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Regularity estimates via
the entropy dissipation
for the spatially
homogeneous Boltzmann

equation without cut-oft

Cédric Villani

Abstract. We show that in the setting of the spatially homogeneous
Boltzmann equation without cut-off, the entropy dissipation associated
to a function f € L*(RY) yields a control of \/f in Sobolev norms as
soon as f is locally bounded below. Under this additional assumption
of lower bound, our result is an improvement of a recent estimate given
by P.-L. Lions, and is optimal in a certain sense.

1. Introduction.

The Boltzmann equation in the kinetic theory of gases is one of the
fundamental models for nonequilibrium statistical mechanics. The gas
is modelled by a density function f(¢,z,v) > 0 on the extended phase
space of particles, such that

(1) %H-W:Q(f,f), t>0, zeRY, veR"Y,
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where Q(f, f) is the Boltzmann collision operator, which acts only on
the velocity variable v. If f is a function of v € RY, it is defined by

@ QU= dn [ awBe-v.w) -1,

where S™~1 is the unit sphere in RY, f' = f(v'), and so on, and

vV=v—(v—v4,w)w,
®) {=
vl =v + (v — v, w) w.
The kernel, or cross-section, B : RY x S¥~1 — R, is a weight function
modelling the interaction, such that B(z,w) depends only on |z| and
(2/]z|, w).

The great majority of mathematical works upon the Boltzmann
equation is based on the assumption that B is locally integrable on
RN x SN=1_ However, this assumption is often unsatisfactory from the
physical point of view, since it is always false if the particles interact
through forces of infinite range [20], [3], [24]. In particular, for inverse
power laws, B(z,w) = |z|7 b(cos ) with cosa = (z/|z|,w), v = (s —
(2N—-1))/(s—1), and if N = 3, b has a singularity of order (s+1)/(s—1)
as cosa@ — 0. In this work, we shall precisely focus on the case where
B is singular.

We shall only be concerned with the spatially homogeneous case,
i.e. when the unknown in (1) is assumed not to depend on z, so that
(1) simply reads

0
() T oQup. 120 veR",

(we refer to [19] for partial results in the inhomogeneous case). For
this equation, there is by now a fairly complete theory of existence in
an L! setting for non cut-off potentials, which covers all the physically
interesting potentials [3], [15], [24]. In the last reference, we also showed
how one could rigorously derive the (spatially homogeneous) Landau
equation for plasmas, which is the equation corresponding to (4) in the
case of Coulomb interactions.

Apart from existence results, very little is known from the analyt-
ical point of view. However, it is conjectured that, due to the nonin-
tegrable singularity in B, solutions to (4) become smooth for positive
times (which is false for cut-off kernels). The likelihood of this conjec-
ture is reinforced by the study of the Landau equation [18], [4], [13],
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which is obtained from the Boltzmann equation by “concentrating on
grazing collisions”, and has definite smoothing (and compactifying) ef-
fects. In particular, (in the homogeneous case) its solutions become
C* for positive times, at least for the so-called “hard potentials” (see
[13] for precise statements and complete proofs).

The smoothing conjecture for the Boltzmann equation was tackled
by Desvillettes [10], [11], [12] and Proutiére [21], in rather particular
cases, with the help of Fourier representations. The proofs are however
very technical, and depend highly upon the dimension N. In the afore-
mentioned works, the case of radially symmetric data in 2 dimensions is
treated (or non radially symmetric if y = 0; for more complicated cases,
the proofs have still not been written down. Moreover, some unnatural
smoothing of the kinetic cross-section is needed (while |z|7, 0 <y < 1,
is not smooth near z = 0).

In [13], a different strategy was followed for proving smoothness
in the Landau equation. The proof is at the same time simpler and
independent on the dimension. Our aim here is to give a (loosely re-
lated) possible startpoint for a complete study of regularization effects
in the Boltzmann equation, by showing that the usual estimate on the
entropy dissipation automatically entails such an effect.

More precisely, let us define

) D= |

R

2Ndvdv*/SN_1 dWB(U_U*,CU)(\/f’f:‘_ /ff*)2 > 0.

The functional D is well-defined (possibly infinite) on L!(RY), for in-
stance by the use of the joint convexity of (z,y) — (V& —/¥)* on R
It is clear that D is related to the usual entropy dissipation functional,

f'1
fre”

©) D=7 [ dvdo. [ dwBo—v.w) (71 1) lop

since, by the classical inequality (z — y)log (z/y) > 4 (v — \/y)?, one
has

D(f) > D(f).

Our main result is essentially the following. Let f € L (RY), such that
D(f) is finite, and assume that

(7) B(z,w) > ®(|z|) b(cos a) ,
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where @ is smooth and bounded below away from 0 and infinity, and b
has a singularity of order 1 + v, v > 0. Then, if f is locally bounded
from below,

(8) ViFenr?.

As an immediate consequence of this estimate, solutions of (4) for an
initial datum which has finite entropy, and is locally bounded below,
will satisty for all R,T > 0

T
2
L At IVF @ s urm <20

since a lower bound is known to exist for these solutions [8] (see also
[22] in the cut-off case).

Closely related results have been obtained recently by Lions [19].
Before we comment on them, it may be of interest to briefly track
the idea that smoothness estimates for the Boltzmann equation should
be obtained naturally for \/f instead of f. First of all, such estimates
have been sought for a long time in the context of Maxwellian potentials
(when B depends only on (z/|z|,w)). Indeed, it is now known that in
this case, the Fisher information

1) =4 IVFlG =2 [ [V

is a Lyapunov functional [16], [23], [7], [25]. Complete proofs are given
in the last reference.

In a more general setting, regularity estimates for /f and entropy
dissipation estimates are associated together in works by Lions [17], [19]
and the author [24] (see also Cercignani [9]). In [24], it is shown that
D(f) yields sufficient regularity on the tensor product /ff, to give
a meaning to (4) even for very singular and very soft potentials (i.e.
v < —2). More generally, D(f) gives some control on the regularity
of \/ff«. It is then a natural question whether this estimate for /f
implies a control of f itself. A first strategy to answer this problem is
to introduce a well-chosen artificial weight-function B(v — v,,w), and
integrate the estimate for \/f’ f. —/f f+ in v, and w after multiplication

by B , thus obtaining an estimate on

QT = [ dv.do B —v.0) (VT - VT
Q+(\/?7 \/?) o Q_(\/fv \/?) :
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Then one uses the regularity properties of Q% in L? (cf. [17], [26], [5]),
which is of course the natural space for v/f, and the simple form of Q.
This is what Lions does in [17] (to characterize equilibria distributions
for (1) under very little assumptions) and in [19], to prove an estimate
of the same kind as (8), namely

1
(9) VfeH;:,, for all s < 51 = % <7y> .
1+

The exponent is hence not so good as the one in (8), but a lower bound
is not needed for it. The proof by Lions is very simple, but relies on the
deep result of smoothing of the positive part of Boltzmann’s collision
operator. It is possible that a better knowledge of the explicit constants
in this result (see [5] for some of them) could lead to (8). In any case,
our proof implies that v/2 is the optimal exponent, in the sense that
for all € > 0 one can find a function f such that

D(f) < and H\/?HZ,,/HE = 00.

Moreover, our proof is elementary and relies only upon careful changes
of variables. As far as the physical meaning is concerned, it is another
illustration of the general principle that the entropy dissipation yields
regularity “along the collisions”, either in the tensor phase space R?N
(via estimates on \/f' fL—/ff. ), or in RY (via estimates on v/f'—+/f ).
See [14] for still another manifestation of this principle.

The only drawback of this method is the need for a lower bound.
It is possible that our computation can be refined in such a way to
dispend with this assumption, maybe at the loss of the optimal exponent
v/2. In the end of the paper, we give possible hints for this. However,
we shall not go further, since on one hand Lions’s result is general
enough to cover all the cases when one is not interested in the exact
exponent (in particular for compactness properties associated to the
complete equation (1)), and on the other hand a pointwise lower bound
is available for f in realistic problems (in the homogeneous case only).

The plan of the paper is as follows. In Section 2, we give a decom-
position of D(f) in two terms, one of which includes cancellations, and
the other is nonnegative. The former is shown to be controlled by L!-
type estimates in Section 3, and the latter is shown to give the desired
estimate via the so-called Carleman representation in Section 4. Fi-
nally, in Section 5, we give some remarks about the role of intermediate
collisions.
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2. Splitting of D(f) and main result.

Let us write

VI~ ViTe = 5 T =V T+ VT)
+S WP+ VDW= V).

(10)

Accordingly,

(I~ VTTY
= L (T = VI T+ VR
+ VI + VD VF - V)
5 VI = VHWEA VW + D T~

Reporting in (5) and using the classical change of variables (v, v,) —
(v',vl), involutive and with unit Jacobian, we obtain

(11)

D(f)=S8(f)+T(f),

where

(

S() =
12) (VP = VIR (VE+ VT2,
| 1) = 5 [ dvdvedo Blo = vew) (7= P (12 - 1),

/dvdv* dw B(v — vy, w)

DN | =

It is clear that in T'(f) one can expect strong cancellation effects, while
S(f) is nonnegative. We shall prove that T'(f) is well-defined without
any regularity assumptions on f, while S(f) is (locally) bounded below
by a multiple of the square of some Sobolev norm of /f.

Before we state our results, let us discuss the assumptions for B.
First of all, since D(f) is monotonic in B, it is sufficient, to obtain a
general result, to treat the case when B is “small”. We shall therefore
assume, without real loss of generality,
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Assumption A. B(v — v,,w) = ®(|Jv — v,]|) b(cosa), where

(13) cosa=k- w, =
[0 = v

Assumption B. ® € WH°(R, ) is a positive function with a bounded
derivative, and is bounded from below uniformly, except maybe near 0
and +0o0.

The last assumption means of course that for all numbers e, R > 0
there exists K (g, R) > 0 such that ®(|z]) > K (¢,R) > 0ife < |z] < R.
This assumption is perfectly realistic from a physical point of view.

Now, we assume b to be singular only for grazing collisions, in the
sense

Assumption C. b € C([—1,1]\ {0}), and

S C C
el |COSOZ|1+V ~ (7-[- >1+1/ 3
5 —

(14)  b(cos ) O<v<2.

Here a € [—7/2,7/2), C stands for arbitrary positive constants,
and the sign ~ only denotes similar asymptotic behaviour near the
singularity (cosa = 0). Note in particular that b is bounded below.

It is clear that the parameter v measures the strength of the singu-
larity of B (note that if « ~ 7/2, dw and da are roughly proportional).
Let us comment on the assumption v < 2. In order to do so, we in-
troduce another (classical) representation for the collision operator (2),
based on the unit vector o such that

;U v |u— v
o =

2 2 ’
15
(15) ;U U v — vy
v, = —
* 2 2

In this representation, Boltzmann’s collision operator keeps the same
form as in (2), except that dw is changed into do, and B(v — vy, w) into

Bw—uv,,0)= 2k -w|)"® 2 Bv—-u,,w).

Now, grazing collisions correspond to k = o, i.e k-0 = 1. Assumptions
A and C have to be replaced by their counterparts
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Assumption A’. B(v — vy, 0) = ®(Jv — v.|) b(k - 0).
Assumption C°. b € C([-1,1)), and

~ C 1 C
(16) b(cos@) > SNag i TR O<v<2.

Here § € [—m, 7]. Note that & = 7/2—6/2. Since do is proportional
to sin™ =2 0 df, we see that

A= / doblk-o)(1—k-o)= CN/ df b(cos 0) sin? g
SN-—1 0

is finite if and only if » < 2. Since A has the physical meaning of a
total cross-section for momentum transfer, we see that our assumption
on v is physically justified. This is consistent with the state of the art
concerning the existence theory for the Boltzmann equation [24].

We can now state our main result. We use the classical notation

11z = /RN [f)| (A +]ol)dv,  Li={f € L'RY): [|fllp; <oo}.

Theorem 1. Let f € L}(RY), and let B be a cross-section satisfying
assumptions A, B, C. Then

i) There exists a constant C, independent of f, such that

(17) THOI< ClIflles 1z -

ii) Assume in addition that there exists a strictly positive function
e(R) such that

lv| < R implies f(v) > e(R), forallv e RN | for all R > 0.

Then there exists a strictly positive function K(R), depending only on
1 fll1, e(R) and the cross-section, such that

(18) S() = KR |VF 72 oy<ry -

As an immediate consequence of the monotonicity of the entropy
dissipation, we then deduce the



REGULARITY ESTIMATES VIA THE ENTROPY DISSIPATION 343

Corollary 1.1. Let f € L}(RY) such that D(f) < oo, and f satisfies
the additional assumption of lower bound. Assume that B > By, where

By is a cross-section satisfying assumptions A, B, C. Then \/f € Hll;{f.
REMARK. After completion of this work, we became aware of two
Notes by Alexandre on the same subject [1], [2], where the Carleman
representation is also used, but no splitting of the entropy dissipation as
ours. It seems very difficult to understand whether the results therein
are comparable to ours, but Alexandre kindly informed us that he had
used this splitting independently in recent work, and obtained a bound
very similar to ours, as well as related results in the (very difficult)
inhomogeneous case. The proofs by Alexandre rely on the theory of
pseudo-differential operators. Desvillettes has also shown us some of
his partial results in collaboration with Wennberg, which are consistent
with both our conclusions and our method of proof, but do not start
from the entropy estimate.

3. Cancellation effects for grazing collisions.

In this section, we prove the estimate (17). First, by the usual
change of variables (v, v,) — (v',v)),

T(f) = / do dv, dw B(v — v,,w) f (fu — f1) = / 0 f0) G)

with
G(v) = /RN o dv, dw B(v — v.,w) (f« — f1) -

We now proceed to estimate G. We turn to the o-representation (15)
and use Assumption A:

Gy = [ dodo (o= ul)ik-o) (1.~ ).

Now, for fized o, the change of variables v, — v/, is valid, and an easy
computation yields

1 1
(19) dvl, = 2—N(1+(k-0)) dv, = 2—N(1+0039) dvs .
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Let k' = (v —v)/|v — v|. An elementary geometric argument shows
that

6
(20) 1+(k-a):1+0059:20052§:2(k'-0)2.

By symmetrization, one can assume that b(cos f) is supported in (—m/2
<0 <7/2),i.e (k-o) >0 (this can be seen as a consequence of the
indiscernability of the particles), so that the Jacobian in (19) is bounded
below.

For given o, let us introduce

Vo 1 VL — vy

It is easy to check that for given (v, v/, o) such that (v—v,0) > 0, the
equation with unknown v, € RY

Yo (v3) = vs

is uniquely solvable (note that if v} is given by (15), then 2 (v—v,,0) =
(v — vi,0) + |v — vi| > 0). Moreover, the condition (v — vy, o) > 0 is

equivalent to
v— vl 1
E,o)= ( ) > — .
F =)~

See the geometric interpretation of ¢, in Figure 1.

V. =\\uc V%)

Vi

A

Figure 1. A is the mediatrix of (v,v)); cos =k - o; cos’ = cos (0/2).
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Accordingly, we write (using (19) and (20))

Gv) = /k >0dv* do ®(|v — ve|) bk - o) f(vs)

! 2N_1 /
— dv, do ———— P(|v — Y, (v,
/ o 0 Gy @l =)

b2 (K - 0)* = 1) f(v))

Since the integration variable in the second integral is a dummy one,
we conclude that

(21) G(v) = /RN dv, f(vs) C(v, vs)
with

Clv,0,) = /SN_l do (®(j0 — va]) Bk - ) ooy
@) =80 o)) Gy H2 0 = 1) sz

(23) = (jv—w.) /SN_1 dob(k-0) 1jocpoer /vy

+ d(jv — v.]) /SN_I do (5(k- ) - %5(2 (k-0)? - 1))

(24) ) 1{k-0>1/\/§}
+ [ e @00 = (o = v (02)])
(25) - (2_7;)22;(2 (ko) = 1) genvs) -

As an immediate consequence of Assumptions B and C, the expression
(23) is bounded by a constant, independently of v,v,. Let us now
consider the last term (25). Still using the notation cos@ = k - o, we

see that
v — vy

[0 = o (va)| =

cos B
so that

9(J0 — ) = B0 Yo (02))] < ¥l o — vl (5 1)
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Therefore, as a consequence of Assumption C, the integral (25) is boun-
ded by

w/4
O (10 |oo [0 — 04| / d05(cos 20) (cosf — 1) sin¥ 2 ¢
0

w/4
< On 9|00 (0] + |v*|)/ 4091
0

< O (fo] + Joil) s

for some v < 2, where the constant C depends only on N and the
constants in Assumptions B, C.

Finally, we estimate the integral in (24). By a spherical change of
variables, this is

N-1

7T/4 . N_2 - 2 ~
CN/O df sin 7 (b(cos ) — gy b(cos 2 9))

/4 _
= CN/ df sin™ =2 0 b(cos 0)
0

w/2 0 oN-=-2
—CN/ df sin™ 2 (§> 7913(0039).

0 cos2 [~

2

By the formula sin® ~%(0/2) 2V =2 cosV=2(0/2) = sin?¥ 72 0, we get
/4 _ 1
CN/ d sin™ =2 0 b(cos 0) (1 — 79>
0 cos™v (—)
2
w/2 oN-2
- CN/ do sin™ 2 (g) = B(cos0).
m/4 cos? (5

The second integral is convergent by Assumption C, and so is also the
first, since for N > 2,

1
1—-—— — =0(@?), as6—0.

o (3

In the end, we find
(26) C (v, vi)| < C(Jv] + o)
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whence the conclusion.

4. The Carleman representation.

We now transform S(f) into an expression looking like the square
of a (fractional) Sobolev norm. To this purpose, we use the so-called
Carleman representation, which was actually introduced by Carleman
in [6], and later reformulated by Wennberg [26]. It should be noted that
the purpose of Wennberg is also to obtain regularity estimates, though
in a very different context.

The idea of the Carleman representation is to replace the set of
variables (v,v,,w) by the set (v,v,v.), where v € RV, v’ € RN and
vl € Eyyr, the hyperplane going through v and orthogonal to v — v’.

Let us recall briefly the argument. Following Wennberg, we intro-
duce the variable ¢ = |[v — /| and note that
(27) {UI:HW’

!/
Ve = U, tqw.

Since w and FE,,  are orthogonal, the second relation entails dv, =
dvl, dq, where dv! denote the Lebesgue measure on E,, . On the other
hand, dv’ = ¢V ~'dgdw. Hence,

dv!, dv’ dvl, dv'

N / f— =
dv, dw = dv,, dqdw = N1 " oV

Note that dv! is a (N — 1)-dimensional measure, while dv’ is N-dimen-
sional.

By Assumption A, and since cosa = |v — V'|/|v — vy, |[v — vi| =
|v" — vl |, we obtain

1 dv dv'
S(fy==- [ 4
(f) 2 /RzN |U — U’|N_1

(/E v, o'~ o)) (VL f*>zb(H>>
(28) h

NGNS

Note that (for given v, v") v. and v, describe parallel planes (in fact,
ve = (v —v) +0l).
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Using Assumption C, for some positive constant K,

(W ouly s gl e
o =) = =

Thus, we can write

(29) S(f)>K [ dvdv' A(v,v') (VW) = /[ (0)?

R2N |U’—U|N+V

with

Amwz/)d%MW—%Mﬂ+mw¥%Wf
E

’U’U’

Let us set U(|z|) = |z|*™ ®(]z|). By Assumption B, ¥ can vanish only
near 0 and oo. We note that

Mszé mwwumum@+é do, W(Jo — v,]) ().

’U’U’ ’U”U

The estimate (29) is a Sobolev estimate as soon as A is bounded from
below. This is clearly true locally if f is locally bounded from below
(it suffices in fact that all integrals of f upon bounded portions of
hyperplanes going through v be bounded from below, locally in v).
This completes our proof.

REMARK. The coefficients A(v,v’) are given by Radon transforms, and
therefore are likely to be smooth, in some sense; this remark, combined
with the method of the next section, could help relax the assumption
of local lower bound.

5. The role of intermediate collisions.

In this section, we only want to emphasize how the method applied
above can be refined by the use of intermediate collisions. Indeed, the
coefficients A(v,v’) of the previous section measure, in some sense, the
number of collisions in which the particles change their velocity from v
tov’. The “gain of regularity” therefore depends upon these coefficients.
But particles can also gain an arbitrary velocity v" € RN before they
gain the velocity v’. We shall see how to make this vague physical idea
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more precise. Even though we did not find any application for it, we
think it likely that this method could be useful for related problems.

Let us rewrite the estimate (29) with v’ replaced by w: up to a
constant,

/ dv dw A(v, w) (\/f(’v) — \/f(w))z < S(f).

|v — w|N+v

As a consequence, for any C', ¢ > 0,

(VI = Vfw))?

(l (i (i ! zl 9 ]- v—w Clv—v' C / 22V+1/—5
( )

< C(S(f). C.e)
< 0.

Indeed, in the domain of integration, |v" —w| < (1 + C), so that the
integral (30) is bounded by

CN+”(/2N dvdw A(v, w) (Vi) - \/f(w))2)

lv — w|N+v

1
. Wy
(/|v’—w|§1+c |UI _w|N_6

Similarly,
/Rwdv dv' dw A(w, v") 1fjw—v|<Clo—v'|<C}
(31) )2
(W@ - VT
|U_,U/|2N+1/—s 00 -
Since

(V) = V() <2(Vf0) = V() + 2 (Vf(w) = Vf(v)?,
we get by adding up (30) and (31)

/Rwd” dv" Lijy—uri<1)
- (/ dw min {A(v, w), Aw, ')} )
lv—w|,|v'—w|<Clv—v’|

(VTW) = JTW)?

|U _ UI|2N+U—€

< o0
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Since, of course,

_ )2
/RQN dvdv" 1(jp—v|21) (\/féjv)_ U,rj/\,ﬁv V< el <

we see that, up to an arbitrarily small degradation in the Sobolev ex-
ponent, the coefficients A(v,v") can be replaced by

A(v, ")
(32)
- 1

= dw min {A(v,w), A(w,v')} .

v/ma,x{|v—w|,|v’—w|}§C|v—v’|
Since the volume of

{weRY : max{|jv—wl|,|v —wl} <Clv—171}
behaves like [v —v'|V, we see that A is a kind of average of A, and hence
more likely to be bounded from below than A. Of course the procedure
can be iterated as many times as desired. We did not go further in this
investigation.

Acknowledgement. We thank P.-L. Lions for showing us his Note
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