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Singular integral operators

with non-smooth kernels
on irregular domains

Xuan Thinh Duong and Alan MclIntosh

Abstract. Let X be a space of homogeneous type. The aims of this
paper are as follows.

i) Assuming that 7" is a bounded linear operator on Lo(X), we give
a sufficient condition on the kernel of T" so that T is of weak type (1, 1),
hence bounded on L,(X) for 1 < p < 2; our condition is weaker than
the usual Hormander integral condition.

ii) Assuming that 7" is a bounded linear operator on Ly(£2) where
() is a measurable subset of X', we give a sufficient condition on the
kernel of T so that T is of weak type (1,1), hence bounded on L, (£2)
for 1 <p<2.

iii) We establish sufficient conditions for the maximal truncated
operator T, which is defined by T,u(z) = sup.s¢ |[T-u(z)|, to be L,
bounded, 1 < p < co. Applications include weak (1, 1) estimates of cer-
tain Riesz transforms, and L, boundedness of holomorphic functional
calculi of linear elliptic operators on irregular domains.

1. Introduction.

Let (X,d,pn) be a space of homogeneous type, equipped with a
metric d and a measure . Let 1" be a bounded linear operator on

233



234 X. T. DuonG AND A. McINTOSH

Ly(X) with an associated kernel k(x,y) in the sense that

1) (TV?(x)==t/;k(x,y)f(y)du(y),

where k(x,y) is a measurable function, and the above formula holds for
each continuous function f with compact support, and for almost all «
not in the support of f.

One important result of Calderén—Zygmund operator theory is the
well known Hormander integral condition on the kernel k(x,y), see
[Hor|, which is a sufficient condition for the operator T to be of weak
type (1,1). It states that T satisfies weak (1, 1) estimates if there exist
constants C' and 0 > 1 so that

/ ) — k) () < €
d(z,y) 28d(y1,y)

for all y,y; € X.

In practice, many operators satisfy the Hormander integral con-
dition, but there are numerous examples of operators which do not,
and certain classes of such operators can be proved to be of weak type
(1,1). See, for example [F], [Chl], [CR], [Hof], [Se]. However, in these
papers, the authors investigate specific classes of operators and do not
give sufficient conditions on kernels for general operators to be of weak
type (1,1).

A natural question is whether one can weaken the Hormander inte-
gral condition and still conclude that T is of weak type (1,1). Although
Calderén—-Zygmund operator theory is now well established, to our best
knowledge, no such condition is known. Our first aim is to give a posi-
tive answer to this open question.

There is another limitation of the usual Calderén-Zygmund theory.
It is only established for spaces of homogeneous type. The main feature
of these spaces is that they satisfy the doubling property. Measurable
subsets of R” which do not possess any smoothness of their boundaries,
do not satisfy the doubling property, hence they are not spaces of ho-
mogeneous type. Such measurable sets, however, do appear naturally
in partial differential equations. Our second aim is to present a suffi-
cient condition on the kernel of a bounded operator 17" on L4 (£2), where
() is a measurable subset of a space of homogeneous type, so that T is
of weak type (1,1) on €.

The paper is organised as follows. In Section 2, we assume that 7" is
a bounded linear operator on Lo (X'), where X is a space of homogeneous
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type. We then prove a sufficient condition on the kernel k(z,y) of T
so that T is of weak type (1,1) (Theorem 1). Roughly speaking, T is
of weak type (1,1) if there exists a class of operators A; with kernels
at(x,y), which play the role of approximations to the identity, so that
the kernels k¢ (z, y) of the composite operators T'A; satisfy the condition

/ 6,9) ke, )] dn(@) < ©
d(w,y)>ct!/m

for some positive constants m, ¢, C', uniformly in y € X and t > 0. The
freedom in choosing A; is important. In particular circumstances we
may require them to commute with 7', or we may wish to allow the
kernels a; to be discontinuous.

It is not difficult to check that our condition is a consequence of
the Hormander integral condition (Proposition 1).

In Section 3, we assume that €2 is a measurable subset of a space
of homogeneous type with no smoothness on the boundary. We then
present a sufficient condition on the kernel k(z,y) which is somewhat
stronger than that of Theorem 1, so that the operator 7" is of weak type
(1,1) on 2 (Theorem 2). Our result gives new criteria to investigate the
L, boundedness of singular integrals on measurable sets. The results
on ) are made possible by the fact that no smoothness is required on
the kernels a;(z,y) in Theorem 1.

In Section 4, we extend the results in sections 2 and 3 to estab-
lish sufficient conditions on the kernel k(z,y) which ensure the L,
boundedness of the maximal truncated operator T, where T,u(z) =
SUP.~ |T-u(x)| and

Tou(z) = /d L e u) duty).

Our assumptions on the kernel k(x, y) are somewhat stronger than those
used in Theorems 1 and 2, but are essentially weaker than the usual
ones on spaces of homogeneous type (Theorem 3). The result is new
for measurable subsets of spaces of homogeneous type (Theorem 4).

Applications are given in Section 5. We first establish weak (1, 1)
estimates for certain Riesz transforms and similar types of operators
(Theorem 5). This allows us, for example, to simplify the proof of the
L, boundedness of the Riesz transforms on Lie groups which was given
by Saloff-Coste when 1 < p < 2 [SC].

Finally, we prove that every operator L with a bounded holomor-
phic functional calculus in Ly(2), which generates a semigroup with



236 X. T. DuoNG AND A. McINTOSH

suitable upper bounds on its heat kernels, also has a bounded holo-
morphic functional calculus in L,(€2) when 1 < p < oo (Theorem 6).
Here €2 is a measurable subset of a space X of homogeneous type. It
is this result which prompted our investigation, so let us outline its
background.

In the case when the heat kernels also satisfy Holder bounds, then
this result follows from the usual Calderén-Zygmund theory, because
the operators f(L) in the functional calculus satisfy standard Calderén—
Zygmund bounds. This is the approach developed by Duong in the case
of those elliptic operators having such heat kernels, which are defined
by boundary conditions on strongly Lipschitz domains. See his thesis
[Du] and also [DM¢]. This method does not work for those elliptic
operators whose heat kernels satisfy pointwise bounds but not Holder
bounds. In [DR], Duong and Robinson showed how to proceed in such
cases, provided still that the operators are defined on strongly Lipschitz
domains. There they proved the first part of Theorem 6 of this paper in
the case when €2 is a space of homogeneous type, though the last part,
namely the L, boundedness of the maximal truncated operators, is
new. In [AE|, Arendt and ter Elst applied this theorem to the Dirichlet
problem for certain elliptic operators defined on subsets of R® whose
boundary has null measure, by extending the functional calculus to that
of an operator defined on all of R”. They asked whether the assumption
concerning the null measure of the boundary could be dropped. This
is what we do in Theorem 6.

As can be seen, our investigations into removing the assumption
of Holder continuity from the kernels have led to the formulation of
general conditions on singular integral operators which are applicable
in a variety of situations.

2. Weak (1,1) estimates of singular integral operators.

Let X be a topological space equipped with a measure g and a
metric d which is a measurable function on X x X'. We define X to be «a
space of homogeneous type if the balls B(z;r) = {y € X : d(z,y) < r}
satisfy the doubling property

p(B(x;27)) < cu(B(xz;r)) < +00,

for some ¢ > 1 uniformly for all z € X and r > 0. A more general
definition can be found in [CW, Chapter 3].
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Note that the doubling property implies the following strong ho-
mogeneity property,

p(B(z; Ar)) < e A" u(B(x;7))

for some ¢, n > 0 uniformly for all A > 1. The parameter n is a measure
of the dimension of the space. There also exist ¢ and N, 0 < N < n so
that

d(w,y)

r

() u(B(y:) < e(1+ L) (B )

uniformly for all z,y € X and r > 0. Indeed, the property (U) with
N = n is a direct consequence of triangle inequality of the metric d and
the strong homogeneity property. In the cases of Euclidean spaces R"
and Lie groups of polynomial growth, N can be chosen to be 0.

Let T be a bounded linear operator mapping Ly(X) into La(X).
Assume the operator T' is given by a kernel k(z,y) in the sense of (1).

We shall work with a class of integral operators A;, ¢ > 0, which
plays the role of approximations to the identity. We assume the opera-
tors A; can be represented by kernels a;(x,y) in the sense that

mmmztw@wmwww,

for every function u € Lo(X) N L1(X), and the kernels a¢(z,y) satisfy
the following conditions

(2) jac(z, y)| < he(2,y)

for all z,y € X where hy(x,y) is a function satisfying

(3) he(w,y) = (u(B(z;t"™)) " s(d(a,y)™ t71)

in which m is a positive constant and s is a positive, bounded, decreas-
ing function satisfying

lim 7"t s(r™) =0,
r—00

for some K > N, where N is the power which appeared in property (U),
and n the “dimension” entering the strong homogeneity property.
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It then follows that

| 1 1
hi(z,y) < len{’u(B(x;tl/m))’ “(B(y;tl/m))}

(@ (1 BBV ey

1 1
p(B(z; tt/m)) " pu(B(y; tt/™))

< cmin{ }Sl(d(%y)mt_l)v

where s; is a function similar to s with some x > 0.
We also note that there exist positive constants ¢; and ¢y so that

c1 < / he(z,y) du(z) < cz
X

uniformly in ¢ and y.

The existence of such a class of operators A; in a space of homoge-
neous type, is not a problem. We can first choose a function s satisfying
the decay condition in (3), define h; as in (3), and let a; = hy, hence
conditions (2) and (3) are automatically satisfied. The kernels a; then
possess the smoothness of the function s.

For any m > 0, we can also construct a;(x,y) with the following
additional properties

(5) ai(z,y) =0, when d(z,y) > ¢o t*/™,
(6) | ) duto) =1,

Y
for all y € X', ¢t > 0. This can be achieved by choosing

(),

au(w,9) = (B ™)X )

where x denotes the characteristic function on the ball
B(y;t'/™)

B(y; Y/ ™). Then let A; be the operators which are given by the kernels
Qg (37 ’ y) '

These operators A; constructed as above exist in the space X in-
dependently of the operator T'. However, for certain operators 7T, it
is useful to construct operators A; which are related to 7. This is of
interest since the analysis of Ay, T A; and A,T is useful for establishing
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the boundedness of 17" in an L, space. Examples of this are given in
Section 5.

The following lemma is needed in the proof of Theorem 1. For its
proof, see [DR, Proposition 2.5].

Lemma 1. Given functions hi(x, z) which satisfy (3), and v > 0, there
exist positive constants ¢ and 6 such that

sup hi(z,z) <c inf hg(x,z)
z€B(y,r) z€B(y,r)

uniformly for z,y € X, and r,t > 0 with r'™ < vt.

We now present the main result of this section. The proof is based
on that used by Duong and Robinson in proving [DR, Theorem 3.1].
It relies upon the idea of Hebisch [He| of using Lo-estimates to obtain
weak type (1,1) bounds. Related ideas also appeared earlier in [F].

Theorem 1. Let T be a bounded linear operator from Ly(X') to La(X)
with an associated kernel k(z,y). Assume there exists a class of op-
erators Ag, t > 0, which satisfy the conditions (2) and (3) so that the
composite operators T Ay have associated kernels ky(xz,y) in the sense
of (1) and there exist constants C and ¢ > 0 so that

(7) / k(s ) — ko) dula) < C,
d(z,y)>ctt/™

forally € X.

Then the operator T is of weak type (1,1). Hence, T can be ex-
tended from Lo(X) N Ly(X) to a bounded operator on L,(X) for all
1<p<2.

PROOF. We need to prove that 7" satisfies weak type (1,1) estimates.
Boundedness of T on L, (X)) then follows from the Marcinkiewicz inter-
polation theorem.

Our proof makes use of the Calderéon-Zygmund decomposition to
decompose an integrable function into “good” and “bad” parts (see, for
example, [CW]), then each part is analysed separately.

Given f € L1(X)NLy(X) and o > || f|[1(#(X)) ™!, then there exist
a constant ¢ independent of f and «, and a decomposition

f=g+b=g+) b,
2
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so that
a) |g(x)] < ca for almost all z € X,

b) there exists a sequence of balls (); so that the support of each
b; is contained in (); and

[ @) duo) < can(@).

c
O S u@) < £ [ 17w duto).
d) each point of X' is contained in at most a finite number N of
the balls ;.

Note that if u(X) = oo, then || f]]1((X))~! means 0. Besides that,
the functions b; are usually chosen to satisfy [ b; du(z) = 0 as well, but
we do not need this property.

Conditions b) and c) also imply that ||b||; < ¢||f||1 and hence that

lgll < (X + ) I f]l1-
We have

p({z: |Tf(z)] > a})
<u({z: 119 > %}) +u({z: |r0(2)] > %}) .

It is not difficult to check that g € Ly(X'). Using the facts that 7' is
bounded on Lo(X) and that |g(x)| < ca, we obtain

« _ _ C2
®) w({z: 1To@)>5}) <4072 |Tyl} < craglf < 2111

Concerning the “bad” part b(z), we temporarily fix a b; whose support is
contained in );, then choose t; = 7" where m is the constant appearing
in (3) and r; is the radius of the ball @);. We then decompose

Tbi(x) = TAybi(x)+ (T —TA:,) bi(x).

To analyse T'Ay,b;(x), we first estimate the function A, b;. Since

Ay bi) = /X as, (2, ) bily) duly) .
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it follows from Lemma 1 that

Aybi(z)] < /X e, (2, 9) bi()| dpu(y)
< ||b;s|lx sup h¢, (z,y)
YEQR;

< cau(Q;) ylEan het, (%, y)

<ca /X hoe, (2, ) x, (v) dis(y) .

where ), denotes the characteristic function of the ball Q;.
Denoting by M the Hardy-Littlewood maximal operator, we then
have for any u € Lo(X)

(ul: A6l < ca [ [ Juo) bor, 299 x, () diy) )
xJx
< ca(Mlul,x,).
Note that the second inequality follows from properties 3) and 4’). Since

the Hardy-Littlewood maximal operator is bounded on Lo(X), (see for
example [Ch2]), it follows that

» IS, oo

We now use properties ¢) and d) of the Calderén—Zygmund decompo-
sition to obtain the estimate

W) S aun], < ca( S nan) " <eatsy.
Therefore

,u({x: ‘;TAtibi(x)‘ > %}) <162 H ;TAtibi z

. .

(11) < CCV_2HZAtibi
i

2
2

<

[nalie

Qlo
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On the other hand

y,({x: ‘Z(T—TAti)bi(x)‘ > %})
< S uis +Z/ (T~ T A bile) du(x)

where ¢B; denotes the complement of B; which is the ball with the same
centre y; as that of the ball ); in the Calderén-Zygmund decomposition
but with radius increased by the factor (1 + ¢), where ¢ is the constant
in (7). Because of property ¢) of the decomposition and the doubling
property of X', we have

(12) Zu <CZM ) <cafll -
By assumption (7), we have

| 1@ =) b(e) dute)

i

< [, 1 k) = ko) ) | ante

< [mon(f, o 1400 = b )] )
< Cllbll

because B(y; ctl/m) B;.
Therefore

(13) 2/ (= TA) bl dute) < 32 < oy < S

Combining the estimates (8), (11), (12) and (13), the theorem is proved.

REMARK.

i) It is straightforward from the proof of Theorem 1, that the exis-
tence of both the kernels k(x,y) of T and k¢(z,y) of T A; is not neces-
sary. We only need to assume that the difference operator T'— T A; has
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an associated kernel so that this kernel (in place of k(z,y) — ki(z,y))
satisfies Condition 7. This remark also applies to Theorem 2.

ii) In Theorem 1, the assumption on boundedness of T' on the space
L4(X) can be replaced by boundedness of T' on a space L, (X') for some
po > 1. The proof would need only minor changes to show that 7" is of
weak type (1, 1), hence bounded on L,(X) for all 1 < p < p,.

iii) Theorem 1 and a standard duality argument give the following
result.

Let T' be a bounded linear operator from Lo(X) into Lo (X) with
an associated kernel k(x,y) in the sense of (1). Assume there exists a
class of operators B; whose kernels satisfy the conditions (2) and (3)
so that the composite operators B;T have associated kernels K(z,y)
in the sense of (1), and there exist constants ¢ > 0 and C so that

(14) / k(2 y) — K, y) | daly) < C,
d(z,y)>ctt/™

for all x € X.

Then the adjoint operator T™* is of weak type (1,1). Hence, T can
be extended from Ly(X) N L,(X) to a bounded operator on L, (X) for
all 2 < p < 0.

Natural questions about Theorem 1 are how strong is the assump-
tion (7), and what is its relation with the Hormander integral condition.
We shall show that, for suitably chosen A, our condition (7) is actu-
ally a consequence of the Hormander integral condition for spaces of
homogeneous type.

Proposition 1. Assume that T has an associated kernel k(x,y) which
satisfies the Hormander integral condition, i.e. there exist constants C
and § > 1, so that

/' k(2. y) — k(z, 2)| dulz) < C,
d(zx,y)>0d(y,z)

for all y,z € X. Let A be approzimations to the identity which are
represented by kernels ai(x,y) satisfying conditions (2), (3), (5) and

(6).



244 X. T. DuonNG AND A. McINTOSH

Then the kernels ki(x,y) of T Ay satisfy condition (7) of Theorem
1. More precisely, there exist constants ¢ and 3 so that

/ 0) — ol )| dia) < e
d(w,y) =Bt/ ™

forally e X.

PROOF. Choose 6 > 1 and let 8 = c¢od where c¢g is the constant so
that as(z,y) = 0 when d(x,y) > cot'/™. Then, for z,y € X so that
d(x,y) > Btt/™,

(o) = [ bo,2) aulz) duz).
X
For all y € X,

/ k(2 y) — ke, y)| dulz)
d(z,y)>ptt/m

- /d(fb,y)Zﬁtl/"’

k) [ ar(2.) di(2)
d(z,y)<cott/m™
- / k(. 2) ay () du() | dp(a)
d(z,y)<cotl/m

< sup (/ |k(z,y) — k(z, 2)]| dp,(g;))
d(z,y)<cott/m Jd(z,y)>ptt/m

(/ au(z. )] dp(2))
d(z,y)<cotlt/m

<c sup (/ |k(z,y) — k(z, 2)| du(x))
d(z,y)<cot/m *Jd(z,y)>bscot!/™

<c.

Note that the second equality follows from property (6), the second
inequality is using the estimate
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and the last inequality follows from the Hormander integral condition.

3. Singular integral operators on measurable subsets of a space
of homogeneous type.

We assume in this section that €2 is a measurable subset of a space
of homogeneous type (X,d, ). An example of Q is an open domain
of the Euclidean space R™. If  possesses certain smoothness on its
boundary, for example Lipschitz boundary, then it is a space of homo-
geneous type and results of Section 2 are applicable. However, a general
measurable set €2 needs not satisfy the doubling property, hence it is
not a space of homogeneous type. Such a measurable set () appears
naturally in boundary value problems, for example partial differential
equations with Dirichlet boundary conditions.

Given a bounded linear operator T' on Lo(Q2) with an associated
kernel k(z,y), the question is to find a sufficient condition on k(z,y)
for T' to be of weak type (1,1). The main problem in this case is the
fact that the Calderén-Zygmund theory is not directly applicable. For
example, the Calderén—Zygmund decomposition is not valid on €2, nor
is the Hardy-Littlewood maximal operator bounded, as was needed in
proving the estimate (9).

A key observation to solve this problem is surprisingly simple.
Given a linear operator 7' which maps L,(2) into itself for some p,

define an associated operator T on L, (X) by

~ [ T(xqu)(z), z€Q,
T(u)(x)—{O, : e

where x, is the characteristic function on Q. Then T" is bounded on
L,(Q) if and only if T is bounded on L,(X), also T is of weak type
(1,1) on Q if and only if T is of weak type (1,1) on X.

It is straightforward to check the above equivalences, so we leave
them to reader. Note that if 7" has an associated kernel k(x,y) in the
sense of (1), then 7" also has an associated kernel k(z, y) in the sense of
(1), given by

- {k(x,y), when z € Q and y € Q,

k(z,y) =
(@) 0, otherwise .

We can see immediately that the condition that the kernel k(x,y) of T

satisfies the Hormander condition is not sufficient for the kernel k(z,y)
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of T to satisfy the Hormander condition. By using T, what we do is to
transform the question of boundedness of 7' on a measurable set {2 to
the boundedness of T on a better space (of homogeneous type) X, but

the kernel of T could be discontinuous. However, the proof of Theorem
1 makes use of the upper bounds on a:(x,y) and condition (7), and
does not require any continuity assumptions on k(z,y).

From now on, to differentiate between a ball in X and a ball in €2,
we use the notations B* and B.

The main theorem of this section is the following.

Theorem 2. Let T be a bounded linear operator from Lo(2) to Lo(€2)
with an associated kernel k(xz,y) in the sense of (1). Assume there

exists a class of operators Ay, t > 0, with kernels ay(x,y) defined on
Ly () so that:

a)
Agul) = /X ar(, ) u(y) duly)

for any function u € Ly(2) N L1(2), and the kernels ai(x,y) satisfy the
following conditions

(15) ja:(z,y)| < ha(2,y)

for all z,y € Q, where hy(x,y) is defined on X X X by
(16) he(a,y) = (B (;tY™))) " s(d(@, y)™ ),
and s s a positive, bounded, decreasing function satisfying

lim 7" s(r™) =0,
r—00

for some k > 0 with n the “dimension” entering the strong homogeneity
property of X,

b) the composite operators T Ay have associated kernels ki(z,y) in
the sense of (1) and there exist constants C' and ¢ > 0 so that

(17) / k(2 y) — ke, y)| dulz) < C,
d(z,y)>ctt/m

for all y € 2.
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Then the operator T is of weak type (1,1). Hence, T can be ex-
tended from L2(2) N L,(S2) to a bounded operator on L,(2) for all
1<p<2.

PRrROOF. First observe that ﬁt = Tﬁt where f, 1/41 and ﬁt are
defined on Lo (X') as described above. Moreover T' and T'A; have kernels
k(z,y) and k¢(z,y) in the sense of (1), where k was defined above and

ki(z,y), when z € Q and y € 2,

fft(xvy) = {

0, otherwise .

Further, gt is represented by the kernel
at(xz,y), when z € Qand y € Q,

a(x,y) =

+(@y) { 0, otherwise ,

which is readily seen to satisfy conditions (2) and (3) on X x X.
Conditions (15), (16), and (17) imply that the operator T' satisfies

the hypotheses of Theorem 1, hence it is of weak type (1,1) on X.

Therefore, T is of weak type (1,1) on £ and Theorem 2 is proved.

REMARK. Assume there exist B; which satisfy (15) and (16) so that
the composite operators B;T satisfy property (14). A standard duality
argument shows that the adjoint operator of T' is bounded on L, (f2)
for 1 < p <2, hence T' is bounded on L, (2) for 2 < p < oo.

4. Boundedness of maximal truncated operators on L, spaces.
4.1 The case of spaces of homogeneous type.

In this subsection, we assume that X is a space of homogeneous
type equipped with a metric d and a measure p. Let T be a bounded
operator on Lo(X) with an associated kernel k(z,y) in the sense of (1).
Our aim is to investigate the maximal truncated operator T, which is
defined by

T.f(z) = sup|T. f ()],
e>0

where T is the truncated singular operator defined by

T.f(z) = /d K £ ).
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The main result of this section is the following theorem.

Theorem 3. We assume the following conditions.

a) T is a bounded operator on Lo(X) with an associated kernel
k(x,y).

b) There exists a class of operators Ay which satisfy the conditions
(2) and (3) so that the composite operators T Ay have associated kernels
ki(z,y) in the sense of (1). Also assume that there exist constants c;
and 6 > 0 so that

(7) / k(2 y) — k(e y)] due) < e |
d(z,y)>ott/m

forally e X.

c) There exists a class of operators By represented by kernels
bi(x,y) which satisfy the upper bounds hy(x,y) defined by (3), and the
composite operators ByT have kernels Ki(x,y). Also assume that there
exist positive constants «, ca, c3 and ¢4 so that

(18)  |Ku(z, )| < c2 (B V™), when d(z,y) < cs 1/
and

a/m
(19)  [Kulw,y) — k(w,9)| < ea (u(B(; d(z,y))) ! d(tx,wa ,

when d(z,y) > c3t/™. Then Ty is bounded on L,(X) for all p, 1 <
p < oQ.

Proor. It follows from conditions (5) and (19), Theorem 1 and a
duality argument that 7" is bounded on L, (X) for 1 < p < co. Without

any loss of generality, we prove the theorem with ¢3 = 1. For a fixed
e > 0, we write

T.u(x) = BemTu(x) — (BemT — Te) u(x) .
Since the class of operators By satisfies conditions (2) and (3), we have

(20) | Ben Tu(z)| < ¢ M (|Tu(z)])
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where M is the Hardy-Littlewood maximal operator, and c is a constant
independent of €.

The kernel of the operator (B.mT — T¢) is given by (Kem (z,y) —
ke(z,y)) where ke(z,y) = k(z,y) if d(x,y) > € and k.(z,y) = 0 other-
wise. There are two cases:

Case 1. d(z,y) < €, then k.(z,y) = 0 and it follows from (18) that

|Kem (@,y) = ke(2,y)| = [Kem (3, y)] < 2 w(Blr:e)

Case 2. d(x,y) > ¢, then k.(z,y) = k(z,y) and it follows from (19)
that

1 £ \“
|K€m ('Tvy) - k5($,y)| S G N(B(.T,d(xyy))) (d(x7y)) 7

for some a > 0.
Therefore
|(Bem T — T¢)u(x)|
< / L
sC — S
d(z,y)<e :U’(B('TJ 8))

1 N
+ c/d(m,y»e pw(B(z;d(z,y))) (d(%y)> lu(y)| dp(y)
1
= u(B(w:9)) /d(w,y)ge [u(y)l du(y)

1 1
+c U d
;Qka 1(B(xz; 2k 1 ¢)) /d(m,y)gzk+1€| ()| dp(y)

< ¢ M (Jul(x)),

lu(y)| du(y)

where again M is the Hardy-Littlewood maximal operator, and c¢ is a
constant independent of €. Therefore

(21) sg% |(BemT — Te)u(x)| < ¢ M (Jul(x)) .
Combining estimates (20), (21) with boundedness of 7" and the Hardy-

Littlewood maximal operator on L,(X), we obtain boundedness of T
on L,(X), 1 <p<oo.
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In the next proposition, we show that, for suitably chosen By, our
condition (19) is a consequence of the Hélder continuity estimates on
the kernel.

Proposition 2. Assume that for some a« > 0 and ¢y > 1, the kernel
k(xz,y) associated with T satisfies the condition

1 d(x,z)\@
N e ] Gl

when d(z,y) > ci1d(z,z). Let By be approximations to the identity
which are represented by kernels by(x,y) which satisfy (3), (5) and
Sy be(z,y)du(y) =1, forallz € X, t> 0.

Then the kernels Ki(x,y) associated with BT satisfy condition
(19), i.e. there exists a constant ¢ so that

ta/m
d(w,y)*’

|Ki(z,y) — k(x,y)] < ¢ (u(B(z;d(z,y))) !

ford(z,y) > coca tY/™ where ¢y is the constant appearing in condition

(5)-
PROOF. Suppose that d(z,y) > ¢y t/™. Then
|]€(.T, y) - Kt(mv y)|

- ‘k(a;,y) —/Xk(z,z) be(2,y) du(z)\
B ‘k(% v) ./d(z,y)Scotl/m ey dutz)
_/ k(x,z)bi(z,y) d,u(z)‘
d(z,y)<cot!/m

</ .9) = ke, 2)| o) ()
d(z,y)<cott/m

a/m
< e dw)” gome [ Gl

ta/m

< C(HI(B(JT, d(xay)))_l d(x,y)"‘ )
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Note that the second equality is using condition (6) and the second
inequality follows from (22).

REMARK. Propositions 1 and 2 show that conditions (7) and (19)
are weaker than the usual conditions which guarantee L, boundedness
of maximal truncated operators. See, for example [St2, Chapter 1].
However, we need the extra assumption (18). In the case of functional
calculi of generators of semigroups with suitable heat kernel bounds,
condition (18) is satisfied without extra regularity conditions on the
kernel of T'. See Theorem 6.

4.2. The case of measurable subsets of a space of homogeneous
type.

We now assume that €2 is a measurable subset of a space of homoge-
neous type (X, d, ) as in Section 3. By strengthening the assumptions
on the kernel of T'in Theorem 3, we can obtain boundedness of maximal
truncated operators on L, spaces as follows.

Theorem 4. Let T be a bounded operator on Lo(£2) with an associated
kernel k(x,y). We assume the following conditions.

a) There exists a class of operators Ag, t > 0, represented by kernels
at(z,y) which satisfy conditions (15) and (16) so that the composite
operators T Ay have associated kernels ki(z,y) in the sense of (1), and
there exist constants ¢ and c¢; so that

aw 2 9) — o )] dp(o) < 1
d(z,y)>ctt/m

for all y € 2.

b) There exists a class of operators By, t > 0, represented by kernels
bi(x,y) which satisfy conditions (15) and (16) so that the composite
operators BT have kernels K;(x,y), and K(x,y) satisfy the following
conditions

(23) |K(w,y)] < e (u(BY (z;61/™)) 71,
for all z,y € Q such that d(z,y) < cy t*/™,

ta/m

(24)  |Ke(w,y) = k(z, )| < e (u(B™ (; d(frvy)))_lm :
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for all z,y € Q such that d(z,y) > co t'/™.
Then Ty is bounded on L,(S2) for allp, 1 < p < co.

PrROOF. There is no loss of generality in proving the theorem with
Cy = 1.

It follows from Theorem 2 and a duality argument that 7" is bound-
ed on L,(Q2) for 1 < p < oo.

Given a function u € L1(2) N L2(2) and € > 0, write

Teu(x) = BemTu(x) + (BemT — Te) u(x) .

Consider the term B.mTu(xz). Let v be the extension of Tu from §2
to X by putting v(z) = 0 for z ¢ €, then [|Tu||z, ) = ||vllc,x) for
1 < p < oo. Similarly, let we be the extension of BemT'u from 2 to X
by putting w(z) = 0 for z ¢ Q. Since

BomTu(z) = /X bem (z,y) Tu(y) du(y)

and the kernels by(z,y) of By(z,y) satisfy (15) and (16), we have for
T e X,

(25) |we ()| < ¢ M (Jol()),

where M is the Hardy-Littlewood maximal operator, and c is a constant
independent of €. This gives

(26) sup [we (z)] < ¢ M (J](2)) -

e>
The next step is to extend w to X' by putting u(z) = 0 for z ¢ €,
and denote the extension by u¥. Then ||uL, ) = |u*]lL,x). It then
follows from assumption b) and the argument of (21) that

(27) sup |(Ben T = Te) u()] < e M (Ju™|()).

Estimates (26) and (27) imply the boundedness of T, on L, (2) for all
p, 1 <p<oo.

A consequence of the boundedness of the maximal truncated op-
erator T}, is pointwise almost everywhere convergence of the limit

lim T u(zx) .

e—0
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More precisely, we have the following lemma.

Lemma 2. Assume that the operator T satisfies the conditions of Theo-
rem 3. Let 1 < p < oo, and assume that lim._,o Teu(x) exists almost ev-
erywhere for every u in a dense subspace of Ly(§2), then lim._,o Teu(z)
exists almost everywhere for every function u € L,(2).

Proor. Lemma 2 follows from a standard argument of proving the
existence of almost everywhere pointwise limits as a consequence of the
corresponding maximal inequality. See, for example [St1, p. 45].

5. Applications: Riesz transforms and holomorphic functional
calculi of elliptic operators.

5.1 Definitions.

We first give some preliminary definitions. References are [M¢],
[CDM€Y], [ADMc¢].
For 0 < w < v < m, define the closed sector in the complex plane
C
So={CeC: |arg(| <w}uU{0}

and denote its interior by S0.
We employ the following subspaces of the space H(SY) of all holo-
morphic functions on Sy.

Huo(S,)) ={f € H(Sp) : [Iflloc < o0},
where || f[[oo = sup {|£(¢)
U(S,)) ={y € H(S,): exists s >0, [$(Q)| < C[¢]* (1+]¢[*) 7"}

: Ce S,

and
F(S)) ={f € H(S)) : exists s >0, |f(¢)] < C(I<|7 +[¢*)},

so that
U(S)) C Hso(S)) C F(S) .

Let 0 <w < 7. A closed operator L in L,(X) is said to be of type w if
o(L) C S, and, for each v > w, there exists C,, such that

(L —¢DH™H <G K™, (¢8S,.
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By the Hille-Yoshida Theorem, an operator L of type w with w < 7/2 is
the generator of a bounded holomorphic semigroup e~ *% on the sector
SY with v = 7/2 — w.

Suppose that L is a one—one operator of type w with dense domain
and dense range in L,(X). We can define a functional calculus of L as
follows.

If ¢ € W(SY), then

(28) $(L) = = / (L — ¢ (¢) dC.

2m
where v is the contour {¢ = re*¥® : r > 0} parametrised clockwise
around S, and w < # < v. Clearly, this integral is absolutely conver-
gent in £L(X), and it is straightforward to show, using Cauchy’s theorem,
that the definition is independent of the choice of § € (w,v).

Let f € F(SY), so that for some c and k, |f(¢)] < ¢ (|¢]* + [¢]7F)
for every ¢ € SY. Let

¢ k+1
o)

Then v, f1 € ¥(SY) and 9(L) is one—one. So (f1)(L) is a bounded
operator on X, and (L)~ ! is a closed operator in X. Define f(L) by

$(0) = (

(29) FL) = (L))" (f)(L).

An important feature of this functional calculus is the following Con-
vergence Lemma.

Convergence Lemma. Let 0 < w < v < w. Let L be an operator
of type w which is one—one with dense domain and range. Let {f,} be
a uniformly bounded net in Hy,(SY), which converges to f € Hyo(SY)
uniformly on compact subsets of SO, such that {fo(L)} is a uniformly
bounded net in L(X). Then f(L) € L(X), fo(L)u — f(L)u for all
uwe X, and ||f(L)|| < supg || fa(L)]]-

For the proof of the Convergence Lemma, see [M¢], or [ADM¢].
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5.2. L, boundedness of Riesz Transforms.

In this subsection, we assume that {2 is a measurable subset of a
space of homogeneous type (X, d,p) in Section 3. Let L be a linear
operator of type w on Ly(Q2) with w < 7/2, so that (—L) generates a
holomorphic semigroup e=*%, 0 < |Arg(2)]| < 0, § = 7/2 — w. Assume
that for real ¢ > 0, the distribution kernels a;(z,y) of e~ belong to
Lo (22 x Q) and satisfy the estimate

|at(x,y)| < ht(xvy) ’

for z,y € Q where h; is defined on X x X by (3) and.
For 0 < a < 1, v > 0, define F,(S?) as follows

Fo(S)) = {f € H(S)) : exists ¢, [f(¢)] < CI¢I7*}.

Assume that g € F,(S?) for some v > /2, and that D is a densely
defined linear operator on Lo (€2) which possesses the following two prop-
erties:

a) Dg(L) is bounded on L2(f2),
b) the function Day, t > 0, obtained by the action of D on a;(x,y)
with respect to the variable z, satisfies the estimate

|Dat($7y)| < Ct_aht(xvy) ’

for all z,y € Q.
The main result of this section is the following theorem.

Theorem 5. Under the above assumptions a) and b), the operator
Dg(L) is of weak type (1,1), hence it can be extended to a bounded
operator on Ly(§2) for 1 <p < 2.

Before giving the proof of the theorem, we give examples which are
applications of our results. Some specific operators which satisfy the
assumptions of Theorem 5 are as follows.

i) Let g be a finite dimensional nilpotent Lie algebra. Assume that

g= @Bi
i=1
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as a vector space, where [g;,g;] C giy; for all ¢, j, and g; generates g
as a Lie algebra.

Let G be the associated connected, simply connected Lie group.
Then G has homogeneous dimension d given by the formula

d=> jdim(g;),
j=1

where dim (g;) denotes the dimension of g;.
Consider any finite basis {Xy} of g;. Each X} can be identified
with a unique left invariant vector field on G. Define

L=-> X};.
k

Then the sub-Laplacian L is a left invariant second order differential
operator, which is a non-negative self-adjoint operator in Lo(G). The
Banach spaces L,(G) are defined with respect to Haar measure.

Note that G is a Lie group of polynomial growth, hence it is a
space of homogeneous type. Consider the Riesz transforms XL ~'/?2
which are special cases of our operator Dg(L) when D = X and
g(L) = L=Y2. 1t is not difficult to check that XL~'/? is bounded
on Ls(G). Gaussian upper bounds on heat kernels and their space
derivatives are well known (see, for example [SC]), hence our condi-
tion b) is satisfied with o = 1/2. It follows that the Riesz transforms
Xy L~Y/% are bounded on L,(G) for 1 < p < 2 and are of weak type
(1,1). Thus we have simplified the proof of the L, boundedness of the
Riesz transforms given by Saloff-Coste [SC], because we have not used
the smoothness of the heat kernels in the variable y.

In the same setting of GG, we can also consider the case when L
is a 2m-th order strongly elliptic operator with constant coefficients
(plus a sufficiently large constant ¢y), and D = X;, X;, - -- X;,, for some
n < 2m. Then the operator DL~™/2™ is bounded on Ly(G). The
condition (b) is also satisfied with & = n/2m. See, for example, [R,
Chapter 4]. Our theorem then shows that DL~"/2™ can be extended
to a bounded operator on each L,(G) for 1 < p < 2.

ii) Let X be a complete Riemannian manifold with non-negative
Ricci curvature, L the Laplace-Beltrami operator, and D a vector field.

Then the Riesz transform DL~'/? is bounded on Ly(X). Upper bounds
on the heat kernels and their derivatives can be found, for example, in
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[CLY], [Da2]. Thus the assumptions of Theorem 5 are satisfied (with
o = 1/2), so DL™/2 can be extended to a bounded operator on each
L,(X)forl<p<2.

We now proceed to prove Theorem 5. The following off-diagonal
estimate is proved in [DR, Proposition 2.1].

Lemma 3. Let hy(z,y) be given by (3), then for each §, 0 < § < k—Nx,
where k, N* are the constants in (4), there exists ¢ > 0 so that

/ h(a,y) du(x) < e (L+ ™ =)0,
d(way)ZT

uniformly for all > 0,t >0 andy € X.

ProOOF Oor THEOREM 5. Observe that, for each positive integer k, the
powers of the resolvent (L — A T)~% are given by

(L—/\I)_k:ck/ th=ter et gt
0

when A < 0. Therefore, the operators (L — AI)~% are represented by
kernels g% (z,y) where

00
gl)f(l.?y) :Ck/ tk_l extat(l.?y) dt.
0

It follows from this representation and the estimates (3) and (4) on the
heat kernels that for a sufficiently large integer k, the kernels g’)f (x,9)
possess upper bounds which are similar to those of the heat kernels.
More specifically, there exist h(x,y) satisfying (3) and (4), possibly
with a different function s, so that

|)‘kg§(mvy)| < ht(mvy) s

for all z,y € Q, where t = 1/|\|.
Similarly, we also have the bound

DN gk (2, y)| < ct™ hi(z,y),

for all z,y € Q.
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Choose the class of operators A, = (¢t L + I)™*. By Theorem 2, it
suffices to show that condition (17) is satisfied. The kernels (k(z,y) —
k¢(x,y)) in condition (17) are associated with operators Dg(L)(I—(t L+
I)7k). Let g(L)Y(I — (t L — I)7%) = f(L) where f(2) = g(2) (1 — (tz +
1)~*). Using the upper bounds on g(z), we see that f belongs to the
class W(SY).

We next represent the operator f(L) by using the semigroup e~
By (28), f(L) (acting on Lo(X)) is given by

(L) = = / (L= A1) F(A)dA,

27

zL

where the contour v = 4 U - is given by v, (t) = te® for t > 0 and
v—(t) = —te " for t <0, and v > 7/2.
For A € v, substitute

(L—AI)~1 :/ e e sl ds .
0

Changing the order of integration gives

(30) - [ e a(s) ds,
where
(31) n(s) = %/e”f()\) ax.

Consequently, the kernel k¢(x,y) of f(L) is given by

(32) ki(z,y) = /000 as(z,y)n(s)ds.

It follows from the upper bound on g(z) and assumption b) that

/ 6.9) — (o) (o)

d(z,y)>ct'/m

gc/ s_o‘(/ AT (1 — (EA+ 1))
0 0

. (/d(m e he (2, ) du(a:)> d|/\|) ds

< c/ 3_0‘(/ AT e (1 1A+ D)) (1257 dlA) ds,
0 0
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by Lemma 3. Observe that |1 — (¢ A+1)7%| <cand [1 — (tA+1)7%| <
ct || when ¢ |A| < 1. We then split the integral on the right hand side

into two parts, I; and Iz, corresponding to integration over ¢ |\ > 1
and t |A| < 1. Then

Ilg/ s_a/ v e P (1 +ts™H) 0 duds
0 1/t

with # > 0. Changing variables tv — v and s/t — s, and choosing
a positive ¢ < 9, we have

I < c/ 3_0‘(/ v e P (1457170 dv) ds
0 1
| i ([ e e oot ) a
=c — — SV e v)ds
o (L4802 \ [ slte plte

00 86 0 1
C/O (14 s)0 s1te </1 vlte dv) ds

(since (sv)1Te=*e7P%? is bounded)

<C.

IN

Similarly,
00 1/t
I, < c/ 3_0‘/ v % ve P dy (1+ts )P duds
0 0

o0 1
< c/ sT(1+ 8_1)_6/ o= e=P5 dy ds
0 0

1 00

§c/ dv/ w™%e PV dw
0 0

<C

Therefore, condition (17) is satisfied and Theorem 5 follows from The-
orem 2.
REMARKS.

«) In the assumption b), we do not assume any regularity of a;(x, y)
in the variable y.
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() The theorem is still true for g € F,(SY) with v < 7/2 if the
upper bounds on a4(z,y) in condition b) hold for all complex t € Sf
with # > 7/2 — v. This can be achieved by first choosing u = v — ¢,
(with € to be specified later), using the formula

(L) = = / (L= A1)t F(N)dA,

27

where the contour v = vy, U~ is given by v, (t) = te® for t > 0 and
v—(t) = —te " for t <O0.
We then substitute

(L—XI)"t = / e el dy
r

for A € 4, where I' is given by T'(t) = te*®=%) for t > 0, and ¢ is
chosen sufficiently small so that (#+p—¢e) > m/2. We also have similar
expression for A € y_. Thus we obtain a similar representation of f(L)
to that of (30), and the rest of the proof is the same as before.

v) The pointwise bound in condition (b) can be replaced by a
weaker condition on the Ly norm with a suitable weight of Da, (with
respect to x variable). See [CD].

5.3 Holomorphic functional calculi of elliptic operators.

We again assume that €2 is a measurable subset of a space of ho-
mogeneous type (X, d, u) as in Section 3.

Let L be a linear operator of type w on Ly(£2) with w < 7/2, hence
L generates a holomorphic semigroup e*L, 0 < |Arg (2)] < 7/2 — w.

Theorem 6. Assume the following two conditions.

a) The holomorphic semigroup e *L, |Arg (2)| < /2 — w, is rep-
resented by kernels a,(x,y) which satisfy, for all 6 > w, an estimate

|a’z($7y)| < ¢y h|z|('ray) )

forxz,y € Q and |Arg(2)| < /2 — 0, where hy is defined on X x X by
(3)-
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b) The operator L has a bounded holomorphic functional calculus
in L2(2). That is, for any v > w and f € Hy(SY), the operator f(L)
satisfies

IF (D)2 < ev I Flloo -

Then the operator L has a bounded holomorphic functional calculus in
L,(Q),1<p< oo, that is,

IF (Dl < o 1 Flloo s

for all f € Hyo(SY).

When p = 1, the operator f(L) is of weak-type (1,1).

If we denote T = f(L), then the mazimal truncated operator T is
bounded on L, () for all p, 1 < p < 0.

PROOF. Given m/2 > v > w, choose 6 and p such that w < 0 < p < v.
For f € W(S?), represent the operator f(L) by using the semigroup

e *L as before. This gives

f(L) = /1“+ e *n,(2)dz -I—/ e *n_(2)dz,

where we choose the contour I'; (s) = s e ™/279) for s > 0 and I'_(s) =
—s5e7H"/279) for s < 0. The functions ny(z) are given by

1

nyg — ——
211

| e rma,

o2

where v, (s) = se® for t > 0 and y_(t) = —te~% for t < 0.
This implies the bound

nx(2)] < el fllo 217

Consequently, the kernel k¢(x,y) of f(L) is given by

kf(at,y):/F az(x,y)n+(z)dz+/ a(xz,y)n_(z)dz.

Choose operators A; = e~ *£. Using the upper bounds on the heat

kernels and Lemima 3, similar estimates to the terms I; and Is in the
proof of Theorem 5 shows that condition (17) of Theorem 2 is satisfied.
Therefore, f(L) is bounded on L,(€2). The Convergence Lemma then
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allows us to extend L, boundedness of f(L) to all f € Hy(S)), hence
the operator L has a bounded holomorphic function calculus in L, (€2).
Although the extension of the weak type (1,1) estimates from f(L) for
few(8?) to f(L) for f € Hy(SY) does not follow from the Conver-
gence Lemma, it is not difficult. See for example [ADMC, Lecture 7,
Section N].

To prove the L, boundedness of the maximal truncated operator
T, first choose By = A; = e~tL. We then just need to verify conditions
(23) and (24) of Theorem 4.

To verify (23), we use the commutative property of functional cal-
culus:

e—tL f(L) — e—tL/2 f(L) e—tL/2.

Since et maps L;(2) into Ly() with the operator norm less than
a constant, and e~* maps L1(f2) into L., (Q) with the operator norm
less than (u(B?* (z;t=1/™)))~1, interpolation and duality gives

le™ 2|2y @) 1a02) = el y@) L)

< e (u(BX (a1 m)) T2,

These estimates, combined with the fact that f(L) is bounded on L4 (£2),
imply condition (23).

The proof of (24) is straightforward. Consider d(z,y) > ct*/™, we
have

k@, y) — ke(2, )| < 6/ Ihz(xay)ldIZI/ AT e (1= e M) [d]A].
0 0

Observe that |1 — e™™| < ¢ since Re (A\) > 0 and |1 — e™ | < ¢t |A| <
c(t|A)® for 0 < o < 1 when ¢ |A\| > 1. We then split the integral on the
left hand side into two parts, I; and I3, corresponding to integration
over ¢t |A] > 1 and ¢t|A| < 1. Using the heat kernel bounds and elemen-
tary integration, similar estimates to those of I3 and I3 of Theorem 5
show that

tB/m

K, ) = b, 9)] < ¢ (u(BY (s, )™ s

for some B > 0, z,y € Q, d(x,y) > t/™. We leave details of these
estimates to reader.
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REMARKS.

a) Condition a) of Theorem 6 can be replaced by a more general
condition as follows. Assume that L is an operator of type w and that
there exists a positive integer k£ so that the kernels g’)f (x,y) of the power
of the resolvents (A L — I)™F satisfy the following estimate

(93 (@, )| < (u(B (s | A7) s(d(ws )™ A])

where s is a function which satisfies the decay condition in (3). The
proof under this assumption is still the same as that of Theorem 6, with
the operators (A L —I)~" replacing the semigroup e~*%. The advantage
of this assumption is that the operator L can be of type w with w > 7/2,
or of type w on a double sector.

b) When X is a space of homogeneous type, the result on bounded-
ness of holomorphic functional calculi of Theorem 6 was first presented
in [DR, Theorem 3.1]. Note that the Hérmander integral condition is
not applicable when we have no control on smoothness of heat kernels
in the space variables.

c¢) Heat kernel bounds are known for a large class of elliptic and sub-
elliptic operators. Also see [AMCT], [A] for recent results on heat kernel
bounds for second order elliptic operators with non-smooth coefficients.

d) Theorem 6 gives new results when 2 is a measurable set with
no smoothness on its boundary. An example of an operator on such
a domain, which possesses Gaussian bounds on its heat kernels, is the
Laplacian on an open subset of Euclidean space R™ subject to Dirichlet
boundary conditions. Gaussian upper bounds can be obtained in this
case by a simple argument using the comparison principle. More gen-
eral operators on open domains of R® which possess Gaussian bounds
can be found in [Dal] and [AE]. Indeed Theorem 6 can be applied to
prove the general statement of Theorem 5.5 in [AE] on boundedness
of holomorphic functional calculi in L,, spaces, without the assumption
that the boundary has null measure.
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