi(&1,€2), M2(€1,&2), M3(&1,§2) are its conjugate filters.

It is a bit technical to prove that My(&1,&2) is non separable. Sup-
pose that My(§1,&2) = mi(aii &1 + a12 &) ma(ag &1 + a2 €2) where
(ai;j) belongs to SL(2,Z) and mi(x), ma(z) are two monodimensional
QMFs.

Taking £; = 0, we get

(*) m(&2) = my(ai2&2) ma(az &2) -

If a12 = a2 + 1 (mod 2), we will suppose that a2 is even and agy is
odd, the other case being similiar, then

Ima(a12 &) = [m(&) ] + Im(& + )P =1,
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thus we have a2 = 0.
If a12 = a2 (mod 2), since (a;;) € SL(2,Z) then a2 and ago are
odd and

Im1 (a2 52)|2 |ma(asg2 52)|2 + [mi (a2 &2 + 7F)|2 |ma(az2 &2 + 7F)|2
= |m(&)|” + [m(é + m)> =1,

but this cannot be true since

(Im1(a12 &)1 +|ma(ar2 E2+m)]%) (2 (a2 &) >+ |ma(a &+m)]7) = 1.

Therefore () implies that a3 a9 = 0.
We will only study the case

<€1 0)7 Ei:ilv
21 €2

a1 €1
€9 0

is similar. We have m(z) = ma(ez ), thus

the case

My (&1,&2) = ma(er &) mlezaz &1+ &2) .

Taking &2 = 0 and then & = 7 we get

(a(&1) +b(&1)) = mi(er &) m(e2 a1 &),

NN

(a(&1) — b(&1)) =ma(er1 &) mleg a1 & + ),

(NN

hence

a(&1) = 2ma(e1&1) melezazi &),
b(&1) = 2mi(e1&1) mo(e2 a1 &) -

Since we must have

la(€)* + la(& +m)? =1,

b0 * + [b(é1 + )P =1,
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it follows that

4 |me(a21 fl)|2 =1,

4 |m0(a21 51)|2 =1.

If as; # 0 the trigonometric polynomials m.(az21 £1) and m,(ag1 &1) are
inversible and thus of the type

L jikes

me(azl 51) = 2

and

1 .
mo(azl 51) = 5 €”§1 .

If as1 = 0 we have a = b.

When the QMF’s a(x) and m(x) satisfy A. Cohen’s criterion and
when the norm ||a — b|| is small enough, the corresponding semi sep-
arable QMF satisfies obviously this criterion. However, the constraint
on ||a — b||o does not seem necessary. Indeed, if for example

(14 e7%)

(NN

a(x) = m(x) =

and

bz) = %(1 4 emisT).
We have ||a — bl|oc = 1 but the corresponding semi separable QMF
satisfies A. Cohen’s criterion [2]. This example also shows that it is
even not necessary that both a(z) and b(x) satisfy A. Cohen’s for the
associated semi separable QMF satisfies it. In [2] we have however
established that m(x) must satisfy this criterion.

2.2. Other classes of non separable QMF’s.

It is clear that many QMF’s are not semi separable, even in the
weak sense. This means that they are not of the form

a(c11 &1 +c12&2) me(ca1 §1+c22&2) +b(c11 §1+c12€2) mo(ca1 &1+ a2 &2)
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where a(x), b(x), m(z) are three monodimensional QMF’s and (c¢;;) is
a matrix of SL(2,Z).

Let n €]0,1[ and oy (z), B,(x) the two trigonometric polynomials
in one variable defined by

(2.5) an(z) =1-nq(z),

where ¢(z) is a trigonometric polynomial vanishing in zero, with values
in [0, 1] and such that ¢ # 0, and by

(2.6) vy ()] + 18, (2) P = 1.

The existence of 3, (x) is given by the Fejer-Riesz Lemma.

Theorem 2.2. Let Sy(&1,&2) = a(&1) b(&2) be a separable QMF and let
S1(61,82), S2(§1,&2),  S3(61,&2) _be its conjugate filters (a(x) =

—e"@a(x+7) and b(z) = —e~" b(x + m) will be the conjugate filters
of a(z) and b(x)). If M(&1,&2) and p(&1,&2) are two trigonometric poly-
nomials m-periodic in & and in & and such that

{ A0,0) =1,
A1, &) + (&, &)17 = 1.
Then

(27) Ro(éla 52) = )‘(517 52) 30(517 52) + /1’(517 52) Sl(élv 52) 3

s a QMF and its conjugate filters are

R1(&1,&2) = (&1, &2) So(&1, &) — A&, &2) S1(&r, &2),
(2.8) Ry(&1,82) = A (&1, &) S2(81,&2) + (&1, &2) S3(&1, &2) ,

R3(&1,&2) = (€1, &2) Sa(&1,€2) — A(€1,€2) S3(€1,62) -

Moreover

) If A&, &2) = ay(2&1) and p(1,&2) = 5y(2&1) (as defined by
(2.5) and (2.6)), the QMF Ry(&1,&2) is non separable when S1(&1,£&2)
is not the filter a(&1) b(&2) and Ro(&1,&2) has zeros of order greater or
equal than 2 in (7,0), (0,7) and (7, 7).

ii) If A(&1,&2) = (2 (&1 + &2)) and p(&1,&2) = By(2 (&1 + &2)) or
if AM(€1,82) = ay(2(§1 — &2)) and p(€1,62) = By(2 (&1 — &2)), then the
QMF Ry(&1,£&2) is non separable.
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iil) If S1(€1,€2) = a(&1) b(&2), A1, &2) = ay(28&1) and p(é1,&2) =
By (2&1) 782 then the QMF Ry(&1,&2) is non separable.

PROOF. One sees immediately that Ro(£1,&2) is a QMF and that

R1(&1,62), R2(&1,62), R3(&1,62) are its conjugate filters.
Let us show i).

We will begin by the case where Sy (£1,&2) = a(€1) b(€2). Suppose
that

Ro(€1,82) = mi(c11 &1 + c1282) ma(ca1 &1 + c22€2)
where (c¢;5) belongs to SL(2,Z) and my(z), ma(z) are two monodimen-

sional QMF’s. Taking successively ({1,&2) = (z,0), (0,z) and (z, )
where x is an arbitrary real one obtains

(a) a(2z)a(z) = my(c11 z) ma(coy ),
(b) b(x) = my(c12 ) ma(caa ),
(c) B(2z)a(r) = mi(cii &+ cia ™) ma(ca1 & + caa 7).

Since the product of two QMF’s in the same variables is never a QMF
(see the proof of the Theorem 2.1), it results from (b) that c;2 co2 = 0.

This implies that
N €1 0
(c”) N <021 62)

(cij) = <C€121 A )

with e; = 1. We will suppose that we are in the first case, the second
case being similar.

We notice that whatever the value of the integer ce; may be, one
cannot have for all z, |a(22)|?> = |ma(c21z)|?2. Indeed, if ca;1 = 0
then 8 = 0 and else a(27/c21) = 0. In both cases the hypotheses are
contradicted.

It follows from (a) and (c) that

or

la(2)]? = |a(2z)? |a(z)]* + |82 2)|? |a(z)|?
= |my(e12)]? [ma(co1 2)|* + |ma(e1 z)|? Ima(cor z + m)]?

= |m1(€13E)|2 )
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Thus by using (a) we obtain the contradiction |a(2x)|? = |m2(c21 7)|?
for all z € R. .
Let us study now the case where S1(&1,&2) = a(&1) b(€2). As pre-

viously, we will suppose that

Ro(&1,&2) = ma(ci1 & + c1262) ma(car &1+ c2262)

Taking successively (£1,£2) = (2,0), (0,2) and (z,7) where z is an
arbitrary real, one obtains

(a) a(2z)a(z) = my(c11 z) ma(coy ),
(b) b(x) = my(c12 ) ma(caa ),
(c) B(2x)a(x) = mi(c11x + cra ™) ma(car © + coo ) .

It follows from (b), as previously, that c12 coo = 0 and we can suppose
that
N €1 0
(c”) B <021 62)
with ¢; = £1. (a) and (c) imply then that

a2z)a(x) + B(2z)a(x) = 2m(e1 x) mae(co1 x) ,

a2z)a(xr) — B(2z)a(z) = 2my(e1 ) ma,o(ca1 ),

where )

mz,e(Czl T) = 2 (mao(co1 ) + mao(coy x + 7))
and .

ma,o(C21 ) = 3 (ma(co1 @) — ma(corz + 7)) .
As

(22) a(z) + B(2x) a(x)® + |a(22) a(z + ) + f2x) a(z + )P =1,
2(22) a(z) — B(2x) a(2)® + |a(22) a(z + ) — f2x) a(z + ) =1,
we have

4lmye(car)]? =1,

4 |m2,0(021 x)|2 =1.
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If co; # 0, it follows from the two last equalities that the QMF mo(x)
has only two non vanishing coefficients. This is impossible since
Ry(&1,&2) has zeros of order greater or equal than 2 in (m,0), (0, )
and (7, 7). If co; = 0, it follows from (c) that for all z, 8(2x) a(x) = 0.
This is impossible.

Let us show ii).

As the variables §; and & play the same role we will only study the
case where S1(&1,&2) = e(£1) b(€2) with e = @ or e = a. As previously,
we will suppose that

Ro(&1,&2) = mi(c11 & + ci2&2) ma(ca1 &1 + c22£2) .

Taking successively ({1,&2) = (2,0), (0,2) and (x,7) one obtains

(a) a(2z) a(x) = my(c11 @) ma(ca1 @),

(b) a(2x)b(z) = my(c12 ) ma(co2 ), when e = a,

(b) al22) b(x) + B(27) b(w) = ma (c1a ) ma(canz), whene=a,
(©) B(22) e(x) = ma(crr @ + c12 ) ma(cay @ + can ).

When e = a, it follows from (a) and (b) that ¢11, ¢12, c21 and co are all
odd. Indeed, suppose for example that c11 is even, c3; would necessarily
be odd and then (a) would imply that

a22)* = |a(22)[*|a@)]* + |(22)[* |a(z + )|

= |mi(c112)|? Ima(cor @) [* + |my(c11 @) [mag(cor z + )2
= [ma(cnz)[*.

But we never have |a(2x)|?> = |my(ciy2)|? for all z. Thus it results
from (c) that

B2)* = 1p2x) | [e()|* + B2 2)|* |e(x + )|

= [mi(crr a+m)|* [ma(car x+m) [ + [ma(crr 2)[* [ma(car )2,
and it results from (a) that
|O[(2.T)|2 = |m1(011 $)|2 |m2(621 .T)|2 + |m1(011$+7r)|2 |m2(621$+ﬂ')|2 .

This leads to the contradiction |«|?> = |32
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When e = a, since a(2z)b(x) + B(2z)b(x) is a QMF, it follows
from (b’) that ¢13 caa = 0. So, as previously we can suppose that

(cij) = < 06211 €02>

with e; = £1. Moreover (a) implies that co; is odd.
It results then from (a) and (c) that

la(@)|* = |a(22)|* |a(@)|* + [B(22) ] |a(2)
= [ma1(e1 @) [ma(ca1 @) + [ma(e1 ) |* ma (a1 & + )|
= |my(er 2)|?.
Thus (a) implies that |a(2x)|? = |ma(c21 7)|? for all z, which is impos-

sible.
We can prove by the same method that

Ro(&1,€2) = ay(2 (61 — €2)) So(&1,&2) + By(2 (61 — €2)) S1(61,&2)
where S1(&1,&2) is any conjugate filter of Sy(&1,&2), is non separable.

Let us show iii).
As previously, we will suppose that

(%) Ro(€1,&2) = ma(c11 &1 + c12€2) ma(car 1 + ca2a) .
Taking (£1,&2) = (z,7) one obtains
Ro(l',ﬂ') = m1(011$+ 01271') m2(621$+ 02271') = 0,

and it follows that ci1 co; = 0. Thus we may suppose that

o 0 €1
(c”) N (52 022> ’

where ¢; = %1, the other case being similar. Then taking successively
in (%), (£1,&2) = (x,0) and (0, ) one obtains

a2z)a(z) + F2z)a(r) = ma(e2x),

b(x) = my(e1 x) ma(coe x) .
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The last equality implies that ¢y = 0 and b(x) = my(ey z). Thus we
have

Ro(&1,&2) = mi(e1&2) ma(e282) = b(&2) (a(281) a(ér) + B(2861) a(ér)) ,

and it follows that

b(&2) ((2&1) a(&r) + B(2&1) a(&r) e )
= b(&2) (@(2&1) a(ér) + B(261) a(ér))

which leads to the contradiction: for all &y, e%2¢2 = 1,

3. Some of the previous QMF’s lead to wavelet bases for
L?(R?) of arbitrarily high regularity.

In this section we give two methods for constructing non separable
orthonormal compactly supported wavelet bases for L?(R?) of arbitrar-
ily high regularity.

In all this section the norm on R2will be |(£1, &2)| = sup {[€1], |€2]}

3.1. The method by perturbing the I. Daubechies QMF’s.

Proposition 3.1. For all L > 1, let Dy (&1,&2) = dr(&1) di(&2) be the
separable I. Daubechies QMF such that

dp(z)]? = CL/ sin?l=1 ¢ dt .
x

For alle > 0, one can construct a non separable QMF Dy, .(&1,&2) that
satisfies

) [[Dre = Drllo <,
ii) Dr,.(&1,&2) has zeros of order L on (m,0), (0,7) and (7, ),
iii) the size of Dr, ¢(&1,€2) is independent on .

Moreover Dy, ¢(§1,&2) may be chosen of the type (2.3) or of the
type (2.7). w1 and ¢, will be the scaling functions that correspond to

Dy (&1,&2) and Dy, (&1, &2).
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PROOF. See [2, Chapter 3] and see also [1].

It is clear that for ¢ > 0 small enough Dy, (&1, &2) will satisty the
A. Cohen’s criterion.

Proposition 3.1 remains valid, if we replace the QMF Dy (&1,&2)
by any other separable QMF (1) b(¢2) that has zeros of order L on
(r,0), (0, ) and (x, 7).

We can now state the main result of this subsection.

Theorem 3.2. The QMF’s Dy .(&1,&2) generate for € > 0 small
enough non separable orthonormal compactly supported wavelet bases
for L3(R?) of arbitrarily high reqularity. We will say that these wavelets
are obtained by perturbing the I. Daubechies QMF ’s.

PROOF. The critical Sobolev exponent of f € L?(R?) is by definition

a(f)=sw{as [ IFOF 0 +16?de < oo}

R. Q. Jia has shown in [8] that if M (&) is a QMF that satisfies A.
Cohen’s criterion and that has zeros of order L in (m,0), (0,7) and
(m, ), then the critical Sobolev exponent of ¢ the corresponding scaling
function is

() afg) = ~log (p( 1))

T2L

where p(Thr/721) is the spectral radius of the restriction of the transfer
operator

to the vector space Tor of the trigonometric polynomials that have a
zero of order greater or equal than 2L in (0, 0).

Let o(¢r) and a(pr o) the critical Sobolev exponent of the scaling
functions ¢ and ¢, . (as defined in the Proposition 3.1). Since the
regularity of the I. Daubechies scaling function ¢y, can arbitrarily high
when L is big enough, we have limy_, o, a(pr) = +o0o. At last, it
follows from (%) and from the continuity of the spectral radius, that
lim. o @(¢r ) = a(pr), which implies the Theorem 3.2.
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We have solved the open theorical problem of establishing the
existence of non separable orthonormal compactly supported wavelet
bases for L%(R?) of arbitarily high regularity. However the wavelets we
have obtained are probabely very similar to the I. Daubechies separable
wavelets since lim._,¢ ¢, - = ¢ (for the L> norm) (see [2, Chapter 4]).

3.2. Another method of construction.

The aim of this subsection is to construct non separable orthonor-
mal compactly supported wavelets of arbitrarily high regularity that
are not near to the I. Daubechies bidimensional wavelets with the same
number of vanishing moments (for the L* norm).

Let us first give a condition ensuring the decrease at infinite of the
Fourier transform of a scaling function.

Theorem 3.3. Given two reals 6 €]0,1[ and C > (27)7L, there ewists
an exponent o = a(6,C) > 0 having the following property. If M (&1, £&2)
1s a QMF that satisfies for some integer N > 1

a) |M (&1, 62)] < 0N when & € [2m/3, 47 /3] or & € [27/3,4m /3],

b) |M(§17§2)| S CN|(£1 — 81 7[-752 — 52 7T)|N fO’f’ all 51; 52 fO’f’ all
(81,82) € {0,1}2 and (s1,s2) # (0,0),

c) |[M(&1,&2)| = |M(—&1, —&2)| for all &, &.

Then ¢ the scaling function that corresponds to M (&1,&2), satisfies
p(61,82) = O (|(&1,&2)|7N).

To prove the Theorem 3.3 we need the following lemma.

Lemma 3.4. Given two reals § €]0,1] and C > 1, there exists an
exponent o = a(6,C) > 0 having the following property. If f(s,t) is
a continuous function from R? to [0,1], 1-periodic in s and t, which
satisfies

i) 0 < f(s,t) <6< 1, when s €[1/3,2/3] ort € [1/3,2/3],

i) f(s,t) < C|(s —v1/2,t —v2/2)|, for all s,t, for all (v1,1v2) €
{0,1}2 and (v1,v2) # (0,0),

iii) f(s,t) = f(—s,—t), for all s,t.
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Then if j > 1 and if (s,t) satisfies 1/4 < |(s,t)| < 1/2 we have the
inequality

fs,t) f(28,2)---f(295,271) <27

Proor. First we set h(s,t) = f(s,t) f(2s,2t). The function f(s,t)
satisfies the property ii) and the inequality i) when s € [1/6,5/6] or
when ¢ € [1/6,5/6]. Moreover this function being with values in [0, 1]

we have
Hh( 5,27 ) (Hf 2k 5,2k ¢ )2

thus it is sufficient to show that for some 5= (3(5,C) > 0 for all j > 1

Hh 32k 2087

Consider now (s, t) satisfying |(s,t)| = |s| € [1/4,1/2]. Because of the
periodicity of f(s,t) and because of iii), one can suppose that (s,t) €
[1/4,1/2] x [0, 1]. It follows that

+22 t="+2 4
8 ’ 24 ’

1
4
where «;, 3; € {0,1}.

We then define ¢4, . . ., ¢, the transition indices of the finite vectorial
sequence (ao,Bo), .-, (@j+1,Bj+1) where (ag, By) = (0,0) as follows: r
will be the number of the indices ¢ that satisfy, 0 < ¢ < 7 — 1 and

(aq-}—la/Bq-l—l) 7& (aq+27ﬂq+2)7 ¢1=0 and for all l7 2<I< Ty

g =min{n: g¢_1 <n<j—1and (ant1, Bnt1) # (Ong2, Bnt2)}-
Form =1,..., r weset ly, = @m+1— G@m (¢r+1 = j by convention), thus
we have " _ 1, = j.

We have introduced the transition indices in order to get the in-
equalities

(M) h(29m 5,2m 1) < 5,

(M) h(2%m 5,29m t) < C'27tm
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We have 29»s € [1/6,5/6] or 29"t € [1/6,5/6] therefore i) implies
(M7). To prove (Ms) we will suppose that a4, +1 # g, +2, we then
have [20ms — 1/2] < 2=Un+D) Qo if B, 1 = B, 42 it follows that
12amt — B, 14| < 27Em+D) and else that [29m¢ —1/2] < 27 (m+Y) in the
both cases ii) implies (Ma).

At last, for all j > 1 we have

h(s,t)h(2s,2t)---h(27715 277 1) < h(2% 5,29 t) - - - h(2% 5,297 1) .

So, if A and f are two reals such that 24 > C, 274 > § and 240-6) >
C (for example A = log, C + log,(1/6) and § = logy(1/0)/A) then we
will have

(%) h(29m 5,29 t) < 27Flm

indeed, when [,,, < A (M;) implies that h(29ms,29mt) < 274 < 2=Flm
and when [,,, > A (M>) implies that h(2%ms,29mt) < C27lm < 27Plm,
Since Y I, = j it results from () that

h(29 5,290 t) .- - (27 5,29 1) < =087

ProOOF (OF THE THEOREM 3.3). If M(&1,&2) is a QMF satisfying
(a), (b) and (c) the function f(s,t) = |M (27 s,2nt)|Y/"V satisfies the
conditions i), ii) and iii) of the Lemma 3.4. Let (&1, &2) € R? such that
|(€1,&2)| > 27 and let j > 1 the integer such that 277 < [(&1,&)] <
2/+1 . Thus, if ,

(s,t) = 9i+2r (€1,62)

we have 1/4 < |(s,t)| < 1/2 and it results from the Lemma 3.4 that

|[oa (1,6 < (f(s.8) f(25,28) - f(27 5,27 1)

< 2—aNj

< C(Oé, N) |(£17 52)|_QN .

From now on, our aim will be to construct a sequence of non sep-
arable QMF’s {Af(&1,&2)}>1 such that for all L big enough,

i) AL (&1, &2) satisfies the conditions (a), (b) and (c) of the Theorem
3.3,
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ii) Ap(&1,&2) satisfies A. Cohen’s criterion,

iii) Ap(&1,&2) is not near to the I. Daubechies QMF Dy (&1, &2) as
defined in the Proposition 3.1. More precisely we will have

1
hmmeAL - DLHoo Z — .
L—oo 4

Let Ar ,(&1,&2) be a QMEFE of the form

(3.1) Ap,(&1,&) = dr(&) (ay(261) dr (&) + By (2&1) dr (&) e7H52)

where,
e €]0,1[,
e d;(x) is the monodimensional I. Daubechies QMF such that

dp(z)]? = CL/ sin?l=1 ¢ dt
x

and dr(z) = —e~ ™ dp(z + 7) is its conjugate filter,

e ay(xz) =1—mng(x) and F,(x) are the trigonometric polynomials
as defined by (2.5) and (2.6).

Let us first give some useful properties of the QMF df,(z).

Proposition 3.5. The monodimensional I. Daubechies QMF dy, (x)
satisfies:

i) for all real o €10, w/4[, one can find a real § €)0,1[ such that
for all L big enough, for all v € [1/2+ «,37/2 — ], |dr(x)| < 6,

ii) there exists a real C > (2w) ™1 such that for allz € R, |dr(z)| <
CL |aj o 7T|L:
iii) for allz €] —7n/2,7/2[,

lim |dg(z)| =1 and lim |dp(z)|=0.
L—oo L—oo

PROOF. The function |dy(x)| being even one can suppose that = €
[0, 7]. One can notice that ¢z, = O (v/L). For all a > 0, we have for
all z € [1/2 + a, 7], |dp(2)]? < |7/2 — | cp | sin?2 7t (/2 + «)| which
implies 1).
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We have obviously ii) since

i (@) < CL/ (= 8)?21dt < O |& — m 2L

T

iii) is a consequence of i) and of |dg (z)|* + |dr(z + 7)|* = 1.

The following proposition will permit us to make an appropriate
choice of the real n that occurs in (3.1).

Proposition 3.6. Ifny = 1/4 then for all L > 1 the QMF Ap, . (&1,&2),
as defined by (3.1) satisfies A. Cohen’s criterion.

PRrROOF. Let us show that for all (£1,&) € [—7/2,7/2]* and for all
L > 1 we have |AL n,(&1,82)] > 0. As |dp(&2)| > 0 it is sufficient to
show that

o (260) di(€1) + Byo (261) di(€1) €| > 0.

We have
oo (261) di (&) + B (260) di(§1) €77
2
> V2 (Ja, 260)| - B 260).

At last, since |ay, (2€1)| > 3/4 and |au, (261)% + |8y, (2&1)1F = 1, it
follows that |amy, (2&1)| > |Bn, (261)]-

The following lemma will permit us to make an appropriate choice
of the trigonometric polynomial g(x) that occurs in (3.1).

Lemma 3.7. For all reals 6 and « satisfying 6 €10,1[ and a €10, 7/6[
there exists {qr(z)}>1 a sequence of trigonometric polynomials in one
variable with values in [0,1] and with real coefficients, having the fol-
lowing properties:

D) [lgg llo =1,
i) q, (22) < 6% for all x € [0, 7] — [r/3, 27 /3],
iii) g, (2x) converges uniformly to 1 on [1/3 + «,27/3 — o,

iv) there exists a real C > 1 such that q, (2z) < C?F |x|*" for all
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ProOOF. Consider T an even, m-periodic, C'* function with values on
[0, 1] such that

a) T'(0) = 0 and for all z € [0,7/3], 0 < T"(x) < B (where B7/3 <
Vo),

b) for all z € [7/3 + o, w/2], T'(z) = 1,
c) for all x € [7/2, 7], T'(z) = T(7m — x).

Let Ky (z) be the Fejer kernel, Ky (z) is the trigonometric poly-
nomial

sin? <(N +1) x)

1 1

Kn(o) = 5o | o ete| = 2
2 (N + 1) — 2 (N + 1) sin2 (§>
For every function f € L?[0, 2],
Kyxf(x)= | Kn(z—-y)fly)dy

—T

will be the convolution product of Ky and f. Let Qn(z) = Ky +T(x) —

Ky % T(0) and

_ Qn
QN lloo

Since T is even and m-periodic the trigonometric polynomial Ry is with
real coefficients and m-periodic.

The sequences { Ry } and { Ry } converge uniformly to the functions
T and T'. Thus it follows from a) that:

e There exists C' > 1 such that for all z, for all N, |Ry(z)| < C'|z].

e For all N > Ny and for all z € [0, 7] —[r/3,27/3], |[Rn(z)| < V6.
At last, one can extract a sequence {Ry, }1>1 satisfying Ny > Ny
and ||T — Ry, |loo < e P, We will take ¢, (22) = |Ry, (z)[*L.

Ry (x) ().

Definition 3.8. Ay (&1,&2) will be a QMF of the type (3.1) such that
n=1/4 and q(x) = q, (x), where q, (x) is the trigonometric polynomial
we have constructed in the Lemma 3.7.

We can now state the main result of this subsection.
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Theorem 3.9. The QMF’s {AL(&1,&2)}L>1 generate non separable
orthonormal compactly supported wavelet bases for L?(R?) of arbitrarily
high reqularity. Moreover these wavelets are not near to the separable 1.

Daubechies wavelets with the same number of vanishing moments since
liminfL_mo ||AL — DLHoo Z 1/4

Proor. It follows from the Proposition 3.5, the Lemma 3.7 and the
inequality

q; (2&1)
2

[AL (1, &2)| < |dr (&) dr(&2)] + L (€0)]|dz (&)1,

that, for L big enough the QMF Ap (&, &2) satisfies the conditions a)
and b) of the Theorem 3.3. This QMF also satisfies the condition ¢) of
the same theorem since its coefficients are reals.

Let us show that liminfy_, o [|AL — Dr||eo > 1/4.

We have

iqL(z &) L (€0)]|dr(&2)| — |Brya(2&0)] L (&1)] |dr (&)
< |AL(&1,82) — Dr(€1,62)]

< i 4, (2€0) [z () dr(&2)] + 1Br/a(2€0)] L ()] |dr (€2)] -

It follows from the Propositions 3.5.iii) and from the Lemma 3.7.iii)
that for all (§1,&2) € [7/3+a, /2 x| —7/2,7/2]

LH—{I;o |AL(&1,&2) — Dp(&1,&)| = % ;

therefore .
hmmeAL - DLHoo Z — .
L—o0 4

4. Conclusion.

Some of the techniques we have used to construct non separable,
dyadic, compactly supported, orthonormal, wavelet bases for L%(R?) of
arbitrarily high regularity, may be adapted to other types of wavelet
bases.



CONSTRUCTION OF NON SEPARABLE DYADIC 57

In [2] we have constructed non separable, dyadic, compactly sup-
ported, biorthogonal wavelet bases for L?(R?) of arbitrarily high regu-
larity by perturbing separable biorthogonal filters.

We have found recently a method for constructing QMF’s that
generate compactly supported, orthonormal wavelet bases for L?(RR?)

of dilation matrix
1 -1
=y 7

(R is a rotation of /4 and a dilation of v/2). This method is inspired
from the Theorem 2.2 Let «(x) and f(x) two trigonometric polynomials
in one variable such that «(0) = 1 and |a(z)|[*+|3(x)|?+1. Let m(x) be
a monodimensional QMF (i.e. m(0) = 1 and |m(x)|>+ |m(z+7)]?> = 1)
and m(z) its conjugate filter (m(x) = —e~ @ m(z +m)). If P(£1,&) is
one of the trigonometric polynomials

w(€1,&2) = a(281) m(&2) + B(261) m(&2),
v(&1,82) = €1+ &2) m(&2) + B(&r + &2) m(&2)
w(&1,§2) = a(ér — &) m(&2) + B — &) m(&2)
then we have

{P(0,0)zl,
|P(&1, &)+ [P(& + 7, &+ )%

This means that when P(&1, &) satisfies A. Cohen’s criterion it gener-
ates a compactly supported, orthonormal wavelet basis for L?(R?) of
dilation matrix R. We do not know yet whether the regularity of such
wavelets could be made arbitrarily high.

Acknowledgements. I would like to thank A. Cohen, P. G. Lemarié-
Rieusset and Y. Meyer for fruitful discussions.
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