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Local limit theorems on
some non unimodular groups

Emile Le Page and Marc Peigné

Abstract. Let Gy be the semi-direct product of R** and R?, d > 1
and let us consider the product group G4 n = G4 X RN, N > 1. For
a large class of probability measures p on G4 n, one proves that there
exists p(u) €10, 1] such that the sequence of finite measures

{n(N+3)/2 *n}

o s

converges weakly to a non-degenerate measure.

Résumé. Soit Gy le produit semi-direct de R*t et de R? et Gan le

groupe produit Gy x RV, N > 0. Pour une large classe de mesures de
probabilité sur G4 y nous montrons qu’il existe p(u) €10, 1] tel que la

suite de mesures finies
N+3)/2
n(N+3)/2
—n M
(1) n>1
converge vaguement vers une mesure non nulle.

1. Introduction.

Fix two integers d > 1, N > 0 and choose a norm || - || on R? and
RY (when N >1). Let G4, be the connected group R*t x R? x RN
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118 E. LE PAGE AND M. PEIGNE
with the composition law
for all g = (a,u,b), for all ¢’ = (a’,u/, V') € G,
g-g =(ad,au +u,b+1).
We will note g = (a(g),u(g),b(g)) (or ¢ = (a,u,b) when there is no

ambiguity). The group (Gg4n,-) is a non unimodular solvable group
with exponential growth and the right Haar measure mp on Gy n is

dadudby ---dby

a

mp(dadudb; ---dby) =

Note that G4, is the semi-direct product of R** and R?; in particular
G1,0 is the affine group of the real line.

We consider a probability measure g on G; we denote by p*™ its
n™ power of convolution. Under quite general assumptions on p we
show that there exists p(u) €10, 1] such that the sequence

(N+3)/2
{an)n .

converges weakly to a non-degenerate measure. This problem has al-
ready been tackled by Ph. Bougerol in [3] where were established local
limit theorems on some solvable groups with exponential growth; in
particular, for a class R of probability measures p on the affine group
of the real line (that is d =1 and N = 0) he showed that the sequence

3/2

{ przu)" ”*n}nzo

converges weakly to a non-degenerate measure. In [7] we extend this
result to a quite large class of probability measures; the new ingredient
in our proof was the fact that there exists closed connections between
this problem and the theory of the fluctuations of a random walk on
the real line. In the present paper, we extend this result to the case
N > 1; we first obtain uniform upperbounds in the Local limit theorem
for a random walk on R? and, secondly, we use a generalisation of the
Wiener-Hopf’s factorisation due to Ch. Sunyach [9].

This study is also related with the work by N. T. Varopoulos [10],
[11] where upperbounds and lowerbounds for the asymptotic behaviour
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of the convolution powers p*" of a large class of probability measures
are given.

From now on, we will suppose that NV > 1 and we set G = G4 n.
We introduce the following conditions on pu:

Hypothesis G1. There exists o > 0 such that

[ (e oE e l + b]) (e du db) < +oc.
G

Hypothesis G2. / Loga p(da dudb) =0 and/ b pu(da du db) = 0.
G G

Hypothesis G3. The support of p is included in R*T x (RT)4 x RV,
the image of p by the mapping (a,u,b) — (Loga,b) is aperiodic in
RN+ (see Definition 2.1) and there exists 3 > 0 such that

/ ||| =? p(da dudb) < +oc.
G

Hypothesis G’3. The measure p is absolutely continuous with respect
to the Haar measure mp on G and its density ¢, satisfies

da db
/] L {'//RQSZ(a,u,b)du Z’Y < 400.
0,1]x

for some 7y and q in ]1,400|.

We have the

Theorem 1.1. Let p be a probability measure on G satisfying hypothe-
ses G1, G2 and G3 (or G’3). Then, the sequence of finite measures
{n(N+3)/2,u*”}nZO converges weakly to a non-degenerate Radon mea-
sure on (.

Note that the asymptotic behavior of the sequence {y*"},,>1 does

not depend on d.
When p is not centered, that is

/ Loga p(da du db) # 0
G
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or

/ bu(dadudb) # 0,
G

we bring back the study to the centered case as in [7]. We introduce
the following conditions on pu:

Hypothesis G*1. There exists o > 0 such that
/ (a® + [Jull® + exp (¢ ]|B]])) p(da du db) < +o00
G

for any t € R.

Hypothesis G*2. One has

/ Loga p(da du db) # 0
G

with u{g € G : a(g) <1} >0 and u{g € G : a(g) > 1} > 0.

When p satisfies these two conditions, there exists a unique (sg, to)
€ R x RY such that

/Gasoe(to’b)p,(da dudb) = (s,t)ierlngN /G a® e pi(da du db) .

Furthermore,
p(p) = / a*0e:0) 1y(da du db)
e}
belongs to ]0,1]. Note that the probability measure

1
po(dg) = p) a(g)® el y(dg)

satisfies hypotheses G1 and G2. The following condition is the equiva-
lent of Hypothesis G’3 in the non centered case:

Hypothesis G*3. The measure p 1s absolutely continuous with respect
to the Haar measure mp on G and its density ¢, satisfies

da db
/]01] . (//R%(a,u,b)du ZV < +o0
,1]x
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for some q € |1, +00[ and v € ]1 — s¢, +00| .

Theorem 1.2. Let p be a probability measure on G satisfying condi-
tions G*1, G*2 and G3 (or G*3) and let

p(p) = . t)iéngN /G a® et pi(da du db) .

Then, the sequence of finite measures

(N+3)/2
{n,,(W o

weakly converges to a non-degenerate Radon measure on G.

The demonstration of Theorem 2.1 is closely related to the study
of the fluctuations of a random walk (X7, Y*),,>0 on R¥*1. In Section
2, we first state the classical local limit theorem on RV*! but we add
in its statement uniform upperbounds relatively to the starting point of
the random walk (X7, Y{"),>0. This result is thus very usefull to obtain
a precise equivalent in Theorem 2.5 of the joint law of the random walk
(X7, Y{*) >0 with its first entrance time 7'y in the half space RT x R;
a local limit theorem for the process

(X7, max {0, X{,..., X7} Y{") >0

is thus obtained (Theorem 2.6). In Section 3 we give the main steps of
the proof of Theorem 1.1.

2. Fluctuations of a random walk on RV+1L,

Fix an integer N > 1 and let (X1,Y7),(X5,Y3),... be indepen-
dent R x RY -valued random variables with distribution p defined on a
probability space (2, F,P). Let (X7, Y*),>0 be the associated random
walk on Rx R¥ starting from (0,0) and defined by X? =0, Y = 0 and
X =X1+-+X,,Y"=Y1+---+Y, for n > 1; the distribution of the
couple (XT,Y") is the n*® power of convolution p*™ of the measure p.
Denote by F,, the o-algebra generated by (X1,Y7),...,(Xy, Ys),n > 1.

Let us first recall the
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Definition 2.1. Let p be a probability measure on R¥, k > 1. The
measure p is aperiodic on R¥ if there is no closed and proper subgroup
H of R* and no o € R* such that p(a + H) = 1.

Denote by p the characteristic function of p defined by p(u,v) =
E[eX1+4v.Y0] for any (u,v) € R x RY. Recall that the probability
measure p is aperiodic if and only if |p(u,v)| < 1 for (u,v) # (0,0).

For any A C R x RV let {Tvgk)}kzo be the the successive times
of visit of the random walk (X7, Y"),>1 to the set A; one has TJ&O) =
0, 7% =inf{n >1: (X1, V") € A} and TE = inf {n > 7 +1:
(X7, Y{") € A}. Note that the T'E‘k) are stopping times with respect to
the filtration {F,},>1. We will associate to (p,.A) the transition kernel
P4 defined by

Pa((z,y), B) / Laens(@+ o,y + ') pldedy’)
RxRN

for any Borel set B in R x RY; note that for any & > 1 one has
P%((0,0),B) =E[[T4 > k]; (XF,Y}) € B]. In order to simplify the no-
tations we will set T_ = T yg~v, P— = Pr- g~ and Tﬁk) = Tﬂgc_)xRN;
similar notations will hold, with obvious modifications, when A =
R*~ x RY Rt x RY and R*t x RV,

Troughout this paragraph, for any & > 1, we denote by Ag the
Lebesgue measure on R¥. Furthermore, for any 6 > 0, Hs(RF) is the

space of C-valued functions ¢ on RF such that

sup (1 + [|#]|°)* lp()] < +oo.
TERF

2.1. Preliminaries.

The local limit theorem gives the asymptotic behaviour of the se-
quence {p*™(¢)}n>1 for any continuous function ¢ with compact sup-
port on RV*1!: we state it here and we precise some uniform upperbound
for the sequence {p*"(¢)}n>1 when ¢ belongs to Hs(RV 1) with 6 > 4.

Theorem 2.2. Assume that:

i) the common distribution p of the variables (X,,Y,), n > 1, is
aperiodic on RVt
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i) E[| X1 |* + ||Y1]|?] < 400 and E[X;] =0, E[Y;] = 0.
Then:

i) for any continuous function @ with compact support on RN*!
one has

lim 2 E[p(XT, YT

n——+oo

- (27T)(N+i)/2 m /RN+1 e(@,y) ha(dw) Aw(dy)

where |C| denotes the determinant of the positive definite quadratic form
C(u,v) =E[(uX; + (v,Y71))?].

ii) For any function ¢ in Hs(RNTL) with § > 4, the sequence
{(nWNHD2E [p(x + X7y + Y] a1 is bounded uniformly in (z,y) €
R x RV.

ProOOF. The first assumption is the classical local limit theorem. To
obtain the second claim, fix a non negative function ¢ whose Fourier

transform has a compact support K(¢). Recall that
R 1
p(uv U) =1- 5 C(’U,, U) (1 + 8(“’7 U))

with limy v)—(0,0) €(u, v) = 0; so there exists ¢ > 0 such that for |u| +
||v]| < & one has

1
|ﬁ(u’7 U)| <1- Z C(U, 1)) < e_C(u’U)/4 )

~

such that |p(u,v)| < p as soon as (u,v) belongs to K(¢) and |u|+ ||v|| >
. It follows that

On the other hand, by the aperiodicity of p there exists p = p(p, K (¢))
|

(2 n)NTD2E[g(XT, YY)

< a0 [ )] o) da(du) Aw(do)
lul+[lv]|<é

1D/ 2 / |b(w, v)] [p(u, )| Ay (du) Ay (dv)
lu|+[[v]| >0
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< pN+D/2 / 5(17 L) ‘e—(n/4)0(u/\/ﬁ,v/\/ﬁ)
ful+lol| <on(¥+1)/2

NZORVLD
- A1(du) Ay (dv)
+ 0N 1)

< ||q3||oo‘/R . e—C(u,v)/4)\1(du) )\N(d’v) +n(N+1)/2 o ||¢3||1 .
X

Now set ¢ (2, y") = ¢p(x+ ',y +y') for any (z,y) € RxRY and note
that q3$y (u,v) = ei“w”(”’y)qg(u, v); the functions qgm,y and ¢ thus have
the same compact support and satisfies the equalities ||¢z 4|1 = [|#]l1
and ||¢z.yllco = ||¢l/co- For any (z,y) € R x RN one thus has

(27 0) VD2 E (g, (X7, Y1)

< HQBHOO/R N e—C(u,v)/4 /\1(du) )\N(d’v) +n(N+1)/2 o ||¢3||1 .
X

The assertion ii) thus holds for any function ¢ whose Fourier transform
has a compact support. To achieve the proof of ii) it suffices to show
that for any function ¢ in Hs(RY*1) with § > 4 there exists a function
¢ whose Fourier transform has a compact support and || < ¢. It is
an immediate consequence of the following result; we thank here J. P.
Conze for helpfull discussions about this fact.

Lemma 2.3. Set .

he(x) = —————
6( ) 1+ |$|4+6 )

for any x € R. If e > 0 there exists a function h. greater than h. and
whose Fourier transform has a compact support in R.

PROOF. Set

sin2z  sin?a x)

2

he() = C( x? x
for some a and C' in R** which will depend on e. Assume « ¢ Q, the
function h. is strictly positive on R; it thus suffices to show that there
exists a ¢ Q such that

lim 2" (sin®z + sin®(ax)) = +o00.
T——+00
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If such a real did not exist, then for any a ¢ Q there should exist a
sequence {zy},>1 which tends to +00 and a constant C, > 0 such that
for all n > 1,

. . C
sin? z,, + 51n2(a Tp) < —7e -
Tn

So there should exist two strictly increasing sequences of integers
{kn}n>1 and {l,,},>1 such that

o o
|ty — k7| < —— oz, — 7| < ——
.T711+€/2 x}L+s/2
which implies
C/l
— k2+6/2
n

bn
Fon

‘a_

for some positive constants C’ and C”. This leads to a contradiction
because for almost all & € R (with respect with the Lebesgue measure),
this last inequality has at most a finite number of solutions in N? [2].
The lemma, is proved.

2.2. A local limit theorem for a killed random walk on a half
space.

In [7], we proved the following

Theorem 2.4. Let the hypotheses of Theorem 2.2 hold. Then for any
continuous function with compact support ¢ on R~ we have

li S2E(T, > n]; o(XT /
n—)I—lI—loon [[ + ’ﬂ] 90( 1)] Xl \/%

where A\] denotes the restriction of the Lebesgue measure on R~ and
U*~ is the o-finite measure on R~ defined by

AL * U™ (dx),

T(k)

U*~(B ZE 15(X,"7)]

for any Borel set B. In the same way, one has

lim ns/z]E[[T*+ > nl; p(XT)] =

z) A} * U™ (dzx),
n——+00 Xl ,/27-[-/ 1 ( )



126 E. LE PAGE AND M. PEIGNE
where U~ is the o-finite measure on R™ defined by

I (k)
U=(B) = Ells(X;" )]
k=1

for any Borel set B.

(k) (k)
Recall that the random walks {XlT_ }i>1 and {XlT*_ }i>1 are tran-
sient on R~ ; it follows that the series Y% E[[T > k]; p(z+ X¥)] and

,':i% E([T.s > k]; o(z + XF)] do converge. Furthermore one has

+oo 0
Bl > g+ X0 = [ eV (i)
k=0

— 00

and
0

+oo
> E(Ls > Kig(o+ XE) = [ pla) U (do).
k=0

—0Q0

Let us now state the following

Theorem 2.5. Let the hypotheses of Theorem 2.2 hold. Then:

i) For any continuous function @ with compact support on R~ x RY
one has

lim nV+3)/2 E[[Ty > n); (X7, YT"))]

n—4+oo

1 _ e
= G EEE G o PEWAT # U0 M),
— xRN

ii) For any continuous function f with compact support on R and
any g in Hs(RY) with § > 4, the sequence

{(nWHIPRTy > n); f(XT) gy + Y] a1

is bounded, uniformly in y € RN .
In the same way, one has

lim nNH2R([T,, > n); (X7, Y1)

n——+oo

z,y) Ay * U™ (dw) An(dy)

1
= (271_)(]\]_1_1)/2 /|C| »/R—XRN (10(
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and the sequence
{nWHIPE(T) > n]; f(XT) 9(y + Y1) ux
is bounded, uniformly iny € RV .

ProOF. We prove this theorem by induction over N. Theorem 2.2 deals
with the case N = 0; we will suppose that this result hold for some N >
0 and we consider a sequence (X,,,Y},, Z,,)n>1 of independent identically
distributed random variables on R x RY x R. By a classical argument
in probability theory, it suffices to show the above convergence hold
for p(z,y,2) = e*® 1p- () ¢(y) ¥ (z) where a € R*T and ¢,v are C-
valued functions whose Fourier transform are continuous with compact
supports. By the inverse Fourier transform one has

L, = E[[Ty > n); e ¢(Y7") (27)]
1 N A
= @nT2 /RNxR $(v) Y(w) an(a, v, w) An(dv) A1 (dw)
with oy, (a, v, w) = E[[Ty > n]; e®X1 +H0 Y1) w2

The Spitzer’s factorisation for random walks on R gives for all
a> 0, for all s € [0,1]

+o0 +00
ZS”E[[T+ > n]; 21 = exp (Z s—]E[[Xf‘ < 0]; e ]) .
n=0 n=1 n

Using the fact that RT x R¥*! and R*~ x RM*! are semi-groups in
RN+2_ Ch. Sunyach extended this factorisation to the multidimension-
nal case ([9, Corollary 3, p. 553 and Theorem 5, p. 556]); for any a > 0,
ve RN, weRand s € [0,1] one thus has

—+o0

D SPE[[Ty > n); et X Hile Y ie
n=0
+00 §™ ' |
= exp <Z ; E[[X{” < 0]; eaXl +i{v,Y" Y +iwZ] ])
n=1
that is

n

(n + ]-) an—l—l(av v, w) = Z ﬁn—l—l—k(av v, w) O[k(a, v, w)
k=0
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with 3, (a,v,w) = B[[X} < 0]; X1 +H 0 Y1)+ 2] - Rinally

k=0
with
Lo = o [, Aesoalo.w) ane )
- $(v) P(w) An(dv) A (dw) .
Set
1 =2 e X1
= (2m)(N+2)/2 \/@/RNxRI;)E[[TJ’ > k] a

() P(2)An (dy) Ar(d2) ,

since

I= A7 U™ (") An(9) Mi(9)
it suffices to show that {nM*4/2[.}, <, converges to I, that is

1) for all k > 0, lim n®™+2/2[ = L4,

n——+oo

+o0 +o0
2) Y Ll < 400 and Y Ly =1,
k=0 k=0

3) lim sup lim sup n(N+2)/2 Z I k| = 0.

l—>+0c0 n—+oo kel

To prove the assertion 1), note that
Log = E[[T4 > K]0 [XPH > 0] e g(v ) g (20,
by the local limit theorem on RY*2 the assertion 1) follows with

1 E[[T, > k];eXT]

2 (N+2)/2 /O] a
B(y) A (dy) / (2) M(dz)

LM}:

RN
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The fact that the series > 725 [L.x| converges is a direct consequence of
Theorem 2.4. To prove the assertion 3), note that

n aXxntl n n
Lo e| SE[[Ty > K]0 [XEH < 0fe0 7 [o(Y ] o (277

k
< E[fry > et [ e gy + )|
R— xRN xR

(2 + Z8) | pr TR (de dy dz)

Cla,4,9) » )
= (n+1—k)(N+2)/2 E[[Ty > kJ;e**1] by Theorem 2.2.ii)
Cy

< (1= F) N0/ 2 by Theorem 2.4.

On the other hand

k
Tl < Wle [ BT > KM+ v
R= xRN xR
. eamp*(n—i—l—k) (dl‘ dy dz)]
< Wl Cla, 6)
S T2

]E[[X,ﬂ'll < 0]; eaX’?jrrll] by hypothesis of induction
< %
TEWNEN2 1Tk

The assertion 3) follows since for any ¢ > 0 one has

(N42)/2 % s n(N+2)/2
n kz:; (k| < C1 kzzzl K372 (n + 1 — k)N +2)/2
n (N+2)/2
+C Y e
[n(l—e)+1]
[n(1—¢)]
Ch 1
< (N12)/2 kz:l L3/2

R 1
\/5(1—5)(N+3)/2[ vVn+1—k

n(l—e)+1]
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1 Ve
< .
- C(e(N-q-z)/z \/Z + (1 _ 8)(N+3)/2>

Since ¢ is arbitrarily small, the assertion 3) follows.
The proof of ii) is also made by induction over N. If g € Hs(RNV 1)
there exist ¢ € Hs(RY) and ¢ € Hs(R') such that |g| < ¢ ®1). We set
Ln(y, z) = E[[T} > n];e**T ¢y + Y*) (2 + 27')]

and we have

with
n aXxnt! n n
Lni(y, 2) = E[[Ty > KIN[XpH <0l g(y+ Y oz 4+ 271)].

As above, one has

Ch Cs }

_.
n(y:2)| < { o e T

which proves that the sequence

{n(N+2)/2 i L (1, Z)|}

n>1
k=0 -

is uniformly bounded in y, z. This achieves the proof of ii).
The convergence of the sequence

{nNEPETy > 0l o(XT, Y1)}z

is obtained with similar arguments.

2.3. Behaviour of the process (X}, max {0, X{,..., X7}, Y{"))n>o0.

For any n > 0 set A7 = max {0, X{,..., X7} and let T}, be the
random variable defined on (2, F,P) by T,, = inf{0 < k <n: A =
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XF}; for any continuous function ¢ with compact support on RY 1 we
have

E [(p(Xlnv Xln - X{Lv Yln)]

= ZE[[Tn = kl; ‘P(Xfa —X,?+1,Y1")]
k=0

=Y E[0 < X}, X} <Xf,... X' < X},
k=0
X< XT, L XD < XL o(XT, — X, YY)
=Y E[[X] >0,....,XF >0/ n[X;H <o0,..., X}, <0];
k=0

@(X{cv _Xlg-l—lv Yln)] .
One obtains the following factorisation
]E[@(Xlnv Xln - X{La Yln)] = Z Jn,k((p)
k=0
with

Jn,k((p)
= / o(x, —a',y +y') PE((0,0), dz dy) PrIF((0,0), do’ dy') .
RN+1

The behaviour of the process (X]", X" — X7*, Y{*) is thus closely related
to the one of the iterates of the transition kernels P_ and P,;. Using
this factorisation one proves the

Theorem 2.6. Suppose that the hypotheses of Theorem 2.2 hold.

Then, for any continuous function with compact support on RT x
Rt x RV the sequence

(V2R [p(X7, A7 — X7, V) hns1
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converges to

t,y) Ut (ds) \] * U™ (dt) An(dy)

1
N /RWRWRN ols

1
+
(2m) (072, /[C]

[ (5, —t,y) Ay + U (ds) U~ (dt) An(dy)
R+ xRt xRN

Furthermore, for any continuous function f with compact support on
R* x RT and any g in Hs(RY), the sequence

{nWHIZE[F(A7, AT — XT) g(y + V) nx1
is bounded, uniformly in y € RN .
Proor. We only proof the first assertion; the second one may ob-
tained with obvious modifications as in Theorem 2.5. Set ¢(x,t,y) =

01(x) pa2(t) p3(y) where @1, and @3 are continuous with compact
support. Fix £ > 0; by Theorem 2.5, the sequence

{n(N+3)/2/ 0o ( )<p3(y+y)P" k((0,0),dx'dy')}
R— xRN n>1

is bounded uniformly in 4y € RV and converges to

t) AT * U™ (dt) An(p3) -

(27) <N+1>/2 JIC] / o2
By the dominated convergence theorem, one thus obtains, for any fixed
1 >1

L (N+3)/2
nll}I—lI—loo " Z Jn,k((;o)

ZEﬂ>Mw@M

(2r (N+1>/2\/_|0

. / oa(—t) AT+ U~ (dt) An (i3) -

—0o0
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In the same way one has

lim n(N+3)/2 Z In k(¢

n—4+oo
k=n—i+1

(21 (N+1>/2\/|?Z]E ot > K p2(=XD)

AT = U (1) An(3) -

Note that the sums ZZ:OE[[T_ > k]; o1 (XF)] and E:ZZOIE[[T*Jr >
k]; p2(XT)] converges respectively to U** (1) and fi)oo o (—t) U~ (dt).
To obtain the theorem it suffices to check that

lim sup lim sup [V +3)/2 Z ko ( )‘ 0,

t—+oo n—+oo

k=i+1
one has
[n/2]
‘n(N+3)/2 Z Jn,k(‘P)‘
k=i+1
[n/2]
<2 N R([T > K] | (XT)]]
k=i+1
: / o2 ()| |3y + ¥")| PLF((0,0), da’ dy')
R— xRN
[n/2]
< Clpa.03) > E[T- > ks o1 (XF)]]
k=i+1
n(N+3)/2 )
. (D by Theorem 2.5.ii)
+oo 1
< C(p) Z e
k=i+1

The same upperbound holds for the term

n(N+3)/2 Z Jni ().

=[n/2]+1
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This achieves the proof.

3. A local limit theorem for a particular class of solvable
groups.

Recall that G = Gg ny = R*T x R? x RV with the composition law
g-g =(ad,au +u,b+1b),

for all g = (a,u,b), for all ¢’ = (a/,u', V') € Gy n.

The proof of Theorem 1.1 is closed to the one of the local limit
theorem for the affine group of the real line given in [7]; we just give
here the main steps of the demonstration.

Let us first introduce some helpfull notations. Let g,, = (ay, Up, br),
n = 1,2,... be independent and identically distributed random vari-
ables with distribution p. Denote by F,, the o-algebra generated by
the variables g1,92,...,9n, n > 1. Forany n > 1,set G} =g1---gn =
(AT, Uy, BY); we have AY = ay---ap, U} = > 0_ja1---ag_1u, and
B? =by + -+ 4+ b,. More generally, if 1 <m < n, set A}, = ap, - ap,
Ur =y Qg1 Uk, Bl = by, + -+ + b, and set A7 = 1,
U} =0, B =0 otherwise.

Let i be the image of u by the map

9= (aub)— =+ "),
a’ a
if g, = (&n,ﬂn,gn), n = 1,2,... are independent and identically dis-
tributed random variables with distribution i on G, set éﬁl =0m """ Jn
= (A, Un, By).

In order to obtain the asymptotic behaviour of the power of con-
volution p*™ we use the fact that the sequence {U7'},,>1 behaves like
the maximum of the variables Al,... A%, These idea was already used
in [7]. Set A= {g = (a,u,b) € G: a > 1} and consider the transition
kernel P4 associated with (u,.A) and defined by

Pa(g,B) = /G 1ars(g h) ldh)

for any Borel set B C GG and any g € G. The probabilistic interpretation
of P4 is the following one: if T4 = inf{n > 1: G7T € A} is the first
entrance time in A of the random walk {G7},,>¢ then

Ph(e,B) =P[[T4 > n|N[GT € B]], foralln > 1.
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In the same way, set A' = {g € G : a(g) > 1}, let P4 be the operator

associated with (f,.A") and denote by T4 the first entrance time in A’

of the random walk {G7},>1; one has
P%.(e,B) = P[[Ta > n]N[GT € B]], foralln > 1.

As in Section 2.3, we introduce the first time at which the random walk
{A7},,>1 reaches its maximun on R**; for any continuous function ¢
with compact support on GG, we thus obtain

Elp(GP)] =) Ink(p),

where

!/ !/
L1 (9) :/ (p(a—, utu ,b+b'>Pﬁ,(e, da du db) P}y (e,da’ du’ db') .
GxG @0 a

We now give the main steps of the proof of Theorem 1.1 under hypoth-
esis G1, G2 and G3.

First step. Control of the central terms of the sum > p_, In k().

We show here that
n—u

lim sup lim sup Z Ik(p)=0.

1—+oo n——+oo i
Without loss of generality, one may suppose that the support of ¢ is
included in R*T x (R**)% x RV ; for any ¢ > 0 there exist a constant
C > 0 and a positive function ¢ with compact support on RY such that

€

o(a,u,b) < C W (b)

it follows that for any (a, 3) in R*t x RN

AL w4+ U
E[(Ta > (S, 2,5+ BY )|
1 (Al)e

< CofElla; <11 A2 A< 2] W) B!
— 67 [[al — ] |:maX{ 29 9 2} — a1:|7 ||U+U]l_||2€ ¢(/8+ 1)

(AL .1 plda do db)
< (Caf E b+ B _—
< "‘/G [max{Ag,...,Ag}26¢(ﬁ+ + 2)] PEECE
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the last inequality being a consequence of the fact that ||u+U}|| > |Juy|
P-almost surely and

1
l{maX{A%;~~~:Alz}§1/a’1} = a%e max {A%, sy Al2}26 .

By Theorem 2.6 one obtains

A_llu+U{
a’ o«

1<N+3>/21E[[TA > l];<p< B+ Bll)] < Ci(p) ot

The same upperbound holds under hypotheses G1, G2 and G’3 (see [7,
Lemma 3.1)).
It readily follows that

[n/2] [n/2]
nNFEZN " L(p) < 2VFVEN (0 — k)N, ()
k=i k=i
[n/2] .
< Cilp) Y E[[Ta > k5 (A7)7]
k=i
/2
< Ca(p) Z w372
k=i
and so
[n/2]
lim sup lim sup n (N +3)/2 Z I, k(p) =0.

t—+00 N—>—+00 i

The control of the sum ZZ;[in/z] I, () goes along the same lines.

Second step. Convergence of the sequence

Al [
J(N+3)/2 E[[TA N l];(p(i’ u+ Uj

B+Bt)]
for any (o, u, B) €]0,1] x (R*T)4 x RN,

It is the more technical part of the proof and it uses and idea due
to Afanasev [1]. Without loss of generality, one may suppose o = 1,
u=0and g =0. For any n > 1, set

E.(p) = ™2 E([Ty > ) (A7, UT, BY)].
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Fix ¢ € N such that 1 <1 < n/2 and consider
En ((107 7/) = n(N+3)/2 E [[TA > TL]; QD(Arllv Ul + An zUn 1+1>° Bn)]

To obtain the claim, it suffices to prove that

a) hmsuphmsup E,(¢) — E,(p,9)| =0,

1—+oo n—+

b) for any fixed n € N, the sequence {E, (¢,%)},>1 converges to a
finite limit.

PROOF OF CONVERGENCE a). We use the equality
Ul =Ul+ AU + AT UR

without loss of generality one may suppose that ¢ is continuously dif-
ferentiable, and so, for any € > 0 there exists C' > 0 and a positive
function ¢ with compact support on RY such that

|(,0(CL, u, b) - (10(@7 v, b)| < CGEHU’ - U||E¢(b) )
consequently

|]En (90) - En ((107 7’)|

< CnWHIPE([Th > n); (A7) (A)° UL #(BY))]

< CnWEIE N TR ([T > 0] (A7)° (A7) Jurl® o(B7)].
k=i+1

Note that for i < k < [n/2] one has
E[[Ta > n]; (A7) (AY1)7 [|uxlI® (BY)]

n 1
<E[Ta>k-1]N max{AZii,..., w1t < A_’f :

(AP (AFH lur]lF (B
<E[[Ta > k—1]; (A5 a2 [|ug |
cmax {AFT], . AR} (AR ) 0BT
By Theorem 2.6,

(n— k)(N+3)/2 E [max {AZIL cee AZ+1}_36/2 (AZ+1)6 P(B + BI?—H)]
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is bounded, uniformly in # € RY and so

(n— k)NTI2 BTy > n]; (A7)F (A5 [Ju]|* p(BY)] < % :

When [n/2] <k < n — i one obtains by a similar argument

Cs

ROEBEE(T > nl: (A (A7) | 6(BY] < o573 -

Finally one has

E, () — Ey(p,i)] < Cs

-

convergence a) follows.
PROOF OF CONVERGENCE b). Fix an integer i; we have
En (¢,9)
= [ Bulpug b ) PACe.dg) () pldia) - )
with

En((p,g, hl, hz, vy h,)
1

_ i+1 nil < ——
B [ (31 5 <

: 1 1 1
N A2} < min ) e ;
[ e {a(g) a(g)a(hy) a(g)a(hi) -+ -a(h;) H
v(a(g) A?_*__f a(hy)---a(h;),u(g) + a(g) A?_*__f w(hy -+~ hy),
By 4+ b(hy) + -+ b(hy)] .
Using Theorem 2.6, one may see that, for any g, hy,...,h; € G, the

sequence
{n(N+3)/2En((p7 g, hl, h27 R hi)}nZl

converges to a finite limit. To obtain the convergence b), we have to
use Lebesgue dominated convergence theorem and therefore, we have to
obtain an appropriate upperbound for n(Nt3)/2E, (¢, g, hi, ha, ..., h;).
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Using the fact that for any € > 0 there exist C' > 0 and a pos-
itive continuous function ¢ with compact support on RY such that
lp(a,u,b)] < Ca®p(b), one thus obtains

nWNEI2E, (0,9, h1, ha, ..., ki) < Cra(g)3/2a(hy)®---a(hi)®

which allows us to use the Lebesgue dominated convergence theorem
for € small enough; convergence b) follows.

Consequently, {nN*+3/2, ;(p)},>1 converges to a finite limit;
furthermore, for any i > 1 and any compact set K C R*t x RV, the
dominated convergence theorem ensures the existence of a finite limit
as n goes to oo for

2
( )/
{n N+3 2kz_;)ln,k(<va)}n21 ’

where
L, K) = /G 1x(g)
([ o ) )
- Pl (e, dg) .

The following step shows that the indicator function 1k does not dis-
turb too much the behaviour of theses integrals.

Third step. Control of the residual terms.

In the first step of the present proof, we have shown that, for any
€ > 0 there exists C; > 0 such that

(n — k)(N+3)/2 ]E[[TA >n —k; (p(A’i_k, u+g{1_k,ﬂ+ B?_kﬂ

< Ci(p) a®.

It follows that for any 0 < 6 < 1

Ig /{QEG:a(g)ga} ( _/G QO(ZEZ; ’ U’(g)a—(;;‘(h) ,b(g) + b(h))PZ‘k(@ dh))
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'Pﬁ’(ev dg)
: 1 r 1k\e
=1

i

1
=0 1;1 (n — k)(N+3)/2 3/2

On the other hand for any fixed U > 0, one has

i

k=1

2 /{geaznu(g)nzv} (/a (’D(ZEZ;’ U(gzzz;)l(h) ’ b(h)+b(9>>PZ_k(e, dh))

’ Pf\’ (67 dg)

e Z (n — k)l(N+3)/z E[[Ta > k]; (A% |UL]|7/?]

.0y 1
— Ue/2 I; (n _ k)(N+3)/2 k3/2 "

The last inequality being guaranteed by standart estimations. (see [7,
Lemma 3.3] for more details).
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