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Harnack inequalities on a
manifold with positive or

negative Riccl curvature

Dominique Bakry and Zhongmin M. Qian

Summary. Several new Harnack estimates for positive solutions of the
heat equation on a complete Riemannian manifold with Ricci curvature
bounded below by a positive (or a negative) constant are established.
These estimates are sharp both for small time, for large time and for
large distance, and lead to new estimates for the heat kernel of a man-
ifold with Ricci curvature bounded below.

1. Introduction and main results.

The main purpose of this paper is to present several new Harnack
estimates for non-negative solutions of the heat equation on a complete
manifold with Ricci curvature bounded below by a constant which may
be positive or negative. To obtain Harnack inequalities, we first deduce
gradient estimates, that is upper bounds of the gradient of the logarithm
of a solution of the heat equation by a concave function of the time and
the time derivative of the same quantity. Then, by standard methods,
these bounds lead to Harnack inequalities and then to bounds on the
heat kernel.

In this context, we obtain quite strong Harnack inequalities, which
are improvements of the famous Li-Yau’s estimate in [6], [12]. Although
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our methods are similar in both cases of positive and negative lower
bound on the Ricci curvature, our results are completely new in the
positive case, and are improvements of previous results in the negative
one.

In order to state our results, we first introduce some basic nota-
tions: let M be a complete Riemannian manifold of dimension n, and
let A be the Laplace-Beltrami operator. Let u be a positive solution of
the heat equation

(1) (A—0)u=0, on [0,00) x M

and let f =logwu. Denote by V f the gradient of the function f and by
ft the time derivative of f.

In 1975, Yau [10] proved a Harnack inequality via Ricci curva-
ture bounds for harmonic functions on a complete manifold. In their
paper [6], Li and Yau have established a sharp Harnack inequality for
parabolic harmonic functions on a complete manifold with non-negative
Ricci curvature. Namely,

2) VIP—fi<5s,  forallt>o0.

They also proved the following gradient estimate for a manifold with
Ricci curvature bounded below by —K; K > 0

n o2 nalK

B) VI —afi< e g

forallt >0, a>1.

In his book [6], Davies improved the previous inequality under the same
assumption to the following one

na? nalK
+ )
2t 4(a—1)

(4) |VfP—af: < forallt >0, a>1.

Recently Yau [12] (also see Yau [11]) further established, among other
things, the following gradient estimate: if Ric > —K; K > 0, then

(5) IVfP-fi < v2nK\/|Vf|2+%+2nK+%, for all t > 0.

With the method described in Section 4, it is standard to deduce from
this a Harnack inequality close to (12) (see below), but with different
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constants. In Appendix A, with the method described in this paper,
and under the same assumption, we will improve this inequality to

(6) |Vf|2—ft§VnK\/|Vf|2+—+—+£, forallt >0,

which yields a Harnack inequality essentially similar to (12) for small
time and large distance.

Let us also mention that Hamilton [8] has obtained a Harnack
inequality for negative curvature manifolds.

The path to obtain Harnack inequalities is to first establish gradi-
ent estimates as (4) or (5). To begin with, let us state the main results
of this paper. To this end, we first introduce two functions X and X
as follows: let K > 0, n > 0 be two constants. Then the functions X
and X are defined on (0,00) x R by
( nK

ALy
7 +
K
+vn K nT—Y

2 K
-cotanh—t\/nK nT—Y, Yy < —
n

. 4
(M) X(LY) = oK
2
K
+vVnK Y—nT
2 K K
-cotan—tVnK Y—n—, Y>n—,
\ n 4 4
( n K
—4Y
5 +
K
VnK Y+"T
2t K K
-cotanh — vVn K Y-I—nT, YZ—HT,
= n

8) X(t,Y) = WK

2
+Vn K=Y —

+Y

nK

2 K K
-cotan—tVnK —Y—nT, Y<—n—,
n

\
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respectively. Indeed, as we will see later, X and X are solutions of
some simple differential equations. The key inequalities obtained in
this paper are the following gradient estimates

Theorem 1. Suppose the Ricci curvature is bounded below by a con-
stant —K; K > 0, then we have:

1) |[VF2< X(¢, f2), on fr > —n K/4.
2) For any Yy > —n K /4, we have

V2 <0y X(t,Yo)(fi — Yo)+ X(t,Yy),  forallt>0.

3) There is a universal constant ¢ > 0, such that

Vi< X(tf), forallO<t§%.

See Theorem 4 below for the precise value of the constant c.

As a consequence, if Ric > —K; K > 0, then

n n K
_ftSEJFT’ forallt >0,

which is very close to the best possible one could expect, since (n —
1) K/4 is the spectral gap of the space form with Ricci curvature —K.
Indeed we will prove a better but slightly more complicated estimate
than (9).

Then, by standard methods, we deduce from Theorem 1 the fol-
lowing Harnack inequality

2 2

u(t, x 2 bts
00 ey e (G [ (el ) 4l ) @),

forallt > 0,s > 0, z,y € M, where p = d(x,y) is the geodesic distance
from x to y, and

cit,Y)=X(t,Y)-Y
K K 2t K
= nT+\/nK Y-l-nTcotanh—\/nK Y+nT,
n

Oy C(t,Y) (Ct,Y) —YayC(t,Y))
Al Y) = 1+0yC(t,Y)
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In particular, since A(¢,Y) > 0 when Y > 0, we have

u(t, ) <<Sinh( (t+ 5)Vn K "f)>n/2

m_ smh(—t\/— nK)

(1) :

By an elementary computation, inequality (10) yields the following

u(t, x) < <t+ s>n/2

u(t+s,y) ~\ t

(12)

- exp ((p-l-\/—ns) + VnK min{P,\/ﬁs}>,

4s 4

for all s > 0, z,y € M. We will give an independent proof of this
in Section 4. We have been informed by Professor S. T. Yau that he
already obtained a Harnack inequality in this context, see [15], [14].

As usual, Harnack inequalities lead to lower bounds of the heat
kernel. Let H(t,z,y) be the heat kernel: the fundamental solution of
the heat equation (1). Then (12) implies that

1
H(t,l‘,y) Z W
(13) -exp(—(p-'_\{f?t) —\/TEL—Kmin{p,\/n—Kt}>,

for all (¢t,z,y) € (0,00) x M x M, p = d(z,y). See [3], [8] for a com-
parison theorem for heat kernels.
Notice that the leading term in (13) for small time is

for large time is

for large distance is
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They are all very close to those best possibles we could expect.
For positive Ricci curvature manifolds, we will prove the following
gradient estimate

Theorem 2. Let Ric > K; K > 0. Then
1) [VF2< X(t, fe), on fr <nK/4.
2) If t > 2/K, then [V f|*> < X(t, f) and —n/(2t) < f <n K/4.
3) Ift <2/K, then

IVFI? < X(t, fr), on ft <Yy,
and
V2 <0y X(t,Y0) (fe — Yo) + X (¢, Y0) , on fr > Yo,
where T
o= (14 G5) 1

It turns out that both |V f|? and f; are uniformally bounded for
each t > 2/K if Ric > K > 0.

We could also deduce from this a Harnack inequality, but it takes
a more complicated form than in the negative curvature case, and we
will therefore omit it in this paper.

The main tool used in this paper is the maximum principle, which
plays a fundamental role in Partial Differential Equations theory, see
for example [5]. Although the basic idea adopted in this paper is to
apply the maximum principle and Bochner identity to some nice test
functions; this has been developed in a series of papers by Yau [9], [10],
[12], Cheng and Yau [4], Li and Yau [6] etc. (see [7] for more references);
the main difficulty with this method relies on the fact that, for any
family of test functions, one gets different kind of results, and therefore
the test functions in use are related to the results one is looking for. But
it is not always easy (and indeed quite hard in general) to device what is
the best estimate one could expect from a given differential inequality.
Our main contribution in this context is to develop a method which
produces the best possible estimates and to show how to construct
good test functions in order to prove the expected estimates via the
maximum principle. This method applies to a more general setting
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than the one described here, and it could be used in different contexts
for more general equations.

Let us explain our main idea as following. Everything relies on the
three following equations satisfied by |V f|? and f;

(14) Af =fi— IV,
(15) (8 - 8t)ft — 0,
and

(A —0,)|Vf]? =2 [Hessf]? + 2Ric (Vf,Vf),

where A = A +2V f which is an elliptic operator. See Section 2 for
detail.

(16) comes from the Bochner identity. Therefore, if K is a lower
bound of the Ricci curvature, then we have the following inequality

. p
a7) B0 (VP> 2y 2K |viP.
Inserting (14) into (17), we end up two differential inequalities

BRIV (VIR 2K VAP,
(A=8)f=0.

The main point of this paper is to compare (|V f|?, f;) with the solution
(X,Y) of the following system of differential equations

2
X ="(X-Y)+2KX,
(19) n
- 0,Y =0,

with the condition that X (0) = oo. Since Y = constant, we regard it
as a parameter, and write the solution as X = X (¢,Y). It is easy to
see that if K > 0, then X (¢,Y) is the function defined by (7), and if
K <0, then X(¢,Y) = X(¢,Y) with —K in (8).

In fact, we were not able to prove (and we do not think it is true)
that |[Vf]?2 < X(¢, f;) everywhere, and this comes from the lack of
concavity of the curve Y — X(¢,Y). What we show is that this

inequality holds on the most part of the curve. More precisely, our
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main result asserts that if Ric > K, then the most part of the curve
(X (t, ft), f¢) is above the curve (|Vf|?, f;). In other words, |Vf|? <
X (t, f¢) for most of the values of f;, and we have a linear upper bound
on the remaining part.

The paper is organised as follows. In Section 2 we establish gradi-
ent estimates and some consequences for manifolds with Ricci curvature
bounded below. Section 3 deals with the case of positive Ricci curvature
manifolds. We deduce Harnack inequalities in Section 4. In Section 5,
we describe several extensions to other diffusion operators, and, in the
end, we give an improved form of Yau’s gradient estimate.

The results obtained in this paper have been announced in [2].

2. Gradient estimates for complete manifolds.

The main purpose of this section is to prove Theorem 1. Thus
throughout this section it will be assumed that Ric > — K, where K > 0
is a constant.

Let u be a positive solution of the heat equation

(20) (A—0)u=0, on [0,00) x M
and let f =logu. One can easily see that

(21) (A=0) f=-T(f 1),

where T'(f, f) = |V f|®. In general, if A is replaced by any sub-elliptic
differential operator, we may define

(g, h) = % (A(hg) — hiAg — gAR),  for all g,h € C®(M),

and therefore I'(g, h) will stand for (Vg, Vh).
Differentiating (21) in ¢, we obtain the first fundamental equation

(22) Afe+2(Vf,Vf) —0ift =0.

Then, define the bilinear operator I'y by iterating the previous definition
of I

(38)  Talg.h)= 5 (AT(g, ) ~ T(g, AR) ~ T(Ag, 1)),
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for all g,h € C°>°(M). Using I's, we may rewrite the classical Bochner
identity as

(24) I'2(g, h) = (Hess g, Hess h) + Ric (Vg, Vh),
for all g,h € C®(M). Since Ric > —K and |Hessg| > (Ag)?/n,
Bochner identity yields the following curvature-dimension inequality

1
(25)  Ta(g.9) > ~(Ag)* —KT(g,9),  forallgeC™(M).

This is the only form in which the Ricci curvature will appear in what
follows. Then, the fundamental remark is that, using (21) and (23) and
the previous definition of I'y, we get another fundamental equation

(26)  AL(f, ) + 2V VIS, 1) =0 L(f, f) = 2T2(f, f) -

For simplicity, introduce a differential operator: L = A 4+ 2V f — 0;.
Then the basic equations (22) and (26) can be rewritten

(27) LIVf[?=2Ta(f.f), Lfi=0.
If we notice that (21) can be rewritten as
(28) ~Af=|Vf*~fe,

then the curvature-dimension inequality, implies that
2
(29) LIVf]?> ﬁ(|Vf|2—ft)2—2K|Vf|2.
We next look for a smooth function B on (0,00) x R such that

V> — f: < B(t, f3), for all ¢t > 0.

To this end, we set F' = |V f|? — f; — B(t, f;), and G = t F. By the fact
that Lf; = 0, we have

LB(t, fr) = =0, B(t, fs) + 03 B(t, f) [V f:|*.
Therefore
LF = L|Vf|*>— LB(t, f;)
(30) = LIVfI? =03 B(t, fr) IV fi* + 0:B(t, f+)
=202(f, f) = 0¥ B(t, o) IV fol* + 0, B(t, fo) -
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Thus if 92 B < 0 (which means B is concave in Y'), then

2
LF > - (IVFI? = f1)? = 2K |Vf + 0. B(t, f)
2
== (F+B)° = 2K [V’ + 0,B(t, f,)
2 9 4 2 2 2
2 . 4 2 o
(82)  =ZF+(CB-2K)F+0B+-B-2K(f;+B).
n n n
Hence
LG=—-F+tLF
21 41
> 27 2 7 _ —
(33) > F +(nB 2Kt 1>F

2t
—2Kt(fi+B)+ 732 +t0:B(t, f3) .
Next we specify the function B, so that
IVFfI?— fe < B(t,f), forallt>0.
More precisely, for any Yy > —n K /4, we shall produce a function B
depending on the parameter Y, for which we shall prove the above
upper bound.

To this end, consider the solution C' of the differential equation on
the half line (0, 00) with a parameter ¥ € R

(34) 8t0+%02—2K(Y+C):0, C(0) = 0.

Then if Y > —n K /4, we find that

s _nK n b(,Y) (t,Y)
(35) Ct,Y)=X(t,Y)-Y = 5 + T cotanh 5
where
4t K
(36) b(t,Y) = VK.Y + 22
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It is easily seen that

4t\2nK 1
37 oyb(t,Y)=(—| —
(37) ) = () 5 sy
so that
. n 20}/[) 2b8ybeb
ayc_zt(ayb—i_eb—l_(eb—lﬂ)
1 2 2el
=2Kt|- — .
<b+b(eb—1) (eb_1)2)
Therefore
n nK
li Y)= — + —
(38) Y—)i%lKMC(t’ ) 2t+ 2
and
(39) im  0yCHLY) =22t lim 0yC(tY) =0
Yosomgja Y O\ T poo O Y )=

153

Moreover, for each ¢ > 0, the function Y — C(¢,Y") is concave on the

interval (—n K/4,00).
Taking derivative with respect to Y in (34) we get that

(40) 8t8y0+%08y0—2K(1+8yC):0.

Let Yy > —n K /4, and take B to be the linearization of C at Yy, i.e.

Then
atB — at BYC(t, Yo) (Y - Y()) + 3tC(t, Yo) ,

and

2 9 2 2

" B = . 0y C(t,Yy) (Y = Yy) + C(t,Y0))

= 2 @vC(1Yo) (Y =) + = Ot ¥0) 0¥ O, Yo) (Y~ Yo)
+ %C(t,Y0)2,
2K(Y+B)=2K Yo+C(t,Yp))+2K (Y —Yy) (1+0yC(t,Yp)) -
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Therefore, by (34) and (40), we get that
2 2
(42) 0B+ — B*-2K (Y +B)= ~ (0yC(t,Yo) (Y — Yp))2.

Now define F' = |V f|2 — f; — B(t, f;), where the constant Yy > —n K /4
in the definition of the function B. Let G =t F. Then by (33), we have

2 4B 1 2
S 22 b 1 4 p2
LG > =G +(n 2K t)G+t<8tB+nB 2K(ft+B))
2 5 (4 4 1
- =G +(ﬁ Dy C(t,Ye) (fs —YO))G-I—(EC(t, Ye) - 2K — Z)G
(43)
2t 9
+z(aYc(t7Y0) (ft — Yo))
= 2 (G 10y O Y) (f—Y0) + (O Yo) —2K — 1)@
_nt Y » 10 t 0 n » 40 ¢ .
However,
41 B 2b6(t,Yy)
;C(t,YO)—ZKt—b(t,Yo)an?
and therefore by the elementary inequality
2
b+ — b > 2, for allb > 0,
e’ —1
we have
4 11 n K
44 — Yo)—-2K —-> - for all Yo > ——.
(44) nC(t, 0) T 27 orallt >0, Yy > 1
Hence by (43)
2 5 1
(45) LGZE(Gﬁ-tayC(t,YO) (ft — Y0)) -I—;G.

If the manifold is compact, consider a point (g, z) at which the maxi-
mum of G on [0,t] x M is attained: then, at this point, by the maximum
principle, K(G) < 0. Moreover, 0G/0t > 0 and VG = 0. From these
we conclude that G < 0. In this case we have

IVfI? = f: <OyC(t,Yy) (fe — Yo) + C(t, V).
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In the case where the manifold M is non-compact, we will get the same
conclusion with a slight modification in the arguments. Since Ricci cur-
vature is bounded below, we may use a generalised maximum principle
(see [12], [5]) as following: replace K by any K > K in the definition of
the function C. Then the same argument yields the following inequality

2 1 ~
LG > — (G+tdyC(t,Y0)> + - G+2t(K — K) |Vf]?
nt t
(46) ]
> ZG+2t(I~(—K) IV f|2.

Using then the Li-Yau’s estimate (3), we may check that

t

n nK
N < 2 A 2
G(t, ) (1 + 8yC(t, YO)) + 1 (1 + 8yC(t, YO)) 8yC(t, YO)

=2
However,
lim t = 3~ .
t—0 0y C(t,Yy) 2K
Therefore for any ¢ > 0,

sup G < o0,
[0,t]x M
Thus we can use the generalised maximum principle to the function G
on [0,¢] x M for any fixed t > 0: if supyy 4 s G > 0, then we may find
a point ty € [0,¢] and a sequence of points {zy} € M, such that

1 1
G(0,-) <0, and therefore tg > 0. Also,
0tG(tg, xx) > 0, lim G(tg,zx) = sup G.
k—o0 [0,¢]x M

Hence we have 1 9
LG(to,.Tk) S -+ - |Vf| y
ko k
which together with (46) implies that
1

2
E 2 LG(to,l’k) - E |Vf|

1 ~ 2
> o Glan) + 240 (K ~ K)[VI = |V

1 1 1
> —Gog) — —=—— — -
to 2(K —K)ty k
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Letting k — oo we get that

0> sup G,

to [0,¢]x M
which is a contradiction to the assumption that supp ;. G > 0.

Therefore G < 0. Since K> K is arbitrary, we have proved the main
result of this section:

Theorem 3. Let Ric > —K; K > 0, and let f = logu, where u is a
positive solution of the heat equation. Then

~ K

(47) V2 < X (¢, f1), on fi > _nT ;
2K K K
VAP fo < St (fot ) o+ o
(48) 3 4 2t 2
< n +nK f < nK
=9r g MMhr=Ty

and

(49) V> fi < . ian/4(8yC(t, Yo) (fi = Yo) + C(t, Yp)) .

0>—n

PrROOF. We have proved (49). By taking Yy = f; and noticing that

X(t,Y)=Y+C(t,Y) we get (47). Letting Yo — —n K /4 we get (48).
So we completed the proof.

REMARK. In the above proof, we in fact used a “parabolic version” of
Yau’s generalised maximum principle. Indeed, if we apply Yau’s argu-
ment in [12] to the product manifold [0, ¢] x M (with boundary), and use
the Hopf’s maximum principle by Hopf (i.e. maximum principle with
boundaries), since [0,¢] is compact, we can easily obtain the parabolic
version of the generalised maximum principle.

Corollary 1. Let Ric > —K, K > 0, and let f = logu, where u is a
positive solution of the heat equation. Then we have

1 <n +nK) nK n nK
2t 4

50 A QL el QT
(50) ft—HgKt Tt ST
3
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Proor. For any Yy > —n K/4, we have

(t,Yo) — Yo 0y C(t,Yo)

C
(51) “fes 1+ 0y C(t,Yo)

By letting Yy — —n K /4, we get the conclusion.

We note that

n< 1 (n+nK> nK
2t = 2 \9¢ " 4 4
2t 1+§Kt 2t 4 4

that is, the upper bound of — f; would not be better than n/(2t¢) for
negative curvature manifolds. However one would expect that the best
upper bound of —f; should be n/(2t) + (n — 1) K/4, as (n — 1) K/4 is
the spectral gap of the heat semi-group of the constant curvature space
form with Ricci curvature —K. But we can see that

n (n-1)K 1 n nk nK
O (2

—+
=3
21 4 12K 2t 4

4

if and only if ¢ > (n — 3)/(2 K). Therefore, if the dimension of M is
bigger than 3, then our upper bound is even better than the expected
one: n/(2t) + (n— 1) K/4, within the time range (0, (n — 3)/(2 K)).

Corollary 2. Let Ric > —K; K > 0, and let H(t,z,y) be the heat
kernel. Then

1 2 n/8
(52) H(t,l’,l’) > — (1 + g Kt) e—nKt/4,
s
forallt >0, ze€ M.

Proor. By Corollary 1, we have

—dylog (4mt)"/?H = —9,log H — -

2t
1 <n+nK> n+nK
= 2 N9t " 4 ) 9ot 4
1+ 2Kt 2t 4 2t 4
3
nK 1 nK

4 @+2K0+ 4
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Using the fact that

n/2 —
%1_1;%(47rt) H(t,z,z)=1,

and integrating both sides over [0, t], we get the conclusion.

Corollary 3. Let Ric > —K; K > 0. Then

K K K
(53) V2= fi < VnK\fit =+ —+22 o fi> -
4 2t 2 4
and
2K nK n nK
2
_f, < - S E il
(54) VIR =g < St (fr ) + 55 +

PrROOF. We only need to prove the first inequality. Since

~ nK n b
X(ty)<y+ 22 —(1-J
(t,Y) _Fz +2t *3

nK
Y4+ —+""+Vn
+2t+ -I- e

(54) follows immediately from Theorem 3.

By estimate (51), we have

nK

fe< gt

With this estimate, we can prove a better gradient estimate.

Indeed, let C' be the solution of the differential equation (34) on
the half line (0,00) with a parameter ¥ < —n K/4 and C(0) = oo.
Then

n b(t,Y)
2t 2

(55) Ct,Y) = = +

n K
2
with

4 K
bt Y) = XV K —Y—?r.
n
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Note that the function C, defined by (35) for Y > —n K /4 and by (55)
for Y < —n K/4 and

nK n K n
ot Ky K
4 2 +2t

is a smooth function on (0,00) x R. However, Y — C(¢,Y) is not
concave on (—oo, —n K/4).

It is easy to see that X (£,Y) =Y +C(t,Y) forall Y € R.

Up to now, we restricted our attention to the part Y > —n K/4 of
the curve Y — C(t,Y). In what follows, we are going to improve the
previous estimate for any value of Y provided that the time ¢ is not too
big.

Let ¢k be the positive constant

Then, we have

Theorem 4. Let Ric > —K; K > 0, and let f = logu, where u s a
positive solution of the heat equation. Then for any 0 < t < ck,

(56) IVFI? < X(t, fr).

In fact, fix any 0 <t < ck, and let s € (0,t]. Let

and let
B(s,Y)=0yC(s,Yp) (Y —Yp) + C(s,Yp).

Define a test function as usual: F = |V f|? — fs — B(s, fs) and G = sF.
Then the same argument as above yields that

(57) LG > % (G+50yC(s,Yo) (fs—Yo))er(% O(s, Yo)-2K—)G.

S

Notice that

4 b(s, Y
WS C(s,Yy) — 2K s = b(s,Yp) cotan (872 0) ,
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as Yy < —n K /4, where

b(s,Yo):E\/n—K y, K
2 n 07 g

Since s <t < ¢k, we have

Moto) 25 g [0 < 2P R 2 < T
2 n 2t n 2t — 4

Therefore, for any s <t < cg, and

we have

b(S,Yo)
2

b(s, Y
b(s,Yp) cotan > 2cos (S’2 0) > V2.

Hence, for those s and Y, we have

V2 -1

S

LG > 2 (G4 50v0(s,Yo) (F, ~ Y0)) + G,

and by applying the maximum principle to G on [0, ] x M, we conclude
that

(58) IVfI? = fs <0y C(s,Y0) (s — Yo) + C(s, Yo)

for any 0 < s <t < ¢k and

In particular if f; < —n K/4,t < cg, since f; > —n/(2t) — n K /4, we
can take Yy = f; in (58) to get that

VP = fe < C(t, fr) .
Thus we completed the proof.

By the above proof, we also proved in fact the following
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Theorem 5. Let Ric > —K; K > 0, and let f = logu, where u is a
positive solution of the heat equation. Then for any Yo < —n K /4,

(59) VfI? = fe <0vC(t,Yo) (fr — Yo) + C(t,Yo)

for any

™n
t <

8vnK\/—Yy —

nkK

4
Corollary 4. Let Ric > —K; K > 0, and let f = logu, where u is a
positive solution of the heat equation. Then

1) If 0 < t < ck, then f; > Y1(t), where Y1(t) is the unique solution
of the equation
Y+C@tY)=0, Y <0.

2) For anyt > 0,

_f < C(t7 Zt) - Zt 8yC(t, Zt)
t= 1+ 0y C(t, Zy) ’
where K )
n n
A= take

3. Positive curvature manifold.

The goal of this section is to prove Theorem 2. The method fol-
lows exactly the same lines as in the previous section, although the
conclusions are quite different.

Let M be a Riemannian manifold with dimension n, such that
Ric > K, where K is a positive constant.

Let f = logu, and u be a positive solution of the heat equation.

In this case we have Li-Yau’s estimate

n
60 VIiP—f<—.
(60) VIR <o

Let U(t,Y) be the solution of the differential equation on the half line
(0, 00) with a parameter Y

2
(61) atU+ﬁU2+2K(Y+U):o, U(0) = oo.



162 D. BAKRY AND Z. M. QIAN

If Y <nK/4, then

nK n h(t,Y) h(t,Y)

(62) U(Y)=X(t,Y) -y = "2+ L 20 cotanh 22
with
4 K
Wt Y) = VK ”T Yy
n

IfY > nK/4, then

nK n h(t,Y) h(t,Y)
Y)=X(@t,Y)-Y=-"2 4%
U(t,Y) (t,Y) 5t 57 2 cotan 5
with
41 K
h(t,Y) = —VnK Y — 22
n 4
Therefore K
non
I Ly)= -+ %
yim UGY) =57 —-=5
and oK1
I y)y=_22°
v YUY =7

Moreover, U is a smooth function on (0,00) x R, and for any ¢t > 0,
the function Y — U(t,Y) is concave on (—oo,n K/4). But it is not
concave on (n K/4,00).

For any Yy < n K/4, we define a test function G = tF, F =
|Vf|2 - ft - B(t, ft)7 where

B(t, Y) - 8yU(t, Yo) (Y - Y()) + U(t, Yo) .
Then by Bochner inequality, we get that
2 4B 1 2
LG > =62 + (—+2K— —>G+t(3tB+—Bz+2K(ft+B)>
nt n t n
(63)
2 9 4 1
= = (G+t0v Ut Yo) (i — Y0))* + (5 U(t,Yo) + 2K — —)G.

n t

By the fact that

nK

> fora11Y0<T,t>0,

4 1
—U(t, Y 2K — -

| =
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we conclude by the maximum principle that G < 0. Therefore we have

Theorem 6. Let Ric > K > 0, and let f = logu, where u is a positive
solution of the heat equation. Then

(64) IVFI?=fi < Yoigfr{/4(3yU(tv Yo) (ft — Yo) + U(t, Yo)),

for any t > 0. In particular, we have

K
(65) VIP <X S, onfe< T
and
2 n K n nkK
2 _f<IKt(— — —
(66) VIP =< SKE(S = f) + 55—

Define a function V(¢,Y’) by

VYY) =X(tY)

K 2¢ K
+VnK —"4 — Y cotanh 22 vV K —"4 —y,
mn
when Y < n K /4, and

VEY)=——+YV -y - =

nK 2Kt( nK)
2 3 4 )’

when Y > n K/4. Then we can rewrite the estimates in Theorem 6 to
be

(67) IVF?<V(t,f), forallt>0.

It is easily seen that there is a unique zero point of V(¢,Y) in (—o0,0)
for each ¢ > 0, denoted it by Yi(t). Then by the fact that |V f|?> > 0,
we have f; > Yi(t).

Ifn/(2t) —n K/4 <0, that is, if ¢ > 2/K, then there is a unique
zero point of V(¢,Y) in (0,n K /4|, denoted by Ya(t), and again by the
fact that |V f|? > 0, the estimate (67) yields that f; < Ya(t).
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Ifn/(2t) —nK/4>0and ~2Kt/3+1 < 0, that is, if 3/(2K) <
t < 2/K, then we can see that the unique zero point of V' (¢,Y") in (0, co)
is
n K 2Kt “1/n nK
TG ) G

4 3 2t 4

and by the same reasoning as the above, we have

£ < n K L 1 ( n  nkK )
T4 2Kt \2r 4
3
In these two cases, that is, if £ > 3/(2 K), there is a unique maximum
value of V(t,Y), attending at some point in (Yi(t),n K /4], which is
denoted by Vy(t). Then by (67), we have |V f|*> < Vo(t).
Thus we have proved the following

Theorem 7. Let Ric > K > 0, and let f = logu, where u is a positive
solution of the heat equation. Then

n K 2
(68) Yi(t) < fi <Yo(t) < — T forallt>K
nK n 3

< f < no_ 3

(69)Y1(t) < fe < 1 2Kt (2 ),forallt>2K,
3

and
(70) VIZ<Volt),  forallt> ——

2K

Now let us estimate Y7 (t). To this end, let U be the solution of the
differential equation

~ 92 - ~ ~
8tU+EU2+2K(Y+U):0, U(0) = oo.

Then U is given by the formula as for U instead of K by K.
Let W =t (U — U). Then for any Y < n K/4, we have

2 4 1 _ .
—8tW:—W2+(—U+2K——>W+2(K—K)(Y+U)t

> EWQJF W+2(K - K) (Y +U)t
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In particular, if K > K = 0, then U = n/(2t), and
2 o 1 n
—OW > =W +—W+2K(Y-|——>t.
nt t 2t

Applying the maximum principle to W on [0,¢] x R for any 0 < ¢ <
(—n/(2Y)) V 0, we conclude that W < 0 for any ¢t < (—n/(2Y) Vv 0.
Therefore we have proved the following

Proposition 1. If K > 0, then for any Y,t > 0 such that Y < n K/4,
Y +n/(2t) >0, we have

Ut,Y) < — .
21

As a consequence, we have

Yi(t) > —2% . forallt>0.

Our next goal is to bound |V f|? — f; for small time ¢.

Theorem 8. Let Ric > K > 0, and let f = logu, where u is a positive
solution of the heat equation. Then for any Yo > n K /4, we have

(71) V2 - fi <oyU(t,Yo) (fi — Yo) + U(t, Yo),
for
n T
0<t< =
SVnK /Yy — "T

PROOF. Let G=tF, F = |Vf|?> - f — B(t, f), where
B(t, Y) - 8yU(t, Yo) (Y - Y()) + U(t, Yo) .

Then by (63), we have

2 , /4 1
LG > = (G +10yU (1, Yo) (fi— Yo)? + (EU(t,Y0)+2K— ;)G.

However, when Yy > n K /4 and

t<

8vVnK Yy — —
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we have
4t
—U(t,Yo) +2Kt
n

h
= hcotan =
coan2

41 K 2t K
= —VvnK YO——n4 cotanh — vVn K YO——n4
n n

21 K
>2cos —Vn K YO—nT
n

T
> 2 —
> cos4

=2,

Therefore

LG >

2—-1

V2 G
t

and by the maximum principle, we get the conclusion.

Corollary 5. Let

Yo=(1+ g—z) %
Then for any 0 < t < 2/K, we have
(72) V2= fe U fe), on frt <Yy,
and
(73) IVfI? = fe <Oy U, Yo) (fe — Yo) + U(t, Yo) -

Therefore, if
Et,Y)=X(t,Y)=Y +U(t,Y), ity <Yy,
and

E(t,Y):ayU(t,Yo) (Y—Y0)+U(t,Y0)+Y, lfY>Y0,
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then

2

(74) V> < E(,f), for all t < i

where Y| is defined in Corollary 5.
Putting all discussions together, we have the following

Theorem 9. Let Ric > K > 0, and let f = logu, where u is a positive

solution of the heat equation. Then we have the following conclusions.
1) Ift > 2/K, then |Vf|> < X(t, f;) and —n/(2t) < fi < n K/4.
2) Ift <2/K, then we have

VI*<X(tf),  onfi<Yo,
and
IVF? = fi <OvUYo) (fi —Yo) + Ut Yo),  on fi > Yy,
where 2w
Yo=(1+57)

4. Harnack inequalities.

In this section we first show how to deduce a Harnack inequality
from a gradient estimate, although it is very standard, see [9]. Then
we prove the main Harnack estimates.

The link between Harnack inequalities and gradient estimates is
given in the following

Proposition 2. Let M be a complete Riemannian manifold, and let
f =logu; where u is a positive solution of the heat equation. Suppose

that
(75) IV <ot fo),  forallt>0,

where ¥ : (0,00) x R — R is a continuous function, then

(76) u(ti,x)) < exp </tt+sK(0', g) dU) ,

u(t + s,y
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where p is the geodesic distance between x and y, and

K(t,a) = sup (avVi(t,Y)-Y).

{Y:y(t,Y)>0}
PrROOF. The proof of this proposition is straightforward. Let v be a
minimal geodesic joining x and y, so that v(0) = y and v(1) = z. If
p =d(z,y), then |¥| = p. Define
plo)=(v(0),1—0)ta+t10), ta=t+s,t1=1.

Then p(0) = (y,t2) and p(1) = (x,t1). Set n(o) = f(p(o)). It is clear
that

Pt ) — F(tay) = n(1) — n(0) = /0 (o) do = /0 (Vf,4) — s f,) do

with t = (1 — o) ta + t1 0. We end up with
1
F(tr, ) = Flta,y) < / (0 IV f = s fy) do
<[ (Lrwn-1)ar
’ p
S,/o K(a,;) do .

From this result and the previous gradient estimates, we may now
prove Harnack inequalities: we shall first establish the simplest one, for

which the computations are easy: it follows from the gradient estimate
(53).

Theorem 10. Let Ric > —K, K > 0, and let u be a positive solution
of the heat equation. Then

u(t, x) < <t + s>n/2

u(t+s,y) — \ ¢
(77) -exp((p-i_\/fs—KSV—f—\/Z—Kmin{(\/i—l) p,\/T;—KSD ,

foralls>0,t>0,z,y € M, where p=d(z,y).
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Proor. Let f =logu, and a > 0 be fixed.
If f; > —n K /4, then the gradient estimate (53) yields that

K\2 n

2 < na -

(78) VIS (v ) + 55
where v =/ f: + n K/4, so that

n K 9

—ft:T—’Y-

Denote by

( n ”K)2+">0
u = — — :
v 1 2t =

Then |V f| < u and

nK n nK\2
_ - " _ 2 _ -
Je= (\/“ 21 4)

<—u2—}—%+VnKu,.

Hence in this case we have

(@ +VnK)*

(79) a|Vfl—fi < (a+VnK)u—u?+— < V02)

2t — 4

If fi < —n K/4, then on one hand the estimate (54) implies that

n nK
_f < 2, -,
so that
a? n nK
a|lVfl-fi<—+—+—
4 2t 2
(80)

(a-l-\/n—K)Q_i_ﬁ nK VnK

4 2t 4 2

169
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On other hand, by the estimate (54), we have

2Kt nK) n nK

|vf|2_ft§T(ft+—

4 2t 2

Therefore
1
alVfl—fe <l|laVf| -

2K
1+ —t

VfI?

VAN
|
+
+

IN

a? L In K N n +nK
[— —a [ [
4 2 2t 4
K)? —1
_(atvnK) n V2-1 o
4 2t 2
Hence, if f; + n K/4 < 0, then we have
a+vnK)? n
A VTS
(81) !
vVn K

2

\/Z—Kmin{(\/i— 1) a,

SR

b
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Therefore, by (79) and (81), we always have the following estimate

[\ 2
a|vf|—ft§w+%

(82)

for any a > 0.
Using now the previous proposition, we get

f(tr,2) = f(ta2,9)
< /01 ((p+\/n—K$)2+£ +\/n—K1’nin{(\/§—1)p, \/T;—Ks}> do,

1s 2¢ %7 2

which yields the Harnack inequality.

REMARK. As we pointed out in the introduction, S. T. Yau mentioned
to us that he obtained a similar Harnack inequality.

Now we turn to prove the main Harnack estimate. Let Ric > — K
for some constant K > 0. We have seen that the main point is to
estimate o |V f| — f; for a > 0.

For any Yy > —n K /4, we have

IVfI? = fe <C(t,Yo) + 0y C(t, Yo) (ft — Yo),

and therefore

IVfI? C(t,Yo) — Yo 0vC(t,Y0) .

_f, < =
Jes 1+ 0yC(t,Yo) 1+ 0y C(t,Yo)

Hence for any a > 0, we have

1 C(t Yo) — YO C(t,YO)
_f < _ 2 ’
alVIl=fe s =5 + 9y C(t, Yo) VIPrelVI = +9yC(1, Yo)
o2 C(t,Yo) — Yo 0y C(t, Vo)
< —
2 2
(83) = az + (ayC(t,Yo) (az - YO) + C(t,Y()))

B 8yC(t, YO)
1+ 0yC(t, Yo)

(C(t,Y) + 0y C(t,Yy) (0—Yp)).
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Letting Yo = /4 in (83), we get that

2

(84) a|Vf|—fts%2+C(t,%) — At %),

where
_OyC(t,Y)(Ot,Y) -YOoyC(t,Y))
Al Y) = 1+0yC(t,Y)

Notice that A(t,Y) > 0 when Y > 0. Therefore we have proved the
following

Theorem 11. Let Ric > —K; K > 0, and let u be a positive solution
of the heat equation. Then

u(t, x 2 t+s 2
9 o (£ [ (0o ) o ) ).

for anyt > 0,s > 0 and z,y € M, where p is the geodesic distance
between x and y.

REMARK. Although we have the simple fact that

K K
Ct,Y)<VnK Y+”T+%+n7,

for any Y > —n K /4, however, unlike C(¢,Y’) whose linearization at any
point Y > —n K /4 is an upper bound of |V f|? — f, the linearization of

nK nK n
vVnKA\Y + —+ — 4+ —
" Tt Ty

at some points may not be an upper bound of |Vf|*> — f;. In this
sense, therefore, the analysis via C(¢,Y) is even simpler and yields
much stronger conclusions. This is also the reason why we give an
independent proof of Theorem 10.
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Since
_nK n b(tY) b(t,Y)
C(t,Y) = e + 37 3 cotanh ———~
K K 2 K
- "T VK (Y + nTcotanh(—t ViKY + "T)
n

cotanh o do

t+s nkK n (2/n)(t+s)VnK\/Y+nK/4
C(o,Y)do + =
t

T (2/n)tvVnK\/Y+4+nK/4

2 n K
’ﬂK n smh (t+3)\/ Y+T
= st gles = |
sinh 2 ¢t Vn K Y+”T
n
so that we have the following

Corollary 6. Let Ric > —K; K > 0, and let u be a positive solution
of the heat equation. Then

u(t, x)
(86) u(t + s,y)

) (smh(2( t+s)VnK +n4K)>"/2E( t
< Py 5:t)
sinh( tVnK nf)

where
2

E(p,s,t) =exp (Z—int%,s—/ttﬂA( 4p2>d0>

Applying Corollary 6 to the heat kernel we have

¢— L nK "

H(t,x,y)Z( 4t2 4 ) E(p,t,0)”
K
47rsinh< vn ﬁ+”T>

\/5\/p2+nKt2
(47rt "/2<

n/2
> E(p,t,0)7"
smh \/ \/ p? +nKt2>
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where

E(p,t,O)_lzexp<— p_2_ ﬁt—k/tA<a p_Z) da).
0

REMARK. Proposition 2 together with the gradient estimates for the
positive Ricci curvature manifolds yields a Harnack inequality. How-
ever, its form is quite complicated. Since the upper bound function
¥ (t,Y) is in general nonlinear , we can improve the Harnack inequal-
ity in Proposition 2 by varying the time speed, that is, replacing the
straight line joining ¢ and ¢ + s by a curve. Therefore we decided to
write down the explicit Harnack inequalities for positive Ricci curvature
manifolds together with the compact manifold case in a separate paper.

5. Extensions.

The same arguments in previous sections can be applied to the
case when the manifold M with convex boundary dM; the second fun-
damental form 7 of the boundary dM is nonnegative. This is because
of the fact that if Ju/Ov = 0 on the boundary; where v denotes the
pointed out normal vector field; then

0|Vul|? B

5 —2m (Vu, Vu),

so that we can use the Hopf maximum principle when 7# > 0. We only
write down a theorem in this case.

Theorem 12. Let M be a complete Riemannian manifold with a convex
boundary OM, and let u be a positive solution of the heat equation

(A—0)u=0, on [0,00) x M,
dyu =0, on (0,00) x OM .
Let f =logu. Then

(58) VIP - f< O ), omfiz -

and
IVfI? = f: <OyC(t,Yy) (fe — Yo) + C(t, V),
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forallt >0, Yy > —nK/4.

There is a further generalisation of our gradient estimates and Har-
nack inequalities to a general elliptic operator. We only state a result.
Let M be a complete manifold (without or with a convex bound-
ary), and let Ag = A+ B be an elliptic operator; where B is a C2-vector
field. Assume that Ap satisfies a curvature-dimension inequality (see

1))
La(g.9) > - (Apg)? ~ KT(g,g),  forall g € C(M),

for some constants m > 0 and K > 0, where by definition I'(f,g) =
(Vf,Vg), and

Lalf.9) = 5 (As(f9) = T(Apf.9) ~ (. Apyg))

This condition is satisfied if and only if

1

m—n

Ric — V3 —

B®B>-K,
where m > n, n = dim M, Ric denotes the Ricci curvature and

R 1
VB(&?”) = §(<V§B,7]>+<V7}B,§>), for all f?UETM-
If f =logu, uis a positive solution of the heat equation
(Ap—0y)u=0, on [0,00) X M ,

(in the case that the boundary dM # 0, we further assume that u
satisfies the Neumann boundary condition), then

mK
|Vf|2_ft§0(t7ft)7 on ftZ_T’
and
K
IVF2— f, <0yC(t,Yo) (fi — Yo) + C(t,Yy),  for all Yy > —mT ,

where C' is the solution of the differential equation

2
3tC+ECz—2K(Y+C):O, C(0) = .
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6. Appendix.

The goal of this appendix is to give a proof of Yau’s estimate (6).
We will use the same notations as in Section 2.

Let F = |V f|?>—f:—Q(t,|V f|?) for some positive function @ which
will be given later, and G =t F'.

It is easily seen that

= (1-0xQ) LIV +0,Q - 03Q V|V f*]?
=2(1-9xQ) Ia(f. ) - 9RQIVIVII*I +0.Q,
and therefore if 92Q < 0, 1 — dxQ > 0, then we have
LG =—F +2t(1-0xQ)To(f, f) —t0%Q V|V fI*|2 +t0,Q
> P20 0xQ) (- (VP ~ £~ K|VIP) +10Q.

However |V f|? — f; = F + @, so that

LG > F+2t(1—8XQ)( (F+Q)? K|Vf|2)+t8tQ

2

:2t(1—3XQ)%+(—1+2t(1—3XQ) T?)

2

+2t(1—8XQ)(——K|Vf| ) +19,Q.

Thus, if
(89) 0xQ <0,  limtQ(tX) <0,
(90) P20 ow) 21, 1-0x@>0,
and

Q2
(91) 2Q+2(1-0xQ)(5 - KX) 20,

for all t > 0, X > 0, then, if the manifold is compact,

(92) V2 f, <QVF?), forallt>o0.
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Theorem 13. Let Ric > —K for some non-negative constant K, and
let u be a positive solution of the heat equation and f = logu. Then

(93) |Vf|2—ft§\/nK\/|Vf|2+%+—+—.

PROOF. For simplicity, let a =n/(2t) + n K/4. Then

Q(t,X):m\/X-I-a-I-%, m=vnK .

Therefore m
02Q = — <
xQ 1 X+a)vVX+a~ '
and
2
2Q+2(1-xQ)(=- - KX)
_2m X+a_m_2_ nm +2(1 m )g
N t t 412X +a 2vVX +a’/n
m n
> _ _
= t((2f m) 4t\/5>
_@<4a—m2 n )
t\2Va+m  4t\a
_@( 2n 7 )
t \t(2ya+m) 4.\/at
m 2n n
> _
- t(t(4\/5) 4\/5t>
>0

Thus condition (91) is satisfied.
Let us now check the condition (90). It is easily seen that

191 peg) = (v ra- MY Lo )

n n

4m \/n nK vVnK 1 m
Z—( —+——7>+— 2— |
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Therefore, when n/(2t) > 3n K /4,

g M >
n n K
2t 4
so that 10 .
—(1-20 > =
and when n/(2t) < 3n K/4,
4Q 2m 1

4 1
~*(1-9 > > — > .

2wt T

Hence condition (90) is satisfied. Therefore we proved Theorem 13 for
compact manifolds. If the manifold is non-compact, we may use the
generalised maximum principle to go through the proof.
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