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Some Dirichlet spaces
obtained by subordinate

reflected diffusions

Niels Jacob and René L. Schilling

In this paper we want to show how well-known results from the
theory of (regular) elliptic boundary value problems, function spaces
and interpolation, subordination in the sense of Bochner, and Dirichlet
forms can be combined and how one can thus get some new aspects in
each of these fields.

Let A = L(z,D) be a second-order elliptic differential operator
with smooth coefficients on a bounded domain G with smooth boundary
0G and with Dirichlet or Neumann boundary conditions. Assume that
the operator is symmetric. Under Neumann boundary conditions, it
generates a reflected diffusion process {Xt}tZO which is associated with
a Dirichlet form £ with domain H!(G). It is clear that A defined on

D(A) = Hy/0,,(G) := {u € H2(G) : % u‘aG - o}

is also the generator of a sub-Markovian semigroup {1} }+>0 on L?(G).
Denote by fu, 0 < a < 1, the Bernstein function f,(z) = z®. By sub-
ordination in the sense of Bochner it is possible to construct for each
a € (0,1) four new objects, A(®) := —(—A)*, {Tt(a)}tzo, the semigroup
generated by A(®) £(®)(..) the Dirichlet form associated with A(®)
(and also with {Tt(a)}tzo), and the subordinate (with respect to the
Bernstein function x®) stochastic process {Xt(a)}tzo. These construc-
tions are of a somewhat abstract nature and some work has to be done
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if one wants to determine D(A()) and D(£(®) explicitly in terms of
function spaces. In fact, this work has already been done by R. Seeley
[18] for D(A(®)), and for D(E(™)) the results are even longer known, cf.
J. L. Lions and E. Magenes [13], and, as reference for both cases, the
monograph [22] by H. Triebel.

In our first section we collect some fundamental results on the
Dirichlet and Neumann problems for second-order elliptic differential
operators (with smooth coefficients in a domain with smooth boundary)
and the associated diffusion processes. Subordination in the sense of
Bochner will be discussed in Section 2, both from the analytic and
probabilistic point of view. In the third section we study D(A(®)) and
D(E®) under Dirichlet and Neumann conditions. In both cases the
domains are certain fractional order Sobolev spaces. Under Neumann
boundary conditions we have

DEWY = H¥G), ifae(0,1)
and
D(AW) = H%»,,(G), ifac (Z 1) :
DA = H2(@Q), ifae (0, Z) ,
under Dirichlet boundary conditions we have
).

1
DEW) = HYG), ifac (5, 1) ,

D(EW) = HY(G), ifae (o,

[NR

and
1
(@)) _ 772 : 1
D(A@) = g2(@), 1fa€(0,4>,
1
(@)) _ 772 : 1
D(A®) = H2(q) 1fa€(4,1>.
Here,

H}(G) :={ue H(G) : yu=0}
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with the trace operator v. One should note that these are well-known
results in the theory of elliptic boundary value problems, but they seem
to be rather ignored in the theory of Dirichlet forms.

Section 4 deals with the decomposition of the (Neumann) Dirichlet

space (Sia),HO‘(G)). We show that H*(G) can be written as an or-
thogonal sum H§ (G) @ H$(G) where the functions u € H§(G) are the

harmonic functions with respect to the form 8)(\0‘)* i.e. é’)(\a)(u, w) =0
for all w € H§(G). Moreover, we show that there is an isomorphism
Hg‘a) from H*~Y2(0G) to H$(G). This map establishes a unitary equiv-
alence between (Eia),%a(G)) and (Cia), H*~Y2(9@)), where Cga) is —
at least for A = 0 — the analogue of the classical Douglas integral. This
correspondence is further investigated in Section 5. In particular, we

show that (Cga), H*'2(9@)) is a regular Dirichlet space and that Cga)
is equivalent to the canonical scalar product on H*~1/2(9G) which it-

self is a Dirichlet form. The precise knowledge of D(Cga)) allows us,

for example, to derive certain LP-estimates for Cga) and thus L!-L*°-
estimates for the associated semigroup.

In Section 6 we construct the associated boundary processes and
show that the process generated by (Cga), H*='/2(9@)) can indeed be
obtaind by an appropriate time-change of the process generated by
(Cx, HY/%(0@)).

The final section takes up the Skorokhod representation of the re-
flected diffusion which was already discussed in the first section. We
use now Bochner’s subordination (with respect to fractional powers) in
order to derive a representation for the subordinate reflected process.
Note, that subordination is one possibility to construct a reflected sym-
metric stable process in a unique and natural way. However, in [24] S.
Watanabe pointed out that there are several methods of getting pro-
cesses which one could call reflected symmetric stable processes.

1. Dirichlet forms generated by elliptic differential operators
with boundary conditions.

In this section we summarize some results on Dirichlet forms that
are generated by second-order elliptic differential operators satisfying
Neumann or Dirichlet boundary conditions. In particular, we recall
some conditions that allow to associate stochastic processes to these
Dirichlet forms, reflected diffusions under Neumann boundary condi-
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tions and absorbing diffusions under Dirichlet boundary conditions.
Since we want to present our ideas as clearly as possible (and do not
want to get entangled in technical details) we will restrict our consid-
erations to rather smooth objects — thus getting at best sub-optimal
conditions from the point of view of Dirichlet forms, but keeping full
compatibility with existing (analytic) literature. Our exposition will,
later on, rely heavily on results from the theory of function spaces and
interpolation theory.

The main reference for this section is the monograph [8] by M.
Fukushima, Y. Oshima, and M. Takeda. For the Neumann problem we
refer especially to the paper [9] by M. Fukushima and M. Tomisaki. We
should, however, mention that the crux of that paper was to consider a
situation with rather weak regularity assumptions — which is somehow
an opposite point of view. Nevertheless we think it might be convenient
for the reader to have a state-of-the-art and easily accessible reference.

Let G C R™ be a bounded domain with smooth boundary 0G, i.e.,
0G is assumed to be a C°°-manifold. We consider the second order
differential operator

(1.1) L(z,D) = jf: —Ei—<akg(x)2£%2),

with coefficients agy = ag € C™°(G). Moreover, we assume that

n

(1.2) AER <) ane(w) & & < Mo €1,

k=1

for some Ao > 0 and all x € G, ¢ € R*. It is well known that the
quadratic form

(1.3) 5mw:GZ%mﬁhm@@m,
k,t=1

with domain H!(G) C L?(G) is a regular Dirichlet form, see [8, Ex-
ample 1.6.1], where the regularity problem is carefully discussed if
ake(z) = Oge. Therefore, cf. [9], there exists a conservative diffusion
process X = ({X¢}i>0,P%, {Ft}t>0) on G which is associated with the
Dirichlet form (1.3). For each ¢ > 0 and # € G the transition func-
tion p¢(z,-) of X is known to be absolutely continuous with respect to
Lebesgue measure, and X is a strong Feller process.
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Due to our regularity assumptions, the domain D(A) of the gener-
ator A of the Dirichlet form £ is given by

D(A) = {uem(G) : 2u_o}

ov
where 0/0v denotes the derivative in direction of the outer normal
v = (v1,...,V,) to the boundary 0G. Sometimes we will also write

H/5,)(G) = D(4).

On D(A) we have A = L(x, D) which can be interpreted to hold in
strong L2-sense, but, of course, also in the sense of distributions. Let
us observe for later applications that (L(x,D),d/dv) forms a regular
elliptic boundary value problem in the sense of S. Agmon, A. Douglis,
and L. Nirenberg [1], see also [22] which will be our standard reference.

The general theory of Dirichlet forms shows that we can always as-
sociate a sub-Markovian semigroup {7} }+>0 on L?(G) with (£, HY(G)).
In our case, this semigroup enjoys the strong Feller property, it is con-
servative, 7.e. T;1 = 1, and its transition kernels have densities with
respect to Lebesgue measure on G, i.e., we have

Tou(s) = E* (u(Xy)) = /a P, y) u(y) dy.

We call {Tt}tZO the Neumann semigroup associated with the Dirichlet
form (&, HY(QG)).

One of the major aims in [9] was to obtain a Skorokhod representa-
tion of the process X under minimal smoothness conditions. Of course,
this result remains valid in the situation considered here and reads as
follows: Let Xf denote the k-th coordinate of Xy, 1 <k <n. Fort >0
and x € G one has almost surely (P?)

R T

no
+Z/0 ae(Xs) ve(X) dL, .
/=1

Here, MF, 1 < k < n, are continuous additive functionals in the strict
sense, see [8, p. 181, p. 326] for the definition, satisfying

(1.4)

(15) E*(MF) =0  and ]E“”(Mtka):ZE””(/takg(Xs)ds),
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for t > 0 and & € G. The processes M} are continuous martingales
(under P?) with co-variation

¢
(1.6) <Mk,M£>t = 2/ ae(Xs) ds, almost surely (P*),
0

for all z € G. Moreover, L; is a unique positive continuous additive
functional in the strict sense with Revuz measure o and supported by
0G and one has

t
L, :/ log(Xs)dLs .
0

Let G C R" and L(z, D) be as above. We consider now the quadratic
form £p := € on the domain H}(G),

VarYraLiL

Hy(G):=C5o(G) 7, where || - [ly = || [lz2 + [V - |2 -

Clearly, (£p, H3(G)) is a regular Dirichlet form and its generator Ap
has the domain

D(Ap) ={u € H*(G): yu =0},

where v : HY(G) — HY?(0G) is the trace operator. As usual, v is the
continuous extension of the map u — u o When u € C%° (G). Thus,
yu = 0 means that u attains 0 as boundary value. The space Hj(G)
can now be characterized by

Hi(G)={uec HY(G): yu=0}.
(In Section 4 below, we will have a closer look at the trace operator.)
The Markov process associated with the Dirichlet form (£p, H3(Q))

is known to be an absorbing (elliptic) diffusion process. Since G is
bounded, the following Poincaré inequality holds

/G|u(x)| dr < CO/G|Vu($)| dx u € Hy(G).
By (1.2), (1.3) we get

)\gl/ V()2 de < £(u,u),
G
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and therefore
(1.7) (co )\0)_1/ ()2 dz < E(u, u) .
G

This, however, means that on H}(G) the form £(-, ) is a scalar product
which is equivalent to the canonical one (-, ).

Let us return to the Dirichlet form (€, H(G)). We introduce the
space

HYG) :={ue H' (G): E(u,¢) =0forall ¢ € CF°(G)},
or, equivalently,
(1.8)  HYG)={ue H(G): E(u,v) =0 for all v € H}(G)}.

Since H'(G) is a closed subspace of H'(G) there is an orthogonal de-
composition

(1.9) HY(G) = H'(G) @¢ Hy(G),

and it is clear that H!(G) consists of all solutions of the equation
L(z,D)u = 0 in G such that u and its first order partial derivatives
belong to L2(G). In particular, the elements of H!(G) are arbitrarily
often differentiable on G.

If age(x) = Oge, (1.9) is exactly the Weyl decomposition. Let us
mention a special case when n = 2 and G = B1(0) is the open unit disk
with boundary G = S'. It is well known that one can construct a
Dirichlet space (C,D(C)) on the boundary such that there is a one-to-
one correspondence between (C, D(C)) and the classical Dirichlet space

(£/2,H(G)). Here
E(u,v) = Vu(x) - Vu(z) dz,
(u,v) /1(0) () (z)

and the form C is explicitly given by the Douglas integral

C(¢,9)
= ﬁ :W :W (6(0) — $(0)) (1(6) — 1 (¢)) sin~2 (9 _ 9/) dode’

compare [8, pp. 12-13]. In Section 5 we will give a generalization of this
result.
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2. Subordination in the sense of Bochner.

Definition 2.1. An arbitrarily often differentiable function f : (0,00)
— R is called Bernstein function if f > 0 and (—1)"f™ < 0 hold for
alln € N.

Bernstein functions can be fully characterized by a Lévy-Khinchin
formula,

(2.1) f@)=atvat T (- o) u(ds),

with a,b > 0 and a non-negative measure p on (0,00) such that

/Ooos(s+1)_1,u(ds)<oo.

The representation (2.1) shows that f has an analytic continuation onto
the complex half-plane Re z > 0 and is continuous up to the boundary.
These and many other properties can be found in the monograph [3]
by C. Berg and G. Forst. We will need one more fact about Bernstein
functions (e.g. [3, Theorem 9.8]).

Theorem 2.2. Every convolution semigroup {n;}¢>0 of sub-probability
measures on [0,00) is uniquely characterized by some Bernstein func-
tion f, and vice versa. This correspondence is given by

/ e ny(ds) = et (@)
0

Some of the most prominent Bernstein functions are the fractional
powers,

ety [0 ez00<at

The corresponding convolution semigroup is the one-sided stable semi-
group of order c.

Definition 2.3. Let {T}};>0 be a sub-Markovian semigroup on
L?(X,m) where X is a locally compact Hausdorff space and m is a Borel
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measure such that suppm = X. Denote by {n:}s>0 the convolution

semigroup with Bernstein function f. The semigroup {th}tZO defined
on L*(X,m) by the Bochner integral

thu,:/ Tsung(ds)
0

is called the subordinate semigroup of {T}}i>0 with respect to {n:}e>o0
or with respect to f.

It is known that the subordinate semigroup is sub-Markovian and/
or Fellerian if the original semigroup is. A lot of results concerning
the domain of the (subordinate) generator Af of {T} }e>0 and related
functional calculi are known, see e.g. [11], [2], [16], [17]. In the next
section we will use a characterization of D(A™”) as interpolation spaces.

Assume that {T}};>¢ is a sub-Markovian semigroup with genera-
tor (A, D(A)) and corresponding Dirichlet form (£, D(€)). By subor-
dination — as above f is a Bernstein function — we get the subordi-
nate objects, {th}tzo, its generator (Af, D(AY)), and Dirichlet form
(EF,D(E7)). Let us assume that f is a complete Bernstein function,
which means that the representing measure p in (2.1) is of the form

u(ds) = / e p(dr) ds,

where p is a measure on (0, 00) such that

oo
d
/ pldr) _
o r(l+r)
Note that fractional powers are complete Bernstein functions. (Some-

times complete Bernstein functions are also called operator monotone
functions, see E. Heinz [10]). From [16, Theorem 5.3] it follows that

(2.3)  Jul22 < c&(u,u)  implies  [Jul2. < ﬁc‘:f(u,u),

for all u € D(E). The latter holds also on D(E7), since we have the
dense inclusions D(A) C D(€) and D(A) C D(EF).

Let us now discuss some probabilistic aspects of subordination.
Denote again by f a Bernstein function, by {n;};>0 the associated con-
volution semigroup on [0,00), and assume that f(0) = 0, thus ny = do.
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We may interpret {n;}+>0 as transition probabilities of a stochastic pro-
cess {Y:}s>0 with stationary and independent increments and cadlag
trajectories. Since 19 = dp and since the measures 7; are supported
on [0,00), we have almost surely Yy = 0 and almost surely increasing
paths ¢ — Y;. The converse assertion is also true: every such process
defines (uniquely) a convolution semigroup of probability measures on
[0,00). We will call {Y;}¢>0 subordinator.

Let { X}, §t}+>0 be a Markov process with Polish state space (E, 2B)
and {Y;};>o be a subordinator which is stochastically independent of
{Xt}tZO- Then

(2.4) X/ (W) == Xy, () = Xy, () (W), t>0,

defines a new process {th}tzo with filtration {SYt}t>0' We say that

{th}tZO is obtained from {X;};>o by subordination with respect to
{Yi}i>0 and call it subordinate process to {X;}i>o-

Theorem 2.4. Let {X;};>0 be a Markov process, {I}s>0 the as-
sociated operator semigroup, {Y;}i>0 a subordinator (independent of
{Xi}e>0), and f the corresponding Bernstein function. For all Borel
sets BeB, z € F, andt > 0 we have

P*(Xy, € B) = T/1p(z) = P*(X] € B),

where {th}tZO stands for the Markov process corresponding to the sub-
ordinate semigroup {th}tZO'

This result can be found in [5].

3. Subordinate Neumann and Dirichlet semigroups.

Let us return to the s_ituation of Section 1 and consider the Dirichlet
form £ on H'(G) C L*(G) and generator A = L(z, D) with domain

D(A):{ueHZ(G); %u:O}.

The semigroup associated with it, the Neumann semigroup, is denoted
by {T}}¢>o0-
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For any Bernstein function f the subordinate semigroup {T; He>o0
is again sub-Markovian. Thus, by the general theory of Dirichlet forms,
there exists a corresponding Dirichlet form £7 with domain D(£7) and
generator (A, D(AY)). As usual,

D(e7) = D((-AH)'?),

and, if f is written in terms of its representation (2.1), the subordinate
generator Af is given by

Afu:—au+bAu+/ (Tsu — u) p(ds), u € D(A).
0

This formula is due to R. Phillips [15] and refinements thereof are,
e.g., given in [11], [2], [17]. These results are, however, of an abstract
nature. We want to determine D(AS) and D(£7) in terms of function
spaces. To do so, we will restrict ourselves to the case where f(z) = z%,

0 < a < 1, and write {Tt(a)}tzo, £@ A instead of the clumsier
{T;" }+>0 etc. In fact, we have to deal with fractional powers of the
operator —A. Using complex interpolation, R. Seeley determined in
[18] the domains of fractional powers of elliptic differential operators
under regular boundary conditions.
For G € R", 0G smooth, and s > 0 we define the space
H*(G) = {u],: ve H*R")}
normed by

ullg=(qy = inf {wlls : w|, =wvinD', we H[R")},

where H%(R™), s > 0, is the space
) = {ue @) ul2 = [+ 1Py QP e < o}
R

For any s > 0, H*(G) is a Hilbert space and C*(G) is a dense subspace.
Let us finally define for s > 3/2

(3.2) Hiy 00y (G) i= {u cH (G): L= o} .



70 N. JacoB AND R. L. SCHILLING

Observe that H?a/au} (G) coincides with D(A). Denote by |[-;-]4 com-

plex interpolation between the spaces inside the brackets, see e.g. [22],
[21]. Tt is well known that

(3.3) D(A®) = [L3(G); D(A)]., 0<a<l,

holds. The following precise characterization is due to R. Seeley [18,
Theorem 4.1]:
Theorem 3.1. Let {Tt(a)}tzo, A and £ be as above.

A) For 0 < a < 1 we have D(£(®)) = HY(G).

B) For 3/4 < a < 1 we have D(A(O‘)) = H?g/a,,} = (G).

C) For 0 < a < 3/4 we have D(A®)) = H?**(@).

There is a similar result for the Dirichlet form (€p, H} (G)). Denote
by {St}¢>0 the sub-Markovian semigroup given by this Dirichlet form.

As above, let {St(a)}tzo be the subordinate semigroup with respect to
fractional powers z%, 0 < @ < 1. We will need some facts on Sobolev
spaces, see [22], [20], [21] as standard references. For any s > 0 let

H(G) = (@) Then
(3.4) HY(G) = HI(G), if0<s< %
If s > 1/2, we define
(3.5) H}(G) :={ue H*(G): yu=0}
and one has, cf. [22, p. 210],

HE(G) = H(G), if% <s<l.

Here v : H*(G) — H*~'/2(9G) is again the trace operator, cf. Section
1. We can now state the analogue of Theorem 3.1 which is also due to
R. Seeley [18, Theorem 4.1].

Theorem 3.2. Let 51(3&) and Ag) be the Dirichlet form and the gener-

ator associated with the sub-Markovian semigroup {S,f“)}tzo.
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A) For1/2 < a < 1 we have D(c‘:l()a)) = H3(G).
B) For 0 < a < 1/2, we have D(c‘,’l()a)) = H*(G).
C) For1/4 < a < 1 we have D(A\Y) = H2(G).

D) For 0 < a < 1/4 we have D(Ag‘)) = H*¥(G).

In view of (3.4)—(3.6) we may restate the above assertions in the
form D(EXY) = HE(G) for 0 < a < 1 but o # 1/2, and D(AY) =
H2*(G) for 0 < a < 1 but @ # 1/4. The values o = 1/4,1/2 — and also
the case & = 3/4 of Theorem 3.1 — must be treated separately. We will
not do this here.

Recall that on Hj(G) the form & satisfies Poincaré’s inequality
(1.7). By (2.3) we see that

(3.7) )22 < co Ao ) (u, w)

holds for all v € H§(G). Thus, £(*) defines a scalar product that is
equivalent to the canonical one (-,-), of H§'(G).

Suppose (just for the next few lines) that the coefficients of L(x, D)
are defined on the whole space R"™ and that the fractional powers of this
operator — i.e. acting on functions defined on R™ — are considered. One
should note that, in this case, the Dirichlet problem for the fractional
powers of L(z, D) is different from the subordinated Dirichlet problem
discussed above, see [12].

4. A Weyl decomposition of (£(®) H*(G)).

Let € be the Dirichlet form (1.3) with domain H!(G) and generator
A under Neumann boundary conditions, i.e., with domain H {26 oy (G).

For 0 < o < 1 denote by £(®) the Dirichlet form obtained by subordina-
tion with respect to the fractional powers f,(z) = z®; by Theorem 3.1
its form domain is the space H*(G). The aim of this section is to show
how one can get a Weyl-type decomposition of H*(G) with respect to
the Dirichlet form.

We put

£ (u,v) i= (A — A)%%u, (A — A)*/%0) ,
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and identify 5éa) and £(®). Clearly, (8>(\a), H*(@)) is again a Dirichlet
form, and for A > 0 the form é’)(\a)(-, -) is a scalar product, cf. (2.3),
that is equivalent to the one on H*(G). Moreover, the quadratic forms

5>(\a)('7 ) and (Aa/z', A/?. )L2 + )\(-, -)L2 are equivalent. On the space

H§(G) this remains true even for 85“)(-, ), cf. (3.7).
For 0 < o <1 and A > 0 we call the functions in

(4.1)  HY(G) = {ue H*G): & (u,v) =0 for all v € HS(G)}

Nl

5)(\a)—harmonic functions. Since C3°(G) = H$(G), one has also

HY(G) = {ue H*(G): £ (u,¢) =0 for all ¢ € CF(G)} .
We can now state the main result of this section.

Theorem 4.1. Let (8)(\0‘),H°‘(G)) be as above. For all 0 < a <1 and
A > 0 one has the orthogonal decomposition

(4.2) H(G) = HI(G) g Hy'(G).

If « > 1/2, this decomposition is non-trivial in the sense that H§(G) 2
{0} and there is a canonical isomorphism

(4.3) ™ . Ho12(0G) — HY(G).

Proor. We will, first of all, consider the case 0 < o < 1/2. Then
H*(G) = H§(G), and the condition in (4.1)

N u,0) =0,  forall v e HY(G)

implies that v = 0. This means that we cannot expect any non-trivial
decomposition of type (4.2) if « < 1/2.

Assume now that 1/2 < o < 1 — as already mentioned, the limiting
case @ = 1/2 will not be considered here. Note, however, that o =
1 does not play any special role and will always be included in the
following considerations. Now H§ (G) and H§(G) are closed subspaces
of H*(G), and since for all u € H*(G) the condition

N u,0) =0,  forall v € HY(G)
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implies that v = 0, the decomposition (4.2) is orthogonal. (These
considerations are still valid for o = 1/2.)

In order to show that Hg\a) is an isomorphism we have to recall some
properties of the trace operator . Again, [22, in particular Section 4.7]
will be our standard reference. For 1/2 < s < 3/2 we define v as above,
cf. Section 1. Then vy : H*(G) — H*~'/2(dG) is continuous and onto,
and there exists a bounded linear operator 4 : H*~1/2(0G) — H*(G)
such that v o4 = id on H*~Y/2(dG). The kernel of v, i.e., its null-
space is just H§(G). Thus, for any v € H*(G), 1/2 < s < 3/2, the
trace yu € H*71/2(0G) exists and yu = 0 implies that v € H§(G).
Conversely, for ¢ € H*71/2(9G) there is a ug := 7 ¢ € H*(G) such that
Y ug = ¢. However, the mappings are not canonical, in the sense that
yu = vyw does not imply u = w.

Our aim is to construct a continuous, bijective linear map from
HS(G) to H*Y/2(9G), a > 1/2. By the results of the preceding para-
graph we find for every ¢ € H* '/2(0G) some f € H*(G) such that
vf = ¢. Define a linear functional A ; on H*(G) by

$ i) =8P (f0),  ve HYG).

By our assumptions, é’)(\a)(-, -) is for all A > 0 a scalar product which
is equivalent to (-,-)o on H§(G). An application of the Lax-Milgram
theorem shows that there exists a unique element wy y € H§(G) such
that

E7 W r,0) = A% (), e HF(G),

holds. We define

uxfi=wrf— [

Claim 1. uy 5 is contained in H$(G). Indeed, for any v € C5°(G) we
get

EN (up 1, 0) = E (wa g, v) — EX(f,v)
= A 4 (v) — E(f,v)

= &P (f,v) - EX(f,0)
=0.



74 N. JacoB AND R. L. SCHILLING

Claim 2. uy ¢ depends only on ¢ =y f and the map ¢ — uy ¢ = uy ¢
is linear. Let f1, fo € H*(G) such that fi # f2 but vf1 = vf2 = ¢.
Thus, f1 — f2 € HF(G) and each f; has an orthogonal decomposition

(4.4) fj = U\, f; + WA f5 ] = 1,2,

where uy 5, € HY(G) and wy y;, € HF(G). For every v € Hg (G) we get

EN(f1— forv) = EX (ung, — gy 0) + E (W, — wWa gy 0)

Since f1 — fo € HF(G) and wy ¢, —wx 5, € HF(G), we find fi — fo =
WA, f, —WA,f,, hence uy y = uy 5. The linearity of ¢ — uy 4 is obvious.
We have seen so far, that

0 : HOV2(0G) — H(G), ¢ urg,
is a well-defined linear operator.

Claim 3. The mapping Hg\a) is bijective. Suppose that Hg\a)(qﬁ) =0 for
some ¢ € H*"Y/2(9G). But 0 = Hg\a)(qﬁ) € H§(G), thus ¢ = 0, i.e.
(" is injective.

In order to see surjectivity, choose any v € H{(G) C H*(G) and
observe that there is a ¢ € H*"Y/2(0G) such that yu = ¢. We can

thus define uy 4 := Hg\a)(qﬁ). Since yux g = ¢, we find uy 4 —u €
H§(G) N HS(G), therefore uy 4 = uw. This is but to say that Hg\a) is
onto.

Claim 4. The mapping Hg\a) : HYY2(0G) — HS(G) is continuous
(the Hilbert spaces are equipped with their canonical, respectively, in-
duced canonical scalar products). Since the Hilbert space H*(G) is the
orthogonal sum of two closed subspaces, the projections

m o HY(G) — HS(G)  and 7 : HY(G) — HI(G)

are orthogonal projections, hence continuous. By definition, v is also
continuous, and so is the composition Hg\a) = Ty 07.
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5. An analogue of the Douglas integral.

As in the preceding sections, G denotes a bounded domain with
boundary dG which shall be a C'°°-manifold. Let us have a closer
look at the spaces H*"Y2(9G), 1/2 < a < 1. Following J. Wloka
[25, Chapter 4.2] we can define on H*~Y/2(9G) an equivalent norm in
the following way: Choose a finite cover {U; }] 1, Uj C 0G, of 0G by
coordinate patches, and denote by {p; 1M j=1 a partition of unity relative

to this covering. For any ¢ € H*~/2(0G) we put ¢; = pj¢p. Then

|- [l ra—1/2(5G) 18 equivalent to the norm ||| - [|| ga—1/2(ag) Which is given
by
M
6.1) 0B 0y = S 511 17200
j=1
Here,
110511 Bao-vq0y = [ 165@)P o)
(5.2)

95(2) — &5 ()1
/aG/aG |a;— |n 2+2a o(dz) o(dy),

where o is the surface measure on 9G. Let us denote by (8(6‘), D(S(O‘))
= H*"1/2(9G) the quadratic form

S (¢, )

= Jz::l o ¢;(z) Yj(x) o(dr)

(5.3)
+ E /a - o(dz)o(dy) .

|.T _ y|n 24+2c

It is obvious from (5.3) that (S(®), D(S(®)) is a regular Dirichlet form
on L%(0G). In particular, the unit contraction operator Npg(¢) =
(0V ¢) A1, leaves the form domain D(S(®) = H*~1/2(9G) invariant
and operates continuously thereon, i.e.,

8 (Nag (), Nog(¢)) < 8 (¢, ), ¢ € D(S).
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Denote by Ng, Ng(u) := (0 V u) A 1, the unit contraction defined for
functions v : G — R. Since H*(G) is a Dirichlet space with respect
to its canonical scalar product, we find as above that Ng : H*(G) —
H*(@G) is continuous and operates on any Dirichlet form with domain

He(G).

Lemma 5.1. Lety be the trace operator and Nyg, Ng unit contractions
on 0G and G. For u € H*(G) we have

(5.4) v(Ng(u)) = Nog(yu).

Proor. For h € C(G) N HY(G) the assertion (5.4) is straightforward.
Since v, Ny, and Ng are continuous operators, so are their compo-
sitions v o Ng : H*(G) — H*"Y2(9G) and Npg oy : H¥(G) —
H*1/2(9@G), and (5.4) follows from the density of C(G) N H*(G) in
H*(G).

Let 5)(‘a) (+,), Hg\a), and H§(G) be as in the preceding section. Then
7 (90 = £ (V@) I W), pow e HTVAIG),
defines on H*~'/2(9@) a bilinear form. We know already that Hg\a) :
HY=1/2(0G) — H$(G) is a linear, continuous, and bijective operator.

Since (H$(G), (-, -)a) is a closed subspace of HY(G), it is itself a Hilbert
space and there exist constants ci,ce > 0 such that

(55 alltluire) < M 6)lre6) < e2llélaa-i/2q0)
holds. Hence, Cga) is a closed form on H*~1/2(9G).

Theorem 5.2. The bilinear form (Cia),Ha_l/z(aG)) is a Dirichlet
form.

PrROOF. Cga) being a closed form, it remains to prove the contraction
property for the unit contraction Nag,

C\ (Nag (9), Noc(4)) < C\ (¢, 4), ¢ € H*Y2(9G).

In order to see this, we show first that

(5.6) Ne{(¢) = I (Nog(9)) + 95, b€ HV2(0G),
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where Hg\a)(Nag(qﬁ)) € HY(G) and gy € HF(G). Since the decomposi-
tion (5.6) is necessarily unique, it is sufficient to prove that the traces
satisfy

Y(Ne (11 (¢))) = 7 (1L (Noa (4)))

that is, since v o Hg\a) = id on H*"Y2(0@),

Y(Na(I{ (4))) = Noc (¢) -

This, however, is just the assertion of Lemma 5.1. Using (5.6) we find

) (6, 0) = £, (1157 (9), 117 (¢))
> & (N (11 (4)), Na (115 (4)))
= & (I (Noc (9)), I (Nac (4)))
+ 2 (T (Noa (9)), 96) + E (94, 95)
> Cia) (Noc (), Noc(9)) ,

and we are done.

Let us return to the Dirichlet form (S(®, H*=1/2(9G)). Since S(»)
is a closed form on HOY2(9G), 8$(-,-) == S@(,-) + (-, ) is
for any p > 0 a scalar product which is equivalent to (-, ) ga-1/2(56)-
Similarly, Cgoﬁ(, )= Cia)(-, )+ u(+,+) 2 is also a scalar product which

is equivalent to (-,) ga-1/2(5g), thus SP(LO‘) and Cgalz are equivalent to
each other. Since both are Dirichlet forms, we can associate with each
of them a Hunt process with state space dG. One may expect that the
comparability of the forms carries over to the processes. Let us briefly
explain this point for L-L*>-estimates of the semigroups

S(oc) C(O‘)
{Tt " } and {Tt ’\’“} .
>0 >0

It is known that on the spaces H*~1/2(9G) a Sobolev inequality holds,
that is

(5.7) lullroa) < cllullga-rr206y,  P=—""7-
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Note that p > 2 if 1/2 < a < 1. By (5.3) we get for g > 0

(@)

lullZoioe) < ¢S\ (wu)  and  lulZ,oq) < ¢ CX ().

This implies, ¢f. Varopoulos et al. [23], that both semigroups satisfy
the estimates

sy / ert
HTt L1—[c© = C“ t(2(n—1))/(2a—1)
(5.8) and
) 1 et
‘ T, L1_Loo S Cu 1(2(n—1))/(2a-1) *

In this section we have constructed the boundary Dirichlet form asso-
ciated with the subordinate process {Xt(a)}tzo and, likewise, with the
Dirichlet form (£(®), H¥(G)). In the case of a Brownian motion, this
was first done by M. Fukushima [6], and in a rather general (but ab-
stract) way for general regular symmetric Dirichlet forms by M. Silver-
stein [19]. Here, as in the whole paper, we provide explicit constructions
which allow us to determine precisely the domains in terms of function
spaces. This yields additional information for studying the Dirichlet
forms and/or the corresponding (boundary) process.

6. The process associated with Cg\a).

We will now study the stochastic process which is generated by
the Dirichlet form Cg\a) on the boundary 0G. We will closely follow
the ideas of [8], in particular Chapter 6.2. Notice, however, that the
process {X) :}+>0 generated by L(z, D) — A under Neumann bound-
ary conditions is a nice Feller process with smooth densities. We may,
therefore, do without the exceptional sets which frequently occur within
the framework of Dirichlet forms — for a discussion of this point in
the general theory we refer to M. Fukushima’s paper [7]. In order to
avoid technical complications we will always assume A > 0. We con-
clude from this, that the extended Dirichlet space and the original one
(Eia),HO‘(G)) coincide.

Let us begin with @ = 1, i.e., the reflected diffusion process

{Xat}e>o0
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(with filtration {§x¢}+>0) associated with the Dirichlet form
(5)\7 Hl (G)) )

where A > 0 and Ex(+,) := E(+,-) + A(+,-)p2 with £ as in (1.3). If 0G
is smooth, the surface measure o is a smooth measure in the sense of
[8, p. 80], because by (5.15) — take @ = 1 — and the finiteness of o the
surface measure o is even a measure of finite energy integral [8, p. 74],
hence smooth. Thus, there is a unique positive continuous additive
functional {Ly ;}+>0 such that o is its Revuz measure, see [8, pp. 187-
188]. One can check that {L+}¢>0 is the boundary local time, i.e.,

¢
(6.1) L)\,t:/ log(Xas)dLy s
0

holds, and that the support of {Ly ;}+>0 equals 0G. Write {7 ;}¢>0 for
the generalized right-inverse of {Ly ;}+>o0,

(6.2) Tat(w) :=inf {s > 0: Ly (w) > t}.

Clearly, {7a+}¢t>0 is a subordinator. We may now apply [8, Theo-
rem 6.2.1].

Theorem 6.1. Let L(x, D) be as before and denote by {Xx ¢, Sxt}te>0
the Feller process corresponding to the Dirichlet form (Ex, H*(G)). The
time-changed process {XA,U,” SAyTX,t}tZO 1s given by the Dirichlet form
(Cx, HY2(0@)), A > 0.

This theorem implies, in particular, that the boundary process
{Xx, 7, Je>0 is comparable (on the level of Dirichlet forms) with the
process on 0G being associated with the form

(G5 ) mrzea) +AGs ) L2, H'?(0G)) .

The latter, however, should be thought of as a perturbation of a Cauchy
process on the boundary.
Let us now discuss the subordinate processes, i.e., the processes

associated with (8)(\a),H°‘(G)) and (c§“>,Ha—1/2(aG)), a > 1/2 and
A > 0. Denote by {Yt(a)}tzo a one-sided a-stable subordinator with
Bernstein function f,(z) =z, 0 < a < 1. As for (2.4) we may choose
a version of {Yt(a)}tzo that is independent of {Xy +}¢>0. Then

X>(‘C:;) (w) = X)\,Yt(a) (w) = X)\,l/t(a) (w)(w) , t Z 0
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is the subordinate (reflected diffusion) process (in the sense of Section
2) given by (Sia),HO‘(G)). Its filtration is {SA v }t>0.

Due to a result of St. Orey, [14, p. 123], oG twill be a zero-capacity
set if and only if @ < 1/2. Therefore, the assumption a@ > 1/2 is
necessary in order to obtain a smooth boundary measure ¢ and, thus, a

positive continuous additive functional {Lg‘at)}tzo with Revuz measure
o. As above, the finiteness of o and (5.5) prove that for v > 1/2

the measure ¢ is indeed smooth. Again, Lg\at) can be identified with
the boundary local time for X §\o;) — i.e., (6.1) holds with some obvious
changes — with support in 0G, and {Tii)}tzo will be its generalized
right-inverse.

Theorem 6.2. Let {Xg),g)\,n(m}bo be the subordinate reflected
diffusion process corresponding to the Dirichlet form (8)(\a),Ha(G)),

1S given

a > 1/2. The time-changed process {X>(\C,XT)§”‘t>’S>\vYo(a)°T§?l) }tZO

by the Dirichlet form (Cg\a), H*Y2(0@)), A > 0.
Starting with (€x, H'(G)) and {Xx.:}t>0 we have, so far, con-
structed three new Dirichlet forms and stochastic processes.
e The associated boundary Dirichlet form/process
Cx, HY*(0G))  and Xy, ,, >0,
where 7, ¢ is the generalized inverse of the boundary local time L; of
the original process.

e The subordinate Dirichlet form/process

&M HYG)  and X=X t>0,

A,Yt(a) Y

where a > 1/2 and Yt(a) is a one-sided a-stable subordinator.

e The boundary Dirichlet form/process associated with the subordinate
form/process

€™ Ho=2(0G)) and XY =X t>0,

) AYor(®)

where « > 1/2 and 7')(\02) is the generalized inverse of the boundary local
time Lg\cft) of X )(\C;)
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It is natural to ask, whether the boundary process X;a)(a) of the
Tt
subordinate process can be directly obtained as subordinate process to

Xxry.¢» €., to the boundary process of the original process. A partial
answer to this question is given below.

Theorem 6.3. Let L)\yt,T)\,t,Lg‘at),TSi), and Y;(a) be as above. Denote

by { X, te>0 and {Xii)gag}tzo the boundary processes induced by

the Dirichlet forms (Cx, HY?(0G)) and (Cg\a),Ho‘_l/z(BG)), a>1/2.
Then

(6.4) pati=Lxeo Y.(a) o T)(‘a) t>0

it

defines a time-change for the process { X r, , }t>0, and we have

(65) meope=YeVory and X, = Xar o s

LD N 7
i.e., the boundary process of the subordinate process can be represented
as time-changed boundary process of the original process.

ProoOF. Clearly, the process py ; is an almost surely positive, increasing
cadlag process such that py o = 0 almost surely. Note that Y.(O‘) o i‘?

is an § ¢-stopping time. Once (6.5) is established, we see from

{prs < s} ={me0oprt <Trs}= {Yo(a) o Tg) < Tast € Tams s

where s > 0, that {px¢}¢>0 is a family of F» -, ,-stopping times, hence
a time-change.

It is therefore enough to prove (6.5). Since 7y, is a right-inverse,
we have always Ly ¢ 07y = t, but 7\ o 0 Ly ; = ¢ holds only at increase

times ¢t of Ly ;. In order to check that Y.(a) o 7')(\02) is almost surely an
increase time of L) ; we have to prove that

X e esupp{Lxs}:={z € G: P*(1h0 =0) =1}.

ALY o
For any w € Qand ¢ > 0

X (), (o) (@)
P ALYy OT)\,t

(o =0)
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_ -1 (a) _
- P(QY.(Q)OT)(\at) T)\’O N 0} | SA:Yo(a)OTiat)-l-)

=P(inf{s>0: Li‘y‘;&, > 1@y =) [Br i ori 1)

)"T>(\C,¥t)
e Y . 7 () _
= P(lnf {s>0: LA78+T>(\3) >t} =0]| S)\,Y.(Q)OT)(&)_*_)
=1

(@)

since 7,% is by its definition the right endpoint of every interval of

constancy of Lg\at) . We have thus seen that up to an exceptional (i.e.
capacity zero) set, say Ny,

XMY.(Q)OTS;) € supp {Lg\at)} :

Since supp {Lg\at)} is a quasi-support of the Revuz measure o, cf. [8,
Theorem 5.1.5], we have supp {Lg\at)} = 0G up to another exceptional
set, NQ(O‘), say. Thus,

X

1
)\7Y.(a)o7_)(\?¢t) € supp {L)\yt} UN; U N2(a) U NZ( )

The set N = Ny U Néa) U Nz(l) is again exceptional and, under our
smoothness assumptions, even polar with respect to {X g??}tzo, see |8,
Theorem 4.1.2]. Therefore we have for all ¢t > 0 and z € G

Xy € ) = () B (sap (X)) =0

Consequently, X, () € SUpp {Lx+} holds almost surely (P*) for
At

Yo
every x, and (6.5) follows.

In general, it seems to be wrong that the boundary process of a
subordinate process is some subordinate to the boundary process of the
original process, since, in general, py ; is neither a Lévy process nor an
independent process.
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7. The subordinate reflected diffusion process.
Let {X;}+>0 be the reflected diffusion considered in Section 1 abo-

ve. Recall that the corresponding Dirichlet space is (£, H'(G)) where
HY(G) C L?(G), and that one has the Skorokhod representation (1.4),

Xk xk —M’“+Z/ %C;’“;

noo
+Z/0 ae(Xs) ve(X) dL, .
=1

As in the preceding section, let {Y @) }t>0 denote an a-stable subordi-
nator and X, (@) _ Xé‘;) the subordinate reflected diffusion.

(7.1)

Theorem 7.1. Let {Xt(a)}tzo be the process that is obtained from
the reflected diffusion {X;}i>0 through subordination with respect to a

one-sided stable subordinator {Yt(a)}tzo of order a € (0,1]. Then the
following Skorokhod representation holds

()" = (x57)"

« (9a @ o
= (N{*)* + ZZ/ ij (XY,Ef)+sAY,S°‘>) ds (V) + 5 AY;())
(7.2)

+ZZ/ are( Y<°‘)+ AY(a))Ve(XY<a>+ AY(a)) d Ly<a)+ AY(®)

(=1 r<t

where Nt( @) M, ) 1is a pure jump martingale (with respect to the
t
time-changed filtration), M, is the continuous martingale part of the

Skorokhod representation of {X;}i>0, and Ly is the boundary local time
of the diffusion {X;}i>0.

PrROOF. In order to keep notation to a minimum, we will sometimes
omit the superscripts (®). A change of time in (7.1) with respect to the
subordinator {Y;};>¢ yields
k k
(X" = (x§7)

n

3ake Y
= M + Z/ (%4 s) ds + Z/O ake(Xs) ve(Xs) dLs

(=1
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where My,, t > 0, is just the subordinate to the continuous martingale
M; in the Skorokhod representation of {X;}:>o, see (1.5), (1.6). It
is obvious that My, is again a martingale (with respect to the time-
changed natural filtration of {X;}+>0) and that it is of pure jump type
(since the subordinator is of this type).

In order to study the integral expressions in the above formula,
we need a change-of-variable formula for Stieltjes integrals. Recall that
{Xi}e>0 is a continuous process and that ¢ — L;(w) is a continuous,
almost surely increasing function. The main difficulty is that Y; may
have almost surely countably many jumps in finite time. By a well-
known approximation technique for Lévy processes — ¢f. L. Breiman
[4, Theorem 14.27 and Proposition 8.36] — we can approximate Y; by
processes Y, whose paths are almost surely step functions with finitely
many jumps in finite time,

lim Y (w) = Vi (w), almost surely (P°) .

e—0
(Y can be chosen to be the subordinator with

ca/ (1—e ™) g 7% dy — ¢~ e —0,

as characteristic exponent.) Therefore,

Y~ Y,

. t dagye * Dage
7.3 1 X,)ds = X,)ds,
@3t [ G [ ) as
almost surely (P?) and

YS Y:
(74)  lm [ aw(X) ve(X.)dL, = / ae(Xy) ve(Xs) dL, |

E—r 0 0

almost surely (P*).

Assume that s — Ag(w) is a function which is for almost all w
continuous and increasing — this includes, in particular, the functions
s — s and s —> Lg(w) of (7.3), (7.4). We consider the pathwise
defined Stieltjes integral

Yy (w)
/ u(w, s) dAs(w),
0
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for those w where s — A4(w) is continuous and increasing; u(w, ) is
any continuous function. For fixed w and ¢ we may assume (if necessary,
we remove another negligible w-set) that the function s — YF has only
finitely many jumps o7, £ =1,2,...,k%(w), on [0, ¢]. Thus,

k® (w)

Yy (w)
/0 u(w, s) dAs(w) = Z

(=1

Y;; (w)
/ u(w, s) dAs(w),

Y;E_ (w)
L

where Y7 (w) = lim.4pe () ¥,°(w) denotes the left limit. In an ap-
pendix we will prove the following technical Lemma.

Lemma 7.2. Denote by AY, =Y,* =Y . Then

Yoe ()
/ u(w, s) dAs(w)

(7.5) Yog-(@)

1
= / w(w, Yy +sAY ) dsAye, 1saye ().
0 4 4 o= 7y
An application of Lemma 7.2 shows

Y (w)
/ u(w, s) dAs(w)
0
1
= li Y+ sAYS)dyAye. 4oaye, (w).
im Z./o u(w : s Z) ARRING (w)

Since {Y;°}+>0 is a pure jump process, we obtain

k(W)
Z / w(w,Yie_ +sAY ) dsAye, ysaye, (w)
=t 0 ¢ £ UE— az

1
-y / w(w, Y+ 5 AYS) daAye tanye (@)
r<t 0

and the proof of Theorem 7.1 is finished by the following lemma.
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Lemma 7.3.

1
hy 3 | Y 4 s AV dodyy v (@)
(7.6) <

1
= Z/ w(w,Y,— +sAY,) dsAy._4say, (w) .
r<t 0

PrRoOOF OF LEMMA 7.3. We fix r € (0,t] and set

v(s,e) = u(w,Y,s +sAYS),
ag = Aye ysaye,

v(s) = u(w,Y,_ + s AY,),

and

s = féer,—f—sAYr .

Then

‘/Olv(s,s) da‘;—/olv(s) da,

1 1 1 1
< ‘/ v(s,¢) dai—/ v(s,e)das| + ‘/ v(s,¢) das—/ v(s) das
0 0 0 0

< swp Ju(w,)] / d(ay — af) + / 0(5,€) — v(5)|da

§<Yi(w)

where we have used the fact that AYS(w) < AY;(w), hence a5 < a,.
Since s — u(w, s) is continuous, the second integral tends to 0 as
¢ — 0. The first integral tends also to 0 as ¢ — 0, because a
increases to the continuous function ag, hence, by Dini’s theorem, this
convergence is uniform. Therefore,

1

lim u(w, Y, +sAY)dsAye 4 saye (w)

e—0 0

1
_ / w(w, Yoo + s AY,) dy Ay, _teav, ().
0
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Since
1
/ u(w, Y, + sAYY) dsAye ysave (w)
0

1
< sup |u(w,§)|/ dsAy, 4say, (W),
£<Yi(w) 0

and since

1
Z/ dAy,_tsav, (W) =) (Ay, = Ay, ) < oo,
0

r<t r<t

we may invoke Lebesgue’s dominated convergence theorem which en-
ables us to interchange the limit ¢ — 0 and the summation on r <t
on the left hand side of (7.6). This finally shows Lemma 7.3 and also
Theorem 7.1.

8. Concluding remarks.

Many of our results do extend in an obvious way to subordination
with respect to the larger class of complete Bernstein functions (cf. [16]
for a definition) containing the fractional powers f,(z) = £ which were
considered throughout our paper. This greater generality has to be paid
for by the fact that it is not possible to obtain exact characterizations
of domains etc. in terms of function spaces. If, however, a (complete)
Bernstein function f is comparable from above or below or from both
sides with some fractional power f, or fg, that is, if for some «, 3 €
(0,1] and large =

f(@) < Cfa(z),
cfp(z) < f(z),

or

cfp(x) < f(z) < Cfalw),
are satisfied, one can use some comparison result from [17] in order to
identify for suitable values of o and 8 the domains D(Af) or D(£Y)

etc. with subspaces of H?(G) (or H (G)) or to prove that they contain
the space H*(G) or H{(G).
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Furthermore, this allows us to give some rough characterization of
the Dirichlet form for the corresponding boundary process — provided
it exists, i.e., 0> 1/2.

A. Appendix.

We will give here the proof of Lemma 7.2. To keep notation to a
minimum we will write Y'(¢), A(t), 0y, ... instead of Y7, A¢, 07, . ..

It is clearly enough to check (7.5) for fixed w and for (deterministic)
indicator functions u(s,w) = 14 5 (5)

Y (o¢) 00
/ 1(a,5)(5) dA(s) = /0 L(a,6)(8) L(v (0,-),¥ (00)] @A(5)

(A.l) Y (o¢—)

= (A(bAY (0g)) — A(a VY (0g—))) VO.
On the other hand, we have (with the convention that (a,b] = @ if
a>b)

‘/01 l(a,b] (Y(O'g—) + s AY(O’@)) dsA(Y(O'g—) + s AY(O’@))

1
:/0 L((a=Y (00=))/(Y (00)=Y (00=)),(b=Y (60=)) /(¥ ()~ Y (52 —))] (5)

~ds A(Y (00=) + 5 AY (07))

:/ L((a=Y (00=))/(Y (00)=Y (00 =))VO,(b=Y (04 =)) /(¥ (0:0) =Y (00—)) A1] (5)

(A.2)
~ds A(Y (00—) + 5 AY (o))
b — Y(O'g—)
Y (o) = Y(00—) : 1)

- A(Y(ag—) +AY (0y)

— A(Y(O'g—) + (a—Y(0p—)) Vv 0) .

It remains to check (A.1) = (A.2) for all admissible permutations of
(a,b,Y(0p—),Y (04)). These are

1)a<Y(o,—) <Y(op) <V, 2)a <Y(op—) <b<Y(op),
3)a<b<Y(oy—)<Y(op), 4)Y(op—)<a<b<Y(op),
5) Y(op=) <a<Y(or) <b,  6)Y(oy—)<Y(oy) <a<b,
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and this is an elementary — but somewhat tedious — exercise.
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