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L’-estimates for the wave
equation on the Heisenberg group

Detlef Miller and Elias M. Stein

Abstract. Let £ denote the sub-Laplacian on the Heisenberg group
H,,. We prove that ¢?V=%/(1 — £)*/? extends to a bounded operator
on LP(H,,), for 1 <p < oo, when a > (d — 1) |1/p—1/2|.

0. Introduction.

On the Heisenberg group H,,, which is C™ x R endowed with the
group law

1 —
(z,t) - (2, 1) := <z+z',t+t' - §Imz : z’) ,

the vector fields

0 1 0 0 1 0
X, =———y;i— Yii=—+_-x;—

S0, 2% T gy T
j=1,...,m,and T := 0/0t form a natural basis for the Lie algebra of
left-invariant vector fields. The only non-trivial commutation relations
among those are [X;,Y;] =T, j = 1,...,m. Due to these relations,
the non-elliptic sub-Laplacian

L= Z(ij -+ sz)

m
j=1
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on H, is still hypoelliptic, and provides one of the simplest examples
of a non-elliptic “sum of squares operator” in the sense of Hormander
(see e.g. [K], [HG6]). Moreover, £ takes over in many respects of analysis
on H,, the role which the Laplacian plays on Euclidian space.

Consider the following Cauchy problem for the wave equation on
H,,, x R associated to £

0%u ou
CP =~ o »C — 0 =0 = s JE— — ,
(CP) oT? Y ’ ulr=o = f o1 lr=0 g
where 7 € R denotes time.
If we put L := —L, then the solution to this problem is formally
given by

sin (7 VL)
VL

In fact, if LP(H,,),1 < p < oo, denotes the LP-Lebesgue space on H,,
with respect to the bi-invariant Haar measure (which incidentally agrees
with the Lebesgue measure on C™ x R), then the above expression
for u makes perfect sense at least for f,g € L?(H,,), if one defines
the functions of L involved by the spectral theorem (notice that L is
essentially selfadjoint on C§°(H,,)).

If one decides to measure smoothness properties of the solution
u(z, T) to (CP) for fixed time 7 in terms of Sobolev norms of the form
1 £llz = I(1 4+ L)*/%f||zr, one is naturally led to study the mapping
properties of operators such as

u(z,7) = ( g) () + (cos (TVL) f)(z), (x,7) € H,, xR.

eiT\/f
(1+ L)>/2
or
sin (7v/L)
VL(1+ L)/?
as operators on LP(H,,) into itself.

For the classical wave equation on Euclidian space, sharp estimates
for the corresponding operators have been established by Peral [P] and
Miyachi [Mi].

In particular, if A denotes the Laplacian on R?, then

(1 o A)—a/Z eiT\/—A
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is bounded on LP(R?), if a > a(d,p) := (d—1)[1/p — 1/2], for 1 <
p < 00. Moreover, (1 — A)~(@=1)/2)/2 iTV=4 s hounded from the real
Hardy space H'(R?) into L*(R?).

Local analogues of these results hold true for solutions to strictly
hyperbolic differential equations (see e.g. [CF], [P], [B], [Mi], [SSS]).

Indeed, as has been shown in [B] and [SSS], the estimates in [P]
and [Mi] locally hold true more generally for large classes of Fourier
integral operators, and solutions to strictly hyperbolic equations can
be expressed in terms of such operators.

The problem in studying the wave equation associated to the sub-
Laplacian on the Heisenberg group is the lack of strict hyperbolicity,
since L is degenerate-elliptic, and Fourier integral operator technics do
not seem to be available any more.

Interesting information about solutions to (CP) have been obtained
by Nachman [N]. Among other things, Nachman showed that the wave
operator on H,, admits a fundamental solution supported in a “for-
ward light cone”, whose singularities lie along the cone I' formed by
the bicharacteristics through the origin. Moreover, he computed the
asymptotic behaviour of the fundamental solution as one approaches
a generic singular point on I'. His method does, however, not provide
uniform estimates on these singularities, so that it cannot be used to
prove LP-estimates for solutions to (CP). What his results do reveal,
however, is that I' is by far more complex for H,,, than the correspond-
ing cone in the Euclidian case. This is related to the underlying, more
complex sub-Riemannian geometry.

Nevertheless, in this article we shall prove the following theorem:
Let d = m + 1 denote the Euclidian dimension of H,,.

Theorem. ¢'VL /(1 + L)*/2 extends to a bounded operator on LP(H,,),
for1 <p<oo, whena > (d—1)|1/p—1/2|.

REMARK. One can see below that the same result holds for
sin /L
VL (14 L)e=1/2”’
or with the factors (1 + L)~%/2 (respectively (1 + L)~(@=1/2) replaced
by (14 +vL)~, (respectively (1 ++/L)~(@=1),

Notice that the restriction to time 7 = 1 in our theorem is inessen-
tial, since L is homogeneous of degree 2 with respect to the automorphic
dilations (z,t) — (rz,7%t), 7 > 0.
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Our theorem is slightly weaker than what one would expect in
direct analogy with the afore mentioned result of Peral and Miyachi. It
would be interesting to know whether the condition o = «(d,p) does
already suffice, if 1 < p < oo, and if there is an endpoint result for
p=1.

Finally we would like to mention that the spectral multiplier theo-
rem for L in [MS] (see also [H]) can easily be deduced from our theorem
by means of the method of subordination.

Our approach to the theorem is based on harmonic analysis on H,,,
in the sense expressed by Strichartz in [St], as the joint spectral theory
of the two operators L and ¢I". We shall closely follow the notation in
[St], and freely make use of the results of that paper, as well as of those
in [MRS1,2].

1. Basic reductions and dyadic decomposition of VL,

In order to prove the theorem and the subsequent remark, we first
observe that it suffices to prove the case p = 1. This follows from a
standard interpolation argument. Namely, if we assume that the case
p = 1 was true, and define the analytic family of operators T, :=

eVL /(1 + L)*/2, then we had
[Tafllz < Callfllz,  ifRea=0,

. d—1
“Tale < Cq “f”l ) if Rea > T .

The latter inequality remains true even if Ima # 0, since the operators
(14+L)=¢+%7 vy real, are known to be bounded on L!, for any ¢ > 0, with
norm growing at most polynomially in «y. This can in fact also be seen
by a slight modification of the proof of Corollary 1.2 to follow. Hence
one can use the analytic interpolation theorem in [S1] and a standard
duality argument to deduce the theorem for arbitrary p (the results in
the remark can be obtained similarly).

For any bounded function ¢ on R™ we define the operator (L) by
the spectral theorem, and denote by My, € S'(H,,) the corresponding
Schwartz convolution kernel, so that ¢(L) = f * My whenever f € S.
We also write M, = (L) dy, where dp is the Dirac measure at the
origin.

The results for the case p = 1 are proved by showing that the
corresponding convolution kernels belong to L!(H,, ).
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1.1. Reduction to an estimate for the local part of the convo-
lution kernel.

Let n be an even C3°(R) function, so that n(§) = 1 for small ||,
and n(§) = 0, if |£] > 1. For some large constant N > 1, to be chosen
later, put nn(§) := n(¢/N). Consider the function

(1.1) h(€) == (1 —ny) () E2eVE,  ¢>0.

We let M denote the corresponding convolution kernel, so that h(L)f =
fxM.

Proposition 1.1. To prove the theorem, it suffices to show that XBzM
belongs to L'(H,,).

Here B, denotes the ball of radius r centered at 0 with respect to
the optimal control distance on H,. (For the definition of this distance
see e.g. [VCS)).

The proof of the proposition is based on the following two facts.
The first deals with the speed of propagation of the wave equation and
can be found in [Me].

(1.2). The support of the distribution cos (t VL) 0y is contained in By

The second fact guarantees that for certain multipliers v the cor-
responding kernel My, is in L*(H,, ).

(1.3). Suppose ¢y € CK)(RY), with k assumed to be sufficiently large.
If 1 satisfies the inequalities

€8O (6)] < AEV2, when0< €< 1,
D€)< A2, when 1 <€ < o0,

for 0 < £ <k, then My = (L) by is in L*(H,,).

REMARKS. 1) It actually suffices to take k > (d — 1)/2; also the ex-
ponent 1/2 can be reduced to € > 0. However the above special case
suffices for our purposes.

2) The proof gives the bound || My|[z1(m,,) < constant A, with A
as in (1.3).
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To prove (1.3), we let

oo

j=—o0

be a standard dyadic partition of unity for R™, with X; (7) := x(277 x),
where x € C§°(R) is non-negative and supported in [1/2,2].

We write ¢; = 2|f|/2Xj¢. Then (&) = >, 2711/24;(€), and
| My, |21 (a0, ) < A, uniformly in j.

In fact, with 7,51(5) = (27 €), each ﬁj is supported in [1/2,2],
and the ﬁj satisfy the inequalities

SI_1§>|@Z§£)(£)I <A, for0<t<k.
J,

Thus the key step in the proof of the Marcinkiewicz-Mikhlin-Hormander

multiplier theorem for H,, (for which see e.g. [FoS], [C], [MM]; also
[MS], [H], [MRS1,2]) shows that

sup || My, || 1 () = sup [Mg |22, ) < o0,
J J

and the assertion (1.3) is proved, since My = > 271I/20f, .
Now for @ > 0 and |t| <1 set

Fat(€) = (1 —nn)(€) €% cos (£ \/€)
at(€) = (1= nn) (&) € ?sin (£ V/€)

so that by (1.1) h(§) = fa,1(§) + 7 9a,1(£).
It is easily seen that for & > 0

(1= ) (©) Je| 72 = / o(7) cos (r/E) dr .

where ¢ is such that np € L and (1 —7n)¢p € S.
Hence

foa(€) = / (19)(r) cos ( /&) cos(t \/E) dr + B(v/E) cos (t V/E)
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with & € §.
Now the support of the distribution corresponding to

/(77 ©)(7) cos(T VL) cos (t VL) dr

lies in Bo. This is because 2 cos (7v/L) cos(t /L) = cos ((1 4+ t) VL) +
cos ((7 — t)v/L) and the result of fact (1.2). However the kernel cor-
responding to ®(v/L) cos (t VL) is in L'(H,,), uniformly for || < 1, as
long as ® € S.

This can be seen by applying the result (1.3) to the function ¢ (§) :=
O (\/€) cos (t /E) —®(0) e~¢, and recalling that the kernel corresponding
to e~¢ is the heat-kernel, which is in L'(H,, ).

Thus we have that the f, (L) do are uniformly in L'(H,,) in the
complement of the ball Bs.

As for g,,1, we observe that

(1.4) Gop11(6) = /0 Jarl€) dt

and thus ga+1,1(L)(do) is in L'(H,,) outside the ball Ba, if & > 0. As
a result
h(L) 60 = fo,1(L) 60+t ga,1(L)do =M
is in L'(H,,) outside the ball By, if v > 1. Thus, if we knew that Xp, M
was in L'(H,,), we could conclude that M € L*(H,,).
The conditional assertion for (1+ L)~*/2 ¢?VL can now be obtained
as follows. We write (1 + £)=%/2¢iVL a5

5(1/2

W(l —nn)(€) €72 eVE,

v (€) (1+&)7/2 Ve +

The function ny(€) (1 + £)~%/2 V€ — ¢=¢ satisfies the hypothesis of
(1.3), and e~¢ corresponds to the heat kernel, thus

an (L) (1+ L)~/ Ve

has an L'(H,,) kernel. Next the function £€%/2/(1 + £€)*/2 —1+¢~¢ sat-
isfies the hypothesis of (1.3), thus L*/2/(1 + L)®/? is the identity oper-
ator plus a convolution operator whose kernel is in L*(H,, ). Combining
this with the previous assertion about (1 — ny)(L) L=%/2¢?VL proves
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the proposition. The further conclusions in the remark are proved sim-
ilarly.
We have reduced the proof of our theorem to showing that

IXp, MllLr(m,) < oo,

with M = M}, and h given by (1.1), provided o > m = (d — 1)/2.
A further reduction is given as follows: We let x By be a smooth
variant of x 5 ; that is, x5 is in C§°(Hy, ), with X () =1, if 2 € Bs.

Corollary 1.2. To prove the theorem, it suffices to prove that the
operator f —— f * ()ZB2 M) is bounded on LP(H,,) to itself, for all p,
1<p<oo.

Proor. Write M = M, to indicate the dependence on «. Now, if
a > (d—1)/2, we can write « = o' +¢,¢ >0, o/ > (d—1)/2. We
know from the above that (1 — X, )Mar is in LY (Hy,), so if f +—
fx* ()ZBQMO(:) is bounded on L?, 1 < p < 0o, s0is f —> f * M, . But
M, =M, * ((1 + L)_e 60)

However, (1 + L)™¢dg is in LP(H,,) for some p > 1, if ¢ > 0 (we
shall prove this momentarily). We would then have M, € LP(H,,), and
hence x5 Mo € LY(H,,). However, (1 — X, Mo was already shown to
be in L!(H,,), and so this would imply that M, € L!(H,,).

To see that (1 + L)~¢ 6y € LP(H,,) for some p > 1, we write

1 oo
(1 —f—L)_E 5o = m/ eS8 S_m_lp(s_l/zz, gL t) g~ 1te ds,
€)Jo

where p(z,t) denotes the heat kernel associated to L at unit time. As
is well-known, p(z,t) = O ((1 + |z|*> + [t|)~%), for every N > 0, and as
a result
(1 +L)_E 60(Z7t)
O (|27 + [eh)=m= =), i 2P+ [t < 1,
O+ )N, if 2|2 + [¢] > 1, for all N > 0.

From this it follows that (1 + L)~¢§y € LP(H,,), if (—m —1+¢)p >
—m — 1.
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In order to verify the assumption in the corollary, we shall invoke
the Gelfand transform G for the algebra of radial functions on H,,
(compare [MRS1]). For f € L'(H,) radial, we have

G(h(L)F)(Asn) = h((m+2n) [A) GF(A,n),

AeR* :=R\{0},neN.
If X, J € Z, denotes again our dyadic decomposition of unity on
R*, we put

@5 i (A, n) == h((m+2n)| Al) Xok—; (e ) X; (m+2n),
for j >0, k€ Z,e € {-1,1}. We also set
Ky j = 9_1(902,3') .

By [MRS1], since Pk.j is smooth and supported away from the axes,
one has K ;€ S. Observe also that

(1.5) 21 < \/(m+2n) [A] < 25FT on supp ¢f,

so that ¢ ; = 0, unless 2F > N/4. So, if we fix any ko > 1, we may
choose N sufficiently large so that

(1.6) M=) K,
e=+1
k>ko
Jj=0

for instance in the sense of distributions.
The proof of the theorem is then reduced to showing the following

Proposition 1.3. If « > m, then

j{: HXBQl(hJ

e==1
k>ko
Jj=0

(pp) < O

for every p, 1 < p < oo, where ||K]||, ) denotes the norm of the con-
volution operator f — f+ K on LP(H,,).
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1.2. Formulas for Kj ;.
In order to compute K j» we first observe that
—1 1
(pk,j()‘v n) - (pk,e(_)‘v n) ’
hence K,;Jl-(z,u) = K,%yj(z, —u) (compare [MRS2]). This allows us to
reduce to the case € = 1, and we shall from now on suppress the suffix
e, assuming that it is 1.

Next, observe that G(i LT f)(A\,n) = (m+2n) Gf (A, n),if A > 0.
Therefore, by [St, Corollary 2.5],

(LT f=> @(m+2n)f*P,,

for any bounded multiplier ¢, if Gf is supported in A > 0, where P, =
¢n 00 + p.v. P, and where P, is the Calderén-Zygmund kernel

1 —m— m +n)!
Pn(z7t):2m 17r m 1(_1)n( o )
(|2 — 4it)" < n |z|2+4it>
(22 + 4it)ym+ i+ " o 22 — 4t

(see [St, Lemma 2.1 and (2.25))).
If we define “polar coordinates” by putting

roi= (|z|4+16t2)1/4, 4t+1ilz)? —=: r2e¥/2 0<6<2m,

then we have

(17&) P, =cn (Qn - Qn—l) ’
with
(m+n)| ei(m+2n+1)9/2
@n 1= n! r2m+2
_ (m+n)! (4t +ilz|*)"
(1.7.b) Tl (@t— i pyme
! 2 _ 4t

al (|22 + dif)mtitn
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Next, observe that

(pk,j()‘vn) = (pli,j()\an)
= ((m+2n) ]A) ™2 Xy, (A) x; (m + 2n) VIRF2IRAL

if k is sufficiently large (in that case we may in fact delete the factor
(1 -=n)(-/N) in h), which we may assume. Putting

X(@) =272 x(x),
this may be written as

o j(An)=2"% 5 (A)x,(m+2n) eV T

Xog—; j

Since y is of similar type as x, we shall again write x in place of x, and
then get, for k, 7 fixed,

Prg(A 1) = 27F N " x (m+2n) () 6a(n')

where 0, (n') =1 if n = n' and J,,(n') = 0 otherwise, with
Yn(A) = Xok—; (A) etV (mT2m)Al

This implies

i LT —m)f

f*Kk,j:2_akZXj(m+2n)’Y"(_iT)5"( 5

_ 9—ak ij(m+2n)’yn(—iT) (fxPy,).

In the sequel, we shall often use the following abbreviation
L:=2k—7.

We put

1 [ . .
Dy () := %/ etV (m+2n)A Xg()‘) e .
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Then, away from z = 0, K}, ; is given by
(1.8) Ky j(z,t) =27 Z X; (m+2n) /Pn(z,t —5) Pop—_jn(s)ds

(we do know that Kj; € S, although this is not evident from this
formula).
Putting A = 222 in the integral defining ®,,,, we write

Y4 [ee]
Py n(t) = 2_/ ei(V/ (m+2n) 20o—2"ta?) x(x) zdz,
™ — 00

which shows that the asymptotics of ®,,, can be computed by the
stationary phase method of

Lemma 1.4. Let f € C§°(R) be supported in [1/2,2]. For every N €
N there exist functions fo,..., fn € C5°(R) supported in [1/4,4] and
En € C*®(R?), such that for (a,b) € R? with |(a,b)| > 1

. N
/ eiam=be*/2) ¢ (1) gy = 2"/ (20) Z b=V f, (%) + En(a,b),
v=0

where En satisfies
B (a,5) = O (|(a,0)| 7Y,
for every o € N2.

PROOF. We have

/OO ei(a$—bw2/2) f(,]j‘) dr = eiaz/(Qb) /OO e_iwa/z f(a? + %) dx .

—0o0

Now, in the region where 1/4 < a/b < 4, the result follows easily from
the proof of [S2, Proposition 3, Chapter VIII] and the remarks in [S2,
Chapter VIII, 1.3.4], since the critical point in the integral on the right
is x = 0. The functions f, do in fact arise as linear combinations of
derivatives of f.

In the remaining region, the result is obtained by integrating by
parts in the integral on the left.
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We may apply the Lemma to @, (t), since \/(m +2n)2¢ ~ 2F >
1, and obtain

N m+2n 1
— i(m+2n)/(4t) £4+1 \—1/2—v ¥ -
B,u(t) = e ;0(2 t) 2 £, (\/ "5 53)
+2fEN<,/(m+2n)2£,2f+1t),

with f, and En as in the lemma.

Put
Ung =1/ (m+2n)2¢.

Since ay, o ~ 2k and since

41 py=1/20 _ —1/2-u (M 20 11/
(2+ t) / ”—an,z V( 2£ ﬁ) ’

the v-th term in (1.9) is of the form

~ m-+2n 1
Cl/fI/( 2[ 2_t>7

with ¢, = O (2-A/24H90k)  f () = /2 f, ().
Consequently, we may reduce in (1.8) to the case where ®;,, is
either of the form

ot —1/2—v m—+2n 1N\ 0,400/t
(a) By,u(t) = 2 ar, f(,/ . 4t>e

with f € C§°(R) supported in [1/8,2] and v > 0, or of the form

(1.9)

(b) By, (t) = 2° En(ane, 2°710)

with E as in the lemma and N sufficiently large.

Case (b) is easily dealt with by the Marcinkiewicz multiplier the-
orem in [MRS1, Theorem 2.2].

If @y, is of the form (b), then its inverse Fourier transform ny,, is
of the form

Men(A) = W(ane, 275 N),
where

U(a,A) := / En(a,t)e” M dt
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is of class CM for M = [N/2] — 1 and satisfies
(1.10) 829 W(a,\) = O (a M+ (1 + |A)~K),

for every o, K € N and every # < M, as can easily be seen by integra-
tion by parts.

Now, since our “original” function ¢, had its Fourier transform
supported where A ~ 2¢, we may also localize the support of Me,n 1IN
this region. And, in the region where n ~ 29 and A ~ 2¢ = 22F=J we
see from (1.10) that 7., (X) = ¢ (y/(m + 2n)22k=7, 2572k \) satisfies
estimates of the form

102 02 110, (V)] < Clap g 27 MEFE=0G=F) < @, ;9700 9=PRk=3)

ita+ < M.

Thus, if we define Ky ; by (1.8), with ®,, as in (b), but Fourier
transform localized in A ~ 2¢, and choose N sufficiently large, we see
that for any o > 0 in (1.8)

K:=) K,

k>ko
720

is a kernel whose Gelfand transform satisfies the multiplier condition in
[MRS1, Theorem 2.2], and thus satisfies the kernel estimates of [MRS1,
Theorem 3.1], for sufficiently many derivatives. But then one checks
easily that the same is true of the truncated kernel )ZBQK , and conse-
quently the operator f —— f x (232 K) is LP-bounded for 1 < p < oo
by [MRS1, Theorem 4.4].

Moreover, since

a;i/z X; (m +2n) = 27k/2 X; (m+2n)

with ¥(z) = 2=%2 x(z), by modifying x we may assume that the factor
ane in (a) equals 2F. We thus find that, in order to prove Proposition

1.3, it suffices to prove the following

Proposition 1.5. Suppose that Ky, ;j is given by

t—s
Ky j(2,t) = 27™k ij (m+2n) /Pn (z, T> @, jn(s)ds
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 ok/24k—j m+2n 1\ ouion)/t
b= 20578 1) s,

[ € C§°(R) supported in [1/8,2], k > 0 sufficiently large. Then

Z | Kk,

320

with

Ll(Bz) - O (]{72) .

2. Integral formulas for Kj ;.

In order to sum the series for Ky ; in Proposition 1.5, we first
observe that x (m+2n) @ j,(s) =0, unless 1/4 < 2877 s < 16. Thus,
if we choose x € C§°(R) such that x(z) =1 for 1/4 < < 16 and
supp X C [1/8,32], then we may replace @y, j ,(t) by (2877 t) @y j n(t).

Moreover, writing

(g 1) = (7).

with ¢ smooth on [log1/16,log2] C [—m,n| and, say, supported in
| — 7, 7[, and developping g into a Fourier series on [—m, 7|, we see
that

2 iv ) ) .
Prjn(t) =) a (%) 93h/2=] (k=) ilm+2m)/t
(2.1) veL

= Z Ay (I)k,j,n,u(t) )

vez

where

(2.2) a, = O (|v|™N), for every N € N.
We also put

t—s

K jw = 2_mkzn:Xj(m+2”)/Pn<z’ 1 )‘Pk,j,n,,,(s) ds,

so that
Kij=) K-
124
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Writing
%y (1) 1= 172 5(0).

we still have )Z(V) € C3°(R) with supp )Z(V) C [1/8,32].
Moreover,

(23) X =0 (v + 1)), aeN,

and
B (1) = 2°H/279 29 (m 4 2m) " ) (2K 1) eHm R

Consequently, by (1.7.b),
t—s
> m+ 20 Qu (2 ) rginn(s)

_ oij 93k/2—j (m+ 1) nt1ton)(6 /24+1/5)
=22 ZX(V)yj(m—FZn) ¢

—i/s
e - _a
' 7"/2m+2 X(l,) (zk I S) )
where 7’ and 6’ are defined by

t—s+il|z>=r"e?/?,

and where X () J(x) =X (277 x), with

X (@) 1= 2 x(a).
Let us put
(m+n) L ontme
CVJ(“’) = ZX(V)J (m+2n) o 9—mj i(2n+m+l)w
For fixed v, 0; := [(,,;| has the following properties, as can easily be

seen by applying Poisson’s summation formula:
i) o; is m-periodic,

.. 27
(2.4) ii) 0j(w) < Cn m ,

Y

for |w| <

NN
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for every N € N, j € N. ii) means that (, ; is essentially supported in
{lw| <277}, and implies that ||, j||1 is uniformly bounded in j. Notice
also that the constants Cy in (2.4.ii) will grow with v, however, only
polynomially, namely

(2.5) On =0 ((Jv] + 1)V,

With ¢, ; as above, we have

t—s
Z Xj (m +2 n) Qn (Zv T)(I)k,j,n,u(s)
i 1) o 1\ e 5 _ s
— 91 93k/2+(m-1)j ¢ _ (5 n g) o X (287 &)

And, since

9/ |Z|2
— = arctan ( ) ,
2 t

— S8

where arctan denotes the branch of tan™! taking values in [0, 7], we
obtain

9—2mk zn: Xj (m + 2 'n,) /Qn (Z, tTTS) ¢k7j,n7y(s) ds

(26/) — 21_7 2k/2 2(m—1)(_7—k)

28I s) ds .

2 1
Cl,,j<arctan< 12 ) + —)
. / t—s S —i/s o

T G=smriz ¢ X!

Since P, = ¢ (Qr, — Qr—1), this allows to establish an integral formula
for K, k,j,v-

In order to simplify the notation, we shall do this only for the
case v = 0. In fact, we shall see that the estimates of Ky ;, will only
depend on the constants C in (2.4) for a finite number of N’s and on
the norms of a finite number of derivatives of x ) Therefore, in view

of (2.3) and (2.5), we shall get the same type of estimate for || Ky ;. |1
as for || Ky joll1, except possibly for a factor which grows like a power
of |v| + 1. But, because of (2.2), it will then be clear that

1Kkl <D law] [ Kol s
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which leads to an estimate of the same type as for ||Kx_j o1
So, from now on we shall assume that ®y ;,, = ®p jpno, t.e. that

(2.7) Op . (t) = 236/277 (28T f) gilmt2m)/t
with x € C§°(R) supported in [1/8,32]. Then, by (2.6"),

9—mk Zn:xj (m+2n) /Qn (z, tTTS> O in(s)ds

(2.6) _ 9ij 9h/2 9(m=1)(=k)

| /@(arctan(tR D)

-
(= sp)emip ¢ M2Ts)ds,

where we have used the abbreviations (; = (o ; and
R:=|z)?.

Now, observe that if we replace @),, by ,_1 in the left hand side of
(2.6), we have to sum

t—s

ij(m+2n)Qn_1(z, 1 )q)k,j,n(s)

 oij o3k/2—j (m+n—1D! mtitamon)) @ /241/5)
= 2% 2 zn:)(j(m+2n)—(n_1)! e
e1l/s

L 2m2 x(

2k=Js).

Replacing x;; (m 4+ 2n) in this sum by X; (m+2(n—1))+277 x;(m+
2(n—1)), with

X;(m+2(n—1)) :2j(X(m;2n> _X(%»

1
2n — 2t
:_2/ Xf(”“f—f‘)dt
0 27
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having similar properties as X, we find that

Z Xj (m + 2 n) Qn—l (Z, ?)cbk,j,n(s)

— 91J 9k/2 9(m—1)(j—k)

</44Maw<fl>+b "
- e

(R2 + (t — 5)2)(m+1)/2

x(2F=95) ds

 /G®mm%ﬁZ)+D e

—Jj k—j
i (R%+@—syﬂmﬁw263?“2 S”“)?

with the same ¢; as in (2.6), and fj of the same type as ;.
Writing Ky, j(R,t) instead of Ky j(2,t), we then get

Ky j(R,t) = C, 28 2k/2 2(m=1)(G=F)

()

(2.8) (R? + (t — s)2)(m+1)/2

— /%) x (28T 5) ds

+2_j/(fj<arctan (tl—%s + %)) /s

k—
(RZ+ (t — s)2)miD2 ¢ x(Z %ﬁh)'

Formula (2.8) will be useful in the region where R? + (t — s)? is large.
To deal with the region where R? + (¢t — s)? is small, we establish a
second formula for Ky ;.

To this end, we put

(m+n—-1)! (4t+iR)™  (m+n-—1) pi(m+2n)0/2
n! (4t —i R)ym+n n! r2m ’

R, (z,t) :=

and observe that
atRn = 4Qn—l - 4Qn )

so that by (1.7)

(2.9) m:—%mmm
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Integrating by parts in the formula for K}, ; in Proposition 1.5, we thus
obtain

t_
K j(z,t) = —cm g—mk ij (m+2n) /Rn (z, %)@%an(s) ds .

And, one realizes easily that

/ _ ol &
k7j)n - 2 ¢k7j’n ’

with ék,jm similar to @y ; , (only x has to be modified in the definition
Of kajan)'
Arguing now similarly as before, we find that

Ky j(R, t) = Oy, 29 2F/2 2(m=3)(i=F)

(2.10) / Q(arctan (t Ijg) + é)

(R2+ (t— 5)2)m/2

x(2877s)ds,

with functions (; and x similar as in (2.8), but not necessarily identical.
Notice that in passing from (2.8) to (2.10) we “gain” a factor
22(k=3) (R? + (t — 5)?)1/2. In addition we should point out that the
right-side of (2.8) contains factors of e**/% which do not appear in
(2.10); this is due to the extra factor /2 occuring in the formula
(1.7.b) for @y, which is not present in the formula for R,,.
We shall now specialize these formulas in the cases j < k and j > k.

A) The case j < k+ M. Fix M € N to be chosen later. If j < k + M,
then the variable s in (2.8) is of the order 27=% < 2M 5o that no
cancellation in the factor e=*/* — e¥/% can be expected. We therefore
estimate each of the terms appearing in (2.8) , which are all of similar
type, seperately.

In order to exploit formulas (2.8) as well as (2.10), we choose a
cut-off function ¢ € C§°(R) such that o(x) = 1 for |z| < 21, g(z) =0
for |z| > 2'2, and split K}, ; into

27k S (m+ 2n) /(1 — 0) (244D (R? 4 (t — 5)%))
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t— s

—) Oy jn(s)ds

Pn( )
S

+27 Sy (m 4 2n) / 0(2** =) (R? + (t — 5)?))

t—s
—>(I>k,j,n(3) ds.

Pn(zv
4

Using (2.9), and performing an integration by parts in the second term,
we then find that K} ; will be made up of a finite number of terms of
the following types

Fy, i(z,t) = ok/29(m—1)(j—k)
1
} Cj(arctan (ti) + —)
(A.1) - — 575
(R? + (t — 5)2)(m+1)/2

(1= 0) @D (R? + (t - 9))) /° x (277 5) ds

the complex conjugate of ﬁ’k,j,
G i(z,1) == ok/2 9(m—3)(j—k)
R 1
) ./Cj(arctan (—t—s)+g>
(B + (t— )22
(IR + (- 5)%) x(25s) ds,

and

I;Tk,j (2,t) := 9k/29(m—5)(j—k)—j

| PRCEE

(A.3) (R? + (t — 5)2)m/2 (t =)

0 (2D (R 4 (8~ 5)%) x(2°7s) ds.

Notice also that ¢;(w)e™™ =: (} (w) is a function of the same type as

(j, and that
L) 2
t—s s

= Nj(arctan (tl—%s> + %) (th_*__(::i)]j)l/? '

Gy ( arctan (
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This shows that we may put Fkyj also into the form

F, i(z,t) = ok/2 9(m—1)(j—k)

~ 1 t—s—1R
!/ —
(A1) /CJ arctan — S) + s> (R + (t — 5)2)m+2)/2

(1= )(24(’“ (R +(t—5)%) x(2"s) ds.

Now observe that there is some A € N such that
By C{(z,t) €H,y, ¢ |22 <24, |t] <24} = Q

This is clear since |(z,t)| := (max {|z|2, |t|})*/? is a homogeneous norm
on H,, , hence equivalent to the optimal control norm. Thus || f||z1(s,) <

1f L @)- ' ' '
Moreover, replacing R by 27-kR. t by 297%t and s by 277 Fs, we
see that | Fi;llzr(my) < [[Fk.jllLr26-i@,arat), With

Fie j(R,t) := 2M/2mU=8)

k—j melt — 5 —1
(A1) : /Cj(arctan (t ]—%s> + 2 i ) (R1§+ (t(t— 3)2)(mf2))/2

(1= p) (22" (R? + (t — 5)*)) x(s) ds .

Similarly, instead of estimating the L!(Bjy)-norms of CN}’k,j and H, k,j, We
may estimate the L!(28=7Q)-norms of Gy ; and Hy, ;, defined by

G (R, 1) := 2k/2 2tm=1(-k)

wn o fofmn() B

o(22D(R? + (t — ))) x(s) ds

Hy j(R,t) := ok/2 9(m—=2)(j—k)—j

k—j — g)R™m—1
(A.3) ./Cj(arctan(t ]—%s> + 2 - ) (R2(: 0 )_R3)2)m/2

¢' (22 (R? + (t — 5)°)) x(s) ds .

Notice that we are interested in these functions in the region

(2.11) 0<R<2k7+4, |t] < 2F—it+4,
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By || f]| we shall denote the L'-norm of f restricted to this domain.

B) The case j > k+M. In this case, we have s < 2775+ in the integral
for Fy, j, and so, if (R,t) € @, then

24k=0) (R? 4 (t — 5)?) < C22(k=0) < 1,
if M is choosen sufficiently large. Thus, in this case ﬁ’k,j = 0, and

consequently we shall here entirely make use of formula (2.10).
After scaling, we are thus lead to estimating the L'-norm of

Gy j(R, t) .— 9k/2 9(m—=1)(7—F)
R 2k_j Rm—l
(B) : /gj (arctan (t — s> + . ) RSSO x(s) ds

on the region given by (2.11).

3. The change of coordinates.

In the estimates to come, the following change of coordinates turns
out to be useful

R R? + (t — s)?
(3.1) Ti= y::#, 5:=8,
with inverse transformation

Y Ty
(32) t:W—i_S’ R:$—>2, §=S5,
where we have put
() == (14 2%)1/2,
Then one verifies easily the following formulas
(3.3) dRdt ds = %dyds dz
x
2 2 y? Y

3.4 R t— = - t—s=-—=.
(3.9 G R F
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Put )
ok—J

Y j(x, s) ‘CJ (arctanx + ) ‘ .

Let A € N be as in (2.11), and fix M € N such that M > A + 20.
We shall frequently make use of the following

Lemma 3.1. a) If j < k+ M, then

/WA%MMﬂﬁéC,

with C independent of j, k and x.
b) If j > k+ M, then

/ Yy j(x,s)de < C,
|| <210+A+k—j

with C independent of k,7 and s.

PROOF. Put u := arctanz € [0, 7]. Since supp x C [1/8,32], we have

ok—j+3
/‘gj u+—> (s)‘dsgCﬂﬂ_k/ 1 (u + )| ds .
2k—j—4
And, if £ — 7 > —M, then it follows easily from (2.4) that
ok —j+3
/ G+ )| ds < C 2479
2k—j—4

This covers parts a) of the lemma.

As for b), assume now that 16+ A+ k—j <10+ A - M < —10,
and |z| < 210FA+F—I — [ < 1.

Since arctan (—z) = m — arctanz, and since [(j| is 7-periodic, we

have
[T S T——

Thus, choosing v = tan™ !z with |u| < tan™!(L) < L as variable of
integration in place of z, where tan™! denotes the branch with values
n [—7/2,m/2], then we get

2k=J
[ wawoese [ e E ) mse,
|o|<L |u|<L S
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again by (2.4).

4. Estimates for j < k + M.
4.1. Estimation of Hy ;.

Since 7 ~ 1 for 7 € supp ¢, we get by (A.3) and Lemma 3.1 that

|Hy, ;| < C ok/2+(m=2)(j—k)—j

( Ty m—1
()2 \ () Y|
. Y (T, s . dy ds dz
./y~2jk(m) V()] (i (z)*
(x

< O 9k/24m(i—k)—j |1 di

- <x>m+2

< Czk/2—mk+(m—1)j )
Consequently,
(4.1) > | Hijl <0272

j<k+M

REMARK. In the above estimate, we did not make use of the condi-
tion (2.11). Notice that in the (z,y, s)-coordinates, this condition is
equivalent to

(4.2) Iyl < C2kI,

(z)

This condition will be of importance in the estimations of ||F}, ;|| and
1G5l
In fact, arguing similarly as for Hy, ; and using (4.2), one finds that

1Bl < C ((k = §) + M) 224m0=8) Gy )| < 0 2b/2rmU=h),

Thus, if one choose any € > 0, one finds that

(4.3) > (1| Fr.;

J<(1—(e+1/2)/m)k

+ |G 4ll) < Ce .
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In order to deal with the remaining values of j < k + M, we shall have
to perform another integration by parts.

Notice, however, that by (4.3) we may from now on assume that j
is sufficiently large, so that 277 < 1.

4.2. Estimation of Fy ;.

For R and t fixed, let us put
a(s) = (R4 (t —s)))YV2=|t—s—iR]|.
Notice that (4.2) just means that
(4.2") a(s) < C 287

and that for s in the support of the integrand of (A.1) we have a(s) >
27—k 5o that

(4.4) 207k < a(s) < C 287,

In the discussion to follow, we shall always assume that the estimates
we shall establish are valid for s in the support of the integrals under
examination without further mentioning.

We shall say that a function h of R,t and s is a symbol of order (3,
if it satisfies estimates of the form

0Dh| < CjaP7,  jeN,

at least for j = 0,1, 2, where Cj is independent of R, ¢ and s. Evidently
a is a symbol of order 1. Similarly, arctan (R/(t — s)) is a symbol of
order 0. For R and t fixed, let us write

2k—J

©(s) ::arctan(tl_{8>+ p

(Rz—%iglf;;;;3v+m/z(1“9)((2k_ja(sD2).

k(s) ==

One checks easily that « is a symbol of order —m — 1. We may then
write

(4.5) Fi j(R,t) = ok/2+m(j—k) pm—1 /Cj o p(s)k(s) x(s)ds.
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In the latter integral, we can perform an integration by parts, if we
observe that

(4.6) G =277 5;. ,

where Zj is a function of the same type as (j, so that g; = |EJ| satisfies
in particular (2.4). (4.6) can in fact easily be obtained by going back
to the definition of ;. Since

d ~ 1

Gilp(s)) = =277 - (¢j o 0)(5) 70

we may write Fy ; also in the form

/

(47)  Fi (R, t) = 2k/2+mG=F) Rm—l/gjw(s)z—j(ﬂ)'(s) ds .

Since .
—i(EX
2 3( o ) 29I K 277y "
- / + / —-27 20
KX ¥R ¥ X @'

we shall gain by the integration by parts if these terms are bounded,
say by 1/3. Now, if & is formed as &, only with p replaced by a function
p of slightly smaller support, then

/ -1

a

4.8.& T 1
(4.8.2) "

‘ K

o'k

and similarly, since arctan (R/(t — s)) is a symbol of order 0,

_ 2k— —i _
o'l < 007+ ) ORI AT,
hence
<,0H o(k—3)/2 +a1\2
(4.8.b) ‘? gc( S ) .

¥

Finally, if x is similar to x, only with a slightly larger support, then

(4.8.c) ‘ X
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The natural condition in order to gain by the integration by parts is
thus

(4.9) o:=2

s 9(k—35)/2 -1, 2
—3(2 ,+a ) <1.
2

Under this condition, we get

(4.10) ‘2—j(¥)' <Clo+ 27 0)?) g

¥

In fact, we have

. I
(4.11) 2—902(2 - )
2
so that
s [ﬂ'// s
27— 1 <C(2 10)1/2.
'Rl

Moreover,

so that by (4.4)

' (5)] < C" (™ (s) + 289 < C2F7 .

But then
ok—2j 9—j
O- - )
@' [=4
so that
/
‘2_3 >/<~ <(Co.
P X

In order to simplify the notation, we shall often replace again & by
k and x by x in the estimates to follow.
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Let us now express the relevant functions in the coordinates (z, y, s)
of Section 3. Some easy computations based on (3.4) yield

_ vl
CL(S) - <$> 9

2k—i
©(s) = arctanx + ——
s

d =222,

x  2k-i
e

= ! (2—3’/2 2U-R/2 |y| 4 27F <33>>2
y—20-ks2 g '

Observe now that, due to the choice of g, |y| > 2-2/7Fs2(z) for any s
with (x %)(s) # 0, so that

. . k—j 2 )
(413) 0'(3) ~ 277 <2(.7_k)/2 + 2|T|<'T>) <0277 <« 1,
hence
(4.14) o(s) + (277 a(s)V/?) < C 277

We shall therefore estimate || £}, ;|| by means of formula (4.7), which, in
combination with (4.10), (4.12), (4.14) and (4.4) yields

1Ei Il < € 2/24m0=0)
3 e 5) R (0 + (277 0)12) e x(s) ds
2i—k<a<C2k—J

< ok/2Am(i—k)=j

| |m—1 1
. Vi (@, 8) T T dydsdx
/21—k(m)§|y|§02k—j i )<$>m+1 |y

<C ok/24+m(j=k)=j [. 7
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again by Lemma 3.1.a). This implies

(4.15) > Pkl < CRP27R2
J<k+M

4.3. Estimation of G}, ;.

We shall proceed similarly as in the preceding section. We define
©(s) and a(s) as before, only x has to be replaced here by

w(s) = (R? + (t — 8)*) 7"/ 0229 (R? + (1 — 5)%)) ,

so that now £ is a symbol of order —m. Notice also that for x(s) # 0
we have

(4.16) a(s) < C 217k

in place of (4.4).
Then

G j(R,t) = ok/2+(m—1)(G—k) pm—1 / Cjow(s)k(s)x(s)ds.

We may perform an integration by parts as in the preceding section,
and the gain by this can be estimated by the same function o defined
in (4.9). However, here we may have ¢ > 1. Therefore we fix a cut-off
function p; supported in |z| < 2 and with g;(x) = 1 for |z| < 1, and
write

Gr;(R,t) = ok/24+(m—=1)(j—k) pm—1
([ Gt s xts) antor(s)) ds
+ [ Gow®re)x(s) (1 21) (o() ds)
Performing the integration by parts in the first integral, we find that

(4.17) |G ;| < C (Gllc,j + G%,j + G%,j) ’
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with
Gy (R, 1)
= G gt [ G0 g(s) X (s) /(5| s,
1<o<2 ¥
G j(R,1)

. ok/2+(m—1)(j—Fk) Rm—l/ & 0 p(s) (o + (2770) ) k x)(5)| ds

<2

G (R, 1) = 2F/2Hm =1 Rm—l/ ¢ op(s) (kx)(s)|ds.

o>1

Notice that in the second term we have already estimated [277 (k x/¢)’|
by C'|(o + (277 0)'/?) k x|. This is justified, since (4.16) remains valid
here — the only property of x made use of here is that |x'/f| < Ca™!.

If one expresses the functions arising in these integrals in the
(x,y, s)-coordinates, formulas (4.12) remain the same except for the

estimate for R™~1x(s), which here is to be replaced by

(4.12') R™lk(s) < C @% ﬁ g(<2k_j é—>)2> .

Observe also that
(4.18) 0’| < C27 o', ifo(s) ~1.
In fact, if o(s) ~ 1, then by (4.8.b)

CL_2

o' < C2792 o2 ( T
||

I
k—3)/2 N

)

< C((z—j %)%/2 4 9-i/? (2(’“—j)|/;/|+ a~? >3> W

<C@0+2 0% ||,
And, since |y| < C 297 (), by (4.16), we see that

9=i/2Hi=k (1)1 2
y—20-kg2yg )

(4.19) o(s) ~ (
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This implies

(4.20) ly — 207k st < C2792 Tk () ifo(s) > 1.

Now, observe that, due to (4.18), we have |Gllc,j| <C |sz| Therefore

IGL || +1IG2 || < € 2k/2+m=1)G=F)

2™t 1 |y
4.21 / Vi, s — dydsdx,
(4.21) oot VI T ] T

which, by (4.20) and Lemma 3.1.a), can be estimated by

|$|m—1

dx

ok /2+(m=1) (k) /2+j—k / .
<$>m—|—1

This yields

(4.22) IGE,1| + |G || < € 2m=1/DE=k),

Finally, putting B := 279/217=%(z:) by (4.19) we have

B 2
o)~ (—g-rars) -

Thus, if 0(s) < C?, then this and (4.16) imply

B j—k .2 1 9j—k

B oy 2u <ot ),
C

and then

/ |o| dy
0<2,a<C2i~k

<V2 o'/ dy
0<2,a<C2i—k

B
BJO<|y—21—Fs2a|<Crai—(zy [y — 297 5% a
c27F (x)
< CBI <7>
< og 5
< C27i/%Hik gy

<V2 dy
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Similarly,
/ 1277 J|1/2 dy < C277/2971/2+i—k ; ().
0<2,a<C2i~k

This implies

|G || < € 2k/2Hm=1)(=k)

- / / Ui (2, 8) (o (5, 9)| + 1277 o (e, 5, )| /?)
s~1J0<2,a<2i -k

|$|m—1

<x>m+2

|$|m—1

<_T>m+1

-dy dx ds

< O f2m=1/2)-k) / d

< Ok 2m-1/2G-)
In combination with (4.22) and (4.17) we thus find

> NGkl < Ck.
j<ktM

Put together, the estimates of this section yield

(4.23) > N Kkjllzie,) < Ck.
j<k+m

5. Estimates for j > k + M.

In order to estimate the norm of G, ;, now given by (B), we follow
the same scheme as in the preceding Section 4.3 and split Gj; as in
(4.17) by performing an integration by parts on the region where o <
C. Notice, however, the following differences compared to the case
j<k+ M:

Firstly, since 1/8 < s <32 in (B), by (2.11) we have

(5.1) 27% < a(s) <2°
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in place of (4.16). Moreover, since

R 2k—i R(t—s) ok—i+1
/ o o 12 —
PO 2 T e B

by (2.11) and (5.1) we now have

" ok—j )
Lal<eie. Wisor,
4 2
so that
) 1 ! " 2k—2j
(5:2) 27 (‘ (;’LE; ‘(,:’()N( ‘% ) sC @'?
We shall therefore put
2k—2j
o= —ﬁp’Q

here. Then (4.10) remains valid.

With this function o, and with k = (R? + (t — 5)2)~™/2 ~ 1 here,
we may define Gi,j, ¢ =1,2,3, as before, where, because of (5.2), we
may even assume that G%y j is given by

ok/24+(m—1)(j—Fk) Rm_l/ I ow(s)(ckx)(s)|ds.

o<2

Then (4.17) remains true.
Since

if ¢ ~ 1, also (4.18) remains true, so that again |G}, ;| < C' |G} ;|. We
thus only have to estimate ||sz|| and ||G%J||
Now, by (5.1),
275(z) < Jy| < 2° (x)

Given this, (2.11) implies |z/(z)| < 2574+k=J hence

(5.3) |z < 210FAFR=T « 1
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as well as y
7 < 9A+k—j ,
‘(x>2 +] <

hence

(5.4) ly + s (z)?] < C 287

In particular, we find that
(5.5) yl~ () ~ 1.
In view of the definition of o, this implies that, in place of (4.19),

2—k

5.6 ~ - .
(56) 7 y—2 Ry

Now, if 0 > 1, then
(5.7) ly— 297k 2| < C27k/2,

Let D denote the domain given by (5.3), (5.4), (5.7) and s ~ 1. Then,
similarly as in (4.21), we get

61 < ORI [ o)y d
D
< O 2k/2 /D Yr,j(x,s)dydeds .
And, by (5.4), (5.7), we have
/ dy < C'min {2%77,27%/2}
(z,y,s)€D
Moreover, by Lemma 3.1.b),

/ Yy j(x,s)deds < C,
|| <210+ A+k—5 51

hence

(5.8) |1GE 1+ 1GF 4l < Cmin {22279 1}
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There remains to estimate ||G,2€,j||, which can be done similarly as in
the preceding section:
If 0 < 2, then we have

1 .
(5.9) TR <y — 2R 2| < e,
c

for some ¢ > 1, hence

2—k/2
/ o dy < V2 ———dy
0<2,|y|~1 2-k/2[e< |y—20—ks2g|<c ly —277F 52 g

< Ck27k/2,

Moreover, by (5.4),

/ |a|dy§/ 2dy < C 287
<2, y+5(a)? | <2k~ ly+s(w)2|<C25 3

Thus, if £ denotes the domain given by (5.3), (5.4), (5.5) and (5.9),
then

“G%,j“ < C 2k/2+(m=1)(j—Fk) / i iz, 5) |o] |x|m—1 dy da ds
&

< C k2F/2 min {27#/2 2k—7} Yy j(x, s) de ds

|| <210+ A+k =3 51

< C'kmin {1, 2%/279}

In combination with (5.8) and (4.17) we thus obtain

(5.10) > Bkl <CE.
i>k+M

Together with (4.23), this proves Proposition 1.5, which completes the
proof of the theorem.
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