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Parabolic Harnack inequality

and estimates of Markov
chains on graphs

Thierry Delmotte

Abstract. On a graph, we give a characterization of a parabolic Har-
nack inequality and Gaussian estimates for reversible Markov chains by
geometric properties (volume regularity and Poincaré inequality).

1. Introduction.

Consider the standard random walk with kernel p,, (z, y) on a graph
I' with polynomial volume growth. Under which conditions does one
have the following Gaussian estimates?

6_Cd($7y)2/n S pn (x7 y) S 6_Cd($7y)2/n ,

V(e Vi) V(e Vi)
where V(x,n) is the cardinal of the ball of center x and radius n. Note
first that p,, (z,y) may be null for d(z,y) > n or for d(x,y) # n (mod 2).
Thus we will consider only d(z,y) < n and graphs where all vertices are
loops. With these precisions, the Gaussian estimates were proved when
[ is a group in [15]. They were also proved for linear volume growth
in [5] and it was there conjectured that they were true for polynomial
growth under an isoperimetric assumption such as Poincaré inequality.
Indeed in the continuous setting of Riemannian manifolds, they were
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182 T. DELMOTTE

proved first for non-negative Ricci curvature in [19] and then under
Poincaré inequality assumption in [12], [30]. All these proofs are based
on a parabolic Harnack inequality and [30] shows that the Poincaré
inequality is the good isoperimetric assumption.

The aim of this paper, which is announced in [10], is to prove
the conjecture in [5] and more precisely to give a characterization of
the parabolic Harnack inequality or the Gaussian estimates by geomet-
ric properties (volume regularity and Poincaré inequality) which is the
discrete counterpart of the main result in [30]. A precise statement is
proposed in Section 1.4 after some definitions. The main part, the proof
of the Harnack inequality, is an application of J. Moser’s method [21],
[22], [23]. His approach is presented on Euclidian spaces R™ but shows
clearly the contribution of Poincaré and Sobolev inequalities. That’s
why it has been adapted to many different settings.

As far as graphs are concerned, elliptic versions (without the time
variable) of the Harnack inequality have been proved in [20] with a
special isoperimetric assumption and in [9], [16], [26] by J. Moser’s iter-
ative method with Poincaré inequality. The discretization of the space
raised some technical problems but the proof could go through. It is
much more intricate to deal with both discretizations (space and time),
especially to obtain Cacciopoli inequalities. Section 1.5 is an attempt to
show these difficulties and their origin. Because of these criss-crossing
discretizations difficulties, we have tried to prove a continuous-time
parabolic Harnack inequality on graphs and this raised only solvable
technical problems like the elliptic version.

One application of the Harnack inequality is another proof of Hol-
der regularity (see Section 4.1) for solutions of the elliptic/parabolic
equation (theorem of J. Nash [24]). Another application is that it yields
Gaussian estimates. The study of these estimates in the mixed setting
(discrete geometry, continuous time) in [8], [25] has been helpful because
at first we only prove the Harnack inequality in this setting.

At this Gaussian estimates step, it is possible to deduce discrete-
time results from the continuous-time ones. This is the crucial point of
this paper because all other steps are more or less adaptations of known
technics which are fully reviewed in [30]. This strategy —to work on the
continuous-time setting and to compare with the discrete-time setting—
is also employed in [31, Section 1.4.1]. One side of the comparison is
stated in Theorem 3.6 and may be used again. The other side will
depend closely on the problem considered.

To deduce Gaussian estimates from the Harnack inequality is the
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classical (chronological after J. Moser’s work) way to introduce this
theory. The reverse order based on J. Nash’s ideas [24] and completed
in [11] is also useful here because our discrete-time Gaussian estimates
yield the discrete-time Harnack inequality, which is finally proven after
a return trip to Gaussian estimates.

Let us note that we aimed at not using any algebraic structure
(and we get an equivalence, which proves that this structure plays no
role in fact). Similarly, the authors of [3] tried to extend related results
to a more general class than Cayley graphs (strongly convex subgraphs
of homogeneous graphs) and in [33] some estimates are obtained still on
the particular graphs Z™ (with a continuous time) but for non-uniform
transitions.

1.1. The geometric setting.

Let I" be an infinite set and iy = piy, > 0 a symmetric weight on
I'xT. It induces a graph structure if we call x and y neighbours (z ~ y)
when fi, # 0 (note that loops are allowed). We will assume that this
graph is connected and locally uniformly finite —this means there exists
N, such that for all x € T, #{y : y ~ 2} < N and it is implied by
the geometric conditions (see below) DV (C7) or A(a). Vertices are
weighted by m(z) = >_, _, #ay- The graph is endowed with its natural
metric (the smallest number of edges of a path between two points).
We define balls (for r real) B(z,r) = {y: d(z,y) < r} and the volume
of a subset A of ', V(A) = > c,m(x). We will write V(z,r) for
V(B(z,r)).

We shall consider the following geometric conditions:

Definition 1.1. The weighted graph (T, p) satisfies the volume regu-
larity (or doubling volume property) DV (Cy) if

Viz,2r) < CLV(x,r), for allz €T, for allrT € RT .

This implies for r > s that (the square brackets denote the integer
part)
V(z,r) < V(x, ollog (r/s)/log 2]+1 5)

o CiOg (r/s)/log2 V(.T, S)

r lOgCl/lng
= Cl(;> V(z,s).
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Definition 1.2. The weighted graph (T, u) satisfies the Poincaré in-
equality P(Cs) if

> om)|f(x) - felP < Car® D pay (F(y) - f(2))?,

$EB($0,T‘) $,y€B($0,2T‘)

for all f €RY, for all zo €T, for all r € R, where

1

Viwo.r) > m@) f(w).

z€B(zo,r)

fB=

Some methods to obtain this Poincaré inequality on a graph are
proposed in [6].

Definition 1.3. Let o > 0, (I', p) satisfies A(«) if

x ~ y implies pgyy > am(x), forallz €', x ~x.

Two assertions are contained in this definition. The fact that
Loy 7 O implies piz, > am(z) is a local ellipticity property —it may
be understood as a local volume regularity if we see the graph as a net-
work. It implies that the graph is locally uniformly finite with N = 1/«
(so does also DV (Cy) with N = C?). Only this first assertion is needed
for continuous-time results (such as Theorem 2.1). The second asser-
tion is that pz, > am(z) (or p(xz,z) > « with the notations of next
section). It will be used in Section 3.2 to compare the discrete-time and
continuous-time Markov kernels. This condition appears in [4] where
the authors prove that it implies the analyticity of the Markov operator.
This fact is used for instance in [27] to obtain temporal regularity.

If one considers a weighted graph (I, u) which satisfies only the
first assertion, for instance the standard random walk on Z (fiy, = 1
if [m —n| =1, ftyn = 0 otherwise), one can study the graph (I', u(?)

where P
(2) — xz Mzy )
#’:ny zz: m(z)

With the notations of next section, this gives the iterated kernel

p(z)(x, y) = p2(z,y) and m(2)(x) =m(z).
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The point is that

,ugi)—z >Za,um—am ).

z zZ~xT

Thus (T, x() satisfies the complete assumption A(a?). Indeed, if
;1,;(,;2?} # 0, there exists zg such that p,,, # 0 and p,,, # 0 and

() ~ Hzzo Hzoy > o >
:uar;y - m(Zo) :ul‘ZO « m(l‘)

To extract afterwards from the results for (I, x(?)) some consequences
for (T, 1), we must be careful that (I, x(?)) may not be connected (see
the standard random walk on Z).

1.2. Markov chains and parabolic equations.

To the weighted graph we associate discrete-time and continuous-
time reversible Markov kernels. Set p(z,y) = pgy/m(z), the discrete
kernel p,(x,y) is defined by

{ pol(z,2) =0(x,2),
Pny1(T,2) = Zyp(x,y) (Y, 2) .

(1.1)

This kernel is not symmetric but

P, y) _ paly,x)
m(y) m(z)

We keep this notation which represents the probability to go from x to
y in n steps but it may also be interesting to think to the density

Pn(T,y)

ho(2,y) = ()

which is symmetric and is the right analog of a kernel on a continuous
space.

We will say that u satisfies the (discrete-time) parabolic equation
on (n,z) if

(1.2) m(z)u(n+1,x) = Z,umy u(n,y)
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It is the case of p.(-, y).

Note that we have a weighted geometry and we consider only the
canonic parabolic equation on it. Imagine we had a non-weighted ge-
ometry (this means volume regularity and Poincaré inequality without
the weights m(x) and fi,) and any parabolic equation with a uniform
ellipticity constant, then we would consider the geometry weighted by
the coefficients of the equation. Because of the ellipticity, the geomet-
ric assumptions on the non-weighted geometry would yield those on the
weighted geometry. Our background is a little more general since the el-
lipticity constant (A(«)) is not uniform but above all, as A. Grigor’yan
pointed out to us, its presentation is cleaner because these geometric
assumptions are always applied with the weights.

Note also that every reversible Markov chain can be obtained as
above: starting from the Markov kernel p and its invariant measure m,
one constructs pzy = p(z,y) m(z).

Definition 1.4. The weighted graph (I', u) satisfies the Gaussian esti-
mates G(cy, Cy, Cy, ) (all constants are positive) if

d(z,y) < n implies % Gl /n < (2, y)
< Grmy) —cod@y)?/m
~ V(z,/n)

Of course, if d(x,y) > n then p,(x,y) = 0. On Euclidian spaces,
these estimates were first proved for fundamental solutions of parabolic
equations in [1].

The continuous-time Markov kernel may be defined by

a;z—etg 'pkxz

Like the discrete kernel, it satisfies
Pi(x,y) _ Puly, @)
m(y) m(x)
It is also the solution for (¢,z) € R* x I" of
Po(z,z) = 6(x, 2),

0
m(a:) Pt (z,2) Z,Umy (Pe(y, 2) — Pe(w,2)) -
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Indeed,
) too ktk_l +oo tk
apt(x z)=e" t(z I pk(x,z)—zgpk(:r,z»
k=1 ) k=0
+o0 +oo tk
Ze_t(z ,prypk 1(y,2) = k,pk(x Z))
k= —
= " p(w,y) (Puly, 2) — Pe(x,2)).

Y

Therefore we will say that u satisfies the (continuous-time) parabolic
equation on (¢, x) if

(1.3) m(x . u (t,z) Z,umy —u(t,x)).

1.3. Parabolic Harnack inequalities.

These inequalities apply to positive solutions of the parabolic equa-
tions on cylinders (products of a time interval and a ball). Let us make
this precise on the boundary of the cylinders. We shall say that u
is a non-negative solution on Q = I x B(zg,r) if it is the trace of a
non-negative solution on I x B(xg,r + 1) which satisfies (1.2) or (1.3)
everywhere on (). For instance in the continuous case, this implies: for
all (t,z) € Q,

u(t,z) >0,

for all t € I, for all x € B(zg,r — 1),
m(a;)(a (tx)-l—utx) Z u(t
1 Moy U y
for all t € I, d(xp,x) = [r] imply

(1.4) m(x )(%u(t x) + u(t, a:)) > Z Py u(t,y) .

yEB((EO 7”’)
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Definition 1.6. Set n €]0,1] and 0 < 61 < 03 < 03 < b4, (I', )
satisfies the continuous-time parabolic Harnack inequality

H(T], 91, 92, 93, 94, C)

if for all zo,s,r and every non-negative solution on Q = [s, s + 0472] x
B(x,r), we have

supu < Cinfu,

Qo Qo
where Qo = [s + 0172, 5+ 0512 x B(zo,n7) and Qg = [s + 0372, s +
0472 x B(xg,nr).

Let us explain the choice of the boundary condition. For r < 1, )
has no interior so we just have (1.4) but this is sufficient to obtain the
inequality since it gives a lower bound for (9/0t) u(t, o).

If we assume A(«) and H(n, 01,02, 03,04, C), then for all ' €]0,1]
and 0 < 0] < 05 < 64 < 0, there exists C’ such that

H(n/79;_7 /27 ;)79217 C/)

is true. Take two points (tg,7g) and (tg,7e) in Qf and Qf. For
r big enough, there is a decomposition zg = z9,...,2, = zg and
tg =tp < -+- < t,, = tg —where n depends ounly on the 7, n’, §; and
0!’s— such that we can obtain u(t;, x;) < Cu(t;y1,x;41). So we can take
C' = C™. For r bounded, the condition A(a) gives the inequality. For
simplicity, we will denote

H(Cy) = H(0.99,0.01,0.1,0.11, 100, Cy,) .

These coeflicients have been chosen for convenience when we apply
this inequality (see typically Propositions 3.1 or 3.4). We will write
u(te,rg) < Cy u(tg,Te) as soon as xg and g are in the contraction
of a ball on which u is a solution and “there is time” between tg and
tg as well as before t5. We will not have to bother with technical
coefficients if they don’t exceed 10.

Definition 1.6. Set n €]0,1[ and 0 < 0, < 03 < 03 < 04, (T, ) satis-
fies the discrete-time parabolic Harnack inequality H(n,01,02,03,04,C)
if for all zg € T, s € R, 7 € R and every non-negative solution on

Q = (ZN|[s,s+ 04r%]) x B(zo,7), we have

(ne,z5) € Qo, (ng, Tg) € Qg and d(zg,vg) < ng — ng
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implies
u(ng,zg) < Cu(ng,rg) ,
where Qg = (ZN[s+ 0172, 8+ 0212%)) x B(xo,nr) and Qg = (ZN[s+
0372 s+ 047%)) x B(xg,nT).

If the condition d(zg,zg) < ng — ng is not satisfied, u(ng, zg)
has no influence on u(ng, zg). It is always satisfied if r > 21/(03 — 05)
and in this case we can write

supu < Cinfu.
Qe Qo

The same remark as above holds for this inequality and we will denote

H(Cy) = H(0.99,0.01,0.1,0.11,100, C) .

1.4. Statement of the results.
Here is our main result:

Theorem 1.7. The three following properties are equivalent.

i) There exist Cq,Cy, 0 > 0 such that DV (Cy), P(Cs) and A(«)

are true.
ii) There exists Cy > 0 such that H(Cg) is true.
iii) There exist ¢, Cy, Cy, ¢ > 0 such that G(¢;, Cy, Cy,cp) is true.

Theorem 3.8 states that i) implies iii), Theorem 3.10 that iii) im-
plies ii) and Theorem 3.11 that ii) implies i).

The first part (i) implies iii) ) is the most difficult and an interme-
diate result is:

i)’ There exists C3 > 0 such that H(C%) is true,

which is proven in Section 2 by a Moser type iteration argument. In
fact, ii)’ is also equivalent to the three properties, since we can prove ii)’
implies i) the same way we prove ii) implies i). In Section 3, we complete
the proof. First ii)” implies estimates for P;, which yield estimates iii)
for p,, by comparison. Then iii) implies ii) and ii) implies i). In the last
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section, two properties about Holder regularity and Green function are
deduced for graphs which satisfy these properties.

Let us note that it is straightforward that ii) and iii) imply the
hypothesis A(a). For iii), just apply the lower bound to p;(x,y) where
y € B(x,1). And for ii), set n = —0.5 to obtain po(x,z) < Cy p1(z,y).

This result connects with [15] and [5] since in groups or in graphs
with linear volume growth, Poincaré inequality is always satisfied. In
Euclidian graphs Z™, the estimates which are well-known for uniform
transitions (this is for instance a consequence of the result in groups) are
here proved for non-uniform transitions (y,, doesn’t depend on y — x).

1.5. Continuous or discrete time.

To prove the Harnack inequality, we will use analytic methods
which yield Cacciopoli inequalities. For these methods, the continuous
time is naturally more convenient. We may have an idea of the problems
if we look what happens on the two points graph I' = {a,b}. Choose
p(a,a) = p(b,b) = « and p(a,b) = p(b,a) = 1 — «, this may be done if
we set fgq = oy = @ and pgp = 1 — . This gives

1+ (2a—1)" 14 e(2a=2)t
pn(ava): ( 92 ) 9 Pt(ava):fv

1—-2a—1)" 1 — e(2a—2)t
patat) = Iy - 2

Of course if a = 1, there is no link between the two points. Now, if
a # 1, P is always a simple relaxation (Pi(a,a) > Pi(a,b)) whereas,
for @ < 1/2, p is an oscillating relaxation or worse (for « = 0) a pure
oscillation.

The first conclusion is that we have to force a minimum value on
the diagonal of the Markov kernel if we want a discrete-time parabolic
Harnack inequality or estimates from below. Indeed, they are not satis-
fied by this example for & = 0. This has nothing to do with the fact that
the graph is finite, take the standard random walk on Z and observe
its effect on u(0, z) = z mod 2. We obtain u(n, z) = (n + z) mod 2.

What plays a role is condition A(«) and particulary the fact that
p(z,x) > a. We have extended this condition to p(z,y) > « for z ~y
so that our results are true for low values of n, think for instance to the
lower bound of py(z,y) = p(z,y). Besides, lower bounds for d(z,y) = n
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are the consequence of lower bounds for n = 1, see the proof of Theorem
3.8.

The second conclusion is that the behaviour of the discrete-time
Markov chain is more difficult to control. In addition to the usual
heat relaxation, there may be another phenomenon of relaxation of the
oscillating errors due to the discretization of the time.

One more attempt to show the difficulty of adapting the analytic
methods to the discrete time. Consider the proof of the Cacciopoli
inequality. When time and space are continuous, take u such that
OJu/0t = Au and a compactly supported cut-off function 1 to integrate
by parts.

7

3(52) :/ W2 uAu

t
:—//V(wzu)-Vu
:_//¢2|vu|2—//2¢uw-w.

Since

—//2¢V¢uVU§ %//¢2|Vu|2+2/ (V|2 u?

one gets

%0 ff e ff

This inequality is essential to estimate ||Vu||o with ||u||2, which with the
Sobolev inequality gives estimates between mean values for exponents
of the same sign. Let us try to adapt this argument to discrete time.
Note that (1.2) may be written in the following way

m(z) (u(n +1,2) = u(n, ) = Yty (u(n,y) = u(n,z)).

For simplicity, we will forget about the cut-off function (take u(n,-)



192 T. DELMOTTE

compactly supported). Write

2 ;m(x) u(n, @) (u(n + 1,2) — u(n, z))
_22/1':1:74 u(n, z) (u(n,y) — u(n, z))
—Zuwy u(n, z) (u(n,y) — u(n, ))
+;uywu n,y) (u(n, ) — u(n, y))

= = > ttay (uln,y) — u(n, 2))”.

This is nice but we have not taken the exact time differentiation of
Yo m(z) u2( x), that is,

Zm 2(n+1,2) — u*(n, z))
—2 Zm(g;) u(n,z) (u(n+1,2) — u(n, z))
+Zm w(n+1,2) — u(n, z))>
= _Zﬂ'my( (n,y) — u(n,z))*

+Zm u(n +1,7) —u(n,z))?.

Fortunately, if we suppose that pz, > am(z), then

Zm u(n + 1,2) — u(n,z))?
S (S )
Z Ex (Z “wy> (;”my (u(n,y) — u(n,a:))2>

<(1-a Z,umy (u(n,y) — u(n,x))%.
@,y
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This yields

Zm (n+1,2) —u?(n,z)) < az,uwy (u(n,y) — u(n,z))?.

T,y

The constant a has been used to control the errors due to the dis-
crete time. But these manipulations seem far more intricate when we
deal with subsolutions or the logarithm of u (and cut-off functions).
Therefore, we won'’t try to apply Moser’s iterative technique directly to
solutions of the discrete-time parabolic equation.

2. Harnack inequality for solutions of the continuous-time
parabolic equation.

Theorem 2.1. Assume (I',u) satisfies DV (C1), P(C2) and A(«).
Then, there exists Cy such that H(Cy) is true.

The proof is an adaptation of [30]. The strategy is Moser’s iterative
technique [22], that is to prove inequalities involving the mean values

M(u,p,[s1,52] X B) = ((32 =) Z/ u?P(t, ) dt) 1/P.

The idea is we get the infimum when p — —oo and the supremum
when p — +o00. Thus we want to prove a series of inequalities between
—o0 and 4+o00. To improve the exponent of a mean value, the Sobolev
inequality proved in Section 2.1 is helpful. One application of this
inequality yields an elementary step of the iterative technique proved
in Section 2.2. The iteration gives inequalities between the extrema and
mean values as stated in Section 2.3. The most difficult step is between
negative and positive values. Here we use an improvement of the initial
version [22] proposed in [23] with an idea of E. Bombieri [2]. This is the
object of Section 2.4 and needs a weighted Poincaré inequality stated
in Section 2.1.

Throughout this section devoted to the proof of Theorem 2.1,
DV (Cy), P(Cs) and A(a) are assumed and uw > 0. The theorem for
uw > 0 is then straightforward.
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2.1. Poincaré and Sobolev inequalities.

Proposition 2.2 (Weighted Poincaré inequality). There exists C' de-

pending on C1, Cy and « such that for all xp € I';, R € N and f €
RB($0,R);

Y. m@) (@) (f(2) — foy)”

z€B(zo,R)
<SCR* ) peymin{9?(2), ()} (f(y) — f(2)),

m,yEB(mO,R)

where Y(x) =1 —d(xo,x)/R and fpy is such that the term on the left
1s minimal, that is

z€B(zo,R)

fBy =
y S ) ()

z€B(zo,R)

PROOF. We refer to the proof in [32] based on [17]. Consider F a
collection of balls with the following tree structure: denote one ball By
~the root of the tree- and assume that there is a function B — B
from F\ {B1} to F (denote B its iteration) such that for all B € F,
rg B = inf {k : B*Y) = B;} < co. Denote r(B) the radius of B,
AB]={B € F: exists k € N, B®) = B} and B* = 1.001B. For our
discrete setting, we will need this version of Poincaré inequality where
C), depends on Cy, Cy and a.

> m@)|f(x) - fBI* < Chr? > ey (fly) = fl2)?,

z€B(zo,7) z,y€B(z0,1.001r)

for all f € RY, for all g € I, for all » € RT. It is obtained by an easy
covering argument. Again, there may be some problems for small » but
then A(«) gives the inequality.

The following lemma will be applied to

,U,;y = Hazy min {wz('r)v ¢2(y)} .

The notations m' or f should be understood with respect to p'.
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Lemma 2.3. Assume there exists C' such that, for all B € F, there
exists cg such that

%3 m(z) <m/(z) < Cepm(z), forall x € B*,
(2.5)
CgumygugnyCCBﬂ’my? forallx,yEB*,
(2.6) #{BecF: xeB*} <C, forallz € T,
— B), u(B
2.7)  w(BNB)> max{“(c)’“( Vo raiBerF.

Then for every function f,

> wle) ()~ fp )P <4C5C% s (R(8) Y M veB)

z€EUpcrB Ber

Sty (f@) = f(w)?.

$,y€UBe}‘B*

ProoOF. In fact condition (2.7) is needed for p' but because of (2.5),
(2.7) implies that

- max (/(B). 4/ (B)}

u' (BN B) > o , forall Be F.
First note that
(f5 = fp)?
Y m(@) (fp — f(@) + (f(2) = [5))?
_ 4eBB —
< g (S U~ 3 o) 560 - £57)

> ml(x) —[p)? <) (@) (f(=) - fB)”

TEB z€B
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z,yeB*
< C*Cyr*(B) ) iy (F(2) = f(y))?
z,yeB*
We can now prove the lemma,
> (@) (fl) = fp,)
z€UperB
rg B—1
Z Zm rgB( f(x )—f1/9)2+ Z (le(i—l)_le(i))2>
BeF xeB =1
<3 (30 2 BB fpyea) 3wl (160 - fp)°
BeF BeA[B] zeB

<Y (X BB wB)c e X, () - 1)

BeF BeA[B] z,yeB*

B -

<4050 Y Csup( DY 2l )

o 2 . Ber B)
z,yeEUpcr B BEA B]

iy (f (@) = F(9))*

To finish the proof, we replace p/(B) and p/(B) by u(B) and p(B) so
that another factor C? appears.

END OF PROOF OF PROPOSITION 2.2. We will construct F as a Whit-
ney covering of B(zg, R — 1) by selecting W, C {z : d(xp,x) = R—2"}
for 0 <n < N =[logR/log?2].

n

2
F= {B(a:,r) . exists n,z € W, and r = . 01} U{Bi},

where By = B(xzo, R/1.01). For these balls, (2.5) is satisfied. The tree
structure will be constructed this way: if B = B(z,r) with z € W,, we
will choose B of center T € W,, 1 such that d(z,Z) < (3/2) 2" (see the
construction of the W,,’s below). Thus, B(x, (2/1.01-3/2)2") C BNB
and condition (2.7) is satisfied.
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We must check, in order to apply Lemma 2.3, that it was possible
to select W,, so that

{z: R—2""' <d(zp,2) <R-2"}C | B<x,gzn) ,
€W, 1

while (2.6) is satisfied. It is a standard Besicovitch covering argument,
we choose a minimal W,, ;; for this property. The key is that the radius
of any ball B* such that x € B* is comparable to R — d(zo, ).

Now let us consider the term

sup (2(8) Y “B 1w B).

BeF
< BeA| B]

The first point is that d(z,T) < (3/2)2" implies that 2B C 2 B. For
B € F\ {B1}, set n < N such that W, contains B’s center. If we
denote F, = {B : B® = B} and 4; = User 2B, Api1 C Ap.
But there is more than this inclusion, a ball B = B(Z,7) in Fy is
such that d(zg,Z) = R —2"7% and 7 = 2"7%/1.01, so that there is
a ball of radius 7#/100 which is included in 2B and in the area {y :
d(zo,y) < R—2""17F —2.27=1-%/1,01} never reached by Ay;. This
yields p(Ag \ Ag11) > € p(Ag) and consequently pu(Ay) < e pu(Ag) <
C e~k u(B). Thus,

Z “’ rg B <2 Cem® (N+1-n+k) <C 22N <O R?.
Be AB] k>0

For the case B = By, the proof is identical but we refer to A; instead
of AO

To finish the proof, let us compare m(x)y?(z) and m'(z). For
T # o, the condition A(a) gives m(x) ?(z) < m'(z)/a, we just have
to consider y ~ x such that d(xg,z) = d(xo,y) + 1.

2

Proposition 2.4 (Sobolev-Poincaré inequality). There exist 6 > 1
depending on Cy and S depending on Cv, Cy and « such that for every
function f on B of radius r,

(v S e 1)

TEB
S

<y (7 2 pe ) = £@) + 3 mla) ().

z,yEB zeB
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In the setting of manifolds, this result which was proven in [29]
was the key of the proof of the Harnack inequality after the work [28].
It is adapted to graphs in [9]. A nice abstract version can also be
found in [14]. In the notation of this paper, the chain condition will be
satisfied for A < 2 (like the preceding section where A = 1.001). Indeed,
consider x next to the boundary of B, the smallest ball B; of the chain
not centered at x must contain x and satisfy A\B; C B.

2.2. Elementary step of Moser’s iterative technique.

As in Section 1.3, we will say that u is a positive sub/supersolution
on ) = IxB(xzg, ) if it is the trace of a positive function on I x B(zo, r+
1) which is a sub/supersolution everywhere on (). Precisely, we say that
u is a positive subsolution on () if it is positive and

() ot ) < 3y (ut ) — u(t, ).

for all t € I, for all x € B(xp,r — 1). And w is a positive supersolution
on (Q if it is positive and

0
m(z) It u(t,xz) > Zumy (u(t,y) — u(t,z)),
y
for all ¢t € I, for all x € B(xg,r — 1),

mia) (g ulte) +ut0) > Y pyulty).

yEB((EO 7”’)

for all ¢ € I, for all « such that d(xo,x) = [r]. Let us show the elemen-

tary step of Moser’s iterative technique. If QQ = I x B where I = [s1, s9]
and B = B(z, ), note

B,=(1-0)B=DB(z,(1-0)r),
I, = [(1 —0?) sy + 025y, 53],
I =[s1,0%s1 + (1 — 0?) s3],
I" =[(1—0?) s1+ 025,02 51+ (1 — 0?) 53],

Q, =1, x By, Q) =I' x B, and Q! =I' x B, .
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Note that

(2'8) QU1+U2 - (QGI)U27 QiTl-l—Ug - (fol);'Q and foll-i—ag C (le)gz :

Lemma 2.5. There is an exponent kK = 2 — 1/0 and a constant A =

A(Cy, S) = A(C4,Cy, ) such that if B = B(xg,r), @ = [0,7%] x B, u
a positive subsolution in Q and 1/r < o < 1/2, then

AN1/k

M(u,r,Q0) < (55) 7 M, 1,Q).

If w is a supersolution with the same assumptions, then

A

M, @) < () M 1.Q).

ProoF. Consider the first part, u is a subsolution. Let % be a non-
negative function in B, with d(x,z) = r implies ¢(z) = 0, then

) i,
> m(x) > (w) u(t, z) o7 ()

g; > ey ) ult ) Cult ) = w1, 2)
= D ey () ult ) = () () (. 3) = ,2)
= Dt 7o) (ult3) = e, ) (1) = )

+3 ZeB oy (6 (2) — 92(9)) ult,y) (ult, y) — u(t,z)).

In the last term, we use the inequality a b < a?®/4 + b2.
(W% (z) — $*(y) u(t,y) (u(t,y) — ult,z))

= (x) (Y(x) — P (y)) ult, y) (u(t,y) — u(t,z))
+9(y) (P(2) — P (y) ult, y) (u(t,y) — ult, z))
1 W@+ 92 w) (ult,y) — u(t,2)?
+2u*(t,y) (P(x) — ().

<
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Note that because of the symmetry of the weights fiz,,

D nay V() (ultyy) —ult,2)® = Y poy ¥7(@) (ult,y) —ult,2))>.

z,y€B z,y€B

Thus, (2.9) yields

S ) @) ults ) o ult )+ 5 DD ey 0) () — it )’

(2.10) < Dty Pt y) (V(@) - $(y))*.

For u supersolution, the result would be

S mle) v3(@) ult, ) = ult,2)

b1 Y ey @) (ulty) - ult, )P
S Z Mgy U (tvy) (¢($)_¢(y))2

And then, the same arguments work dealing with I/ instead of I.
Return now to (2.10), if x is a smooth function of ¢, we obtain

o (3 () () @) ue,0)?)

T€EB

+ @ Z Ky wz('r) (U(t, y) - u(t’ m))z

z,yeB

<253 D pay () (@) — 9 (y))?

+3 m(x) (% Xz(t))u2(t, z).

Now we choose x(t) = t/(or)2 A1 and 9 so that d(xg,x) = r implies
Y(x) = 0 and ¢ = 1 in B,. For this purpose, we took 1/r < o.
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Integrating over I yields

([ sup ( Z m(x) uz(t,x)) < (013)2 /I Zm(x) u?(t, ) dt

tel, ZEB,

4 / D ey (ult,y) — u(t,z))* dt

Is z,yeB,
< ChH Zm(m)u (t,z)dt.
IwEB

We have used |x/| < 1/(o7)? and | (z) — ¥ (y)| < 2/(or) when z ~ y.
This result (of Cacciopoli type) allows us to use Proposition 2.4
(Sobolev). Note ¢’ such that 1/04+1/0" =1 and k =1+ 1/0".

MO Qo) = oy |, 32wl

S (11— 02) /I <V(;a) 2 m() “’2(”))1/9

rEB,

\

1/6

-(V(}BU) > mla)u?(t0))  de

rEB,

sup ( Z m(x) uz(t,x))l/el

tel, 2€B,
2 (1 — 02) V(B,)L/?

VAN

V Mgy (U’(t7 y) - U(t, x))z

+ Z m(x) uz(t,a:)> dt

rEB,

VAN

(1 - ) ((01?)2>1/9 (g +1) W

/Z 2(t, x) dt)l/eurl.

rEB

This yields
A

o2

M, @) < () M(1,Q),
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for a constant A, because o < 1/2 so that V(B) < C1V(B,) and
1—0%>3/4.

2.3. Mean value inequalities.

Lemma 2.6. If u is a positive solution on I x B, then
o uP is a subsolution on I x B forp <0 andp > 1,

o uP is a supersolution on I x B for 0 <p <1.

PROOF. Let f(z) =2P,if p<0orp>1, fis convex and

f'(a) (b—a) < f(b) — f(a).
This yields

0

m(e) o F(u(t,2)) = m(x) £ (ult, 2)) o ult,2)

= Z My f/(u(tv 'T)) (’U,(t, y) - u(t’ x))

<Dty (flulty)) = flult,2))).

Lemma 2.7. Let B be a ball of radius r, Q = [0,7%] x B, u a positive
solution on QQ and 0 < § < 1/2. Then, for all p > 0,

(2.11) M(u, —p,Q) < C (C§~)!/? infu’,
4
(2.12) supu® < C (C 5P M(u,p,Q),
Qy

where C' and v depend only on C1, Cy and «.

PrROOF. We will prove (2.11). Counsider first the case dr < 2 (the
difference between B’s radius and Bjy’s is less than 2, this includes the
cases B = Bs when one can not apply the elementary step, Lemma 2.5).
Take u?(t, z) = infg, u? and note that, for all 0 <7 < §?r? ¢t —7 €[
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and u?(t — 7,2) < e*"u?(t,z) < e®infg, u?. This is a consequence of
(1.4). Counting only these values,

. —p 8 2\ P
M(u, —p, Q) 277“2‘/(3) (e l&fu)

implies

M(U,—p,Q)Ses(V(Z 1/ lélfu :

Applying first DV (Cy) between B(z,2r) D B and B(z,1/2) then r <
2071, we obtain (2.11).

Consider now §r > 2. Set o; = 27, Q(0) = @ and Q(i) =
Q(i — 1),, so that for all i, Qs C Q(i). Fix n the integer such that
2ntl < §r < 272 We can apply Lemma 2.5 between Q(i — 1) and
Q(i) for i < n since u™? is a subsolution, the radius of the cylinder
Q(i — 1) is bigger than r/2 and o; > 2/r.

(B) Up. o
ey

M(u, —qr, Qi) < (%)URM(% —q,Q(i —1))"a

i
implies

/(ar)
5) " M - QU)

M(u,—q,Qli-1) < (5

o;

This yields
n A /K/i /
M(u7 _p7Q) S (H(W)l )1 pM(u7 _pK/an(n))
i=1

To obtain (2.11), we may first check that

+o00 A

1/k!
g ((2—i5)2> @

Then, we estimate ./\/l(u —pkK™,Q(n)) as in the case dr < 2. Take
u?(t, z) = 1an(n+gu and note that for all 0 <7 < (an+1 r/2)%
t—T € I(n) and w?(t — 7,2) < e*"u?(t, 2) < e?infg(pq1) u?. We use

1< o1 <20 ThlS yields

infu”.
Qs

Mty —p ™, Q(n)) < ( V(B>)1/(p”")~ 2

m(z)
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Since n > log (6 r/4)/log 2, we may estimate

2 /K"
<L(B1)> < e(4/(87))" log (cr®) .

m(z) 1
Again C is a constant which depends on C; and C3. To obtain C' 57

as in (2.11), we must check

(i>clog (Cr9) <" —~logé,
or
for 6 > 2. This may be done this way: either § < r~/2 and it suffices
to note that 4/(67) < 4/2 and use the term —ylogd, either § > r—1/2
and we use
> (2) 10g (C+©
> (r1/2> g(Cr®).

The proof of (2.12) is identical, except that u? may be a superso-
lution, that’s why we take Q¥ instead of Q5. We also use u(t + 7, 2) >
e~ Tu(t, z), that’s another reason to cut I by the highest values. In fact,
having in mind the all-continuous result ([30, Corollary 3, p. 447]), we
could keep Q)s. First, we should use a covering argument ([30, p. 448])
to avoid the use of Lemma 2.5 on u? for ¢ < 1. Then, instead of picking
up the sup on the values u(t+ 7, z), we could get it from the u(t — 7, 2’)
where 2z’ ~ z. But this is only possible when dr > 1. Taking QY is
somehow artificial but it has the great technical advantage that at this
point of the proof, we have no more conditions like § 7 > 1 in Lemma 2.5
which compel us to treat separately cases when it is no longer possible
to cut the space.

2.4. About logu, linking negative and positive exponents.

Let us define the measure v on R x I' as the product of Lebesgue
measure and V. The next lemma states that the values of logu are
glued to their (space) mean value at a time 7 somehow like functions
with BMO norm bounded, they cannot be much bigger on a large part
before or much lower after. J. Moser’s improvement in [23] is that
this property and the (time and space) mean value inequalities are
sufficient to link extrema to the (space) mean value of logu at a fixed
time between Qg and (g, and thus to link extrema together. This last
idea is the meaning of the abstract Lemma 2.9.
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Lemma 2.8. Let 77,7 €]0,1[, B = B(xo,r) and u any positive super-
solution on Q = [s,s + %] x B, there is a constant m(u,T) such that

for all X > 0,

Cr(Q)
A

Cv(Q)

)\ 7
where Kg = [s +71r2,s + 12| x B, Ko = [s,s + Tr2] x B and C
depends only on 7, 7, Cy and Cs.

v({(t,z) € Kg : logu(t,z) <m—A}) <

and
v({(t,z) € Ko : logu(t,z) >m+ A}) <

PRrRoOOF. Let a( )
. _ To, %
V=1

([r] denotes the integer part of r) and m(z) =, 4 p pay so that for all
T € B,

m() % ult, @) 2 Y pray (ult,y) — u(t,x)) — m(e) u(t,z).

%EQMW%MA@ww>
9]
B , m(x) 5% u(t, x)
B ;3 —¥7 (@) u(t, z)
(2.13) < Z Ly _Z,%) (u(t,y) —u(t,z)) + Z V2 (x) m(z)

+ ) v (x)m().
reEB
Now we show that

(@bz(y) I C)) )(u(t,y) — u(t, x))

u(t,y)  u(t,z)
(2.14)

< 36 ((y) — $(2)* — 5 min {¥*(2), #*(0)}

(u(t,y) — u(t,z))>
u(t, z) u(t, y)
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We may assume u(t, x) > u(t,y) for that purpose.
Either

W) (| ult,)
< (‘”2@) o2 (1 “<t’y>>)<u<t,y> —u(t, )

u(t,y) u(t, x)

(u(t,y) — ult, x))*
u(t, z) u(t, y)

and there is no need to use the other non-negative term 36 (¢(y) —
(@)
Or

u(t,z) —u(t,y) _ ult,z) .
u(t,y) u(t,y)
2¢%(x)
=) ?
_ (@) +9(y) 3
Thus,
2o (Wt o) —u(ty)? _ o (ult,z) —u(ty))’
= (y) ato)ulty) S ¥*(y) ()
<20 (2" (i) - v)
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Because the function 1 is such that ¥ (y) < ¢ (z) < 29 (y) when z ~ y.
We also obtain

(wz(y) _ @) )(u(t,y) —u(t,z))

ut,y)  ult,z)
Viy) i)
< (ag) ™ it ) (e09) — ()

— () + P(y)) =

((x) +(y))?
=2 Y2(y)
<18 (y(x) — 9 (y))?.

Inequality (2.14) is proven because 18 (¢)(x) — 1 (y))? controls the two
other terms.
We can now change (2.13) using the inequality (2.14),

% S m(@) ¢ () (— log u(t, x))

TEB

(u(t, y) — ult, x))*

1 . 2 2
g 2 ey min {97(@),07(9)} = H e

z,yeB

<C Y ey (DY) — (@) + Y PP (@) m(e) .

Since )
(U’(ta y) — U’(ta 'T))

u(t, z) u(t, y)
(just check (loga)? < (a —1)?/a by differentiating two times), z ~ y
implies |¢(y) — ¢ (x)| < 1/r and m(z) # 0 implies |¢(z)| < 1/r, this
yields

% S m(w) ¢ (x) (— log ut, )

(logu(t,y) — logu(t, x))* <

b5 S ey min (92(0), 92 (0)} (logu(t,y) — logu(t, 2))’
_oV@)
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Now use the weighted Poincaré inequality of Proposition 2.2 to estimate

Y ml@) ¢ (@) (= logu(t, z) — W(1))*

<Cr* Y gy min {9 (x),9>(y)} (logu(t, y) — logu(t, z))?,
where
S m(e) $2(2) (~ logu(t, )
W (t zeEB
“ > m(x) ()
Use also

S ) ie) = Y mio)(3) =0V () = v

zeB z€B/2

and x € 7] B implies ¢ (x) > 1 — 7. This way, we obtain two constants
¢ and C depending only on 77, C; and C5 such that

0 c

— W)+ 0 > m(x) (—log (u(t,x)) — W(t) < Cr>.

reENB

Setting m = —W (s + 772), this yields the result (for precisions, follow
litterally the argument on [30, p. 452]).

Lemma 2.9. Let U, for 0 <o < ¢ < 1/2 be subsets of a space with a
measure v such that o < o' implies U, D Uy and v(Up) < Cv(U.), f
a positive measurable function on Uy which satisfies

(2.15) sup f2 < C (C (O'I—O')_v)l/pM(fvpv Us)
U,

forall0 <o <o’ <¢andp>0 and

> Q

v({log f > A}) < —v(Uy),
for all A > 0. Then
sup f < A,

Us
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where A depends only on ¢, v and C.

PROOF. Set 1)(0) = log (supy,_ f?). Dividing U, into two sets log (f?)
< ¢(0)/2 and log (f?) > (0)/2 yields

e .
o0y ployja /P

2
< )2 2CT puio)
- (o)

< 9 P (0)/2 7

M(f,p,U,)P < (e¥(@)/2)P 4

if we choose
P(o)
4C?

p= log

(o)
so that the two terms are equal. Then we apply (2.15),

$(o') SlogC 4 log (2€ (0"~ o) V)

(o) (log (2C (o' — o))
<losC+ 5= (S e Y-
If ( )
M) > 200 —0) )
nd
&8~ =g
then .
9(o') < (o).
Thus, we always have
Y(0') < (o) + C'(o" — o).

Take a positive decreasing sequence ¢ =o0g > -+ > 03 > 0441 > -,

+00 i
P(s) < C' Z (g) (0541 — 0;) "7 < constant (= log (A?))

1=0



210 T. DELMOTTE

if we set o; = ¢/(1+1).

2.5. Proof of Theorem 2.1.

Recall the notations of Definition 1.5 and Lemma 2.8, we set n =
1/2, 7 = 3/4, 01 = 1/6, 65 = 1/3, 7 = 1/2, 5 = 3/4 and 0, = 1.
Lemma 2.8 gives a reference value m so that one can apply Lemma
29 to f = e ™u on Uy = [s,8 + 77?] x B with U, = (Up)” for
o <¢=7—n=1/4. This way, Qg C U, and (2.15) is satisfied because
of Lemma 2.7 and (2.8). This yields supg_(e™™u) < A. Applying
again Lemma 2.9 to f = e™u~! on Uy = [s + 772, s+ 04 1% x J B with
Us = (Up), yields supg, (¢™u~') < A and the Harnack inequality.

3. Kernel estimates, discrete-time Harnack inequality and
necessity of Poincaré inequality.

3.1. Continuous-time estimates.

First, we give on-diagonal estimates. The regularity coming from
the Harnack inequality shows that if one starts at x, one diffuses after
a time ¢ on the ball B(x,+/t). This is well known since the papers of
D. G. Aronson [1] or of P. Li and S. T. Yau [19].

Proposition 3.1 (On-diagonal estimates). Assume (I',u) satisfies
H(Cy), then

Pz, y) < Cum(y)

T V(v

for all x,y,t,
d(x,y)* <t implies Py(x,y) >

PROOF. Applying the Harnack inequality to P.(-,y) yields P;(z,y) <
CyPa2t(2,y) for 2 € B(x,/t). Thus,

Cy
Pi(z,y) < W ZGB(Z%\/E) m(z) Pat(z,y)
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~ Cym(y) ,
= Ve /D Zegﬁ) Paly:2)

Cym(y)
= Vv

For the lower bound, we will use similarly P;/3(z,y) < CyPy(x,y) for

z € B(x,+/t). But first, we define a function u(¢,7) solution of the
parabolic equation in [0,#] x B(z,/t) this way

u(€,7)=1, for all 7 € [0, %] ,
u(&, ) = Z Pr_is2(&,2) for all 7 € [%,t] .

2€B(z,\/t)

Applied to v the Harnack inequality yields
—1 1 (1
Cy =0y u(i,x) < u(t,y)

- Z Pt/Z(yaz)
2€B(z,Vt)

m(z)
Z () Piy2(z,y)
cenmvn W)

C
< E " m(Z) P (37, y)
m(y)
2EB(z,V't)

_ CyV(x, \/E)
m(y)

These on-diagonal estimates yield the volume regularity.

’Pt(x, y) .

Proposition 3.2. Assume (I',u) satisfies H(C3). Then DV (C3,) is
true.

PROOF.

C;tz m(x)
V(x,r)

Cy m(z)

< Pra(w,) < OnPara (w,0) < Couppr s



212 T. DELMOTTE

Now we prove an off-diagonal upper bound which is more precise for
x and y far apart. We still use the parabolic Harnack inequality as in
Lemma 3.1 to estimate one term by a mean value and a second tool is
the integrated maximum principle (see [13]).

Theorem 3.3 (Integrated maximum principle). If u is a solution on
I X T and K(t,x) a positive and decreasing in t function such that for
allt €I and x ~ vy,

(K (t,2) + K(t,y))*
3.16 0K 0K
10 < (G o) —2K(0) (G 6y - 2K(ty),

then the quantity

zel’
s decreasing int € I.
PROOF.
0K
I'(t) = 2 —
(1) = 3 mlw) w?(t,2) (0, 2)
zel
+ Y 2ty (ult,y) — ult, @) ut,z) K(t,z).
z,yel’

Since the weights p,, are symmetric,

) 0K
> m(x)u’(t,z) - ()

zel

= 3 (w20, 0) O 1,0) 020 9) o 1,0)

z,y€el’

and

> 2 ftay (ult,y) — ult,z)) u(t, ) K(t,z)

z,yel’

= >ty (ult,y) —u(t,2)) (ult,2) K (t,2) — ult,y) K(t,y)).
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This yields

PO =Y o (U0 (%K 10y - 2K (1,)

2
z,yel’

+u(t,z)ult,y) (K(t,z)+ K(t,y))

u?(t,y) (8K

+— (Y - 2K(t,y))>

<0

Y

because of (3.16).

Construction of a function K. Take £(t,z) = log (K (t,x)), (3.16)
becomes

(B17) x (€0 2) —E(1.9) + o (t0) + o (ty) < 5 o

(4.0 5 (t,0),

where x(s) = cosh (s) — 1. Note that x(s) ~ s2/2 for s small so that
(3.17) may be connected to the following eikonal inequation for the heat
equation on a continuous geometry

o 1.,
e R <
o T3 Vel <0,

with a solution K = ef = ¢4/t where d is a distance function of z. Our
parabolic equation should have been normalized to obtain the same
coefficients. This difference and differential inequation (3.17) contains
only first-order terms, that’s why we get nice solutions considering its
Legendre associate. For instance,

§(t,z) = ((t,d(2)) = max{Ad(z) — x() t}

is a solution if z ~ y implies |d(z) — d(y)| < 1. Indeed, note A(¢,z) a
value for which the maximuim is reached,

3

a(tv 'T) = _X()‘(tv 'T))

and
|€(t7 'T) - f(t, y)| < max{)‘(tv 'T)v /\(t, y)} .
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We obtain

A(t, x) = argsinh (@) ,

¢(t,d) = dargsinh (%l) —t(\/l + f—j . 1) .

It will be useful to note that, since 9(/dd = A,
1 2

(3.18)

argsinh C' d*

d < Ctimpli d,t) > ;
< implies ((d,t) > 50 .

Denote E[t,d] = (%) in the sequel. This function has already been
introduced by E. B. Davies in [8] with his semigroup perturbation argu-
ment (see [7]). With this argument and Harnack inequality, L. Saloff-
Coste proves Gaussian upper bounds in [28] using ideas of [38], [39].
We adapt this proof to the use of the integrated maximum principle in
the next proposition.

Proposition 3.4 (Off-diagonal upper bound). Assume (L', u) satisfies
H(Cy), then for all z, y, t,

ol y) < C'm(y)
V@D Vi, VB E[6¢,d(z, )

Y

where C' depends only on Cy.

Proor. Consider the following solution of the parabolic equation,

U’(Tv 5) = Z Pt(nax)PT(f,U) :

n€B(y,V't)

This will be useful to estimate A(t) = 3, c p, vz m(n) P (1, ). Indeed
we apply Theorem 3.3 between 0 and 2¢ to

I(r) =) _m(&)u*(r,&) E[t + 7,d(y,£)].

€el’
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Since u(0,&) = 0if £ & B(y, vt) and u(0,&) = pi(§, ) if £ € B(y, V1),

we have

10)= Y m(&)pi(&z)Et,d(y,§)] < CAt).
£€€B(y,Vt)

Just note that d < v/t implies E [t,d] < e'/2, see (3.18).
In order to give a lower bound for I(2t), we use

p2:(&,m) > Cﬁlpt(fﬁa n)
so that
C_

u(24,) > s A)

for £ € B(x,/t). This yields

= S m(©) wA(21,€) B[3t,d(y, )

€el’

sopr Y Y 402 pBtdl. Bl VD).

m(x)?
¢eB(z,Vt)

Since I(2t) < I(0), we get

Cm(x)?
A0 < G VD Bt dly, Ble V)]

Again the Harnack inequality gives

m(y)?

pi(z,y) = ()’ p; (y, z)

072-1 m(y)® m 2 (p
= (@) Vi, \/f) ne%ﬁ) (n) p2(n, @)
G

m(z)?V (y, V1)
< C'm(y)?
T V(z, V20 V(y,Vt) E[6t,d(y, B(x,V21))]
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The proposition follows because of the volume regularity and

E[6t,d(y, B(z,V2t))] > cE[6t,d(z,y)].

REMARK 1. Instead of E[6¢,d(z,y)], we could get E[\t,d(z,y)] for
any A > 1, the constant C' depending also on A. We would just have
to apply the Harnack inequality between t and (1 + ¢)t. Furthermore,
we could have been more precise for the choice of a function E (using
both x(A(x)) and x(A(y)) instead of only the biggest). All of these
manipulations tend to obtain the analog of e’ /(1)) for d/t small.
Don’t forget the normalization of the parabolic equation to compare.

REMARK 2. One might find the function E too complicated, but [25]
explained that it is not purely technical. To understand it, one can take
it as e/t for d/t small and (d/t)% e=? for d/t huge glued together. The
second value is adapted to the fact that when t — 0,

Pd(z,y) (JT, y) td(w,y)
d(z,y)! ’

so at least in this case the function F gives an optimal upper bound.

Pt('ray) ~

3.2. Discrete-time estimates.

Assume A(w) is true so that we can consider the positive sub-
markovian kernel p = p — a0 (this means p(z,y) = p(z,y) — ad(z,y),
then p,,(z,y) is defined as in (1.1)). Now compute P,, and p,, with p

+oo g +oo
IR _
(3.19)  Pulw,y) = eV Zﬁpk(x,y)zzakpk(x,y),

k=0 k=0

pn('ray) = ZCS an_kz_)k('ray) = Zbkﬁk(xvy) .
k=0 k=0

To compare the two sums we study ¢ = b /ag for 0 < k < n,

n! o™k

(n — k)l ela=Dnpk -

Cp —
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Lemma 3.5.

0 <k <n implies ¢, < C(a),

2
n > a_2 and |k — (1 —a)n| < av/n imply ¢, > C(a,a) > 0.
a

The condition n > a*/a? ensures that a/n < an. We shall consider
only o < 1/4 so that we always have n/2 < k < n in the second

assertion.

PROOF. The ¢’s follow the recurrence formula ciy; = cx(n—k)/(an),
so they reach a maximum for k around the real (1 —«) n. Let us use the
Gamma function, I'(n+1) = n! and t! e/t /C < T(t+1) < Ctt e tV/t.
Set ¢; ='(n+ 1) t/T'(n — k + 1) el®=Dtnt. Similarly, it reaches its
maximum for ¢t = (1 — o) n. Thus,

< C(n+1)a*"

¢

b= ['(an+ 1) ela=bn pl-a)n
 I'(n+1) (an)*™e

~ are ™ I(an+1)

C

<

S v
02

vl
Next, we prove the second assertion of the lemma. Again, because of

¢x’s variations, we only check this for & ~ (1—«) n+a/n. For instance,
for (1—a)n—ayn<k<(1-a)n,

n! o™k
(n — k)!ela—Dn pk
I'(n+ 1) aentavn
~ T(an+ayn+ 1) ele=Dn pl-c)n-—ayn

L e
= 02 (1 N %)O&nﬁ—a\/ﬁ m

> L avi-(antavm) log(i+a/(avi) |

Cr =
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> L avi-(antaym)a/(avm)
1 2
_ - o —a‘/a
=2 .
This technical result is the key to compare p and P. One side is easy
now.

Theorem 3.6. Assume (I', u) satisfies p(xz,x) > a > 0 for all z in T.
Then, for all z,y,n,

pn(xvy) < C(Oé) Pn(xvy) .

It is the case when A(«) is true. This theorem may be applied in
many other situations (with any volume growth) when it is easier to
work on P. When no hypothesis is assumed on p(x, =), see the comment
after Definition 1.3 about (I', u(?)). For instance, on a locally uniformly
finite (by N) non-weighted graph (pzy € {0,1}), pa(z,z) > 1/N.

The other side of the comparison is more intricate.

Proposition 3.7 (On-diagonal estimates). Assume (I',u) satisfies
DV (Cy), P(C3) and A(B). Then, there exist cq, Cq > 0, depending
only on Cy, Cy and 3, such that

Cam(y)
V(z,v/n)’

d(z,y)? < n implies p,(x,y) >

Pn(z,y) < for all z,y,n,
Cd m(y)

Ve, n)

PrROOF. The first assertion follows from Theorem 3.6 and the upper
bound in Proposition 3.1. To deduce the second assertion from the
lower bound in Proposition 3.1, we will have to prove that in the sum
(3.19), the terms for |k — (1 — a)n| < ay/n contain half of the whole
sum. First we will set a = /2 (this will be useful later when we apply
the upper bound to a Markov kernel p’). Now, to prove that the lower
bound for P implies one for p, it will be sufficient to prove that for all
e > 0, there exists a,

_ em(y)
> ar Dy (@,y) £ —— .
lk—(1—a)n|>av/n Via, vin)
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We will take e = C5;%/2, the desired lower bound will be proved for
n > N = a?/a?. For n < N, the condition A(B) gives p,(z,y) > V.

We can apply the upper bound to the Markov kernel p’ = 5/(1—«).
Indeed, it is generated by weights s,

fraz — am(x)

>
T > am(x),

[—
p’ww_

7 .
Hoy = 125, oy,

m/(z) = m(z) .

Thus, the volume is identical and P(C?) is still satisfied because weights
{1y for @ # y have increased. This yields p},(z,y) < C,m(y)/V (z,Vk),
hence py(z,y) < Cym(y) (1 — @)k /V(z,Vk). Next, we have to get the
estimate

fen (=1 :
> N Vavh - Vv

|k—(1—a)n|>avn

The sum for £ > (1 — a)n + ay/n is easier because we simply use
Ve, Vk) > V(z,\/nf2) > V(z,v/n/2) > V(z,v/n)/C1. Then, we
obtain the k + 1*" term of the sum if we multiply the k' term by
(1 —a)n/(k+1). So we estimate this part by a geometric sum,

Z e(a—l)n ((1 — a) n)k 1
|
k>(1—a)n+avn it V('T’ \/E)

(L —a)n)t=emtevn O 1
I'(l—a)n+ayn+1) V(m,\/ﬁ)l_ (1—a)n
(1—a)n+ayn

< 6(a—1)n

< € Oy erVn—((1—a)ntayn)log (1+a/((1-c)vn)

. 1 1 (1-—a)n+ayn
V('Tv\/ﬁ) \/(1—a)n+a\/ﬁ a\/ﬁ

N

J/

g% because nZi—z
/
<22
V(z,/n)
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with a good choice of a. Indeed, since log (1 + u) > u/(u + 1), the
argument of the exponential function appears to be negative.

To deal with £ < (1 — «)n — ay/n, we must be careful with the
factors V(x, vVk)/V (z,Vk — 1) when we compute the k — 1" term from
the k. A rough application of the volume regularity gives V (, \/E) <
C1V(z,vk—1). So for the terms k¥ < (1 — a)n/(2C1), the k —
1*® term is less than one half of the £ term and the estimation is
straightforward. Now for the other terms we bound all 1/V(z, Vk)
by 1/V(z,1/(1 —a)n/(2Cy)), then the same computation as for k >
(1 — @)n + ay/n shows the estimate with 1/V(z, /(1 —a)n/(2C1))
which is less than C/V (z,+/n) if we apply many times the volume reg-
ularity.

Now we prove off-diagonal upper and lower bounds.

Theorem 3.8 (Off-diagonal estimates).  Assume (I',p) satisfies
DV (Cy), P(C3) and A(«). Then, there exist positive ¢;, Cy, C, and ¢,
depending only on C1, Cy and « such that G(c;, Cy, Cy,c,) is true.

PROOF OF THE UPPER BOUND. It is a consequence of Theorem 3.6 and
Proposition 3.4.

n(2,y) < Omy)
VYV (z,v/n) V(y,vn) El6n,d(z,y)]
< Cm(y)
~ VV(x, V) V(y,\/n)

for d(z,y) < n because of (3.18).
Now use

V(z,v/n) <V(y,d(z,y) +v/n)
< o (D g v,

C\/C_'l m(y) d(x,y) + \/ﬁ log C1/2log 2
Pal@:y) S e ( Jn )

o= (e/2)d(y)* In ,—(c/2)d(z,y)* /n

p

2
e_Cd(wyy) /’I'L ,

It is clear that the factor

(d(x, y)+ ﬁ)“’g L2082 _(e/va(z.y)? /n
Jn
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is bounded.

PROOF OF THE LOWER BOUND. It is well-known that the Gaussian
lower bound follows from the on-diagonal one. So let us apply many
times the second assertion of Proposition 3.7. We set n = ny +---+nj,
T = Tg,&1,...,2; =y and By = {«}, B; = B(x;,1;),Bj = {y} such
that

( d 2
n
7> C /M1 so that z € B; imply V(z, /ni+1) <AV (B;) ,

cam(z)
sup d(z,2')? < mn;,so that p,,(2,2") > ——— L.
eB,_, 9 (2] n 9 V(Z7 ,—nz)

\ ZIEBZ'

We will see below how to construct this decomposition. It is a purely
technical problem (cutting in a discrete context).
It will be sufficient to prove the Gaussian lower bound since

Pn(x,y)

2 Z Py (@, 21) Py (21, 22) - Doy (251, Y)
(zl,...,zj_l)EBl><---><Bj_1

cam(z1)  cam(zz) cam(y)

> > Ve, yim) Vi, vie) Vit i)

(Zl,...,Zj,1)631><---><ij1

i m(z1)  m(z)  m(y)
>y A > Viz,ymr) V(B V(By)

(Zl,...,Zj_l)EBlX---XBj_l
_ m(y) (c_d>j—1
V(z,\/n1) \ A '
We just have to choose C; > C'log (A4/cq).

Decomposition. Consider three cases.

If d(x,y) > n/100, then we can set j = n, n; = 1, B; = {z;} (for
instance, r; = 1/2) and choose d(z;, z;41) < 1.

If d(z,y)? < n, then we can set 5 = 1 (in fact Proposition 3.7 has
not to be iterated).
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Otherwise, set

j= [10 —d(‘”;ly)Q] > 10.

This way, n/j and d(z,y)/j are bigger than 10 and

d(z,y)\2 _n
( jy> =55

so we can choose n; ~n/j (i.e. [n/j] or [n/j] 4+ 1) and

d(z,y
J

~—

d(x,',a:,- + 1) <7r =

3.3. Discrete-time Harnack inequality.

We will prove the discrete-time Harnack inequality thanks to the
Gaussian estimates. The method is based on [11, Section 3|. Denote
B = B(zg, R) where R € N*, with boundary 0B = {z : d(z¢,x) = R}.
The idea of the proof is that for (v,&) € 9Q and (n,z) € Qg or Qg,
Prn—v(2,€)’s lower and upper bounds differ only by a constant. The
difficulty is that the solution u on @ is not a combination of p,_,(z,§)
but of U,,_,(x,&) where U, (z,y) is the solution for (n,z) € N x B
satistying Uyp(z,y) = d(z,y) and Uy, (z,y) = 0 for n > 0 and = € 0B.
Obviously U, (z,y) < p,(x,y), so only the lower bound needs some
work.

Lemma 3.9. Assume (T, u) satisfies G(ci, Cy, Cyr, cy). Then, there exist
g,c > 0 depending only on ¢;, Cy, C,. and ¢, such that

cm(y)

Un(z,y) > F7—F"5,
(2, y) V(zo,2e R)

whenever
(eR)?<n < (2e R)?,
x € B(zo,e R),
y € B(xg,2¢ R),
d(z,y) <n.
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PROOF. The idea (see [11, Lemma 5.1)) is that if d(x, 0B) is big enough,
p — U is small and the lower bound for p applies to U. First note that

2cm(y)

> =
pn(xvy) — V(x0,2€R) ’

where ¢ = ¢; 797 /2. Now, write

r(n, @) = po(2,y) = Un(z,y) = Y a(v,€) pn_v(z,£) ,
£€oB
v<n
where a(§,v) > 0. These coefficients may be constructed by recur-
rence on v. Another point of view is that (m(&)/m(y))a(v,€) is the
probability to reach 0B for the first time at £ after v steps. That’s why

Z m(é) a(v,€) <1.

o< M)

We can check it this way

1= Z%pn(l'vy)

> Z m(z) r(n,z)

— m(y)

= m(x) a\v xT
- Z m(y) ( 7£)pn—u( 75)

=3 (a3 2 s(0,6))

v,€ x

N J/

—m (&) /m(y)

To estimate r(n,x) we use the Gaussian upper bound.

m(y) Cr m(y) e—crd(m,y)2/(n—l/)

%pn—u(xvé) — V(.T,\/m)

V(z,2e R) . (1_c\R)2 /(n— m(y)
< (¢, V@26l —ca-orP/m-n)__m™Y)
- ( V(z,v/n—v) ¢ )V(x,2€R)

cm(y)
- V(.Z‘o, 2 €R) ’
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with a good choice of €. The lemma follows.

Theorem 3.10. Assume (I',p) satisfies G(c;, Cy, Cy,c,), then there
exists Cg > 0 such that H(Cp) is true.

PROOF. Let us first point out that the Gaussian lower bound yields a
volume regularity. The following argument,

1> Z Dy2 (.’l?,y)

yeB(z,2r)

> Z cm(y) o—Ci(2r)?/1°

y€EB(z,2r) V(:):,r)
e tG Vix,2r) 7
V(x,r)

is correct for r integer and r > 2 (because we need d(z,y) < r?).
This extends to other values thanks to A(«) (which is an immediate
consequence of G(¢;, Cp, Cy, c;)).
Now we prove the Harnack inequality for n = ¢, 0; = £2/2, 05 = €2,
O3 =2¢€2, 04, =4¢€? and r = R € N* in the notations of Definition 1.6.
Let u be a solution on @, there is a decomposition

U(nvx) = Z a(z/,ﬁ) Un_y(l‘,é),

v<n
£€0B(xo,2eR)
or
v=0
£€B(z0,2¢R)

with non-negative a(v, §) such that u(n,z) = v(n,z) if z € B(xo,2¢ R).
Again the coefficients may be constructed by recurrence on v, the key
is to keep v < u everywhere.

Thus, it will be sufficient to prove the Harnack inequality for
the terms U._, (-, &), this means U, _,(zg,{) < CUpy—v(2g,§) for
(no,rs) € Qo, (ng,re) € Qg, v < 02 R? and d(zg,rg) < ng — ne.
The lower bound is a consequence of Lemma 3.9 if d(zg, &) < ng — v,

cm(§)

Un et 24 9 Z Y77 a 9
o-v (T, ¢) V(zo,2¢ R)
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for zg € B(xo,nR) = B(wg,e R) and 03 R? < ng < 04 R%. If d(xg, &) >
ng — v, then

d(re,§) = d(zg,§) — d(zg,re) > (Ng — V) — (N —ng) =ng — v

and Uy, (zg,&) = 0.

The upper bound looks alike either because of time regularization
in the case v = 0 and £ € B(z, 2¢eR) or because of space regularization
in the case £ € 0B(z¢,2¢eR). In the first case, for xg € B(xp,e R) and
91R2 S Uz S 92R2,

Un@ (37975) < Png (37975)
Cr m(§)
N V(fﬁea \/%)
Crm(§)
o V(.Ie,@lR)
C'm(§)
~ V(zo,2¢R)’

where C = C,. CN, we must apply the volume regularity N times,
N depending on ¢ and ;. In the second case, we use the Gaussian
coefficient and d(zg,§) > [2¢ R] — [¢ R],

Un@—u(xev é) S pne—u(xev 5)

Gl e d@e.o?/me—v)
- V(fﬂea VIto — V)

_Om()
~ V(zo,2¢eR)

3.4. Poincaré inequality.

Theorem 3.11. Assume H(Cpy), then there exist Cy, Cy and a > 0
such that DV (C1), P(C3) and A(«a) are true.

PrOOF. In the comments after Theorem 1.7, we already mentioned
that H(Cp) implies a property A(a). Then DV(C}) is proven as in
Section 3.1. The discrete version raises new difficulties only for small
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radii but then A(«) is sufficient. Thus we also obtain, as in Proposition
3.1, ")

2 . . cmly

d(x,y)” < n implies p,(z,y) > VD

The fact that parabolic Harnack inequality implies Poincaré inequality
is proven on manifolds in [30] with ideas of [18]. Take f defined on
B(zp,2r) and consider the Neumann problem on B(zg,27). It may
be defined this way: consider the graph B(xzg,2r) with the restriction
It B(wo,2r)x B(zo,2r), it gives a kernel p’(x,y). The crucial point is that
p'(z,y) has increased (comparing to p(z,y)) for z € 0B(z¢,27). Set P
the Markov operator

Py(z)=> p'(x,y) 9(y)

and denote the iteration Q = P4, For any positive g, Pg(x) is a
positive solution on B(zg,27) of the parabolic equation (of I'). Thus,
for © € B(xo,r),

QU — @)@ > Y W) (@)

y€B(zo,r) Vie,2r)
> m Y. my) (FW) = o)’

yEB(iEO 7”’)

because 35, c (o m(y) (f(y) — A)? is minimal for A = fp(y, ). This
yields

Yo mWIW) — fe@n<C DY QU = (QF)(@)*) (@)

yEB(zg,T) z€B(z0,27)
(3.20) = C(If1I5 ~ 1QFI13)
(3.21) < C@Ar?|VIl3),
where

IFz=">_ m'()f(2)?

z€B(xo,2T)

and

IVFE= Y. paylf(2) = f)*

$,y€B($0 ,2’!‘)



PARABOLIC HARNACK INEQUALITY 227

The line (3.20) is a variance formula and the line (3.21) is justified by
the two properties

IPFIE <12 and  [IFl3 = [PFIE < IVFI3 -

We give the proof of the second one which is not so widely known as
the first. Note that a®> — b*> < 2a (a —b),

> (m@) (f@r - (o 1))
<X (20 £ (1) — (0w S0)))

Y

=23 (! (@) P, 9) S() (f(2) = [ (9))

Hzy

= > ey (F(@) — F) (F(@) — FW))) -

This ends the proof of Theorem 1.7.

4. Some consequences of Harnack inequality and Gaussian
estimates.

4.1. Holder regularity.

Among the immediate consequences of Harnack inequality are Li-
ouville theorem stated in [9] because only the elliptic version is needed
and Holder regularity of solutions of the discrete parabolic equation.

Proposition 4.1. Assume (I, ) satisfies the properties of Theorem
1.7. Then there exists h > 0 and C such that for all zog € I', ng € Z
and R € N, if u is a solution on Q = (Z N [ng — 2 R?,ng]) x B(zo,2 R),
T1,%2 € B(xo, R) and ny,ns € ZN [ng — R?,nyg), then

r1)| < C(Sup{@a d($1,x2)}>h

u(nz, x2) — u(nq, sup |u| .
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PROOF. Fix ny > ny and set Q(i) = (Z N [ng — 2%, ny)) x B(xs,2%),
M(Z) = supQ(z) u, m(z) = lan(z) u and w(z) = M(Z) —_ m(z), 2i1—1 <

sup {v/|n2 — ni|,d(z1,12)} < 2% and 22 < R < 22Tl This way,
w(i1) > |u(ng, 2) — u(ny, z1)| and w(iz) < 2sup |ul.

Set mg (i) = u(ny — 2%, x;5) and apply Harnack inequality in
Qi+1)tou—m(+1)and M (i+1)—u

meg (i) —m(i+1) < Cg (m(i) —m(i + 1)),
M(i+1)—mg(i) <Cyg (M(i+1) — M(3)) .
This yields w(i) < (1 — Cz') w(i + 1). Thus,
w(in) < (1= Cg)2 ™" wia)

and the proposition follows.

4.2. Green function.

With the Gaussian estimates for p,,, one easily proves estimates for
the Green function.

Proposition 4.2. Assume (I, ) satisfies the properties of Theorem

1.7. Then the Green function G(z,y) = ::6 pn(x,y) is finite if and
only if
+oo
4.22
(4.22) ;V(x,n)<+oo,

and it satisfies the estimates

400

Cmy) 3 Gy S G
(4.23) n=dey) N
<Omly) ) V(Z )
ndGey)

Note that condition (4.22) is satisfied or not uniformly for z € T
Indeed, for n > d(z,2'), C{*V(z,n) < V(2',n) < C,V(x,n). On
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manifolds, the necessity of (4.22) was proved in [37]. The sufficiency and
the estimates (4.23) were studied in [19], [34], [35], [36] with assump-
tions on the curvature. With the work [30], L. Saloff-Coste obtained
them with Poincaré inequality assumption.

PROOF. We use the Gaussian estimates G(¢;, Cj, Cy., ¢,.). They yield

+oo 1
Ctm(y) Y < G(z,y)
(4.24) n=d’(z,y) Ve, v »
1
< Cm(y) n:dzz:(w,y) WOk

The lower bound is a consequence of

+o0 +o0 +o0
cam(y) _
G('Tay)zzpn(xvy) Z Z pn(xvy) Z Z ‘/(Tf/%)e Cl-
n=0 n=d?(z,y) n=d?(z,y) ’
The upper bound is obtained by dividing the sum G(z, y) into two parts
pn(z,y) < Crm(y) =
%4
n=d?(z,y) n=d?(z,y) ($7 \/ﬁ)
and
d*(,y) d*(z,y)
Crm(y) e, d(ay)/
Yoopalwy) < Y, e Ew/n
n=0 n=d(z,y) V(.T’ \/ﬁ)
< Crm(y)
ey V(@ 2d(z,y))
. Cl (2 d(.T, y) ) log €1/ log 2e—crd2(:v,y)/n
Vn
Scor;;tant
2d? (z,y)
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The proposition follows from (4.24) since

+o0 +o0
1 1
S = Y #neN: k<yVu<kil} .
n=d?(z,y) V(.T’\/ﬁ) k:d(:n,y)\ N o (JT, k)

=2k+1
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