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The resolution of the
Navier-Stokes equations

In anisotropic spaces

Dragosg Iftimie

Abstract. In this paper we prove global existence and uniqueness
for solutions of the 3-dimensional Navier-Stokes equations with small
initial data in spaces which are H% in the i-th direction, 6; + dy + 3 =
1/2, —1/2 < §; < 1/2 and in a space which is L? in the first two
directions and B217/12 in the third direction, where H and B denote the
usual homogeneous Sobolev and Besov spaces.

Résumé. Dans cet article on montre ’existence et 'unicité globale
des solutions des équations de Navier-Stokes tridimensionnelles pour
des données initiales petites dans des espaces qui sont H?% dans la i®™®
direction, 0; + dy + 03 = 1/2, —1/2 < §; < 1/2 ou dans un espace
qui est L? dans les deux premieres directions et B217/12 dans la troisieme
direction, ou H et B sont les espaces de Sobolev et de Besov homogenes
habituels.

0. Introduction.

In this paper we study the problem of global existence and unique-
ness for solutions of the 3-dimensional Navier-Stokes equations. These
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2 D. IFTIMIE
equations are the following

wU+U-VU —-vAU = -VP,
(N-S) divU(t,-) =0, forallt >0,
U|t:0 :UO .

Here, U(t,z) is a time-dependent three-dimensional vector-field.
The goal of this work is to solve these equations in the spaces

1 1 1
01,62,03 ) ) 8o = = —Z <), —
H , 1+ 02 + 03 5 5 <0 <3,

and in the space
HB0,0,1/2

where the first space is H% in the i-th direction and the second space is

L? in the first two directions and 321,/12 in the third direction, where H?,
respectively B ., denote the usual homogeneous Sobolev, respectively
Besov, spaces. We are using homogeneous spaces because they are
more easy to handle in the case of the Navier-Stokes equations and,
in addition, they are larger than the classical ones, so we obtain more
general results.

By solving (N-S) in the space X we mean proving the global ex-
istence and uniqueness of solutions for small initial data in X and the
local existence and uniqueness of solutions for arbitrary initial data in
X.

The first paragraph is devoted to the study of the spaces H*1:92:53
essentially the proof of a product theorem in these spaces. A some-
what similar theorem was proved by M. Sablé-Tougeron in [9] for the
Hormander spaces.

The second paragraph contains the resolution of (N-S) in

51.,02,0 1 1 1

H 5, 61—{—62—{—(53—5, —§<6i<§.
The methods used here are inspired from a paper of J.-Y. Chemin and
N. Lerner (see [4]). The case when one of the §; equals 1/2 is important
but it cannot be studied through our results because H'/2(R) is not an
algebra. This difficulty is partially avoided by replacing HY/?(R) with
B21,/12 (R) which has the property to cancel this critical case. And this
is how we come to solve (N-S) in the space HB%%'/2 during the third
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paragraph. The same method of replacing H*® with B3 ; may be used in
the resolution of general hyperbolic symmetric systems. These systems
can be solved in the space H*(R?%), s > d/2+1 but the case s = d/2+1

cannot be proved unless we replace H%/?+1 with BS{f“(a short proof
is given in the Appendix).

Finally, the last paragraph makes a comparison between this article
and the results which are known. We shall see there that the space
HB%%:1/2 js not imbedded in any of the spaces introduced by H. Kozono
and M. Yamazaki in [7], p_,(},i.'g’/”, provided that 1 < ¢ < p < 3¢/2,
p > 3. We are not able to prove an imbedding or a nonimbedding
if p > 3¢/2. The space H%%2:% is also interesting if we remark, for
instance, that we allow negative values for 9;.

The results of this article can be easily extended to an arbitrary
dimension, here we consider R3 only for sake of simplicity. In fact, if
we work in R, we can solve (N-S) in the spaces

d 1 1
HOt G b Gy b g = g -, —o <8<y,

and in the space
HBO,...,O,I/Z

where the first space is H?% in the i-th direction and the second space
is L? in the first n — 1 directions and 321,/12 in the last one. For instance,
we can solve the 2D Navier-Stokes equations with small initial data
in H>7%, 0 < 6 < 1/2, that is in a space of functions which are not
square-integrable.

1. Study of the anisotropic spaces and preliminary results.

We work in R* and we denote by T = (1,2, 73) the variable in
R®. If 7 = (q1,92,43) € Z° and 5 = (s1, 52, 53) € R® then we define
5 = @151 + gas2 + gzs3. Also, if A = (A1, A2, A3) then we note
X = [Ag[*[Ag]®2| Ag[e,

Let

S

LP — [P1,P2:P3

def
= {u such that [[ull 7 2 ||| lu(@r, 22, 25)l| 23 1123 12y < 00}
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and /P be the analogous space for sequences. Also, when p = q = r we
shall note ¢PPP = (P and LPPP = LP. If u is a function u : (0,7) X
R" — C then we note

def
||U||L1;(Lq) = | “u(tvx)HL‘I(R")HLP(O,T) .

The order of integrations is important, as the following remark shows
it:

REMARK 1.1. Let (X1, p1), (X2, 12) be two measure spaces, 1 < p < ¢
and f: X XY — R. Then

IILF G w2)ll e xy p lna (X ey < (@1, )l La(xs o) [l 2r (0 00) -

Indeed

» 1/p
Gl mollerca = (| [ 17 G b, )

1/p
< (/ ||fp(~r17-)||Lq/P(X27N2) d;Ll)
X1

= [HIf @1 lza(xs p)ll2e (X0 -

The Holder and Young inequalities for the £7 spaces take the form

If 9llez < Ifllzz llgll e

where

for all ¢ € {1,2,3}, and

1 * gllem < 1fll gz llgll =,

where
1 1 1
1+ —=—+—,
a; bz C;
for all 7 € {1, 2, 3}.
We can prove a variant of the Littlewood-Paley lemma for the £7
spaces:
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Lemma 1.1. If

supp @ C B(0,7 A1, 7 Aa, 7 A3)

def {€ € R? such that |€1| < 7 A1, [€a] < Ay |és| < A3}

and ay < by,as < be,az < bs, @ = (a1, ag, a3) is a multi-index, then

HaauHﬁg < C)\flll-i-l/al—l/bl )\324—1/02—1/’32 )\gs-i-l/as—l/bs ||'U;||£E .

PROOF. Let ¢ € C(R), ¢ equal to 1 near the ball of center 0 and
radius 7, g = F~1(¢). Then

€)= o(3)6(2)0(52)at9).

and thus

u(r) = A1 A2 A3 /RS g(A1y1) 9(A2y2) g(Asys) u(z —y) dy.

Differentiating and using Young’s inequality ends the proof.

Before introducing our functional spaces let us recall that the ho-
mogeneous Besov spaces are defined to be the closure of compactly
supported smooth functions under the norm

def ;
lullz; , = 112" Agullzoles -

The need of taking the closure of compactly supported smooth func-
tions comes from the fact that the quantity above is only a semi-norm
since the “norm” of a polynomial vanishes. Another way of defining
these homogeneous spaces is to take equivalence classes of distributions
modulo polynomials and to remark that we obtain in that way a real

norm. For further details on Besov spaces (homogeneous or not) see
[12].

Definition 1.1. We denote by H5152:52 = HF the closure of compactly
supported smooth functions under the norm

def def
= |ul

s L IE @)L -

|u|81782)83
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The space H*1%2°3 is a Banach space of distributions if s; < 1/2,
s9 < 1/2 and s3 < 1/2.

We denote by 9 a dyadical partition of unity in R, that is a smooth
function supported in the ring of center 0, small radius 3/4, large radius
8/3 and such that 3 ., ¢(279¢) =1 for all £ # 0 (see [1], [5]). Define

AL =9(279D;),

Si= > A,
p<g—1
SE:S(I17¢I2,(13 :Sl S2 ‘53

q174927q3 ?

_ _ 1 2 3
AE - Aq1,qz,qs - Aq1 Aq A

27 g3 ?

Sq = Sq.q.q>
Aq - Sq+1 - Sq -
The following lemmas are easy to prove:
Lemma 1.2. Ifu € H® then

[uls ~ 1277 | Az ull 2]l -

Lemma 1.3. If uy is a sequence of functions such that

supp Up

1 1 1
c{oom <l <y, S < el <2, S 2 < gl <2
Y v

Y
and
1275 Jup]| L2 || < 00,
then
u = ZIU’I_) E 7_[81)82)83
P
and

[tsy,52,55 < C 1277 [Jugllzele: -
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If s1 > 0 it is enough to assume that
. 1 1
supp it C {]61] <727, = 2% <& S y2, 227 < gl <2

Y Y
If s1 > 0 and s2 > 0 it is enough to assume that

. 1

supp ity C {161] < 727, [62] < 727, ~ 2% < |G| S y2 .
g

If s1 >0, so > 0 and s3 > 0 it is enough to assume that

supp ty C {[€1] < v 2P, [§o <y 2P2, €] < y2P2 ).

The next theorem studies the problem of products in the #*1:%2:93

spaces.

Theorem 1.1. Let u € H®, v € H? such that s; < 1/2, t; < 1/2,
si+t;>0,i€{1,2,3}. Then

wY E H§+E—(1/2,1/2,1/2)

and
|UU|§+Z—(1/2,1/2,1/2) < Cluls vlg -

Proor. We shall give a proof which imitates the argument for the clas-
sical Sobolev spaces. This will be done by introducing 3-dimensional
paraproduct operators. We recall the definition of Bony’s decomposi-
tion B

uwv =T(u,v) + R(u,v) + T(u,v),

where

T(u,v) = Z Sq—1uAqu,
q

R(u,v) = Z ApuAgv,
lp—q|<1

T(u,v) =T(v,u)
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(see [1], [5]). It is well-known that T : H*(R) x H*(R) — H*t*~Y/2(R)
is well-defined and continous if s < 1/2. The same is true for R if
s+t > 0. Here we use the analogous of this decomposition

wo=(T'+R' +TY) (T? + R* + T?) (T® + R® + T°)(u,v)

understood as the sum of 3% terms. The definition of each term is a
straightforward extension of the classical paraproduct and remainder.
The reader may give the definition of each term; we give, for instance,
the one of the term T RT3 (u,v)

2m3 2 3 1 2 3
T'R*T3(u,v) ZZ L _IAZ AL uAL A2 SE v,
i=—1 p

We shall prove that each of the 3% operators we find is continuous

HE x H{ SN H§+Z—(1/2,1/2,1/2) :

under weaker hypothesis than those given in the theorem. More pre-
cisely, the conditions to assume are given by the composition of the
term in the following manner: if the term contains 7% then we have
to assumme s; < 1/2; if the term contains R then we have to assume
s; +t; > 0; if the term contains T then we have to assume t; < 1/2.
For instance if we want the term T1R2T™ to be continous then we have
to assume that s; < 1/2,s9 +t3 > 0,t3 < 1/2. This term is the most
difficult to handle so we prove the assertion only on it. We have

TR2T3UU ZZ’LU—,

i=—1 p

where

=Sk A2 A3 AL A2 SE .

p1—1 p2—1i "~ p3—

Using several times the anisotropic form of Holder’s inequality, the defi-
nition of the operators S' and S3 as well as the anisotropic Littlewood-
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Paley Lemma 1.1 one can show that
|Ag wh| L2
S 2q2/2 ||w%||52,1,2
<2028 A2 AS ulleas||AL A2 S3 || peen

p2—1
(1.1)
< 2q2/2 Z HA}j A?& A23u||£°°’2’2HA;1 AQ 2 A7?131)”‘62’2’00

pP2—1
ri<p1—2
r3<ps—2
<2®/2 N gn /AT IAL A2 CAS wllpe|A) A2 AS ]|z
ri<pi1—2
r3<ps—2

Let us introduce o
ag =27 [|Agul L

and -
ba = 2q-t HAEUHLQ .

Since s; < 1/2 and t3 < 1/2, inequality (1.1) implies
HAE UJ%HH < C2q2/2 2p1(1/2—81—t1) 92— P2 (s2+t2) 2P3(1/2—83—t3)
(1.2) N
Naplles [1bpy po—ipslles
whence
07 (5+t—(1/2,1/2,1/2)) IIAqwf—,HLz
(1.3) < C 2(a1=p1)(s14+t1=1/2) 9(g3—p3)(s3+t3—1/2)

A [ [P o |

Since |p1 — q1| < 1, g2 < p2, |ps — ¢3| < 1 we obtain

25.(§+f—(1/2,1/2,1/2)) HAETIRZTVB(U, U)HLZ

1
<Cy, Y, D 2@l agle by pyoiplle, -

=lpi—q <1 P22
|ps—qs3|<1



10 D. IFTIMIE

. 2 .
Taking the £ . norm gives

||26'(§+{_(1/2’1/2’1/2))||A5T1R2f3(’u,, U)||L2 ||€2

q1,93

1
<C Y Y 2@ et gl by, il -

t=—1p2>q2

Taking the 632 norm, applying Young’s inequality and using that so +
ta > 0 yields

|27 CH= Q222D AGT RPT® (u, 0) | 2|2

1
<C Y laglle, , 10pspa—isllez, lles, -

i=—1
Finally, Holder’s inequality implies
|27 CH=A/2AZAD | AGT RT3 (u, 0)| 122 < C llaglle [[bplle2

that is B
(TR (1, 0) s 12,172,172 < C luls 0] -

This completes the proof.

We shall now adjust this study to the case of the spaces H B%1:92:53
= H B? defined as the closure of compactly supported smooth functions
under the norm

def

|U|HB? = ||26'§||Aqu||[,2||g2,2,1 .

REMARK 1.2. In this definition, when we apply the £%>2! norm, we
first take the ¢! norm and afterwards the others, but all the work we
do is valid for the spaces H B obtained by appling the ¢2%! norm in an
arbitrary manner. We choosed this order because, according to Remark
1.1, this space is the largest.

REMARK 1.3. For all real numbers s1, s, s3 the space HB? is strictly
included into the space H®. Moreover, HB® is a Banach space of dis-
tributions for s7 < 1/2, s < 1/2 and s3 < 1/2.
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The lemmas 1.2 and 1.3 will modify in an obvious way, only the
product theorem is relevant for the (N-S) equations.

Theorem 1.2. Let u € HB®, v € HB? such that s; < 1/2, t; < 1/2,
si+t;>0,i€{1,2} and s3 < 1/2,t3 <1/2, s3+t3 > 0. Then

wy € HB§+E—(1/2,1/2,1/2)

and

[uv| g peri-as2a/21/2 < Clulgps |v|gpr -

PrROOF. The proof is almost identical to the preceding one, the mod-
ification, which allows us to take into account the case s3 = 1/2 or
t3 = 1/2 is that the classical paraproduct T : B3, (R) x Bj ,(R) —

B;jt_l/ *(R) is well-defined and continous if s < 1/2. Hence, we shall
prove that each of the 33 operators is continous under the same as-
sumptions as above, with the modification that if a paraproduct in the
third direction is involved, then we can allow s3 or t3, depending on
the paraproduct, to be equal to 1/2. The only problem in the proof is
that at the end we have to commute some norms which give raise to
the wrong inequality. We have to restart from inequality (1.1)

IAgwglge <2072 % 7 an /22 AL AR AD 12

ri<pi—2
7’3Sp3—2

: ||A11,1 A2 A2 e

p2—1

(1.4)

Recall that o
ag =27 [|Agul L

and .
ba = 2q-t ||AEU||L2 .

We use that |py —q1]| < 1, |[ps — ¢3| < 1 to rewrite the last inequality as
o7 (5+t—(1/2,1/2,1/2)) IIAqwf—,lle

< 02(82+t2)(¢I2—p2) Z 2(7’1—P1)(1/2—81)+(T3—p3)(1/2—t3)
(15

ri<pi1—2
7"3Sp3—2

" Ory ps,ps bplypz—iﬂ’s .
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Now we sum on ¢,p and ¢z to obtain

S 2T (G4 /22D AT R (u, ) 2

qs3

ngl: Z 9(s24t2)(g2—p2)

==l —qi|<1
P2>q2

S anmma/z-)

r1<p1—2

Z Z 9(rs—ps)(1/2—t3)

p3 r3<p3z—2

" Qry,ps,ps bpl P2 —1,T3

1
gC_Z Yo glet@or) 57 glnop)/2-s)

=l pi—a<t ri<p1—2
P2>q2

’ ||a7’17P2 »P3 ||%3 ||bp1 P2—1,73 ||€},3

1
<C Z Z 9(s2Ft2)(22=p2) || ||a7’17P2,P3||%3 ||€%1 ||bp1,172—i77“3||€,143 .

==l —qi|<1
P2>q2

Since |p; — ¢q1| < 1, applying Holdér’s inequality gives
| 27 -2/ | AT B2, o) g . e
(1.6)

1
<C Z Z 2(02+02) (@2 =p2) “ ||aP17P27P3||€1173 “Zf,l H ||bP1,P2—i,P3||€1173 “Zf,l .

1=—1p2>q>

Using that g2 < p2 and applying Young’s inequality yields
[27 CH=A/2AZA2D | AGT AT (u, )| 12 [lg2.20

1
<C Z “ H “CLPl;szPSHE;S “Zf,l H “bpl,Pz—i;PsH%S Hﬂil “QQ :
1=—1
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Finally, we apply Holder’s inequality to obtain
||2§.(§+t—(1/2,1/2,1/2)) ||A§T1R2T3(U, U)HL? ||£272,1
<C ||a1717p2 D3 ||€2’2’1 “bpl,Pz,Ps ||€2’2’1 )
which implies

|T1R2T3(UwU)|HB§+?—(1/2,1/2,1/2> < Clulyps

U|HB? .

This completes the proof for T*R2T™.

Since the third variable plays a special role in the definition of the
H B spaces, we show how the same estimates can be modified for other
terms. We consider first the term T'R2R3. We have

TRzR?’uv ZZ

t,j=—1 D
where

z:fzsl A2 A3uA1 AZ A2 .

p1—1 p2—1t —p3—j

As above, we deduce the following inequalities

1Ag 25

< 942/2+43/2 ||le_;1

|£2,1,1

<o/l S A2 AD ulcnal| AL, A2, A% jollgan

p2—1 —p3—J
(1.7)
< 20/2H0/2 N AL A2 AS | |AL A2 A yf| e

ri<pi1—2

< 942/2+43/2 Z ori/2 ||A71ﬂ1 A?}z A3 U,HLQHAI A2 A3 U“L2 :

P2—% —p3—J
r1§p1—2

Since |p; — q1| < 1, it follows that

OT (HE=(1/21/21/2)) || A 0

L2

<C 2(82 +t2)(q2—p2)+(s3+t3)(gs—p3)

E (ri—p1)(1/2—s1) . .
2 Qry »P2,P3 bPl yP2—%,P3—] *
ri<pi1—2
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Now we sum on ¢, j,p and ¢z to obtain

Z 2q.(§—|—f—(1/2,1/2,1/2)) ||A§T1R2R3(’U,, U)HL2

qs3

<C 21: Z 9(s2+t2)(q2—p2)

Li==1p —q1|<1
P2>q2

Z 9(ri—p1)(1/2—s1)
ri<pi1—2
Z Z 9(s3+t3)(g3—ps3)

g3 P3>qs

" Ory ps,ps bpl P2—1,p3—7J °

Applying Young’s inequality gives

E E (s3+t3)(gz—ps3) ) .
2 arl ,P2,P3 bplapz_zap?) —J

g3 P3>qs

S C ||ar1ap2ap3 bplap2_i7p3 ||£1]53

<C ||a‘7“1,172,173 ||£%,3 ||b171,172—i7p3 ||£%,3 .
It follows that

Z 25.(5—}—5—(1/2,1/2,1/2)) HA@T1R2R3(’U,, ,U)HL2

qs

<C i Z 9(s24t2)(g2—p2)

i=-1 lp1—q1]|<1
P2>q2

Z 2(ri—p1)(1/2=s1) ||a'1"1,P27P3 HZ;S ||bP1,P2—i,p3 “51193

r1<p1—2

1
<C Z Z 2(32+t2)(q2—p2) “ ||a7“1,P2,P3||€1173 H&%l ||bP1,P2—i7P3H€%,3 .

==1lp—qiI<1
P2>q2
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Since |p; — q1| < 1, applying Holdér’s inequality gives

| |27 G+ 2D AT R R (s, 0) | 2 gy, e,

<C i > aleth)er)

t=—1p2>q2
: “ ||aP17P27P3||€1173 “ff,l H “bpl,Pz—i,Ps H@Il73 ||£1271

This inequality is similar to (1.6), so we can continue likewise to obtain
the result on T'R2R3. _
Finally, we give the proof for the term T'T?R3. As above we have

T1T2R3 (u,v) Z Za
i=—1 p
where

i _ gl 2 A3 1 g2 3
aﬁ_Spl—lApzApe,UApls 1 Bpy—i¥-

p3—1t
As above, we deduce the following inequalities
1Ag a2
S 2q3/2 ||a%||ﬁ2,2,1

< 943/2 HS;1—1 A?)Q As uHﬁoo 2 2||A1 Sz AS UHL? 00,2

P3—1
(1.8)

<29/2 N AL A2 AY uf|pnal|AL AZ AS v g
r1<p1—2
re<pz—1

<22y 1 PR AL AL AR ulle A A7 AT vl
r1<p1—2
re<pz—1

Since |[p1 — q1| < 1 and |ps — ¢2| < 1 it follows that

2T (5+t—(1/2,1/2,1/2)) ||A az ||L2

< 02(83+t3)(Q3—p3) Z 2(7“1—171)(1/2—81)-1-(7’2—pz)(1/2—tz)

ri<p1—2
r3<p3—2

" Qry ,ps,ps3 bplﬂ"z,Ps—i .
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Now we sum on ¢, p and ¢z to obtain

S 2T G221/ | ATV R, 0)| 2

qs

1
S C Z Z Z 2(7“1—Pl)(1/2—sl)+(r2_pz)(1/2_t2)

i==1ip,—qu|<1m1<p1—2
|pe—qo|<1 T2<p2—2

z : § : s3+t q3—Dp .
. 2( 3 3)( 3 3) aTlap27p3 bp177“2:p3_'b *

g3 p3>qs
Applying Young’s inequality gives

§ : § : sz3+t3)(gz3—p .
2( s+ts)(as 3)0'7“1,1727173 bplﬂ’zyps—l

g3 P3>qs

<C ||a'7“17P2 ,P3 bplyrz,Ps—iH%S
<C Ha'?“lypzypsHE;S ||bP1J’27P3“€%,3 .
It follows that

Z 26.(5—1—?—(1/2,1/2,1/2)) HA5T1T2R3(U, U)HLZ
q3

<Cc Y ) anee)Q/2ms)reme)(1/2-t)

[p1—q1|<17r1i<p1—2
|pe—gz|<1T2<p2—1

: “arl,Pz,Ps “%3 ||bP1 72,03 “Z})S

<C Z | ||a7“1,1727p3||f%,3 ||€§1 | ||b17177“27P3||€1173 ||£$2 .

lp1—q1]<1
|p2—q2]<1

Using again that |p; —q1] < 1, |[p2 — q2] < 1 and taking the 2 norm

q1,q2
yields

||2§.(§+f—(1/2,1/2,1/2)) ||A§T1T2R3(U, U)HL? ||£272,1
< Cllapllezza[lbpllez2n

that is

|T1T2R3(u,’U)|HB;+?7(1/2,1/2,1/2) S C |U|HB? |v|HBf '
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This completes the proof.

2. Resolution of (N-S) in the #H?%%2:*: spaces.

Let —1/2 <0 < 1/2, 1€ {1,2,3}, 01+ 02 + 03 = 1/2. Then there
exist nonnegative numbers a1, as, az such that

1 1
(2.1) 0<d;+a; < 3 for all ¢ € {1,2,3} and a1+a2+a3:§

(one can choose a; = 1/4—9;/2). We shall prove the following theorems:

Theorem 2.1 (global existence and uniqueness). There exists
C > 0 such that if divug = 0, up € H° and |ulz < C'v then the (N-S)
equations have a unique solution in

L*(]0, 00[ ; HOH®) N L= (]0, oo ; HP) .

Moreover, the solution satisfies u € C([0,00[; H?).

Theorem 2.2 (local existence and uniqueness). If divuy = 0 and
up € H® then a time T >0 and a unique solution of (N-S) on [0,T]
exist so that ~ B

we L0, T[; HT*) ne([0,T[; H°).

The uniqueness is proved at the end. The global existence is proved
in the same time with the local existence. In fact, we shall prove a
better result valid for the space Hy defined as the closure of compactly
supported smooth functions under the norm

def
= |1

1w £y 127D Agul| s 2yl -

Theorem 2.3. Let divug = 0 and ug € HP. Then there exist T > 0
and a solution of (N-S) on [0,T] which verifies u € Hy.

REMARK 2.1. We have Hy — L*(]0, T[; HO+7).
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Indeed, from Remark 1.1 we infer

all s go rpagsemy = N2 CFD | Agul| 2 lez]| s

< || 270D A gullLa z2)lle

= llullay -

ProOF orF THEOREM 2.3. We approach up with the sequence ugy =
S, ug, where S, is the classical S,, in R3. Let u,, be the local regular
solution of (N-S) with initial data ug (for the existence of wu,, see [6],

[11]). For each n we apply Az at (N-S) and we multiply by Azu, to
obtain

I quallfs + v VAl < O (A (un Vo) Agun)
<2.2> = C (g (div (1w, ® )| Ag )]

The localization of the Fourier transform of Agzu, enables us to say
that

IVAGun |72 = |01A7 unl72 + [|0287un |72 + |05 A7 un||7-
> C4% || Agun||is + C4% [[Agun|li. + C 4% [[Agun|lis
= C (49" 4+ 4% + 4%) || Ag g2 -

Moreover, we have from Theorem 1.1 that if u,, € ”HEJFE, then u, ®u,, €
H20+2a—(1/2,1/2,1/2)  Thyg we can write

div (uy, ® uy,) E wj ,

where

2
|w1|23+2a—(3/2,1/2,1/2) <Clup ® “’n|25+2a—(1/2,1/2,1/2) <C |Un|3+5 )

2
|w2|23+2a—(1/2,3/2,1/2) <Clup ® “’n|25+2a—(1/2,1/2,1/2) <C |Un|3+5 )

2
|w3|23+2a—(1/2,1/2,3/2) < Clu, ® “’n|25+2a—(1/2,1/2,1/2) <C |Un|g+5 .
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It follows that
[(Ag (un Vun )| Ag un)|
<C (2—5-(23-1-25—(3/2,1/2,1/2)) + 2-5-(23-{-2&-(1/2,3/2,1/2))

+ 2_6-(23—}—26—(1/2,1/2’3/2))) ag || Ag unl| L2 |u"|%+a ’

where

97 (20+2a—(3/2,1/2,1/2)) |A7 w1]|L2
ag =

|w1|23+2a—(3/2,1/2,1/2)

97 (20+2a—(1/2,3/2,1/2)) | Az wal|L2

_l.
w2 |23+2a—(1/2,3/2,1/2)

.\ 9—q-(20+2a—(1/2,1/2,3/2)) ||Aq wsl| 2

w3 |2S+2a—(1/2,1/2,3/2)

so |lag(7)||ez < 3 for all 7. Using this in (2.2) leads to

d
77 1AqunllZz + Cw (4% + 4% +4%) [ Agun|| 1.
<C (2—6-(23-{—26—(3/2,1/2,1/2)) + 2—5-(23-1-25—(1/2,3/2,1/2))
+ 2—5-(23-{-2&-(1/2,1/2,3/2)))

g lun 2, gt 2
By Gronwall’s lemma we have

A un(t)] L2
< ||Agug L2 exp (—C v (47 + 4% 4 49) ¢)

2.3) +C (2—6-(23-{—26—(3/2,1/2,1/2)) + 9—7(20+2a—(1/2,3/2,1/2))

+ 2—5-(23-1-25—(1/2,1/2,3/2)))

- /0 exp (—C'w (4 + 42 4 49) (¢ — 7)) ag(r) [un(7) 2, , dr

19
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Taking the L*(0,T) norm and using Young’s inequality gives

Az un(?)]zs (2
< Cy VA (A 442 4 49) 74| Agul | 1

(1 —exp (—CvT (49 + 49 4 4%)))1/4

+C (2—5-(23-1-25—(3/2,1/2,1/2)) + 2-5-(23-}-25—(1/2,3/2,1/2))

+ 2—5-(25+2a—(1/2,1/2,3/2)))
Nlexp (=Cw (47 4+ 4% + 49)()) | arsgo,z log a2, 220y

< Cv= M40 4 4% 4 4%) 7V | Aguf| Lo

(1 —exp (=C'vT (41 4 4% 4 4%)))L/4

+ Oy (2—5-(23+2a—(3/2,1/2,1/2)) + 2—q~(23+26—(1/2,3/2,1/2))

+ 2—5-(23+2a—(1/2,1/2,3/2)))

(49 4 4% 4 49) 7 ag [unl2, L2 -
Young’s inequality along with relation (2.1) imply

24 _ 99101 99242 94343
< 2aq 229 4 242292 4 2 gq 220
< (4Q1 + 492 4 4(13) ,

941 (1-2(a1+61)/3) 992(1/3—2(a2+02)/3) 9g3(1/3—2(az+03)/3)

< (1 - % (a1 + 51))2‘11 + (% — % (a2 + 52))2‘12

(GG s

S 241 + 242 + 243 ,
and two similar inequalities. Therefore

(4q1 442 4 4q3)—1/4 < 9—qa
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2—5'(234—25—(3/2,1/271/2)) (2q1 4+ 9% 4 2%)—3/2
< 9—T(25+23-(3/2,1/2,1/2)) 9=3(3-((1,1/3,1/3)-2(a+3)/3))/2

— 9~T@+d)

9-T(25423-(1/2,3/21/2) (91 4 902 | 24s)=3/2
< 2—6-(25—1—26—(1/2,3/2,1/2)) 2—3(6-((1/3,1,1/3)—2(6-}—3)/3))/2

— 9~ 7 (@+d)

9—7(20+2a—(1/2,1/2,3/2)) (20 4 292 4 2q3)—3/2
S 2—6-(23—1—26—(1/2,1/2,3/2)) 2—3(6-((1/3,1/3,1)—2(6-{—5)/3))/2
— 9T (a@+d)
It follows that
27T | Aqunllpy 12 < Cv™* 27 | Ag ug]| e
(2.4) (1 —exp (—CvT (4% + 4% 4 433)))1/4
+Cv 3" ag |U’n|%+5||L2(0,T) .
Taking the £2 norm gives
lwn mr
< Cv Y4270 || Agut |12 (1 — exp (—C v T (4% + 4% 4 49))) /4|,
(2.5)
+Cv 3 Ilun(7)|li4(]07T[;Hs+a)
< vV L(T) + Cv™ unlly,
where
fa(T) = C1[277 | Agu]|pz (1 — exp (—~CVT (47 + 4% 4 4%))) 14|

We shall need to have f,(T") small. In order to obtain that, we use
Lebesgue’s dominated convergence theorem. The particular form of ug
implies

1Az ug ||z < [|Ag Snwollre < ||Sn Aguol|z: < [[Aguol|Le
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and the estimate
270 || Agu?|| 12 (1 — exp (—C v T (4% + 4% + 49)))1/4 < 970 || Az u|| 12

fulfills the domination requirement since the right side is an 2 sequence
that is independent of T" and n. As for the pointwise convergence, for
fixed ¢ one has

270 || Agull||2. (1 — exp (—C v T (49" + 4% + 493)))1/4

< |uols (1 — exp (=C v T (4% + 4% 4 49)))1/+ 120

0.

So, by Lebesgue, limy_,o f,(T") = 0 uniformly with respect to n. We
choose T small enough such that f,(T) < v/(4C), where C is the
constant from inequality (2.5). It follows that

v/ 3/4 2
lunllzre < G +Cv™* flunlli, -
We deduce that ||u,||m, < v*/%/(2C) if we take into account that
||tn || ey is continuous in T', ||uy,|| g, = 0 and

V3/4 2
2C  4C ) :

2C
This allows us to take the limit and to find the existence of the solution
on [0,T].

PROOF OF THE GLOBAL EXISTENCE. We start again from inequality
(2.5) and we estimate f,(t) < Cluply. We find in the same way the
existence of a solution in L*(]0, oo[; H°*®). Next we prove that such a
solution belongs to L>°(]0, o[ ; H?).

We start again from inequality (2.3), we apply the L norm and
making similar computations we find

27° || Ag ull pee (12
(2.6) g0 —1/2 2
< C27°||Aguolle + Cv™ /" [lag ul5 ZllL20,1) -

Taking the ¢? norm yields

(2.7) ull oo o007y < lHols +C ™2 (ull s o oo paien)” -
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Finally, the continuity in time follows from Lebesgue’s dominated con-
vergence theorem since the map ¢ — ||Agzu, /|2 is continous and the
domination requirement is given in relations (2.6) and (2.7).

Let us now prove the uniqueness.

Theorem 2.4 (uniqueness). Let ui and uz be two solutions of (N-S)
which belong to the space L*(]0,T'[; HOT)NC([0, T[; H?) with the same
initial data in H°. Then up = us.

Proor. We subtract the equations verified by u; and us to obtain
O¢(ug —ug) —v A(uy —ug) +uy - V(uy —u2) + (ug —ug) Vug = V(p1 —p2) .
The same computations as in Theorem 2.3 yield

lur = 2l oo i 305+7)

< Ol = vafl o gagmem) (1all s o apaemy + 2l s o gz

Thus, if ¢ is small enough, we have

||U'1 - U2||L4(]07t[;7.ﬁ+6) < 9 ||U1 - U'2||L4(]0,t[;7.ﬁ+a) )

so we get local uniqueness that is global uniqueness, since the map
t — ||uy — u2||L4(]0,t[;H3+5) is continuous.

3. Resolution of (N-S) in the H B*®52:%s spaces.

Let us introduce the spaces HB7 p s, 5,55 = HDBr,5 defined as
the closure of compactly supported smooth functions under the norm

def

lllirs, - 2 11275 Agull g oyl

As for the H?® spaces we shall prove a theorem of global existence and
uniqueness and a local existence and uniqueness one. Let a and b be
two positive real numbers such that a +b = 1/2.

Theorem 3.1 (global existence and uniqueness). There exists
C > 0 such that if divug = 0, ug € HB*%Y2 and |u|ggoo./2 < Cv
then the (N-S) equations have a unique global solution which belongs to

HBoo,4,a,b,1/2 N Loo(]o, OO[ ; HBO,0,1/2) N C([()’ OO[ : HBO’O’I/Z) )
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Theorem 3.2 (local existence and uniqueness). If divuy = 0 and
ug € HBOYY/2 then there exist T > 0 and a unique solution of (N-S)
on [0, T] which belongs to HBrp 4 4 1/2 NC([0,T[; HBYY1/2),

REMARK. We have HBr 4 44,172 — L*(]0, oo ; HB*b1/2),
Indeed, Remark 1.1 implies

[l 1 go,cofsrmabaszy = || 12904 F0H9/2 | Agu] 12 [|g2,2.0 | o
< || )29 et e H a2 A | g2 || 4|22
= ||u||HBT,4,a,b/2 :

We first prove

Lemma 3.1. Let s; < 1/2,t; < 1/2, s; +t; > 0, for all i € {1,2},
53 <1/2,t3<1/2, s3+t3>0andp,q>1,r=pq/(p+q) > 1. Then

luv|mB lullap,, < lvlles

< .
T,rs+E—(1/2,1/2,1/2) — | T,q,t

Proor. We shall copy the proof of Theorem 1.2 and prove this lemma
for each of the 27 terms of the Littlewood-Paley decomposition. Let us
take, for instance, the T'R2T3 term. We start again from inequality
(1.4)

1Agws (t)lle <22/ 3 7 2n /2R 2 AL AT AD ()12

ri<pi—2
r3<p3—2

-||A; A2 AD vt -

1 p2—1

Taking the L"(0,T) norm and applying Holder’s inequality gives

|Azwy (g <22/ 30 222 AL AL AD u(®)log e

r1<p1—2
r3<pz—2

Ay, A2 'Aig’v(t)HL‘lT(w) .

pP2—1

If we define o
AE = 2q-s ||A6U||L1771(L2)
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and -
Bg = 27" | AqullLg, (L2 -
it follows that
97 (5+t—(1/2,1/2,1/2)) ||A6w;i7 ()]l Ly.(L2)
< 291 (51=1/2)+(s2+t2)(g2—p2)+q3(t3—1/2)
Z 2T1(1/2—81)+T3(1/2—t3) A

ri<pi—2

71,P2,P3 Bpl P2—1,T3 *
r3<pz—2

This inequality is entirely similar to (1.5) so the proof continues in
exactly the same way we did after that inequality.

PROOF OF THE LOCAL EXISTENCE. It is obvious that if § = (0,0,1/2)
and a1 = a, ay = b, a3 = 0 then hypothesis (2.1) is verified excepted
for the condition d3 + ag < 1/2. This is precisely where we use that
le,/12 (R) is an algebra. Hence, we can follow the same line of proof as
in Theorem 2.3, replacing the £2 norms by the 22! norms and the
H? spaces with the H B?® spaces. There is one fact which doesn’t allow
us to give an identical proof: the deduction of inequality (2.5) from
inequality (2.4) which is not possible because the switch of the L? and
¢%21 norms yields an inequality in the opposite sens of the wanted one.
To avoid that we have to give up the estimate

1Az (uVu)|2 <C (2—5-(23-1-25—(3/2,1/2,1/2)) + 9—7(20+2a—(1/2,3/2,1/2))

N 2_5.(23+2E—(1/2,1/2’3/2))) aq|u|%/2+5 1/2=6>

and to use, for the deduction of inequality (2.5), Lemma 3.1. As in
Theorem 2.3 we find the following inequality
d
77 1Agun|[1z + Cw (4% + 4% +4%) [ Agun| 1.
< 1Az (unVun)|| L2 [[Az unl[ L2 -
Gronwall’s lemma implies
A7 un(t)]|L2
< ||Agug||L2 exp (—C v (47 + 4% 4 49) ¢)
+ C (exp (=Cw (4% 4+ 4% +4%) (1)) ([[Ag (un () Vun(-))ll22))(2) -
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Taking the L*(0,T) norm and using Young’s inequality gives
A7 un ()]l 4.(L2)
< Or VA (An 4 4% 4 4%) Y | Agug| 2
(1 —exp(=CrT (4% 4 4% + 4q3)))1/4
+Clexp (~C v (47 + 4% +4%) () ooy | Ag (V)| 2
< Crvm A (4% 4 4% 4 4%) 7V | Agug | e
(L —exp (—CuT (49 4 492 4 492)))/4
+ CuS/A (40 4 42 4 480) =3 Ag (Vi) 1.2
Again by Young’s inequality we have
(40 4 4% 4 4Q3)—1/4 < 948/2 9= (a:b,1/2)
It follows that
T (@012 Ag un(t)[|La (22
< Cv=H42072 | Agug | 2
(3.1) (1 —exp (—CvT (4% + 4% 4 433)))1/4
+ C 3/t (4% 4 492 4 4%)—3/4 97-(a,b,1/2)
-[|Ag (Unvun)||L2T(L2) .
Now we use the Lemma 3.1 to deduce that
A7 (un Vun)l L2 (2
= HAE div (un ® un)HL?T(L?)
< Ceyq (2—5-(2(1—3/2,21)—1/2,1/2) 1 9~T(20-1/2,2b-3/2,1/2)

+ 2_q.(2a—1/2,2b—1/2,—1/2)) ||un||-2FIBT,47a7b,1/2 :
where ||cg||¢z.21 = 1. Young’s inequality implies
(40 4 4% 4 4(13)—3/4 97 (a:b,1/2) 9=7:(20-1/2,26-3/2,1/2) < 1 ,
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Hence inequality (3.1) may be written as
27O | Az un| 14 (12
< Cu Y428/ 2| Agull||p: (1 — exp (—C v T (49 4 4% 4 4%)))1/4
F OV gl
Taking the £2%! norm gives
[unll B4 000/
< C 287 | Aguo gz (1 — exp (—C T (43 + 4% + 432))) Y4,
+ Cllun(T)[EBy s s
< gn(T) +Clunllfip, s 0o -
where
9u(t)=C 12972 | Aquol|rz (1—exp (~Cv T (47 + 4% +4%)) V220 .

We conclude as in Theorem 2.3. The fact that u € C([0, T[; HB%%1/?)
is proved as in the case of H® spaces.

PROOF OF THE GLOBAL EXISTENCE. Same proof as above by estimat-
ing
gn(t) S C |U0|HBO,0,1/2 .

The uniqueness theorem is also similar to the one of the case H?.
Theorem 3.3 (uniqueness). Let uy and ug be two solutions of (N-S)

which belong to HBr 4 4.,1/2MC([0, T ; HB%%Y/2) with the same initial
data in HB%%Y2 Then uy = us.

ProOF. Making the same computations as in Theorem 2.4, replacing

the £2 norms with the £?2-! norms and using Lemma 3.1 as shown above
we find

“ul - u2||HBt,4,a,b,1/2

< C ||u1 - u2||HBt,4,a,b,1/2(||u1||HBt,4,a,b,1/2 + ||u2||HBt,4,a,b,1/2) :

We conclude as in Theorem 2.4.
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4. Some imbeddings and nonimbeddings.

In this section we prove some imbeddings and some nonimbeddings
which are used to compare the results from the previous sections with

the results already known. We recall that one can solve (N-S) in the

spaces HY/2, By t3/7 2 < p < oo (see [2], [3], [7], [9]) and it seems very

difficult to do it in C~* (|Jullp; . = [|12°° | Agullpr[les and C=F = BZL).
It is also proved by H. Kozono and M. Yamazaki in [8] that one can
solve (N-S) in the homogeneous spaces /\/'3,{1{’;01, 1<qg<p<oo,p>3,

where /\/;f,q,r is defined to be the closure of the compactly supported

smooth functions under the norm

= |12* sup sup R3/P*=3/1||Ajull La(so,ry ller
o ER3 R>0

iing

p,q,r

where B(z0, R) denotes the closed ball in R® with center zo and radius
R. Let us remark that By, = N, .. We can prove the following
proposition:

Proposition 4.1. i) If 61 + d3 + 03 = 1/2, —=1/2 < §; < 1/2 for all
i € {1,2,3} and p > maxi<i<3(2/(1 —246;)) then

H5<—>Bp_7c1>j3/p<—>0_1.

i) L2NHOOV2 ¢ Ot

i) If 1 < g < p<3q/2, p>3, then HBYOY2 ¢ NP2 hence
HBY0:1/2 ¢ Bp‘,éjs/p for all 2 < p < co.

iv) HBY%1/2 <y 01,

Property i) shows that solutions of (N-S) were already constructed
by M. Cannone [2], F. Planchon [9] and H. Kozono, M. Yamazaki [8].
Property ii) suggests that the space H%%1/2 is very interesting as space
of initial data; unfortunately we cannot include it in our results. Fi-
nally, property iii) shows that H B%0:1/2 ig not included in the space
considered by H. Kozono and M. Yamazaki at least for some p and g¢; it
implies that it is not included in any of the spaces used by M. Cannone
and F. Planchon. The author doesn’t know if the non-imbedding of iii)
still holds for the other values of p and q.
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PROOF OF PROPOSITION 4.1. i) First we remark that if s < 0, then we
can replace A; with S; in the definition of the B} . space. By Lemma
1.1 we have

94(—1+3/p) 1S, ul| e

< C200T PN | A Lo

a1<q
q2<q

< ¢ 24(=1+3/p) Z 991 (1/2=1/p)+q2(1/2—1/p)+q3(1/2—-1/p) | Az ul| 2

a1<q

< CQq(—1+3/P) Z 2¢I1(1/2—1/P—51)+Q2(1/2—1/P—52)+q3(1/2—1/P—53)

a1<q
q2<q
a3<q
27 || Agul| 2
< C2q(—1+3/P) Z 991(1/2=1/p=61)+q2(1/2—=1/p—=62)+q3(1/2—-1/p—33) |u|g.

91<q
q2<4q
3<q
As 1/2 —1/p—6; > 0 for any i € {1, 2,3}, one deduces

Z 991(1/2=1/p—=061)+4q2(1/2—1/p—02)+q3(1/2—1/p—03)

<C 94(3/2—3/p—01—02—03)

¢ 24(1=3/p)

Hence [|u[| j-1+3/» < C'|ul5 and the first imbedding is proved. In or-
pP,00

der to obtain the second imbedding it is enough to apply the classical
Littlewood-Paley inequality

1Aqullp= < 227 (|Agul|Le
to multiply by 279 and to take the upper bound on g¢.

ii) As L? N #0:0:1/2 and C~1 are distribution spaces, the closed
graph theorem shows that it is enough to prove L2 N H®%:1/2 o4y 1.
Assume by absurd that L2 N H%%1Y/2 < C=1. Then

271 ||Squ||Loo S C HUHLzmHo,o,l/z y for all q.
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We choose v = f ® g where f : R® — C, g : R — C. It is obvious
that S,u = S,f © S,g and lull g0 = | Fllzellgllm 2, where in
Sqf, Sq is the 2D S, and in S,g, S, is the 1D S,. Hence

(41)  27Suf = Suglle < C ez lgllmz,  forall g

For each fixed ¢ we use the function f,(z) = fo(2?x), where f is
chosen with supp fo sufficiently small to get S,f, = f,, that gives

1Safalle = Ilfalle = [l follee and [|fgllz = 27][fol|z2 since we
work in two dimensions. Therefore, it comes from relation (4.1)

1Sq9ll= < Cllgllgre
that is H'/2(R) C L> which is false.

iii) As above we assume by absurd that HB%01/2 < NS/P2L and
we remark that if s < 0, then we can replace A; with S; in the definition
of the norm of the space N, .
Again, we choose u = f ® g where f : R> — C, g: R — C. It is

not difficult to see that the norm

sup sup Rs/p_s/qu ® 9llLa(B(z0,R))
zoER3 R>0

is equivalent to the norm

sup, sup R =39 f|| a2 ot 1)) 190 La(B2 02,y -
where B! and B? denote the one-dimensional, respectively two-dimen-
sional balls. This is done by including a cube of size R into the ball
B(zy, R), applying Fubini’s theorem, then including balls of radius R/2
into the one-dimensional and the two-dimensional cubes of size R and
finally taking the upper bound on R.
It follows that

2/(143/0) sup sup R¥P3/9)|S; f|| a2 (wy ) 115391 a3 (a2, R
$0€R3 R>0

< C Il ol

for all j, where the constant C' does not depend on j. Choosing ¢y = 0
yields

93 (=1+3/p) IS{U% Rg/p_g/qHijHLq(B2(O,R)) 1559 e (B2 (0,R))
>

< O fllLz ||9||B;,/f ’
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for all j. Now we fix j and we choose f;(z) = fo(27 ), the same example
as above. We also choose g to be a function whose Fourier transform is
a compactly supported smooth function. This implies that S;f; = f;
and S;jg = g for j large enough. Moreover, we have that

1S fillLacz0,m)) = I1fillzaB2(0,r)) = 272 foll La(m2 (0,2 1)) »

and .
1 fillz =277 || foll = -

It follows that, for j large enough, we have
21 (3/p=2/q) sup Rs/p_g/quO||L¢Z(B2(0,2J'R)) ||g||Lq(Bl(0,R))
R>0
< Cfollze llol gz
which implies
97 (3/p—2/q) sup R3/p_3/q||f0||Lq(32(o,R)) ||g||Lq(Bl(07R))
R>0
< Cllfollze lgll gy -

for all j > jo. Taking the limit on j — oo gives a contradiction.

iv) We write

27| Squllz= <279 ) [|Agul=

a1<qg

T
a1<q
q2<q
a3<q

<279 2022 202 | Agu] 2 |,

a1<q
q2<q

< 12972 || Aqul] el e
< 12972 || Agul|p2]lez2a
= [|ul| gpo.o.rse -

This completes the proof.
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One could ask whether the divergence free condition has an influ-
ence on the choice of the spaces where we can take the initial data or
not. The answer is negative because, if we look to the proofs above,
we see that the scalar counterexamples f we deduce have the property
that 01 f and Oof are again good counterexamples (differentiating fo
only diminishes the support of its Fourier transform), so we can take
as initial data ug = (02f, —01 1, 0).

Appendix.

In this paragraph we show how a general d-dimensional hyperbolic

symmetric system can be solved in B;jd/ 2(Rd). By general hyperbolic

symmetric system we mean a system of the form

U+ AU)-VU =0,
(S) {

U|t:0 — UO ’
where
A(U) = (A;(U))1<j<a
and, for all j, A;(U) is a symmetric smooth globally Lipschitz matrix

and U is a time dependent vector field in R?.

Proposition. Assume that Uy € L2 N B;jd/z. Then there exist a time

T and a unique solution of (S) on [0,T] in the space L*°(]0, T ; lejd/z).
Moreover, there exists a constant C' > 0 such that the maximal time
existence of such a solution may be bounded from below by

C

T> —— .
||U0||B;J;d/2

PROOF. The proof relies on the fact that Bi/f is imbedded in L*° and
on the following estimate:

Lemma. For all vector fields U in B%jdﬂ there exists a sequence
{cq}qen such that

|<Aq(A(U)VU)|AqU>| §02_Q(d/2+1)cq ||AqU||L2 HUHB;,-:d/z ||VU||L00 ,
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where

Zcqzl.
q

This lemma is well-known in the case of the Sobolev spaces and
the extension to the Besov spaces is simple. Decomposing the product
A(U) - VU in the usual sum of two paraproducts and a remainder,
using the classical product theorem for Besov spaces, we see that the
only term where a critical case appears is

<Aq(TA(U)VU)|AqU> .
Some easy computations done integrating by parts show that

(A (Tay VU A0)
= Z<[Aq7 Sp—14;(U)]0; AU, AgU)

p.J

1 .
-5 > Sp_1divA(U) Ag AU AU
p

1
“ 9 Z (Sp—1 — Spr—1) Aj(U) Ag ApU 05 g AU .

p,p',J

The last two terms are very easy to estimate, we need only to apply the
definition of the Besov spaces. The first term is estimated by remarking
that A, is an operator of convolution with the function

294 p(29.)
where h = F~1¢. Therefore
[Sp-14;(U), Agl a(z)
=210 [(5,14,(U) (@) = Sy 45 (U) ) B2 (e = ) alo) d.
Hence
[Sp-14;(U), Agla(z)| < C21" D ||VU]| e |y b (27:) |al .
Young’s inequality now gives

115p-14;(U), Agla()[|L: < C27[|VU|| L= la]|z: -



34 D. IFTIMIE
This proves the lemma.

We return to the proof of the proposition. We apply A, to (S) and
we take the scalar product with A,U to obtain

d
%HAqUH%z < [(Aq(AU) - VU)|AU)|
<0279 ¢, Ul grearz VU £ | AqU ]| 2 -

It follows that
U2HD AU (8)]| 2

t
< 202D || A U |2 + C/ ca(T) U ()| gyearz [VU(T)[ g dT-
0 2,1

Summing on ¢ yields

t
0Ol pgger2 < Vollgggars+C [ N0 gygrn VU)o dr.

Applying Gronwall’s lemma we find
t
U@l gy < [Vl exp (€ [ IVUu ) dr.
2,1 2,1 0
Next we use that B42 C L™ to write
t
IVU© i~ < 0@ ppsers < Wallpps exp (€ [ IVUElu dr)
2,1 2,1 0

If we note

ity =c / VU ()| dr

we obtain
fiit)y<c HUO“B;JQWQ exp (f(t)) -

Again by Gronwall’s lemma it follows

exp (=f(t)) 2 exp (= £(0)) — Ct[|Uo]| gy1ar= -
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Hence, as long as

Ct ||U0||Bl+d/2 <1 .
2,1

we have

¢
/ |IVU(7)||pe dT < 0.
0

Standard L? estimates and the inequality above imply uniqueness of
solutions. This completes the proof.
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