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Parabolic Harnack inequality

and estimates of Markov

chains on graphs

Thierry Delmotte

Abstract� On a graph� we give a characterization of a parabolic Har�
nack inequality and Gaussian estimates for reversible Markov chains by
geometric properties �volume regularity and Poincar�e inequality��

�� Introduction�

Consider the standard random walk with kernel pn�x� y� on a graph
� with polynomial volume growth� Under which conditions does one
have the following Gaussian estimates	

c

V �x�
p
n�

e�Cd�x�y�
��n � pn�x� y� � C

V �x�
p
n�

e�cd�x�y�
��n �

where V �x� n� is the cardinal of the ball of center x and radius n� Note

rst that pn�x� y� may be null for d�x� y� � n or for d�x� y� �� n �mod ���
Thus we will consider only d�x� y� � n and graphs where all vertices are
loops� With these precisions� the Gaussian estimates were proved when
� is a group in ���� They were also proved for linear volume growth
in ��� and it was there conjectured that they were true for polynomial
growth under an isoperimetric assumption such as Poincar�e inequality�
Indeed in the continuous setting of Riemannian manifolds� they were

���



��� T� Delmotte

proved 
rst for non�negative Ricci curvature in ��� and then under
Poincar�e inequality assumption in ���� ����� All these proofs are based
on a parabolic Harnack inequality and ���� shows that the Poincar�e
inequality is the good isoperimetric assumption�

The aim of this paper� which is announced in ���� is to prove
the conjecture in ��� and more precisely to give a characterization of
the parabolic Harnack inequality or the Gaussian estimates by geomet�
ric properties �volume regularity and Poincar�e inequality� which is the
discrete counterpart of the main result in ����� A precise statement is
proposed in Section �� after some de
nitions� The main part� the proof
of the Harnack inequality� is an application of J� Moser�s method ����
����� ����� His approach is presented on Euclidian spaces Rn but shows
clearly the contribution of Poincar�e and Sobolev inequalities� That�s
why it has been adapted to many di�erent settings�

As far as graphs are concerned� elliptic versions �without the time
variable� of the Harnack inequality have been proved in ���� with a
special isoperimetric assumption and in ���� ���� ���� by J� Moser�s iter�
ative method with Poincar�e inequality� The discretization of the space
raised some technical problems but the proof could go through� It is
much more intricate to deal with both discretizations �space and time��
especially to obtain Cacciopoli inequalities� Section �� is an attempt to
show these di�culties and their origin� Because of these criss�crossing
discretizations di�culties� we have tried to prove a continuous�time
parabolic Harnack inequality on graphs and this raised only solvable
technical problems like the elliptic version�

One application of the Harnack inequality is another proof of H�ol�
der regularity �see Section ��� for solutions of the elliptic�parabolic
equation �theorem of J� Nash ������ Another application is that it yields
Gaussian estimates� The study of these estimates in the mixed setting
�discrete geometry� continuous time� in ���� ���� has been helpful because
at 
rst we only prove the Harnack inequality in this setting�

At this Gaussian estimates step� it is possible to deduce discrete�
time results from the continuous�time ones� This is the crucial point of
this paper because all other steps are more or less adaptations of known
technics which are fully reviewed in ����� This strategy �to work on the
continuous�time setting and to compare with the discrete�time setting�
is also employed in ��� Section ����� One side of the comparison is
stated in Theorem ��� and may be used again� The other side will
depend closely on the problem considered�

To deduce Gaussian estimates from the Harnack inequality is the
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classical �chronological after J� Moser�s work� way to introduce this
theory� The reverse order based on J� Nash�s ideas ���� and completed
in �� is also useful here because our discrete�time Gaussian estimates
yield the discrete�time Harnack inequality� which is 
nally proven after
a return trip to Gaussian estimates�

Let us note that we aimed at not using any algebraic structure
�and we get an equivalence� which proves that this structure plays no
role in fact�� Similarly� the authors of ��� tried to extend related results
to a more general class than Cayley graphs �strongly convex subgraphs
of homogeneous graphs� and in ���� some estimates are obtained still on
the particular graphs Zn �with a continuous time� but for non�uniform
transitions�

���� The geometric setting�

Let � be an in
nite set and �xy � �yx � � a symmetric weight on
���� It induces a graph structure if we call x and y neighbours �x � y�
when �xy �� � �note that loops are allowed�� We will assume that this
graph is connected and locally uniformly 
nite �this means there exists
N � such that for all x � �� �fy � y � xg � N and it is implied by
the geometric conditions �see below� DV �C�� or ����� Vertices are
weighted by m�x� �

P
y�x �xy� The graph is endowed with its natural

metric �the smallest number of edges of a path between two points��
We de
ne balls �for r real� B�x� r� � fy � d�x� y� � rg and the volume
of a subset A of �� V �A� �

P
x�Am�x�� We will write V �x� r� for

V �B�x� r���
We shall consider the following geometric conditions�

De�nition ���� The weighted graph ��� �� satis�es the volume regu�

larity �or doubling volume property� DV �C�� if

V �x� � r� � C� V �x� r� � for all x � � � for all r � R� �

This implies for r � s that �the square brackets denote the integer
part�

V �x� r� � V �x� ��log �r�s�� log ���� s�

� C�C
log �r�s��log �
� V �x� s�

� C�

�r
s

�logC�� log �

V �x� s� �
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De�nition ���� The weighted graph ��� �� satis�es the Poincar�e in�

equality P �C�� ifX
x�B�x��r�

m�x� jf�x�	 fBj� � C� r
�

X
x�y�B�x���r�

�xy �f�y�	 f�x��� �

for all f � R� � for all x	 � �� for all r � R� � where

fB �


V �x	� r�

X
x�B�x��r�

m�x� f�x� �

Some methods to obtain this Poincar�e inequality on a graph are
proposed in ����

De�nition ���� Let � � �� ��� �� satis�es ���� if

x � y implies �xy � �m�x� � for all x � � � x � x �

Two assertions are contained in this de
nition� The fact that
�xy �� � implies �xy � �m�x� is a local ellipticity property �it may
be understood as a local volume regularity if we see the graph as a net�
work� It implies that the graph is locally uniformly 
nite with N � ��
�so does also DV �C�� with N � C�

� �� Only this 
rst assertion is needed
for continuous�time results �such as Theorem ���� The second asser�
tion is that �xx � �m�x� �or p�x� x� � � with the notations of next
section�� It will be used in Section ��� to compare the discrete�time and
continuous�time Markov kernels� This condition appears in ��� where
the authors prove that it implies the analyticity of the Markov operator�
This fact is used for instance in �� � to obtain temporal regularity�

If one considers a weighted graph ��� �� which satis
es only the

rst assertion� for instance the standard random walk on Z ��mn � 
if jm 	 nj � � �mn � � otherwise�� one can study the graph ��� �����
where

����xy �
X
z

�xz �zy
m�z�

�

With the notations of next section� this gives the iterated kernel

p����x� y� � p��x� y� and m����x� � m�x� �
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The point is that

����xx �
X
z

��xz�
�

m�z�
�
X
z�x

��xz � �m�x� �

Thus ��� ����� satis
es the complete assumption ������ Indeed� if

�
���
xy �� �� there exists z	 such that �xz� �� � and �z�y �� � and

����xy �
�xz� �z�y
m�z	�

� ��xz� � ��m�x� �

To extract afterwards from the results for ��� ����� some consequences
for ��� ��� we must be careful that ��� ����� may not be connected �see
the standard random walk on Z��

���� Markov chains and parabolic equations�

To the weighted graph we associate discrete�time and continuous�
time reversible Markov kernels� Set p�x� y� � �xy�m�x�� the discrete
kernel pn�x� y� is de
ned by

���

�
p	�x� z� � ��x� z� �

pn���x� z� �
P

y p�x� y� pn�y� z� �

This kernel is not symmetric but

pn�x� y�

m�y�
�

pn�y� x�

m�x�
�

We keep this notation which represents the probability to go from x to
y in n steps but it may also be interesting to think to the density

hn�x� y� �
pn�x� y�

m�y�

which is symmetric and is the right analog of a kernel on a continuous
space�

We will say that u satis
es the �discrete�time� parabolic equation
on �n� x� if

���� m�x�u�n! � x� �
X
y

�xy u�n� y� �
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It is the case of p��
� y��
Note that we have a weighted geometry and we consider only the

canonic parabolic equation on it� Imagine we had a non�weighted ge�
ometry �this means volume regularity and Poincar�e inequality without
the weights m�x� and �xy� and any parabolic equation with a uniform
ellipticity constant� then we would consider the geometry weighted by
the coe�cients of the equation� Because of the ellipticity� the geomet�
ric assumptions on the non�weighted geometry would yield those on the
weighted geometry� Our background is a little more general since the el�
lipticity constant ������ is not uniform but above all� as A� Grigor�yan
pointed out to us� its presentation is cleaner because these geometric
assumptions are always applied with the weights�

Note also that every reversible Markov chain can be obtained as
above� starting from the Markov kernel p and its invariant measure m�
one constructs �xy � p�x� y�m�x��

De�nition ���� The weighted graph ��� �� satis�es the Gaussian esti�

mates G�cl� Cl� Cr� cr� �all constants are positive� if

d�x� y� � n implies
clm�y�

V �x�
p
n�

e�Cld�x�y�
��n � pn�x� y�

� Crm�y�

V �x�
p
n�

e�crd�x�y�
��n �

Of course� if d�x� y� � n then pn�x� y� � �� On Euclidian spaces�
these estimates were 
rst proved for fundamental solutions of parabolic
equations in ���

The continuous�time Markov kernel may be de
ned by

Pt�x� z� � e�t
��X
k
	

tk

k"
pk�x� z� �

Like the discrete kernel� it satis
es

Pt�x� y�
m�y�

�
Pt�y� x�
m�x�

�

It is also the solution for �t� x� � R� � � of���
��
P	�x� z� � ��x� z� �

m�x�
	

	t
Pt�x� z� �

X
y

�xy �Pt�y� z�	 Pt�x� z�� �
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Indeed�

	

	t
Pt�x� z� � e�t

� ��X
k
�

k tk��

k"
pk�x� z�	

��X
k
	

tk

k"
pk�x� z�

�

� e�t
� ��X
k
�

tk��

�k 	 �"

X
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p�x� y� pk���y� z�	
��X
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tk

k"
pk�x� z�

�

�
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y

p�x� y� �Pt�y� z�	 Pt�x� z�� �

Therefore we will say that u satis
es the �continuous�time� parabolic
equation on �t� x� if

���� m�x�
	

	t
u�t� x� �

X
y

�xy �u�t� y�	 u�t� x�� �

���� Parabolic Harnack inequalities�

These inequalities apply to positive solutions of the parabolic equa�
tions on cylinders �products of a time interval and a ball�� Let us make
this precise on the boundary of the cylinders� We shall say that u
is a non�negative solution on Q � I � B�x	� r� if it is the trace of a
non�negative solution on I � B�x	� r ! � which satis
es ���� or ����
everywhere on Q� For instance in the continuous case� this implies� for
all �t� x� � Q�

u�t� x� � � �

for all t � I� for all x � B�x	� r 	 ��

m�x�
� 	
	t

u�t� x� ! u�t� x�
�
�
X
y

�xy u�t� y� �

for all t � I� d�x	� x� � �r� imply

���� m�x�
� 	
	t

u�t� x� ! u�t� x�
�
�

X
y�B�x��r�

�xy u�t� y� �
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De�nition ���� Set 
 � ��� � and � � �� � �� � �� � ��� ��� ��
satis�es the continuous�time parabolic Harnack inequality

H�
� ��� ��� ��� ��� C�

if for all x	� s� r and every non�negative solution on Q � �s� s! ��r
���

B�x	� r�� we have

sup
Q�

u � C inf
Q�

u �

where Q� � �s! �� r
�� s! �� r

�� � B�x	� 
 r� and Q� � �s! �� r
�� s!

�� r
��� B�x	� 
 r��

Let us explain the choice of the boundary condition� For r � � Q
has no interior so we just have ���� but this is su�cient to obtain the
inequality since it gives a lower bound for �	�	t�u�t� x	��

If we assume ���� and H�
� ��� ��� ��� ��� C�� then for all 
� � ��� �
and � � ��� � ��� � ��� � ���� there exists C � such that

H�
�� ���� �
�
�� �

�
�� �

�
�� C

��

is true� Take two points �t�� x�� and �t�� x�� in Q�� and Q��� For
r big enough� there is a decomposition x� � x	� � � � � xn � x� and
t� � t	 � 
 
 
 � tn � t� �where n depends only on the 
� 
�� �i and
��i�s� such that we can obtain u�ti� xi� � C u�ti��� xi���� So we can take
C � � Cn� For r bounded� the condition ���� gives the inequality� For
simplicity� we will denote

H�CH� � H������ ���� ��� ��� ��� CH� �

These coe�cients have been chosen for convenience when we apply
this inequality �see typically Propositions �� or ����� We will write
u�t�� x�� � CH u�t�� x�� as soon as x� and x� are in the contraction
of a ball on which u is a solution and #there is time$ between t� and
t� as well as before t�� We will not have to bother with technical
coe�cients if they don�t exceed ��

De�nition ���� Set 
 � ��� � and � � �� � �� � �� � ��� ��� �� satis�
�es the discrete�time parabolic Harnack inequality H�
� ��� ��� ��� ��� C�
if for all x	 � �� s � R� r � R

� and every non�negative solution on

Q � �Z� �s� s! ��r
���� B�x	� r�� we have

�n�� x�� � Q�� �n�� x�� � Q� and d�x�� x�� � n� 	 n�
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implies

u�n�� x�� � C u�n�� x�� �

where Q� � �Z� �s! �� r
�� s! �� r

����B�x	� 
 r� and Q� � �Z� �s!
�� r

�� s! �� r
���� B�x	� 
 r��

If the condition d�x�� x�� � n� 	 n� is not satis
ed� u�n�� x��
has no in%uence on u�n�� x��� It is always satis
ed if r � � 
����	 ���
and in this case we can write

sup
Q�

u � C inf
Q�

u �

The same remark as above holds for this inequality and we will denote

H�CH� � H������ ���� ��� ��� ��� CH� �

���� Statement of the results�

Here is our main result�

Theorem ��	� The three following properties are equivalent�

i� There exist C�� C�� � � � such that DV �C��� P �C�� and ����
are true�

ii� There exists CH � � such that H�CH� is true�

iii� There exist cl� Cl� Cr� cr � � such that G�cl� Cl� Cr� cr� is true�

Theorem ��� states that i� implies iii�� Theorem ��� that iii� im�
plies ii� and Theorem �� that ii� implies i��

The 
rst part � i� implies iii� � is the most di�cult and an interme�
diate result is�

ii�� There exists CH � � such that H�CH� is true�

which is proven in Section � by a Moser type iteration argument� In
fact� ii�� is also equivalent to the three properties� since we can prove ii��
implies i� the same way we prove ii� implies i�� In Section �� we complete
the proof� First ii�� implies estimates for Pt� which yield estimates iii�
for pn by comparison� Then iii� implies ii� and ii� implies i�� In the last
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section� two properties about H�older regularity and Green function are
deduced for graphs which satisfy these properties�

Let us note that it is straightforward that ii� and iii� imply the
hypothesis ����� For iii�� just apply the lower bound to p��x� y� where
y � B�x� �� And for ii�� set n � 	��� to obtain p	�x� x� � CH p��x� y��

This result connects with ��� and ��� since in groups or in graphs
with linear volume growth� Poincar�e inequality is always satis
ed� In
Euclidian graphs Zn� the estimates which are well�known for uniform
transitions �this is for instance a consequence of the result in groups� are
here proved for non�uniform transitions ��xy doesn�t depend on y	 x��

��
� Continuous or discrete time�

To prove the Harnack inequality� we will use analytic methods
which yield Cacciopoli inequalities� For these methods� the continuous
time is naturally more convenient� We may have an idea of the problems
if we look what happens on the two points graph � � fa� bg� Choose
p�a� a� � p�b� b� � � and p�a� b� � p�b� a� � 	 �� this may be done if
we set �aa � �bb � � and �ab � 	 �� This gives

����
���

pn�a� a� �
 ! ���	 �n

�
�

pn�a� b� �
	 ���	 �n

�
�

����
���
Pt�a� a� �  ! e������t

�
�

Pt�a� b� � 	 e������t

�
�

Of course if � � � there is no link between the two points� Now� if
� �� � P is always a simple relaxation �Pt�a� a� � Pt�a� b�� whereas�
for � � ��� p is an oscillating relaxation or worse �for � � �� a pure
oscillation�

The 
rst conclusion is that we have to force a minimum value on
the diagonal of the Markov kernel if we want a discrete�time parabolic
Harnack inequality or estimates from below� Indeed� they are not satis�

ed by this example for � � �� This has nothing to do with the fact that
the graph is 
nite� take the standard random walk on Z and observe
its e�ect on u��� z� � z mod �� We obtain u�n� z� � �n! z� mod ��

What plays a role is condition ���� and particulary the fact that
p�x� x� � �� We have extended this condition to p�x� y� � � for x � y
so that our results are true for low values of n� think for instance to the
lower bound of p��x� y� � p�x� y�� Besides� lower bounds for d�x� y� � n
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are the consequence of lower bounds for n � � see the proof of Theorem
����

The second conclusion is that the behaviour of the discrete�time
Markov chain is more di�cult to control� In addition to the usual
heat relaxation� there may be another phenomenon of relaxation of the
oscillating errors due to the discretization of the time�

One more attempt to show the di�culty of adapting the analytic
methods to the discrete time� Consider the proof of the Cacciopoli
inequality� When time and space are continuous� take u such that
	u�	t � �u and a compactly supported cut�o� function  to integrate
by parts�



�

ZZ
� 	�u

��

	t
�

ZZ
� u�u

� 	
ZZ

r�� u� 
 ru

� 	
ZZ

� jruj� 	
ZZ

� ur 
 ru �

Since

	
ZZ

�r uru � 

�

ZZ
� jruj� ! �

ZZ
jrj� u�

one gets



�

ZZ
� 	�u

��

	t
!



�

ZZ
� jruj� � �

ZZ
jrj� u� �

This inequality is essential to estimate kruk� with kuk�� which with the
Sobolev inequality gives estimates between mean values for exponents
of the same sign� Let us try to adapt this argument to discrete time�
Note that ���� may be written in the following way

m�x� �u�n! � x�	 u�n� x�� �
X

�xy �u�n� y�	 u�n� x�� �

For simplicity� we will forget about the cut�o� function �take u�n� 
�
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compactly supported�� Write

�
X
x

m�x�u�n� x� �u�n! � x�	 u�n� x��

� �
X
x�y

�xy u�n� x� �u�n� y�	 u�n� x��

�
X
x�y

�xy u�n� x� �u�n� y�	 u�n� x��

!
X
x�y

�yx u�n� y� �u�n� x�	 u�n� y��

� 	
X
x�y

�xy �u�n� y�	 u�n� x��� �

This is nice but we have not taken the exact time di�erentiation ofP
xm�x�u��n� x�� that is�X

x

m�x� �u��n! � x�	 u��n� x��

� �
X
x

m�x�u�n� x� �u�n! � x�	 u�n� x��

!
X
x

m�x� �u�n! � x�	 u�n� x���

� 	
X
x�y

�xy �u�n� y�	 u�n� x���

!
X
x

m�x� �u�n! � x�	 u�n� x��� �

Fortunately� if we suppose that �xx � �m�x�� thenX
x

m�x� �u�n! � x�	 u�n� x���

�
X
x



m�x�

�X
y

�xy �u�n� y�	 u�n� x��
��

�
X
x



m�x�

�X
y 	
x

�xy

��X
y

�xy �u�n� y�	 u�n� x���
�

� �	 ��
X
x�y

�xy �u�n� y�	 u�n� x��� �
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This yieldsX
x

m�x� �u��n! � x�	 u��n� x�� � 	�
X
x�y

�xy �u�n� y�	 u�n� x��� �

The constant � has been used to control the errors due to the dis�
crete time� But these manipulations seem far more intricate when we
deal with subsolutions or the logarithm of u �and cut�o� functions��
Therefore� we won�t try to apply Moser�s iterative technique directly to
solutions of the discrete�time parabolic equation�

�� Harnack inequality for solutions of the continuous�time

parabolic equation�

Theorem ���� Assume ��� �� satis�es DV �C��� P �C�� and �����
Then� there exists CH such that H�CH� is true�

The proof is an adaptation of ����� The strategy is Moser�s iterative
technique ����� that is to prove inequalities involving the mean values

M�u� p� �s�� s��� B� �
� 

�s� 	 s��V �B�

X
x�B

Z s�

s�

m�x�u�p�t� x� dt
���p

�

The idea is we get the in
mum when p 	 	� and the supremum
when p 	 !�� Thus we want to prove a series of inequalities between
	� and !�� To improve the exponent of a mean value� the Sobolev
inequality proved in Section �� is helpful� One application of this
inequality yields an elementary step of the iterative technique proved
in Section ���� The iteration gives inequalities between the extrema and
mean values as stated in Section ���� The most di�cult step is between
negative and positive values� Here we use an improvement of the initial
version ���� proposed in ���� with an idea of E� Bombieri ���� This is the
object of Section ��� and needs a weighted Poincar�e inequality stated
in Section ���

Throughout this section devoted to the proof of Theorem ���
DV �C��� P �C�� and ���� are assumed and u � �� The theorem for
u � � is then straightforward�
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���� Poincar�e and Sobolev inequalities�

Proposition ��� �Weighted Poincar�e inequality�� There exists C de�

pending on C�� C� and � such that for all x	 � �� R � N and f �
R
B�x� �R��X
x�B�x��R�

m�x���x� �f�x�	 fB��
�

� C R�
X

x�y�B�x��R�

�xy min f��x�� ��y�g �f�y�	 f�x��� �

where �x� � 	 d�x	� x��R and fB� is such that the term on the left

is minimal� that is

fB� �

X
x�B�x��R�

m�x���x� f�x�

X
x�B�x��R�

m�x���x�
�

Proof� We refer to the proof in ���� based on � �� Consider F a
collection of balls with the following tree structure� denote one ball B�

�the root of the tree� and assume that there is a function B �	 B
from F n fB�g to F �denote B�i� its iteration� such that for all B � F �
rgB � inf fk � B�k��� � B�g � �� Denote r�B� the radius of B�
A�B� � f &B � F � exists k � N � &B�k� � Bg and B
 � ���B� For our
discrete setting� we will need this version of Poincar�e inequality where
C �� depends on C�� C� and ��X
x�B�x��r�

m�x� jf�x�	 fBj� � C �� r
�

X
x�y�B�x����		�r�

�xy �f�y�	 f�x��� �

for all f � R
� � for all x	 � �� for all r � R

� � It is obtained by an easy
covering argument� Again� there may be some problems for small r but
then ���� gives the inequality�

The following lemma will be applied to

��xy � �xy min f��x�� ��y�g �

The notations m� or f �B should be understood with respect to ���



Parabolic Harnack inequality �	�

Lemma ���� Assume there exists C such that� for all B � F � there
exists cB such that

���
��

cB
C

m�x� � m��x� � C cB m�x� � for all x � B
 �

cB
C

�xy � ��xy � C cB �xy � for all x� y � B
 �
�����

�fB � F � x � B
g � C � for all x � � ������

��B �B� � max f��B�� ��B�g
C

� for all B � F ���� �

Then for every function f �

X
x��B�FB

m��x� �f�x�	 f �B�
�� � �C ��C

 sup
B�F

�
r��B�

X
�B�A�B�

�� &B�

��B�
rg &B

�



X

x�y��B�FB�
��xy �f�x�	 f�y��� �

Proof� In fact condition ��� � is needed for �� but because of ������
��� � implies that

���B � B� � max f���B�� ���B�g
C�

� for all B � F �

First note that

�f �B 	 f �
B
��

�

X
x�B�B

m��x� ��f �B 	 f�x�� ! �f�x�	 f �
B
���

���B �B�

� �

���B �B�

�X
x�B

m��x� �f�x�	 f �B�
� !

X
x�B

m��x� �f�x�	 f �
B
��
�
�

These terms
P

x�Bm��x� �f�x�	 f �B�
� satisfy

X
x�B

m��x� �f�x�	 f �B�
� �

X
x�B

m��x� �f�x�	 fB�
�
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� C cB
X
x�B

m�x� �f�x�	 fB�
�

� C cB C �� r
��B�

X
x�y�B�

�xy �f�x�	 f�y���

� C� C �� r
��B�

X
x�y�B�

��xy �f�x�	 f�y��� �

We can now prove the lemma�X
x��B�FB

m��x� �f�x�	 f �B�
��

�
X
B�F

X
x�B

m��x� rgB
�
�f�x�	 f �B�

� !

rgB��X
i
�

�f �B�i��� 	 f �B�i��
�
�

�
X
B�F

� X
�B�A�B�

���� &B� rg &B
�

���B��C�

�X
x�B

m��x� �f�x�	 f �B�
�

� �C�
X
B�F

� X
�B�A�B�

��� &B�

���B�
rg &B

�
C� C �� r

��B�
X

x�y�B�
��xy �f�x�	 f�y���

� �C ��C
�

X
x�y��B�FB�

C sup
B�F

�
r��B�

X
�B�A�B�

��� &B�

���B�
rg &B

�


 ��xy �f�x�	 f�y��� �

To 
nish the proof� we replace ��� &B� and ���B� by �� &B� and ��B� so
that another factor C� appears�

End of proof of Proposition ���� We will construct F as a Whit�
ney covering of B�x	� R	� by selecting Wn � fx � d�x	� x� � R	 �ng
for � � n � N � �logR� log ���

F �
n
B�x� r� � exists n� x �Wn and r �

�n

��

o
� fB�g �

where B� � B�x	� R����� For these balls� ����� is satis
ed� The tree
structure will be constructed this way� if B � B�x� r� with x �Wn we
will choose B of center x �Wn�� such that d�x� x� � ����� �n �see the
construction of the Wn�s below�� Thus� B�x� �����	���� �n� � B�B
and condition ��� � is satis
ed�
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We must check� in order to apply Lemma ���� that it was possible
to select Wn so that

fx � R	 �n�� � d�x	� x� � R	 �ng �
	

x�Wn��

B
�
x�

�

�
�n
�
�

while ����� is satis
ed� It is a standard Besicovitch covering argument�
we choose a minimalWn�� for this property� The key is that the radius
of any ball B
 such that x � B
 is comparable to R	 d�x	� x��

Now let us consider the term

sup
B�F

�
r��B�

X
�B�A�B�

�� &B�

��B�
rg &B

�
�

The 
rst point is that d�x� x� � ����� �n implies that �B � �B� For
B � F n fB�g� set n � N such that Wn contains B�s center� If we
denote Fk � f &B � &B�k� � Bg and Ak �

S
�B�Fk �

&B� Ak�� � Ak�

But there is more than this inclusion� a ball &B � B�&x� &r� in Fk is
such that d�x	� &x� � R 	 �n�k and &r � �n�k���� so that there is
a ball of radius &r��� which is included in � &B and in the area fy �
d�x	� y� � R	 �n���k 	 � 
 �n���k���g never reached by Ak��� This
yields ��Ak nAk��� � � ��Ak� and consequently ��Ak� � e�ck ��A	� �
C e�ck ��B�� Thus�

r��B�
X

�B�A�B�

�� &B�

��B�
rg &B � ��n

X
k	

C e�ck �N!	n!k��C ��N�C R� �

For the case B � B�� the proof is identical but we refer to A� instead
of A	�

To 
nish the proof� let us compare m�x���x� and m��x�� For
x �� x	� the condition ���� gives m�x���x� � m��x���� we just have
to consider y � x such that d�x	� x� � d�x	� y� ! �

Proposition ��� �Sobolev�Poincar�e inequality�� There exist � � 
depending on C� and S depending on C�� C� and � such that for every

function f on B of radius r�� 

V �B�

X
x�B

m�x� f���x�
����

� S

V �B�

�
r�

X
x�y�B

�xy �f�y�	 f�x��� !
X
x�B

m�x� f��x�
�
�
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In the setting of manifolds� this result which was proven in ����
was the key of the proof of the Harnack inequality after the work �����
It is adapted to graphs in ���� A nice abstract version can also be
found in ���� In the notation of this paper� the chain condition will be
satis
ed for � � � �like the preceding section where � � ����� Indeed�
consider x next to the boundary of B� the smallest ball Bi of the chain
not centered at x must contain x and satisfy �Bi � B�

���� Elementary step of Mosers iterative technique�

As in Section ��� we will say that u is a positive sub�supersolution
onQ � I�B�x	� r� if it is the trace of a positive function on I�B�x	� r!
� which is a sub�supersolution everywhere on Q� Precisely� we say that
u is a positive subsolution on Q if it is positive and

m�x�
	

	t
u�t� x� �

X
y

�xy �u�t� y�	 u�t� x�� �

for all t � I� for all x � B�x	� r 	 �� And u is a positive supersolution
on Q if it is positive and

m�x�
	

	t
u�t� x� �

X
y

�xy �u�t� y�	 u�t� x�� �

for all t � I� for all x � B�x	� r 	 ��

m�x�
� 	
	t

u�t� x� ! u�t� x�
�
�

X
y�B�x��r�

�xy u�t� y� �

for all t � I� for all x such that d�x	� x� � �r�� Let us show the elemen�
tary step of Moser�s iterative technique� If Q � I�B where I � �s�� s��
and B � B�x� r�� note

B� � �	 ��B � B�x� �	 �� r� �

I� � ��	 ��� s� ! ��s�� s�� �

I �� � �s�� �
� s� ! �	 ��� s�� �

I ��� � ��	 ��� s� ! �� s�� �
� s� ! �	 ��� s�� �

Q� � I� � B�� Q
�
� � I �� � B� and Q��� � I ��� �B� �
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Note that

����� Q����� � �Q����� � Q
�
����� � �Q����

�
��

and Q������� � �Q�����
��
��

�

Lemma ��
� There is an exponent � � � 	 �� and a constant A �
A�C�� S� � A�C�� C�� �� such that if B � B�x	� r�� Q � ��� r��� B� u
a positive subsolution in Q and �r � � � ��� then

M�u� ��Q�� �
� A
��

���	
M�u� � Q� �

If u is a supersolution with the same assumptions� then

M�u� ��Q��� �
� A
��

���	
M�u� � Q� �

Proof� Consider the 
rst part� u is a subsolution� Let  be a non�
negative function in B� with d�x	� x� � r implies �x� � �� thenX

x�B
m�x���x�u�t� x�

	

	t
u�t� x�

�
X
x�y�B

�xy 
��x�u�t� x� �u�t� y�	 u�t� x��

�


�

X
x�y�B

�xy �
��x�u�t� x�	 ��y�u�t� y�� �u�t� y�	 u�t� x��

�


�

X
x�y�B

�xy 
��x� �u�t� x�	 u�t� y�� �u�t� y�	 u�t� x��

!


�

X
x�y�B

�xy �
��x�	 ��y��u�t� y� �u�t� y�	 u�t� x�� �

In the last term� we use the inequality a b � a��� ! b��

���x�	 ��y��u�t� y� �u�t� y�	 u�t� x��

� �x� ��x�	 �y��u�t� y� �u�t� y�	 u�t� x��

! �y� ��x�	 �y��u�t� y� �u�t� y�	 u�t� x��

� 

�
���x� ! ��y�� �u�t� y�	 u�t� x���

! �u��t� y� ��x�	 �y��� �
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Note that because of the symmetry of the weights �xy�X
x�y�B

�xy 
��y� �u�t� y�	u�t� x��� �

X
x�y�B

�xy 
��x� �u�t� y�	u�t� x��� �

Thus� ����� yields

X
x�B

m�x���x�u�t� x�
	

	t
u�t� x� !



�

X
x�y�B

�xy 
��x� �u�t� y�	 u�t� x���

�
X
x�y�B

�xy u
��t� y� ��x�	 �y��� ������

For u supersolution� the result would be

X
x�B

m�x���x�u�t� x�
		
	t

u�t� x�

!


�

X
x�y�B

�xy 
��x� �u�t� y�	 u�t� x���

�
X
x�y�B

�xy u
��t� y� ��x�	 �y��� �

And then� the same arguments work dealing with I �� instead of I��
Return now to ������ if � is a smooth function of t� we obtain

	

	t

�X
x�B

m�x� ���t��x�u�t� x���
�

!
���t�

�

X
x�y�B

�xy 
��x� �u�t� y�	 u�t� x���

� ����t�
X
x�y�B

�xy u
��t� y� ��x�	 �y���

!
X
x�B

m�x�
� 	
	t

���t�
�
u��t� x� �

Now we choose ��t� � t��� r�� �  and  so that d�x	� x� � r implies
�x� � � and  �  in B�� For this purpose� we took �r � ��



Parabolic Harnack inequality �
�

Integrating over I yields�����������
����������

sup
t�I�

� X
x�B�

m�x�u��t� x�
�
� �

�� r��

Z
I

X
x�B

m�x�u��t� x� dt �



�

Z
I�

X
x�y�B�

�xy �u�t� y�	 u�t� x��� dt

� �

�� r��

Z
I

X
x�B

m�x�u��t� x� dt �

We have used j��j � ��� r�� and j�x�	 �y�j � ���� r� when x � y�
This result �of Cacciopoli type� allows us to use Proposition ���

�Sobolev�� Note �� such that �� ! ��� �  and � �  ! ����

M�u� ��Q��
	 �



V �B�� r� �	 ���

Z
I�

X
x�B�

m�x�u�	�t� x� dt

� 

r� �	 ���

Z
I�

� 

V �B��

X
x�B�

m�x�u��t� x�
�����



� 

V �B��

X
x�B�

m�x�u���t� x�
����

dt

�
sup
t�I�

� X
x�B�

m�x�u��t� x�
�����

r� �	 ���V �B�����
�



Z
I�

S

V �B��

�
r�

X
x�y�B�

�xy �u�t� y�	 u�t� x���

!
X
x�B�

m�x�u��t� x�
�
dt

� 

r��	 ���

� �

�� r��

������ ��
��

! 
� S

V �B�����
���



�Z

I

X
x�B

m�x�u��t� x� dt
�������

�

This yields

M�u� ��Q�� �
� A
��

���	
M�u� � Q� �
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for a constant A� because � � �� so that V �B� � C� V �B�� and
	 �� � ����

���� Mean value inequalities�

Lemma ���� If u is a positive solution on I �B� then

� up is a subsolution on I � B for p � � and p � �

� up is a supersolution on I � B for � � p � �

Proof� Let f�x� � xp� if p � � or p � � f is convex and

f ��a� �b	 a� � f�b�	 f�a� �

This yields

m�x�
	

	t
f�u�t� x�� � m�x� f ��u�t� x��

	

	t
u�t� x�

�
X
y

�xy f
��u�t� x�� �u�t� y�	 u�t� x��

�
X
y

�xy �f�u�t� y��	 f�u�t� x��� �

Lemma ��	� Let B be a ball of radius r� Q � ��� r��� B� u a positive

solution on Q and � � � � ��� Then� for all p � ��

M�u�	p�Q� � C �C ��
���p inf
Q�

u� �����

sup
Q��
�

u� � C �C ��
���pM�u� p�Q� ������

where C and � depend only on C�� C� and ��

Proof� We will prove ����� Consider 
rst the case � r � � �the
di�erence between B�s radius and B��s is less than �� this includes the
cases B � B� when one can not apply the elementary step� Lemma �����
Take u��t� z� � infQ�

u� and note that� for all � � � � �� r�� t	 � � I
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and u��t 	 �� z� � e�� u��t� z� � e infQ�
u�� This is a consequence of

����� Counting only these values�

M�u�	p�Q��p � m�z� �� r�

r� V �B�



e inf

Q�

u�
��p

implies

M�u�	p�Q� � e
� V �B�

V �z� ��� ��

���p
inf
Q�

u� �

Applying 
rst DV �C�� between B�z� � r� � B and B�z� ��� then r �
� ���� we obtain �����

Consider now � r � �� Set �i � ��i�� Q��� � Q and Q�i� �
Q�i 	 ��i so that for all i� Q� � Q�i�� Fix n the integer such that
�n�� � � r � �n��� We can apply Lemma ��� between Q�i 	 � and
Q�i� for i � n since u�q is a subsolution� the radius of the cylinder
Q�i	 � is bigger than r�� and �i � ��r�

M�u�	q ��Q�i�����q �
� A
��i

���	
M�u�	q�Q�i	 �����q

implies

M�u�	q�Q�i	 �� �
� A
��i

����q	�
M�u�	q ��Q�i�� �

This yields

M�u�	p�Q� �
� nY
i
�

� A

���i���

���	i���p
M�u�	p �n� Q�n�� �

To obtain ����� we may 
rst check that

��Y
i
�

� A

���i���

���	i
� C ��
 �

Then� we estimate M�u�	p �n� Q�n�� as in the case � r � �� Take
u��t� z� � infQ�n��� u

� and note that for all � � � � ��n�� r���
��

t 	 � � I�n� and u��t 	 �� z� � e�� u��t� z� � e� infQ�n��� u
�� We use

 � �n�� r � �� This yields

M�u�	p �n� Q�n�� � e�
�
r� V �B�

m�z�


�

���p	n�

inf
Q�

u� �
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Since n � log �� r����log �� we may estimate�
r� V �B�

m�z�


�

��	n

� e����� r��
c log �C rC� �

Again C is a constant which depends on C� and C�� To obtain C � ��


as in ����� we must check� �

� r

�c
log �C rC� � C � 	 � log � �

for � r � �� This may be done this way� either � � r���� and it su�ces
to note that ���� r� � ��� and use the term 	� log �� either � � r����

and we use

C � �
� �

r���

�c
log �C rC� �

The proof of ����� is identical� except that uq may be a superso�
lution� that�s why we take Q��� instead of Q�� We also use u�t! �� z� �
e��u�t� z�� that�s another reason to cut I by the highest values� In fact�
having in mind the all�continuous result ����� Corollary �� p� �� ��� we
could keep Q�� First� we should use a covering argument ����� p� �����
to avoid the use of Lemma ��� on uq for q � � Then� instead of picking
up the sup on the values u�t! �� z�� we could get it from the u�t	 �� z��
where z� � z� But this is only possible when � r � � Taking Q��� is
somehow arti
cial but it has the great technical advantage that at this
point of the proof� we have no more conditions like � r �  in Lemma ���
which compel us to treat separately cases when it is no longer possible
to cut the space�

���� About log u� linking negative and positive exponents�

Let us de
ne the measure � on R � � as the product of Lebesgue
measure and V � The next lemma states that the values of log u are
glued to their �space� mean value at a time � somehow like functions
with BMO norm bounded� they cannot be much bigger on a large part
before or much lower after� J� Moser�s improvement in ���� is that
this property and the �time and space� mean value inequalities are
su�cient to link extrema to the �space� mean value of log u at a 
xed
time between Q� and Q�� and thus to link extrema together� This last
idea is the meaning of the abstract Lemma ����
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Lemma ���� Let 
� � � ��� � � B � B�x	� r� and u any positive super�

solution on Q � �s� s ! r�� � B� there is a constant m�u� �� such that

for all � � ��

��f�t� z� � K� � logu�t� z� � m	 �g� � C ��Q�

�
and

��f�t� z� � K� � log u�t� z� � m! �g� � C ��Q�

�
�

where K� � �s ! � r�� s ! r�� � 
 B� K� � �s� s ! � r�� � 
 B and C
depends only on 
� � � C� and C��

Proof� Let

�z� � 	 d�x	� z�

�r� ! 

��r� denotes the integer part of r� and m�x� �
P

y 	�B �xy so that for all
x � B�

m�x�
	

	t
u�t� x� �

X
y�B

�xy �u�t� y�	 u�t� x��	m�x�u�t� x� �

	

	t

X
x�B

m�x���x� �	 logu�t� x��

�
X
x�B

	��x�
m�x�

	

	t
u�t� x�

u�t� x�

�
X
x�y�B

�xy
	��x�

u�t� x�
�u�t� y�	 u�t� x�� !

X
x�B

��x�m�x������

�


�

X
x�y�B

�xy

� ��y�

u�t� y�
	 ��x�

u�t� x�

�
�u�t� y�	 u�t� x��

!
X
x�B

��x�m�x� �

Now we show that� ��y�

u�t� y�
	 ��x�

u�t� x�

�
�u�t� y�	 u�t� x��

� �� ��y�	 �x��� 	 

�
min f��x�� ��y�g �u�t� y�	 u�t� x���

u�t� x�u�t� y�
�

�����
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We may assume u�t� x� � u�t� y� for that purpose�

Either

��x� � ��y�

�

�
 !

u�t� x�

u�t� y�

�
�

then

� ��y�

u�t� y�
	 ��x�

u�t� x�

�
�u�t� y�	 u�t� x��

�
�
��y�

u�t� y�
	

��y�

�

�
 !

u�t� x�

u�t� y�

�
u�t� x�


�u�t� y�	 u�t� x��

� 	

�
��y�

�u�t� y�	 u�t� x���

u�t� x�u�t� y�
�

and there is no need to use the other non�negative term �� ��y� 	
�x����

Or

��x� � ��y�

�

�
 !

u�t� x�

u�t� y�

�
�

First we estimate u�t� y�	 u�t� x� with �y�	 �x��

u�t� x�	 u�t� y�

u�t� y�
�

u�t� x�

u�t� y�
	 

� ���x�

��y�
	 �

� �
�x� ! �y�

��y�
��x�	 �y�� �

Thus�

��y�
�u�t� x�	 u�t� y���

u�t� x�u�t� y�
� ��y�

�u�t� x�	 u�t� y���

u��t� y�

� ��y�
�
�
�x� ! �y�

��y�
��x�	 �y��

��
� �� ��x�	 �y��� �
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Because the function  is such that �y� � �x� � ��y� when x � y�
We also obtain� ��y�

u�t� y�
	 ��x�

u�t� x�

�
�u�t� y�	 u�t� x��

�
� ��y�

u�t� y�
	 ��x�

u�t� y�

�
�u�t� y�	 u�t� x��

� ��x� ! �y��
u�t� x�	 u�t� y�

u�t� y�
��x�	 �y��

� �
��x� ! �y���

��y�
��x�	 �y���

� � ��x�	 �y��� �

Inequality ����� is proven because � ��x�	 �y��� controls the two
other terms�

We can now change ����� using the inequality ������

	

	t

X
x�B

m�x���x� �	 logu�t� x��

!


�

X
x�y�B

�xy min f��x�� ��y�g �u�t� y�	 u�t� x���

u�t� x�u�t� y�

� C
X
x�y�B

�xy ��y�	 �x��� !
X
x�B

��x�m�x� �

Since

�log u�t� y�	 log u�t� x��� � �u�t� y�	 u�t� x���

u�t� x�u�t� y�

�just check �log a�� � �a	 ���a by di�erentiating two times�� x � y
implies j�y� 	 �x�j � �r and m�x� �� � implies j�x�j � �r� this
yields

	

	t

X
x�B

m�x���x� �	 logu�t� x��

!


�

X
x�y�B

�xy min f��x�� ��y�g �logu�t� y�	 log u�t� x���

� C
V �B�

r�
�
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Now use the weighted Poincar�e inequality of Proposition ��� to estimateX
x�B

m�x���x� �	 logu�t� x�	W �t���

� C r�
X
x�y�B

�xy minf��x�� ��y�g �logu�t� y�	 logu�t� x��� �

where

W �t� �

X
x�B

m�x���x� �	 logu�t� x��

X
x�B

m�x���x�
�

Use also

X
x�B

m�x���x� �
X

x�B��
m�x�

�
�

��
� C V

�B
�

�
� C � V �B�

and x � 
 B implies �x� � 	 
� This way� we obtain two constants
c and C depending only on 
� C� and C� such that

	

	t
W �t� !

c

��Q�

X
x�B

m�x� �	 log �u�t� x��	W �t�� � C r�� �

Setting m � 	W �s! � r��� this yields the result �for precisions� follow
litterally the argument on ���� p� ������

Lemma ���� Let U� for � � � � � � �� be subsets of a space with a

measure � such that � � �� implies U� � U�� and ��U	� � C��U��� f
a positive measurable function on U	 which satis�es

����� sup
U��

f� � C �C ��� 	 ���
���pM�f� p� U�� �

for all � � � � �� � � and p � � and

��flog f � �g� � C

�
��U	� �

for all � � �� Then
sup
U�

f � A �
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where A depends only on �� � and C�

Proof� Set ��� � log �supU� f
��� Dividing U� into two sets log �f��

� ����� and log �f�� � ����� yields

M�f� p� U��
p � �e�������p !



��U��

C

�����
��U	� sup

U�

f�p

� ep������ !
�C�

���
ep����

� � ep������ �

if we choose

p �
�

���
log

���

�C�

so that the two terms are equal� Then we apply ������

���� � logC !


p
log ��C ��� 	 ���
e�������

� logC !
���

�

� log ��C ��� 	 ���
�
log �������C���

! 
�
�

If
���

�C�
� ��C ��� 	 ���
��

and

logC � ���

�

then

���� �  

�
��� �

Thus� we always have

���� �  

�
��� ! C ���� 	 ����
 �

Take a positive decreasing sequence � � �	 � 
 
 
 � �i � �i�� � 
 
 
 �

��� � C �
��X
i
	

� 
�

�i
��i�� 	 �i�

��
 � constant �� log �A���
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if we set �i � ��� ! i��

��
� Proof of Theorem ����

Recall the notations of De
nition �� and Lemma ���� we set 
 �
��� 
 � ���� �� � ��� �� � ��� � � ��� �� � ��� and �� � �
Lemma ��� gives a reference value m so that one can apply Lemma
��� to f � e�mu on U	 � �s� s ! � r�� � 
 B with U� � �U	�

��
� for

� � � � 
	
 � ��� This way� Q� � U� and ����� is satis
ed because
of Lemma �� and ������ This yields supQ��e

�mu� � A� Applying

again Lemma ��� to f � em u�� on U	 � �s! � r�� s! �� r
��� 
 B with

U� � �U	�� yields supQ��e
mu��� � A and the Harnack inequality�

�� Kernel estimates� discrete�time Harnack inequality and

necessity of Poincar�e inequality�

���� Continuous�time estimates�

First� we give on�diagonal estimates� The regularity coming from
the Harnack inequality shows that if one starts at x� one di�uses after
a time t on the ball B�x�

p
t�� This is well known since the papers of

D� G� Aronson �� or of P� Li and S� T� Yau ����

Proposition ��� �On�diagonal estimates�� Assume ��� �� satis�es

H�CH�� then

Pt�x� y� � CHm�y�

V �x�
p
t�
� for all x� y� t �

d�x� y�� � t implies Pt�x� y� � C��
H m�y�

V �x�
p
t�

�

Proof� Applying the Harnack inequality to P��
� y� yields Pt�x� y� �
CHP�t�z� y� for z � B�x�

p
t�� Thus�

Pt�x� y� � CH
V �x�

p
t�

X
z�B�x�

p
t�

m�z�P�t�z� y�
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�
CHm�y�

V �x�
p
t�

X
z�B�x�

p
t�

P�t�y� z�

� CHm�y�

V �x�
p
t�
�

For the lower bound� we will use similarly Pt���z� y� � CHPt�x� y� for
z � B�x�

p
t�� But 
rst� we de
ne a function u��� �� solution of the

parabolic equation in ��� t�� B�x�
p
t� this way

u��� �� �  � for all � �
h
��
t

�

i
�

u��� �� �
X

z�B�x�
p
t�

P��t����� z� � for all � �
h t
�
� t
i
�

Applied to u the Harnack inequality yields

C��
H � C��

H u
� t
�
� x
�
� u�t� y�

�
X

z�B�x�
p
t�

Pt���y� z�

�
X

z�B�x�
p
t�

m�z�

m�y�
Pt���z� y�

�
X

z�B�x�
p
t�

CHm�z�

m�y�
Pt�x� y�

�
CHV �x�

p
t�

m�y�
Pt�x� y� �

These on�diagonal estimates yield the volume regularity�

Proposition ���� Assume ��� �� satis�es H�CH�� Then DV �C�
H� is

true�

Proof�

C��
H m�x�

V �x� r�
� Pr��x� x� � CHP�r��x� x� � CH

CHm�x�

V �x� � r�
�
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Now we prove an o��diagonal upper bound which is more precise for
x and y far apart� We still use the parabolic Harnack inequality as in
Lemma �� to estimate one term by a mean value and a second tool is
the integrated maximum principle �see �����

Theorem ��� �Integrated maximum principle�� If u is a solution on

I � � and K�t� x� a positive and decreasing in t function such that for

all t � I and x � y�

�����
�K�t� x� !K�t� y���

�
�	K
	t

�t� x�	 �K�t� x�
��	K

	t
�t� y�	 �K�t� y�

�
�

then the quantity

I�t� �
X
x��

m�x�u��t� x�K�t� x�

is decreasing in t � I�

Proof�

I ��t� �
X
x��

m�x�u��t� x�
	K

	t
�t� x�

!
X
x�y��

��xy �u�t� y�	 u�t� x��u�t� x�K�t� x� �

Since the weights �xy are symmetric�

X
x��

m�x�u��t� x�
	K

	t
�t� x�

�
X
x�y��

�xy
�

�
u��t� x�

	K

	t
�t� x� ! u��t� y�

	K

	t
�t� y�

�

andX
x�y��

��xy �u�t� y�	 u�t� x��u�t� x�K�t� x�

�
X
x�y��

�xy �u�t� y�	 u�t� x�� �u�t� x�K�t� x�	 u�t� y�K�t� y�� �
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This yields

I ��t� �
X
x�y��

�xy
�u��t� x�

�

�	K
	t

�t� x�	 �K�t� x�
�

! u�t� x�u�t� y� �K�t� x�!K�t� y��

!
u��t� y�

�

�	K
	t

�t� y�	 �K�t� y�
��

� � �

because of ������

Construction of a function K� Take ��t� x� � log �K�t� x��� �����
becomes

��� � � ���t� x�	 ��t� y�� !
	�

	t
�t� x� !

	�

	t
�t� y� � 

�

	�

	t
�t� x�

	�

	t
�t� y� �

where ��s� � cosh �s� 	 � Note that ��s� � s��� for s small so that
��� � may be connected to the following eikonal inequation for the heat
equation on a continuous geometry

	�

	t
!



�
jr�j� � � �

with a solution K � e� � ed
��t where d is a distance function of x� Our

parabolic equation should have been normalized to obtain the same
coe�cients� This di�erence and di�erential inequation ��� � contains
only 
rst�order terms� that�s why we get nice solutions considering its
Legendre associate� For instance�

��t� x� � ��t� d�x�� � max
�
f� d�x�	 ���� tg

is a solution if x � y implies jd�x� 	 d�y�j � � Indeed� note ��t� x� a
value for which the maximum is reached�

	�

	t
�t� x� � 	����t� x��

and
j��t� x�	 ��t� y�j � max f��t� x�� ��t� y�g �
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We obtain

��t� x� � arg sinh
�d�x�

t

�
�

��t� d� � d arg sinh
�d
t

�
	 t
�r

 !
d�

t�
	 
�
�

It will be useful to note that� since 	��	d � ��

�����

����
���

��t� d� � 

�

d�

t
�

d � C t implies ��d� t� � arg sinhC

�C

d�

t
�

Denote E�t� d� � e��t�d� in the sequel� This function has already been
introduced by E� B� Davies in ��� with his semigroup perturbation argu�
ment �see � ��� With this argument and Harnack inequality� L� Salo��
Coste proves Gaussian upper bounds in ���� using ideas of ����� �����
We adapt this proof to the use of the integrated maximum principle in
the next proposition�

Proposition ��� �O��diagonal upper bound�� Assume ��� �� satis�es
H�CH�� then for all x� y� t�

Pt�x� y� � C m�y�q
V �x�

p
t�V �y�

p
t�E �� t� d�x� y��

�

where C depends only on CH�

Proof� Consider the following solution of the parabolic equation�

u��� �� �
X

�B�y�
p
t�

pt�
� x� p� ��� 
� �

This will be useful to estimate A�t� �
P

�B�y�
p
t�m�
� p�t �
� x�� Indeed

we apply Theorem ��� between � and � t to

I��� �
X
���

m���u���� ��E �t! �� d�y� ��� �
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Since u��� �� � � if � �� B�y�
p
t� and u��� �� � pt��� x� if � � B�y�

p
t��

we have

I��� �
X

��B�y�
p
t�

m��� p�t ��� x�E �t� d�y� ��� � C A�t� �

Just note that d � pt implies E �t� d� � e���� see ������
In order to give a lower bound for I�� t�� we use

p�t��� 
� � C��
H pt�x� 
�

so that

u�� t� �� � C��
H

m�x�
A�t�

for � � B�x�
p
t�� This yields

I�� t� �
X
���

m���u��� t� ��E �� t� d�y� ���

� C��
H

X
��B�x�

p
t�

m���

m�x��
A�t��E �� t� d�y�B�x�

p
t��� �

Since I�� t� � I���� we get

A�t� � C m�x��

V �x�
p
t�E �� t� d�y�B�x�

p
t���

�

Again the Harnack inequality gives

p�t �x� y� �
m�y��

m�x��
p�t �y� x�

� C�
Hm�y��

m�x�� V �y�
p
t�

X
�B�y�

p
t�

m�
� p��t�
� x�

�
C�
Hm�y��

m�x�� V �y�
p
t�
A�� t�

� C m�y��

V �x�
p
� t�V �y�

p
t�E �� t� d�y�B�x�

p
� t���

�
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The proposition follows because of the volume regularity and

E �� t� d�y�B�x�
p
� t��� � cE�� t� d�x� y�� �

Remark �� Instead of E �� t� d�x� y��� we could get E �� t� d�x� y�� for
any � � � the constant C depending also on �� We would just have
to apply the Harnack inequality between t and � ! ��t� Furthermore�
we could have been more precise for the choice of a function E �using
both ����x�� and ����y�� instead of only the biggest�� All of these

manipulations tend to obtain the analog of ed
��������t� for d�t small�

Don�t forget the normalization of the parabolic equation to compare�

Remark �� One might 
nd the function E too complicated� but ����
explained that it is not purely technical� To understand it� one can take
it as ecd

��t for d�t small and �d�t�d e�d for d�t huge glued together� The
second value is adapted to the fact that when t 	 ��

Pt�x� y� �
pd�x�y��x� y� t

d�x�y�

d�x� y�"
�

so at least in this case the function E gives an optimal upper bound�

���� Discrete�time estimates�

Assume ���� is true so that we can consider the positive sub�
markovian kernel p � p	 �� �this means p�x� y� � p�x� y�	 � ��x� y��
then pn�x� y� is de
ned as in ����� Now compute Pn and pn with p

Pn�x� y� � e�����n
��X
k
	

nk

k"
pk�x� y� �

��X
k
	

ak pk�x� y� ������

pn�x� y� �
nX

k
	

Ck
n �

n�k pk�x� y� �
nX

k
	

bk pk�x� y� �

To compare the two sums we study ck � bk�ak for � � k � n�

ck �
n"�n�k

�n	 k�" e�����n nk
�
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Lemma ��
�

� � k � n implies ck � C��� �

n � a�

��
and jk 	 �	 ��nj � a

p
n imply ck � C�a� �� � � �

The condition n � a���� ensures that a
p
n � �n� We shall consider

only � � �� so that we always have n�� � k � n in the second

assertion�

Proof� The ck�s follow the recurrence formula ck�� � ck�n	k����n��
so they reach a maximum for k around the real �	��n� Let us use the
Gamma function� ��n!� � n" and tt e�t

p
t�C � ��t!� � C tt e�t

p
t�

Set ct � ��n! ��n�t���n	 k ! � e�����t nt� Similarly� it reaches its
maximum for t � �	 ��n� Thus�

ck � ��n! ���n

���n! � e�����n n�����n

�
��n! �

nn e�n
��n��n e��n

���n! �

� C
p
n

Cp
�n

�
C�

p
�
�

Next� we prove the second assertion of the lemma� Again� because of
ck�s variations� we only check this for k � �	��n�apn� For instance�
for �	 ��n	 a

p
n � k � �	 ��n�

ck �
n"�n�k

�n	 k�" e�����n nk

� ��n! ���n�a
p
n

���n! a
p
n! � e�����n n�����n�a

p
n

� 

C�

ea
p
n�

 !
a
p
n

�n

��n�apn
p
np

�n! a
p
n

� 

C�
ea
p
n���n�a

p
n� log���a���

p
n�� 
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� 

C�
ea
p
n���n�a

p
n�a���

p
n�

�


C�
e�a

��� �

This technical result is the key to compare p and P� One side is easy
now�

Theorem ���� Assume ��� �� satis�es p�x� x� � � � � for all x in ��
Then� for all x� y� n�

pn�x� y� � C���Pn�x� y� �

It is the case when ���� is true� This theorem may be applied in
many other situations �with any volume growth� when it is easier to
work on P� When no hypothesis is assumed on p�x� x�� see the comment
after De
nition �� about ��� ������ For instance� on a locally uniformly

nite �by N� non�weighted graph ��xy � f�� g�� p��x� x� � �N �

The other side of the comparison is more intricate�

Proposition ��	 �On�diagonal estimates�� Assume ��� �� satis�es

DV �C��� P �C�� and ����� Then� there exist cd� Cd � �� depending
only on C�� C� and �� such that

pn�x� y� � Cdm�y�

V �x�
p
n�

� for all x� y� n �

d�x� y�� � n implies pn�x� y� � cdm�y�

V �x�
p
n�

�

Proof� The 
rst assertion follows from Theorem ��� and the upper
bound in Proposition ��� To deduce the second assertion from the
lower bound in Proposition ��� we will have to prove that in the sum
������ the terms for jk 	 � 	 ��nj � a

p
n contain half of the whole

sum� First we will set � � ��� �this will be useful later when we apply
the upper bound to a Markov kernel p��� Now� to prove that the lower
bound for P implies one for p� it will be su�cient to prove that for all
� � �� there exists a�

X
jk������nj�apn

ak pk�x� y� �
�m�y�

V �x�
p
n�

�
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We will take � � C��
H ��� the desired lower bound will be proved for

n � N � a����� For n � N � the condition ���� gives pn�x� y� � �N �
We can apply the upper bound to the Markov kernel p� � p��	���

Indeed� it is generated by weights ��xy

��xx �
�xx 	 �m�x�

	 �
� �m�x� �

��xy �
�xy
	 �

� if x �� y �

m��x� � m�x� �

Thus� the volume is identical and P �C�� is still satis
ed because weights
�xy for x �� y have increased� This yields p�k�x� y� � C �dm�y��V �x�

p
k��

hence pk�x� y� � C �dm�y� �	 ��k�V �x�
p
k�� Next� we have to get the

estimate

X
jk������nj�apn

e�����n ��	 ��n�k

k"



V �x�
p
k�
� ��

V �x�
p
n�

�

The sum for k � � 	 ��n ! a
p
n is easier because we simply use

V �x�
p
k� � V �x�

p
n��� � V �x�

p
n��� � V �x�

p
n��C�� Then� we

obtain the k ! th term of the sum if we multiply the kth term by
�	 ��n��k ! �� So we estimate this part by a geometric sum�

X
k������n�apn

e�����n ��	 ��n�k

k"



V �x�
p
k�

� e�����n ��	 ��n������n�a
p
n

���	 ��n! a
p
n! �

C�

V �x�
p
n�



	 �	 ��n

�	 ��n! a
p
n

� C C� e
a
p
n�������n�apn� log ���a�������pn��


 

V �x�
p
n�

p
�	 ��n! a

p
n

�	 ��n! a
p
n

a
p
n� �z �

� �
a
because n a�

��

� ����
V �x�

p
n�

�
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with a good choice of a� Indeed� since log � ! u� � u��u ! �� the
argument of the exponential function appears to be negative�

To deal with k � � 	 ��n 	 a
p
n� we must be careful with the

factors V �x�
p
k��V �x�

p
k 	 � when we compute the k	th term from

the kth� A rough application of the volume regularity gives V �x�
p
k� �

C�V �x�
p
k 	 �� So for the terms k � � 	 ��n���C��� the k 	

th term is less than one half of the kth term and the estimation is
straightforward� Now for the other terms we bound all �V �x�

p
k�

by �V �x�
p
�	 ��n���C���� then the same computation as for k �

� 	 ��n ! a
p
n shows the estimate with �V �x�

p
�	 ��n���C���

which is less than C�V �x�
p
n� if we apply many times the volume reg�

ularity�
Now we prove o��diagonal upper and lower bounds�

Theorem ��� �O��diagonal estimates�� Assume ��� �� satis�es

DV �C��� P �C�� and ����� Then� there exist positive cl� Cl� Cr and cr
depending only on C�� C� and � such that G�cl� Cl� Cr� cr� is true�

Proof of the upper bound� It is a consequence of Theorem ��� and
Proposition ����

pn�x� y� � C m�y�p
V �x�

p
n�V �y�

p
n�E ��n� d�x� y��

� C m�y�p
V �x�

p
n�V �y�

p
n�

e�cd�x�y�
��n �

for d�x� y� � n because of ������
Now use

V �x�
p
n� � V �y� d�x� y� !

p
n�

� C�

�d�x� y� !pnp
n

�logC�� log �

V �y�
p
n� �

pn�x� y� � C
p
C� m�y�

V �x�
p
n�

�d�x� y� !pnp
n

�logC��� log �


 e��c���d�x�y���n e��c���d�x�y���n �

It is clear that the factor�d�x� y� !pnp
n

�logC��� log �

e��c���d�x�y���n
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is bounded�

Proof of the lower bound� It is well�known that the Gaussian
lower bound follows from the on�diagonal one� So let us apply many
times the second assertion of Proposition �� � We set n � n�! 
 
 
!nj �
x � x	� x�� � � � � xj � y and B	 � fxg� Bi � B�xi� ri�� Bj � fyg such
that���������
��������

j 	  � C
d�x� y��

n
�

ri�cpni�� � so that z � Bi imply V �z�
p
ni����AV �Bi� �

sup
z�Bi��

z��Bi

d�z� z��� � ni � so that pni�z� z
�� � cdm�z��

V �z�
p
ni�

�

We will see below how to construct this decomposition� It is a purely
technical problem �cutting in a discrete context��

It will be su�cient to prove the Gaussian lower bound since

pn�x� y�

�
X

�z������zj����B������Bj��

pn��x� z�� pn��z�� z�� 
 
 
pnj �zj��� y�

�
X

�z������zj����B������Bj��

cdm�z��

V �x�
p
n��

cdm�z��

V �z��
p
n��


 
 
 cdm�y�

V �zj���
p
nj�

� cjdA
��j X

�z������zj����B������Bj��

m�z��

V �x�
p
n��

m�z��

V �B��

 
 
 m�y�

V �Bj�

�
cdm�y�

V �x�
p
n��

� cd
A

�j��

�

We just have to choose Cl � C log �A�cd��

Decomposition� Consider three cases�

If d�x� y� � n���� then we can set j � n� ni � � Bi � fxig �for
instance� ri � ��� and choose d�xi� xi��� � �

If d�x� y�� � n� then we can set j �  �in fact Proposition �� has
not to be iterated��
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Otherwise� set

j �
h
�

d�x� y��

n

i
� � �

This way� n�j and d�x� y��j are bigger than � and

�d�x� y�
j

��
� n

� j
�

so we can choose ni � n�j �i�e� �n�j� or �n�j� ! � and

d�xi� xi ! � � ri � d�x� y�

j
�

���� Discrete�time Harnack inequality�

We will prove the discrete�time Harnack inequality thanks to the
Gaussian estimates� The method is based on �� Section ��� Denote
B � B�x	� R� where R � N
 � with boundary 	B � fx � d�x	� x� � Rg�
The idea of the proof is that for ��� �� � 	Q and �n� x� � Q� or Q��
pn���x� ���s lower and upper bounds di�er only by a constant� The
di�culty is that the solution u on Q is not a combination of pn���x� ��
but of Un���x� �� where Un�x� y� is the solution for �n� x� � N � B
satisfying U	�x� y� � ��x� y� and Un�x� y� � � for n � � and x � 	B�
Obviously Un�x� y� � pn�x� y�� so only the lower bound needs some
work�

Lemma ���� Assume ��� �� satis�es G�cl� Cl� Cr� cr�� Then� there exist
�� c � � depending only on cl� Cl� Cr and cr such that

Un�x� y� � cm�y�

V �x	� � �R�
�

whenever ������
�����

��R�� � n � �� �R�� �

x � B�x	� � R� �

y � B�x	� � �R� �

d�x� y� � n �



Parabolic Harnack inequality ���

Proof� The idea �see �� Lemma ���� is that if d�x� 	B� is big enough�
p	 U is small and the lower bound for p applies to U � First note that

pn�x� y� � � cm�y�

V �x	� � �R�
�

where c � cl e
��Cl��� Now� write

r�n� x� � pn�x� y�	 Un�x� y� �
X
���B
��n

a��� �� pn���x� �� �

where a��� �� � �� These coe�cients may be constructed by recur�
rence on �� Another point of view is that �m����m�y�� a��� �� is the
probability to reach 	B for the 
rst time at � after � steps� That�s whyX

���

m���

m�y�
a��� �� �  �

We can check it this way

 �
X
x

m�x�

m�y�
pn�x� y�

�
X
x

m�x�

m�y�
r�n� x�

�
X
x����

m�x�

m�y�
a��� �� pn���x� ��

�
X
���

�
a��� ��

X
x

m�x�

m�y�
pn���x� ��� �z �


m����m�y�

�
�

To estimate r�n� x� we use the Gaussian upper bound�

m�y�

m���
pn���x� �� � Crm�y�

V �x�
p
n	 ��

e�crd�x�y�
���n���

�
�
Cr

V �x� � �R�

V �x�
p
n	 ��

e�cr������R����n���
� m�y�

V �x� � �R�

� cm�y�

V �x	� � �R�
�
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with a good choice of �� The lemma follows�

Theorem ����� Assume ��� �� satis�es G�cl� Cl� Cr� cr�� then there

exists CH � � such that H�CH� is true�

Proof� Let us 
rst point out that the Gaussian lower bound yields a
volume regularity� The following argument�

 �
X

y�B�x��r�

pr��x� y�

�
X

y�B�x��r�

clm�y�

V �x� r�
e�Cl��r�

��r�

� cl e
��Cl

V �x� � r�

V �x� r�
�

is correct for r integer and r � � �because we need d�x� y� � r���
This extends to other values thanks to ���� �which is an immediate
consequence of G�cl� Cl� Cr� cr���

Now we prove the Harnack inequality for 
 � �� �� � ����� �� � ���
�� � � ��� �� � � �� and r � R � N
 in the notations of De
nition ���

Let u be a solution on Q� there is a decomposition

v�n� x� �
X
��n

���B�x����R�

or

�
	
��B�x����R�

a��� ��Un���x� �� �

with non�negative a��� �� such that u�n� x� � v�n� x� if x � B�x	� � �R��
Again the coe�cients may be constructed by recurrence on �� the key
is to keep v � u everywhere�

Thus� it will be su�cient to prove the Harnack inequality for
the terms U����
� ��� this means Un����x�� �� � C Un����x�� �� for
�n�� x�� � Q�� �n�� x�� � Q�� � � ��R

� and d�x�� x�� � n� 	 n��
The lower bound is a consequence of Lemma ��� if d�x�� �� � n� 	 ��

Un����x�� �� �
cm���

V �x	� � �R�
�
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for x� � B�x	� 
R� � B�x	� � R� and ��R
� � n� � ��R

�� If d�x�� �� �
n� 	 �� then

d�x�� �� � d�x�� ��	 d�x�� x�� � �n� 	 ��	 �n� 	 n�� � n� 	 �

and Un����x�� �� � ��
The upper bound looks alike either because of time regularization

in the case � � � and � � B�x	� � �R� or because of space regularization
in the case � � 	B�x	� � �R�� In the 
rst case� for x� � B�x	� � R� and
��R

� � n� � ��R
��

Un��x�� �� � pn��x�� ��

� Crm���

V �x��
p
n��

� Crm���

V �x�� ��R�

� C m���

V �x	� � �R�
�

where C � Cr C
N
� � we must apply the volume regularity N times�

N depending on � and ��� In the second case� we use the Gaussian
coe�cient and d�x�� �� � �� �R�	 ��R��

Un����x�� �� � pn����x�� ��

� Crm���

V �x��
p
n� 	 ��

e�cr d�x����
���n����

� C m���

V �x	� � �R�
�

���� Poincar�e inequality�

Theorem ����� Assume H�CH�� then there exist C�� C� and � � �
such that DV �C��� P �C�� and ���� are true�

Proof� In the comments after Theorem � � we already mentioned
that H�CH� implies a property ����� Then DV �C�� is proven as in
Section ��� The discrete version raises new di�culties only for small
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radii but then ���� is su�cient� Thus we also obtain� as in Proposition
���

d�x� y�� � n implies pn�x� y� � cm�y�

V �x�
p
t�
�

The fact that parabolic Harnack inequality implies Poincar�e inequality
is proven on manifolds in ���� with ideas of ���� Take f de
ned on
B�x	� � r� and consider the Neumann problem on B�x	� � r�� It may
be de
ned this way� consider the graph B�x	� � r� with the restriction
�jB�x���r��B�x���r�� it gives a kernel p��x� y�� The crucial point is that
p��x� y� has increased �comparing to p�x� y�� for x � 	B�x	� � r�� Set P
the Markov operator

Pg�x� �
X
y

p��x� y� g�y�

and denote the iteration Q � P ��r��� For any positive g� Png�x� is a
positive solution on B�x	� � r� of the parabolic equation �of ��� Thus�
for x � B�x	� r��

�Q�f 	 �Qf��x�����x� �
X

y�B�x��r�

cm�y�

V �x� � r�
�f�y�	 �Qf��x���

� c

V �x	� � r�

X
y�B�x��r�

m�y� �f�y�	 fB�x��r��
�

because
P

y�B�x��r�
m�y� �f�y�	 ��� is minimal for � � fB�x��r�� This

yieldsX
y�B�x��r�

m�y� jf�y�	 fB�x��r�j� � C
X

x�B�x���r�

�Q�f 	 �Qf��x�����x�

� C �kfk�� 	 kQfk���������

� C �� r� krfk��� ������

where
kfk�� �

X
x�B�x���r�

m��x� f�x��

and
krfk�� �

X
x�y�B�x���r�

�xy jf�x�	 f�y�j� �
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The line ������ is a variance formula and the line ����� is justi
ed by
the two properties

kPfk�� � kfk�� and kfk�� 	 kPfk�� � krfk�� �

We give the proof of the second one which is not so widely known as
the 
rst� Note that a� 	 b� � � a �a	 b��

X
x

�
m��x�

�
f�x�� 	

�X
y

p��x� y� f�y�
����

�
X
x

�
�m��x� f�x�

�
f�x�	

�X
y

p��x� y� f�y�
���

� �
X
x�y

�
m��x� p��x� y�� �z �

�xy

f�x� �f�x�	 f�y��
�

�
X
x�y

��xy �f�x�	 f�y�� �f�x�	 f�y��� �

This ends the proof of Theorem � �

�� Some consequences of Harnack inequality and Gaussian

estimates�

���� H�older regularity�

Among the immediate consequences of Harnack inequality are Li�
ouville theorem stated in ��� because only the elliptic version is needed
and H�older regularity of solutions of the discrete parabolic equation�

Proposition ���� Assume ��� �� satis�es the properties of Theorem

� � Then there exists h � � and C such that for all x	 � �� n	 � Z

and R � N� if u is a solution on Q � �Z� �n		 �R�� n	���B�x	� �R��
x�� x� � B�x	� R� and n�� n� � Z� �n	 	 R�� n	�� then

ju�n�� x��	 u�n�� x��j � C
� sup fpjn� 	 n�j� d�x�� x��g

R

�h
sup
Q
juj �
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Proof� Fix n� � n� and set Q�i� � �Z � �n� 	 ��i� n	�� � B�x�� �
i��

M�i� � supQ�i� u� m�i� � infQ�i� u and ��i� � M�i� 	 m�i�� �i��� �
sup fpjn� 	 n�j� d�x�� x��g � �i� and �i� � R � �i���� This way�
��i�� � ju�n�� x��	 u�n�� x��j and ��i�� � � supQ juj�

Set m��i� � u�n� 	 ��i��� x�� and apply Harnack inequality in
Q�i! � to u	m �i! � and M �i! �	 u

m��i�	m�i! � � CH �m�i�	m�i! �� �

M�i! �	m��i� � CH �M�i! �	M�i�� �

This yields ��i� � �	 C��
H ���i! �� Thus�

��i�� � �	 C��
H �i��i� ��i��

and the proposition follows�

���� Green function�

With the Gaussian estimates for pn� one easily proves estimates for
the Green function�

Proposition ���� Assume ��� �� satis�es the properties of Theorem

� � Then the Green function G�x� y� �
P��

n
	 pn�x� y� is �nite if and

only if

������
��X
n
	

n

V �x� n�
� !� �

and it satis�es the estimates

������

C��m�y�
��X

n
d�x�y�

n

V �x� n�
� G�x� y�

� C m�y�
��X

n
d�x�y�

n

V �x� n�
�

Note that condition ������ is satis
ed or not uniformly for x � ��
Indeed� for n � d�x� x��� C��

� V �x� n� � V �x�� n� � C� V �x� n�� On
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manifolds� the necessity of ������ was proved in �� �� The su�ciency and
the estimates ������ were studied in ���� ����� ����� ���� with assump�
tions on the curvature� With the work ����� L� Salo��Coste obtained
them with Poincar�e inequality assumption�

Proof� We use the Gaussian estimates G�cl� Cl� Cr� cr�� They yield

������

C��m�y�
��X

n
d��x�y�



V �x�
p
n�
� G�x� y�

� C m�y�
��X

n
d��x�y�



V �x�
p
n�

�

The lower bound is a consequence of

G�x� y� �
��X
n
	

pn�x� y� �
��X

n
d��x�y�

pn�x� y� �
��X

n
d��x�y�

clm�y�

V �x�
p
n�

e�Cl �

The upper bound is obtained by dividing the sum G�x� y� into two parts

��X
n
d��x�y�

pn�x� y� � Crm�y�
��X

n
d��x�y�



V �x�
p
n�

�

and

d��x�y�X
n
	

pn�x� y� �
d��x�y�X
n
d�x�y�

Crm�y�

V �x�
p
n�

e�crd
��x�y��n

� Crm�y�

d��x�y�X
n
d�x�y�



V �x� � d�x� y��


 C�

�� d�x� y�p
n

�logC�� log �

e�crd
��x�y��n

� �z �
�constant

� C m�y�

�d��x�y�X
n
d��x�y�



V �x�
p
n�

�
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The proposition follows from ������ since

��X
n
d��x�y�



V �x�
p
n�

�
��X

k
d�x�y�

�fn � N � k � pn � k ! g� �z �

�k��



V �x� k�
�
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