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Catching sets with quasicircles

Paul MacManus

Abstract. We show how certain geometric conditions on a planar set
imply that the set must lie on a quasicircle, and we give a geometric
characterization of all subsets of the plane that are quasiconformally
equivalent to the usual Cantor middle-third set.

0. Introduction.

Theorem 1. For a subset E of C the following are equivalent:
i) E has empty interior and uniform complement.
i) E is uniformly disconnected.
iii) E is quasiconformally equivalent to a porous subset of R.

The varitous constants depend only on each other.

One immediate consequence of this theorem is that any set F sat-
isfying either i) or ii) lies on a quasicircle. Indeed, the main part of the
proof consists of demonstrating this fact.

An NUD set is a compact set having no interior and whose com-
plement is a uniform domain. Vaisala considered the family of NUD
sets in [V], where he showed that if such a set is removed from a uni-
form domain, then the domain that remains is still uniform. Hence the
name: NUD stands for nullsets for uniform domains. As a corollary of
Theorem 1, we obtain the following characterisation of NUD sets in the
plane.
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Corollary 2. E is an NUD set in C if and only if E is quasiconformally
equivalent to a compact, porous subset of R.

We can also characterize those sets that are quasiconformally equi-
valent to the usual Cantor middle-third set.

Theorem 3. For a compact set K in C whose interior is empty the
following are equivalent:

i) K is uniformly perfect and has uniform complement.
i) K is both uniformly perfect and uniformly disconnected.

iii) K is quasiconformally equivalent to the wusual Cantor
maiddle-third set.

The various constants depend only on each other.

A result of David and Semmes [DS] says basically that any uni-
formly disconnected, uniformly perfect, compact metric space can be
mapped quasisymmetrically to the middle-third set. In particular, if K
satisfies ii) above then there is a quasisymmetric map from K to the
Cantor set. The preceding theorem extends this by showing that the
map can actually be taken to be a quasiconformal map of C.

1. Preliminaries.

By a quasiconformal map of C we mean a quasiconformal map
from C onto itself. Such maps can also be viewed as maps of C onto
itself that fix infinity. Two subsets of C are said to be quasiconformally
equivalent if there is a quasiconformal map of C that maps one onto
the other. A quasiconformal arc is the image of a closed sub-interval of
R under a quasiconformal map of C. If this map is L-quasiconformal,
then we will say that the quasiconformal arc is an L-quasiconformal
arc.

We call a set A c-uniform (1 < ¢) under the following condition:
A contains at least two points and for each pair of distinct points a
and b of A, there exists a continuum F' containing a and b such that
diam F' < ¢|a — b| and such that

U B(z,c7'r(z)) C A,

z€F\{a,b}
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where 7(z) = min {|z—a|, |z —b|}. A set is c-uniform if and only if there
is a c-uniform domain D for which D C A C D. See [V] for a proof of
this last remark and for alternative definitions of uniformity.

Let 1 < m. A subset E of C that contains at least two points
is said to be m-uniformly perfect if at each point zy of E the closed
annulus

A:{z: L§|z—zo|§r}
m

has non-empty intersection with £ whenever 0 < r < diam E.

A subset E of R is said to be A\-porous (1 < A) if every interval I
centred on F contains an interval of length |I|/A that lies in R\ E.

We say that E is T-uniformly disconnected (T > 1) if for each zz € E
and each r > 0 we can find a subset A of E containing x, of diamter
no more than r, and for which d(A, E\ A) > 7=1r. This concept was
introduced recently in [DS].

M, My, ... and €, €, ... will denote constants that depend only on
the relevant data (e.g. uniformity constants) associated to the set in
question; the former are used for constants that are at least 1, and the
latter are used for constants that are less than 1. The same symbol may
be used to denote different constants. When we write A ~ B, we mean
that the ratio of A to B is bounded above and below by a constant that
depends, once again, only on the relevant data.

We are going to use a result from [M] on building quasiconformal
arcs. In order to state this result we need to introduce the idea of a
chain. A standard rectangle R is a closed rectangle whose major axis lies
on the real line. Let {R;}, be a family of disjoint standard rectangles
of height h with each R; at least a distance h to the left of R;,;. Take
I to be a closed interval in R whose left endpoint is at least a distance
h to the left of R; and whose right endpoint is at least a distance h
to the right of Ry. The union of I with the R; is called a standard
h-chain. Each R; is referred to as a rectangle of the chain. The closed
intervals joining R; to R; 1, along with the two closed intervals joining
the endpoints of I to the nearest rectangle, are called the links of the
chain, and the points where the links meet the rectangles are called the
weld points of the chain. An (M, h)-chain is any M bi-Lipschitz image
of a standard h-chain. The various parts of an (M, h)-chain are given
the same names as their pre-images in the standard chain.

These chains can be used to build quasiconformal arcs. Assume
that for each n we have a family F,, of (M, h,,)-chains with the following
properties:

i) F1 contains only one chain.
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ii) Each chain in F,, 41 is contained in one of the rectangles of some
chain in F,,, and the endpoints of a chain in F,,; are the same as the
weld points of the associated rectangle.

iii) Each rectangle of each chain in F,, contains exactly one chain
from Fy,41.

iv) The h,, converge to zero.

Take T, to be the union of every chain in F,, with the links of every
chain in Fj for 1 <k <n—1. Each T}, is a continuum and 7},+1 C T},.

Theorem. Under the assumptions i)-iv), L'y = (7, T}, is a C(M)
quasiconformal arc.

This is [M, Theorem 5.1] and it can be read independently of the
rest of that paper.

2. Proofs of the Theorems.

We start with Theorem 1. It is easily confirmed that any quasicon-
formal map of C preserves both uniform domains and the property of
being uniformly disconnected. It is also easy to check that a subset of
the line is porous (as a subset of the line) if and only if its complement
in the plane is uniform, and if and only if it is uniformly disconnected.
Thus, iii) implies both i) and ii). Furthermore, in order to prove the
opposite implications it suffices to show that E' lies on a quasiconformal
arc.

Gs is the square grid whose vertices are the points (m d,n d) where
m and n are any integers, and X5 is the associated family of (closed)
squares. A useful way of thickening up a set is the following. Let W be
a bounded subset of the plane. W? is the union of the elements of X
that intersect W. Let T5(W) = (W*9)°. The following facts are easily
confirmed.

Lemma 2.1. If W is a bounded subset of the plane, then the boundary
of Ts(W) is a finite, disjoint union of Jordan curves, each of which is
a subset of Gs. Furthermore, the distance from any boundary point of
Ts(W) to W is less than 8§ and greater than §.
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The next lemma will allow us to break the set up into manageable
chunks at all scales.

Lemma 2.2. Suppose that E satisfies 1) or ii) in Theorem 1. Then
for any x € E and any positive A, there is a loop v separating x from
infinity for which diam~y ~ d(E,v) ~ A.

PROOF. Let us first assume that E satisfies i). Fix x € F and A > 0.
Set r = A/4. Choose points {y1,¥s2,...,yn} that are equally spaced
with distance er on the circle C,. of radius r centred at x. We will
see as we go along how small an € we need to choose. We will use the
convention that y,4+1 = 1.

For each y; there is z; € E¢ whose distance to E is at least M ~ler
and whose distance to y; is at most e r. There is a path v; joining z;
to z;+1 whose diameter is at most Mer and whose distance to E is at
least M~ter. Let v denote the loop (i.e., closed curve) obtained by
joining up the ; in the obvious way. The next few statements hold for
small enough . The diameter of v is at most 37, which is less than A,
and the distance from v to E is least M ~ter = M 'X. Furthermore,
each v; is freely homotopic to the segment [y;, y;4+1] in C\ {z}, and so
7 is freely homotopic in C\ {z} to the circle C,. As a result, v must
separate x from infinity.

Now let us assume that E satisfies ii). Once again fix © € E and
A > 0. There is a subset A of E containing z, of diameter no more
than A\, and for which d(A4, E\ A) > 771\ Let § = (207)7 !\, and set
X = Ts5(A). Then X contains x, has diameter comparable to A, and
all of its boundary points are at least a distance 9§, and no more than
86, from A. This information about the boundary combined with the
estimate on the distance between A and '\ A implies that the distance
to E of every point on the boundary is comparable to A. The boundary
of X is a finite, disjoint, collection of Jordan curves. One of these must
enclose the point x and this is the loop we seek.

It is clear that if E satisfies ii), then any subset of E also satisfies
ii) with the same constant. This also holds for i), and depends on the
simple observation that the complement of E is uniform and dense in
C. These facts combined with a standard limiting argument imply that
it suffices to prove Theorem 1 for sets consisting of a finite number of
points. We will assume from here on that that £ contains only a finite
number of points. This is by no means necessary but it means that we
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do not have to worry about possible technical difficulties.
Set Dy to be the set of closures of all Jordan domains whose bound-
aries are both subsets of G5 and at least a distance 0 from FE.

Lemma 2.3. Suppose that E satisfies 1) or ii) in Theorem 1. Then
for any positive & there is a finite, disjoint collection {A1, Ao, ...} of
elements of Dy with the properties listed below.

i) ENAg # @ for all k, and E C |JAg.
ii) diam Ay < My 0, for all k.

Proor. Fix § > 0. It follows from Lemma 2.2 that for each x € E
there is a loop v, of diameter comparable to § that separates z from
infinity and whose distance to E is at least 10. The diameter of C,,
the component of ¢ that contains z, is no more than M §.

Let G = U,cp V2- The distance from G to E is at least 104. The
boundary of 75(G) is a finite, disjoint union of Jordan curves, each of
which lies on Gs and is at least a distance 0 from E. As a result, the
set

C ={U : U is the bounded domain determined

by some component of 75(G)}

is contained in Dy, and any two elements of C are either disjoint or one
is contained in the other.

Now, the boundary of any bounded component V of (75(G))¢ is a
union of components of d75(G) and so there is a unique element of C
that contains V' and whose boundary is contained in the boundary of
V.

For each x € E, define V,, to be the component of (75(G))¢ that
contains x, and A, to be the element of C that corresponds to V,. Let
{A1, Ay, ...} be the maximal elements among the A,. It is clear that
they have the required properties, except perhaps ii). Each V, must be
a subset of Cy, as 7, C T5(G). Thus the diameter of V, is less than
M. Consequently, we have that diam A, = diamV, < M ¢, which is
ii).

We are now ready to build the quasiconformal arc containing the
set F/. For convenience, we will assume that E lies in the unit disc.
Let € be a suitably small constant. Abbreviate D.» to D,,. For n > 1,
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the subset of D,, obtained in Lemma 2.3 by setting 6 = €™ is called
S,,. We define Sy to be the square of sidelength 2 that is centred at
the origin. Every element of S,,4+1 is a subset of some element of S,
and every element of S,, contains at least one element of S,,41. For any
S € S, we have diam S ~ €". Furthermore, if S e Sp41 lies in S,
then d(9S,S) ~ ™. If we set E, to be the union of the elements of
Sy, then E' =, E;,. We now have nicely nested coverings of E, whose
infinite intersection is F. All that remains in the proof of Theorem 1 is
to use the S,, to construct families of chains satisfying conditions i)-iv)
on pages 3-4. For all n, and for each S € §,,, choose two boundary
points whose distance apart is the diameter of S. We will refer to these
as the distinguished points of S.

Lemma 2.4. Suppose that S € S,,_1. Denote the elements of S,, that
lie in S by C(S). Then S contains an (M,e™)-chain whose endpoints
are the distinguished points of S, whose rectangles are precisely C(S),
and whose weld points are the distinguished points of the elements of

c(S).

This result is just a special case of [M, Corollary 4.2], but since
this case is particularly simple we briefly outline the proof here.

SKETCH OF PROOF. S and the elements of C(S) are all elements of
D,,. Their boundaries are disjoint and each has at most M; edges.
Take @ to be either S¢ or one of the elements of C(S) and define Q
to be the €™ /8 neighbourhood of ). There is a bi-Lipschitz map that
is the identity outside Q, that sends 0@ to the boundary of a square,
and that sends the distinguished points to the midpoints of opposite
sides. The bi-Lipschitz constant will depend only on M;. The regions
Q are disjoint, so the composition of all the maps just described does
not increase the bi-Lipschitz constant and it yields a bi-Lipschitz map
F' that sends S and all the elements of C(S) to squares and that also
sends the distinguished points to the midpoints of opposite sides. It is
easy to find a suitable chain for F/(S) and F(C(S)), and the pullback
of this chain by F~! is the chain we seek.

Now let F,, be the family of chains obtained by applying the pre-
vious lemma to each element of S,,_;. These satisfy conditions i)-iv).
Consequently, F is contained in an M-quasiconformal arc.
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We turn next to the proof of Theorem 3. Quasiconformal maps of C
preserve uniform domains, uniformly disconnected sets, and uniformly
perfect sets. As the middle-third set is uniformly perfect, uniformly
disconnected, and has uniform complement, part iii) implies both parts
i) and ii). Suppose now that K is compact and satisfies either i) or ii).
Theorem 1 implies that we can assume that K is a porous and uniformly
perfect subset of the real line. We need to find a quasiconformal map of
C that maps K onto the middle-third Cantor set. We will only sketch
the proof as the details are quite routine.

Set. O to be the collection of disjoint open intervals that make
up R\ K. We will say that we split an interval I when we remove the
largest subinterval that is an element of 0. Define K to be the smallest
closed interval containing K. Let K; be the union of the two intervals
obtained by splitting Ky. Next split each of these to obtain another
set, K5, that is the union of four closed intervals. Continue indefinitely
in this way. We summarize the properties of the sets K,,:

i) Each K,, is a finite union of disjoint closed intervals with end-
points in K, and K consists of just one interval.

i) Kpp1 C K.

iii) Each of the intervals I that make up K, contains exactly two
of the intervals, I; and I, that make up K,,1, and |I| ~ |[}| ~ |I,.| ~
d(1;, I,.).

iv) K = (02 Kn-

The key property is iii), and this is a consequence of K being
porous and uniformly perfect. Suppose that I is a component of K,
and that J is a component of K,,. Let us say that I < J if either
n < m or n = m and J lies to the right of I. Label the collection of
all components of all the K,, as Iy, Is, I3, ... where I, < I, for all k.
Then Il = Ko, Iz U I3 = Kl, and so on.

From iii) above we deduce that there is a small constant €, which
we fix now, that ensures the validity of the statements that follow. To
any I = [x — 7,z + r] we associate the rectangle [x — (1 +¢)r,z +
(14¢)r] x [—r,r]. Rectangles from the same level are disjoint, and the
families consisting of the rectangles from each level are nested and nest
nicely down to K. The next lemma is an easy consequence of iii) above.
Here I, I}, and I, are as in iii), and R, R;, and R, are the corresponding
rectangles.
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Lemma 2.5. There is an My-quasiconformal map of C, which is the
identity in R, is a similarity on Ry and on R,, and which maps I to

the left third of I and I, to the right third of I.

Denote by g; the map we get from the lemma when I = I;. Let 7
be a similarity mapping Ko onto [0,1]. Set G = Tog10g20---. Then
G is an M-quasiconformal map of C that maps K onto the Cantor set.
The composition does not increase the dilatation because the maps g;
only have non-trivial dilatation in the doubly connected region between
the three corresponding rectangles and these regions are disjoint.

A natural question now is: do Theorems 1 and 3 hold in higher di-
mensions? The first point to note is that sets with uniform complement
are no longer the same as uniformly disconnected sets. As an example,
consider the compact set in R® consisting of the line segment joining
(0,0,0) and (0,0,1) and the family of line segments joining (27,0, 0)
and (27™,0,1) for n > 1. This set is obviously not uniformly discon-
nected, yet its complement is a uniform domain. However, it is always
true that any uniformly disconnected set has a uniform complement.
This can be shown by the compactness method of Véiséla; see [V, The-
orem 3.6]. Thus we have that ii) always implies i) in Theorem 1.

It is not reasonable to ask for quasiconformal equivalence in higher
dimensions as topological issues complicate and cloud the issue. We
saw in the planar case that the key to the whole problem is showing
that the given set lies on a quasiconformal arc. A concept that makes
sense in all dimensions and that agrees with that of a quasiconformal
arc in the plane is that of an arc of bounded turning, ¢.e., an arc with
the property that the diameter of every sub-arc is comparable to the
distance between its endpoints. Such arcs are precisely the quasisym-
metric images of line-segments (see [TV, Section 4]). Thus a better
formulation of the problem is: do uniformly disconnected sets or sets
with uniform complement lie on an arc of bounded turning? The exam-
ple in the previous paragraph shows that there are sets with uniform
complement that do not lie on any Jordan arc. In contrast, it turns
out that the answer is yes for uniformly disconnected sets. It follows
immediately that a subset E of R™ is uniformly disconnected if and
only if there is a quasisymmetric map from [0, 1] into R™ that maps a
porous subset of [0,1] onto E. Once we have this theorem, we find,
following the planar case, that a subset of R” is uniformly disconnected
and uniformly perfect if and only if there is quasisymmetric map from
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[0,1] into R™ that maps the middle-third Cantor set onto E.

The proof that a uniformly disconnected set in any Euclidean space
lies on an arc of bounded turning follows essentially the same scheme
as that of the planar case. We give a brief justification of this result.
Lemma 2.3 will hold with Ds being those sets which are finite unions of
cubes from the grid of sidelength 0, and which have connected interiors
and complements. This part is straightforward. Define the families S,
as in the discussion preceding Lemma 2.4. We can uniformly bound
the number of cubes in each element of any S,,. Using the notation of
Lemma 2.4, we define A to be

s\ U a.

A€C(S)

The uniform bound on the number of cubes that make up both S and
the elements of C(S) and the fact that these latter have connected
interiors and complements allow us to show that S contains an arc v of
bounded turning with the following properties: the endpoints of v are
the distinguished points of S, the intersection of v with any element A
of C(S) consists of a sub-arc of v whose end points are the distinguished
points of A, and for any point on any component of vyN A the distance
to the nearest endpoint (of the component) and the distance to the
boundary of A are comparable. We will refer to the union of v and
C(S) as a chain, although it does not fit our former definition. We now
define F,, as before. The proof of [M, Theorem 5.1] shows that when
such chains are nested (as described earlier in Section 1) they converge,
as in the planar case, to an arc of bounded turning.
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