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Hardy space H associated
to Schrodinger operator
with potential satisfying

reverse Holder inequality

Jacek Dziubanski and Jacek Zienkiewicz

Abstract. Let {T}}:~0 be the semigroup of linear operators generated
by a Schrodinger operator —A = A — V, where V is a nonnegative
potential that belongs to a certain reverse Holder class. We define a
Hardy space H be means of a maximal function associated with the
semigroup {7%}+>0. Atomic and Riesz transforms characterizations of
H}x are shown.

1. Introduction and main results.

Let A = —A 4+ V be a Schrodinger operator on R*, d > 3, where
V # 0 is a nonnegative potential. We will assume that V' belongs to
reverse Holder class H, for some ¢ > d/2, that is, V' is locally integrable
and

1 1/q 1
: — g <C— _
(1.0) <|B|/BV da:) _C<|B|/Bde), for every ball B

Trivially, H, C H,p provided 1 < p < ¢ < oo. It is well known, cf. [Ge],
that if V' € H,, then there is € > 0 such that V' € H .. Moreover, the
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measure V' (z) dz satisfies the doubling condition

/ V(z)dx < C V(z)dzx.
B(y,2r) B(y,r)

We note that if V' is a polynomial then V' € H, for every 1 < ¢ < oo.

Let {T;}+~0 be the semigroup of linear operators generated by —A
and Ti(x,y) be their kernels. Since V' is nonnegative the Feynman-Kac
formula implies that

1.1)  0<Ty(z,y) < Ti(z,y) = (47rt)—d/2exp(— %)

Obviously, by (1.1) the maximal operator
(1.2 M (@) = sup [1:(z)

is of weak-type (1,1).
We say that a function f is in the Hardy space H} if

1 llers = Ml < oo

The aim of this article is to present an atomic characterization of H}.
For n € Z we define the sets B,, by

(1.3) B, ={z: 2V? <m(z,V) < 200+D/2}

where
1 -1
(1.4) m(z,V) = (sup {7">0: ’rd—_z_/B( )V(y)dy§1}> :

For more details concerning the function m(z, V') and its applications
in studying the Schrodinger operator A we refer the reader to [Fe] and
[Sh].

Since 0 < m(x,V) < oo, we have RY = | J B,,.

A function @ is an atom for the Hardy space H) associated to a
ball B(xg,r) if

(i) supp a C B(xo,r),
1
ii allpe < —— |
(i) lalle~ < Ty
(iii) if zo€ B, then r < 217/2,

: : —1-n/2 _
0 n> = — Y-
(iv) if xp € By, and r < 2 then /a(x) de =0
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The atomic norm in H} is defined by

1 llaatom = imf { 3" s}

where the infimum is taken over all decompositions f = ) ¢; a;, where
aj are H} atoms.
The main result of this article is the following

Theorem 1.5. Assume that V # 0 is a nonnegative potential such that
V' € Haya, then the norms || fl|gy and || f[la—atom are equivalent, that
18, there exists a constant C' > 0 such that

CTH I ey, < 1flla—atom < C'llf |z, -

For j =1,2,...,d, let us define the Riesz transforms R; setting

e 9 g
(1.6) ij_axjA .

It was proved in [Sh] that if V' € H,4/ then the operators R; are are
bounded on L? for 1 < p < d. It turns out that these operators char-

acterize our Hardy space H}, that is the following theorem holds.

Theorem 1.7. If V € Hg/ is a nonnegative potential, V % 0, then
there s a constant C' > 0 such that

d
(1.8) CH ey, < Wl + D IR Fllr < C Ul -

j=1

2. Auxiliary lemmas.

Lemma 2.0. There is a constant C such that for every R > 2 and
every n if x € B,,, then

{k: B(z,27"?R)N By # @} C [n — Clog, R,n+ Clog, R].
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PROOF. [Sh, Lemma 1.4] asserts that there exist constants C > 0,
¢ > 0, and kg > 0 such that for every z,y € R? we have

(2.1) m(y, V) < C 1+ |z — y|m(x, V))k0 m(x, V)
and
(2.2) m(y, V) > cm(@, V)

= Wt o= ylm(e, V)o/torD

If z € B, and y € B(x,2""/?R) then |z —y| m(z,V) < 2 R and by (2.1)
m(y, V) < C (142 R)k 272 < ¢ 2(ntClog, R)/2

On the other hand applying (2.2), we obtain

c 2n/2 > C2(n—Clog2 R)/2 )

m(y,V) 2 (1 + 2 R)ko/(kot1) =

This completes the proof of the lemma.
Lemma 2.3. There is a constant C' and a collection of balls B, 1) =
B(x(nyk),22_"/2), n€Z,k=12... such that v,y € By, By C
Uk B(x(n,k)v 2—n/2)7 and

(0 F) + B(wnpy, R27?) 0 Blag gy, R27"/?) # @} < RY,
for every (n, k) and R > 2.

From Lemma 2.3, we deduce

Corollary 2.4. There exist constants C' > 0 and lyg > 0 such that for
[ > 1o and every x(, yry we have

> 12"y~ Ty )T D (L2 P gy — B ) T < C
(n,k) (n,k)

Another consequence of Lemma 2.3 is
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Lemma 2.5. There are nonnegative functions ¢, ) such that

(2.6) Yink) € C2(B(@(np), 2" "?)),
(2.7) D gy (@) =

(n,k)
(2.8) IV myll= < C272.

3. Local maximal functions.

Lemma 3.0. For everl > 0 there is a constant C; such that
(3.1) Ty(w,y) <Cr(1+m(z, V) lz—y) " e—y|™®,  fora,yeR?.

Moreover, there is an € > 0 such that for every C' > 0 there exists C
such that

(Jz —y|m(z,V))*
|z — y|?

(3:2) [ Te(,y) — Ti(z,y)| < C

Y

for |z —y| < C'm(z, V) !

Proor. Let I'(z,y, 1), f‘(x,y,T) be the kernels of the operators (A +
iT)"t and (=A +4i7)"!, 7 € R It is proved in [Sh] (see [Sh, Theo-
rem 2.7]) that for every [ > 0 there is a constant C; such that

G
T, Y, T)| <
(3.3) He 0 VS 7 e = g (L% e, V) o = o)
' -
|x _ y|d—2 )

By the functional calculus, T3 (z,y) = ¢ [, € T'(z,y, 7) dr. Thus (3.1)
is easily deduced from (3.3).

It follows from [Sh], see [Sh, Lemma 4.5 and its proof], that for
every [,C’ > 0 there exists a constant C' > 0 such that

C (jz =yl mz, V))*
L+ P o= ey

Y

(3.4) |V (z,y,7)=L(z,y, )|_(
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for [ —y| < C"m(z,V)~". Now the estimate (3.2) is a consequence of
(3.4) and the formula T; — Ty = ¢ [, " (I' = ') d7.

Since T (z,y) is a symmetric function, we also have
(3.5) Ty(w,y) < Cr(1+m(y, V) [z —y) e —y[™,  forz,yeR".

We define the local maximal operators M, Mn, and M,, putting

(3.6) M, f(x) = sup |th($) —Tif(2)],
0<t<2—n
(3.7) M f(x)= sup |Tif(x)],
0<t<2—n
(3.8) Muf(x)= sup |T;f(z)|.
0<t<2—n

Lemma 3.9. There exists a constant C' > 0 such that for every (n, k)

| My, (Y F)ll2r < CNf il -

PROOF. Set By, 1y = B(z(n,r),27™/?). Then by (3.2)

Mo () sy, ) < Cay 19 Fller

where

Cink) < sup
YEB(n,k) (k)

[ lemuntenr,

|z —y|?

It is easy to check that C, x) < C.
The task is now to estimate ||Mn(@b(n7k)f)||L1((B(* 2)°)" According

to (1.1), we obtain

M (Vi) Ollrss, )y < Cloy 1 Yyl s

(n,k)

where

CEn,k) =2 sup / ( sSup CZth(xv y)) dr < C'.
Y€B (k) J(B], )¢ 0<t<2™n
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This finishes the proof of the lemma.
Let

(3.10) M(n,k)f(x) = Sup |Tt(¢(n,k) f)(x) — w(n,k)(x) Tif(x)|.

0<t<2-n

Lemma 3.11. There is a constant C' such that

(3.12) I My fll < ClIF e
(n,k)

PROOF.

Wiy T (@) = D T ey ey f ()

(n'.k")

where

Tt,(n,k),(n’,k’)f(l') - / f(y) Tt(l'v y) (w(n,k) (.27) _,lvb(n,k) (y)) ,lvb(n’,k’) (y) dy .

Let
Mgy, o f (@) = sup [Ty gy ) f ()]
0<t<2—n

Set J(n,k) = {(n’,k’) : |~T(n’,k’) - x(n,k)| < 0/2_n/2}, and I(n,k) =
{(' k") ¢ |@ gy — Tngy| > C'27/2}. Note that the number of
elements in Ji, 1) is bounded by a constant independent of (n,k).
Moreover, taking C” is sufficiently large we see that if (n',k") € I, k)
then BEY N By 1y = @, where B = B(2(n k), 2%7™/?). Further-
more, |2 — y| ~ [T k) — T k)| for € B k), ¥ € B k), provided
(n’, k/) S I(n,k)-

Obviously,

[M@wy, (k) Fllr < Caniey, ey 122 (B 0y)
where

Clnk),(n' k")
< sup / (sup |T(my) (o (@)

yEB(n’,k’) 0<t§2_n

— V) (V) Y ey W)]) dez
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If (n', k") € J iy then, by (1.1) and (2.8), we have

Con gy, hry < C sup /( sup 2" |z —y| Ty(x,y)) dw < C.
yeB(n’,k’) o<t<2—n

If (n', k') € I(;, 1) then using (3.1), we get

Cln k), (n' k")
< swp Co1 Y k) (T) Ve gy (y) d
YEB (1 i) |x_y|d (1+m(a:,V) |'T_y|)2l

sup / Cot Y(n, 1) (T) Y (e 1oy (y) dow
- yeB(nf &) |=73 —yld (L4202 o — y) (14272 |2y — (e gy )]

<
(1 + 2n/2 |-T(n,k) — x(n:k:)|)l

Applying the above estimates, we obtain

Z | M ey £l 21

(n,k)
Z Z M (n k), (nr k) £l 21
(n,k) (n',k")

<SCY Y Ml o2

(rn,k) (n',k")€J (n k)

+CY Y (2 ey — 2w ) T B ) -
(rk) (' k)€l 1y

Finally, by Corollary 2.4, we get (3.12).

4. Proof of Theorem 1.5.
In this section we prove our main theorem. First we recall some

results from the theory of local Hardy spaces, cf. [Go].
We say that a function f is in the local Hardy space hl if

(4.0) £l = [[Mnflzr < oo
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A function @ is an atom for the local Hardy space hl if there is a ball
B(xg,r), r < 2'7™/2 such that

(4.1) supp a C B(xzg,r),
(4.2) ]| g < |B(zo, )|,
(4.3) if  <2717"/2 then /d(a:) dr=0.

The atomic norm in h} is defined by

(4.4) 1y, =nf (D lesl)

J

where the infimum is taken over all decompositions f = ) ¢; a;, where
a;j are hl atoms.

Theorem 4.5 ([Go]). The norms || - [[n2 and || - [|n2  are equivalent

with constants independent of n € Z.
Moreover, if f € hl, supp f C B(x,2'™™/2), then there are hl

n’

atoms a; such that supp a; € B(x, 22-1/2) and

J

(4.6) F=Y ¢cag, DIl <O fln
J

with a constant C' independent of n.

PROOF OF THEOREM 1.5. We first assume that f € H}. Lemma 3.9
implies
||Mn("7b(n,k)f)“L1
< C ([IMu(Pn iy )l + 1,k fllzr)
< C ([ Ma)lr + M@y fllor + 10me) fllo) -

From Lemma 3.11 we conclude that

(4.7) S M@ Hllze < CUIMFlpe+ 11F]lze)

(n,k)
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Application of Theorem 4.5 gives

(4.8)  Ympf = Zcén’k) agn’k) , where agn’k) are H} atoms,
J
and
n,k v
(4.9) S 1Y) < C M (P £l -

J

Finally, using (4.7) and (4.8), we obtain the required H} atomic de-
composition

(410) f=3 3Pl and 30 S < €M

(n,k) J (n,k) J

and the inequality [|f|la—atom < C'[|f||zy is proved.

In order to prove the converse inequality we need only to show that
that there exists a constant C' > 0 such that for every H} atom a

(4.11) |Mal|: < C.

Let a be an H} atom associated to a ball B(xg,r). Assume that zo €
B,,. Then, by definition, r < 2'"/2. Theorem 4.5 combined with
Lemma 3.9 implies that ||[Mal/1 < C. Therefore what is left is to
show that

| sup [Tia(@)l| s gany < €
t>2—n
If x € B(wg,26-)/2) then

sup |Ta()| < sup / Ty(z,y) laly)| dy < C 272
t>2—n t>2—"n

and, consequently,
H sup |Tta($)|HLl(B(:mJ(S*")”)) =C.
t>2-n

If © ¢ B(xo,267™/2) and y € B(z,2'"/2) then |z — y| > 2(2—7)/2,
Moreover, m(y, V) ~ 2%/2. Applying (3.5) we get

/ sup |Tia(z)|dz
B

(mo,z(an)/2)c t>2—n

_ 1
</ [l G+ mu vy ie = o) dyda
B(wo,2(8-m)/2)c |z —y|

< Cl/2d”/2(1 + 22 gyt dz < C.
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5. Characterization of H} by the Riesz transforms.

In this section we prove Theorem 1.7. Our proof of it is very much
in the spirit of the proof of Theorem 1.5.

First we recall the characterization of the local Hardy spaces hl
by means of local Riesz transforms. Let ¢ be a C*° function on R? such
that ((x) = 0 for || > 1 and ((z) = 1 for |z| < 1/2. We define the

local Riesz transforms RE-"] by

[n] ; _ [n]
(5.0) RYf =R,

where
Ly

[n] _ n/2
R; (z) = ca((2 / x) ||d+1

We have

Theorem 5.1 There is a constant C > 0 such that for every integer n
d
(52)  CT Iy < Wl + 0 * Rz < Oy -
j=1

Throughout this section we shall assume that V' € Hg4/5 is a non-
negative potential, V' % 0.
Let us denote by R;(x,y) the integral kernel of the operator

iA—l/?
827]'

Lemma 5.3 There exists a constant C > 0 such that for every (n, k)

Clngy) = sup / IR (z,y)|dz < C.
yeB(n,k) B($(n,k),287"/2)c

PROOF. By [Sh, p. 538] we have that for every [ > 0 there is a constant
C such that

C
(L+m(y, V) |z —yl|)*

1 V(z) 1
9.4 . 7/ ——dz+ ——— .
5:4) (|$ —yl¢t B(z,|z—y|/4) |z — z[d=t |z — y|d>

|Rj(z,y)| <
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Let us note that if y € B, k) and @ ¢ Bf; ) = B(T(n,k), 28-1/2) then
|z —y| ~ |z — 25| Thus

1
Cingy < Cp sup /
" Brz e (LH 202 |2 = 2 ) o — 27

YEB(n,k)
v
/ %dz dz
B(a,lo—yl/4) |7 — ]

1
Brz o) (L2772 2 = 2 ) |2 — ()|

_ ! 14}
= Clary T Clnpy -

Obviously €, 5y < C. We now turn to estimate C{,, ;.

(( V(2)

14272 |2 — 2 1))V 2 — (0 1[92

(Bz(n,k))c

1
B(z,|T(n,k)—21/2) |Z B $|

<q / - V() 4
(B k))c (1+2 |Z_~T(n,k)|) |Z—:L‘(n,k)|

(n,

[Sh, Lemma 1.8] asserts that if pm(z,V) > 1 then

1

(5.5) e

/B VS Clpml V),

for some kg > 0. Therefore

V(z)

Cl, .y < C / —— dz
(n,k) = liz:; Blagp),2iH1-/2) (1 + 2z)l (2z—n/2)d—2

S Cl . (2i+1—n/2 2n/2)k0
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Corollary 5.6. There is a constant C > 0 such that for every (n,k)
we have

(5.7) 1B (Y Il 0e) < C 1 Fllr -

Lemma 5.8. There exists a constant C' such that

(5.9) > R Wy ) = Yy Rifllee < C @)z ) -

(n,k)

Proor. For fixed (n, k) we have

(5.10) 1% k), Bs1fllr < Z Conr ey 12 B 4y >
(n',k")

where

Clupry < sup /|Rj($»y)(¢(n,k)(x)
(5.11) YEB (s k1)

~ Ving)(Y)) Vinr iy (y) | d -

Let Ji, k) and I, xy be as in the proof of Lemma 3.11.
If (n', k") € J(nk) then, by Lemma 2.5,

Coway < sup / Ry (x,y)| du
YEB k) S (B 1))°

+ sup / C|Rj(z,y)|2"? |z — y| dx
B

yeB(n’,k’) E(;vk)

=5 +5>.

Lemma 5.3 clearly forces S; < C.
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Applying (5.4) and the theorem on fractional integrals we obtain

C 2"/% |z — y|
—
vebo o S Ty, VY e — g o — gt
1%
/ %dz dx
B(a.la—yl/4) |2 = 7|
Cy 272 |z — y|
+  sup / dx
YEB (1 ) I B (L+m(y, V) |z -yt |z -yl
1 Vv
< sup C <ﬁ/ % dz
YEB (1 11y B [z — y| B(z,|lz—y|/4) |z — x|
2n/2
T LA
|z —y|*t
v
yEB(n/,k/) B(w(n,k),c2_”/2) |Z - y|

2n/2
+ sup C ——dx.
. |.T— |d—1
YE€BGr iy I BET y

(n

Let us note that the Holder inequality and the fact that V € Hg o4,
for some € > 0 imply that

(5.12) /B Ve 4. ¢ /B(w V).

(z.0) |z — z]d—2 pi—2

Therefore Sy < C.
If (’ﬂ/, k/) c I(n,k)7 then

Cin gy < sup / |Rj(z,y)|dz .
YEB (k1) Y B(n,k)

Using (5.4) we get

C < / Ci
' ,kl <S Sup _
)= e I (L m(y, V) o —y)) [z — y[+—2

/ Lzl_ldzdx
B(x,|z—y|/4) |z — x|

+ s / ¢ d
up T.
YEB 1 w1y I By (L H MY, V) |2 —y)H o —y|?
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Since |7 — y| ~ [T(nk) — T(n' k)| fOr & € By iy, ¥ € B i1y, we have

C < G
(n',k') > (1+ 2772 |$(n,k) _ x(n’,k’)Dl
v
YEB (1 11y J B(T(n, k) |T(n, k) —Y1/2) |y — 2|

Cy

+ ; .
(L4272 |z ) — T ey |)!

It is not difficult to check that B(z(, k), |2m,k) —¥l/2) C B(y, Clzm k) —
T gy|) for y € B gy, with C independent of (n, k) and (n', £’). Thus

C
1 + 2””/2|.T(n7k) — x(n’,k’) |)l

C(n’,k’) < (

v
. (1 + sup / % dz) .
YEB (1 11y Y B(Y,ClT(n k) —T(n! k")) |y o Z|

Now using (5.12) we obtain

Cn )
< G
T (22 gy — T )]
+ c
(L4272 [z 1) — (e 1) |)!

1
sup | — |d—2
YEB (1 g1y 1L (n,k) = L(n' k") B(y,Clz(n,k) —Z(nt k1))

Vi(z)dz.
By virtue of (5.5) we get

C
1 -+ 2”1/2 |$(n,k) — x(nl,kl) |)l

C'(n’,k’) < (

(14 C (2" /2 |$(n',k’) - $(n,k)|)k0)
< i
T (1272w gy — T gy )R

Now (5.9) follows easily from (5.10), Corollary 2.4, and Lemma 2.3.
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Let R;f = (0/0x;) A=Y2f denote the classical Riesz transforms
and let R;(x,y) be their kernels.

Lemma 5.13. There exists a constant C > 0 such that

(65.14) |1Bi(xg, D~ Ry, Dl <C g, Flor

PROOF. The left-hand side of (5.14) is estimated by
C(n,k) ||XB(n,k) f||L1 )

where

C(n,k) S sup / |RJ ('Ta y) - Rj ('Ta y)| dx .
YE€B,k) I By 1)

[Sh, Estimate (5.9)] says that for every C’ > 0 there is a constant C' > 0
such that

~ C V(z)
|R;i(z,y) — Rj(z,y)| < ———— / ——dz
’ ’ |z —y|¢! ( B(z,|z—y|/4) |z — w|d1

+

oy (- ylm(y, V))) .

for [z—y| < C'/m(y, V) and some € > 0. (In [Sh] this estimate is shown
with C" = 1. Actually the proof works for any C’). The theorem on
fractional integrals leads to

Cing) <C sup / %dz
B(y,C2—n/2) ly — 2|

YEB(n k)
2n/2 _ €
+ C  sup / ( [ dyD dx .
YEB(nk) J BT 4 |x - y|

By virtue of (5.12) we have C(,, 1) < C, and the proof is complete.

PROOF OF THEOREM 1.7. Assume first that || f]| .z +Z;.l:1 |R; fllzr <
oo. Lemmas 5.8 and 5.13 imply that

YR @y Dllzases ) < C(F o+ 1R fllz)

(n,k)
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Now using Theorem 5.1, we obtain the required atomic decomposition

f= Z Yy f = Z chn,k) al(n,k) :

(n,k) (n,k) 1
d
n,k
>l < (X IR Al + 121
(n,k) 1t j=1
where agn’k) are H}l atoms.

To prove the converse inequality we only, by Theorem 1.5, need to
show that
HRjaHLl < C?

for every HY atom a with a constant C' independent of a. Assume
that a is an H} atom associated to a ball B(zg,r). If zy € B,
then by definition < 2'7"/2 and there exists k such that B(xzg,r) C
B((n 1), 2>7"/?). By Lemma 5.3 we have

||Rja||L1((BZ;7k))c) S C

On the other hand, since a is an atom for hl Theorem 5.1 implies that
||Rja||L1(B;* ) S C. Applying Lemma 5.13, we get

I1Rjally sy, ) < C,

which finishes the proof of the theorem.
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