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On radial behaviour and
balanced Bloch functions

Juan Jests Donaire and Christian Pommerenke

Abstract. A Bloch function g is a function analytic in the unit disk
such that (1 — |z|?)|¢’(2)] is bounded. First we generalize the theorem
of Rohde that, for every “bad” Bloch function, g(r () (r — 1) follows
any prescribed curve at a bounded distance for  in a set of Hausdorff
dimension almost one. Then we introduce balanced Bloch functions.
They are characterized by the fact that |¢’(z)| does not vary much on
each circle {|z| = r} except for small exceptional arcs. We show e.g.
that

1
/0 19/(r Q) dr < oo

holds either for all ¢ € T or for none.

1. Radial behaviour of Bloch functions.

Let D={2z€ C: |2 <1} and T = dD. The function g analytic
in D is called a Bloch function if

(1.1) lglls = sup (1 =121 1g'(2)] < 0.
S

This holds if and only if the Riemann image surface of g as a cover of
C does not contain arbitrarily large unramified disks. We denote the
family of Bloch functions by B.
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First we generalize a surprising result of Steffen Rohde [R093].
Let ¢1,c¢o,... be positive absolute constants and let dim £ denote the
Hausdorff dimension [Fa85, p. 7] of E C T. Note that dimT = 1.

Theorem 1.1. Let G C C be a domain with 0 € G and let g be a Bloch
function with ||g||s < 1 and g(0) = 0. We assume that, for almost all
¢eT,

(1.2) lirri g(r ) lies in C\G or does not exist.
T

Let I' be any halfopen curve in G starting at 0. If
(1.3) a1 < R < dist (0,0G), dist (I', 0G) > 2 R,
then there exists Er C T with

. C
(1.4) dimEp > 1 — EE

such that, for ( € Er, we can find a parametrization y¢(r), 0 <r <1
of I' with v¢(0) = 0 such that

(1.5) lg(r¢) —ve(r)| < 2R, for0<r<1.

This theorem is due to Rohde [R0o93] for the case that G = C. Thus
the radial image follows any prescribed curve with a bounded deviation
on a set of dimension almost 1. Now we apply this theorem to (injective)
conformal maps f of D into C. It is well-known [DuShSh66], [Be72] that

(16) f conformal implies || log f'||z < 6,
1.6
|log f'|lz < 1 implies f conformal.

If the radial limit f(() exists and is finite (which holds for almost all
¢ €T), we write

o(¢) = liminf arg ((r¢) = £(0)).
B(Q) = limsup arg (/(¢) = (<)

r—1

(1.7)

We give a partial generalization of [CaP0o97, Theorem 1].
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Corollary 1.2. Let f map D conformally into C and suppose that

(1.8) limsup |f'(r{)| > 1, for almost all ( € T,
r—1
(1.9) lim inf |f'(réo)| =0, for some (o € T.
T

Then, for j =1,2,3,4, there exist sets B; C T with dimE; = 1, such
that

i) a(¢) = —o0, B(C) = +o0, for ¢ € E;y (twist point),

ii) a(¢) = B(¢) = +o0, for ¢ € Es (spiral point),

iii) —oo < a(() < B(C) = +o0, for ¢ € E3 (gyration point),

iv) —oo < a(C) + 27 < B(C) < 400, for ¢ € E4 (oscillation point).

Moreover f(() is well-accessible for ( € E; (j =1,2,3,4).

The McMillan Twist Theorem [Mc69], [P092, p. 142] states that,
for almost all points ( € T, either ( is a twist point or the angular
derivative f'({) # 0, oo exists. The three sets of points satisfying ii), iii)
and iv) were introduced in [D092] and [CaP097]. The Twist Theorem
shows that these sets have measure 0. If lim,_,; f/(r () fails to exist on
a set of positive measure then Plessner’s Theorem for Bloch functions
[P092, p. 140] shows that assumption (1.9) is automatically satisfied.
The special case of Corollary 1.2 that lim f'(r () exists almost nowhere
is contained in [CaP097, Theorem 1]. The boundary point f(() is called

well-accessible [P092, p. 251] if there is a curve z(t), 0 < t < 1 with
z(0) = ¢ such that

diam {f(z(7)) : t <7 <1} =0 (dist (f(2(¢)),0f(D))), ast — 1.
It is known [CaP097, (3.17)] that the condition

(1.10) —b<logl|f'(r¢)| <0, b>1,

implies that f({) is well-accessible and [CaPo097, (3.18)] that

(1.11) |arg f'(r ¢) —arg (f(r¢) = f(Q)) < esb
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PROOF OF COROLLARY 1.2. Let n > ¢; see (1.3). By (1.9) there exist
rn, < 1 such that a,, = log f'(r, (o) satisfies Rea,, < —16n. We define

(1'12) (,Dn(Z) - L%Co fn - fOQOn sy n =

= o log ' o @, —a,).
Ttz (log f' o )

ol

Then ¢, € B with ¢g,(0) = 0 and ||gn||ls < 1 by (1.6). We apply
Theorem 1.1 with G = {Rew < |Rea,|}, R =n and curves

L), 0<t<1(j=1,2,3,4)

such that I';(0) = 0, Rel';(t) = 0 and, as t — 1,

i) iminfImI'y(¢) = —oo, limsupIm T’y (¢) = 400,

i) imIm T (t)) = +oo,

ili) —oo < liminfImI'g(¢) < 400, limsup Im I's(t) = 400,

iv) liminf Im 'y (¢) = 0, limsup Im "4 (t) = 37+2 n+(c3 by, +|an])/8,

see (1.15) below. Then (1.3) is satisfied, and (1.2) holds by (1.8)
because |Reay| > 16 n. We conclude that there are sets Ej, C T with
(1.13) dimEjnZI—%z, for j=1,...,4and n > ¢ ,

such that (1.5) holds for ( € Ej,. We obtain from (1.12) that

(1.14) log f/(2) = an +log (1 —r2) (1 4+ Cyrn2)"2) + 8gn(2) .
Since Rev¢(r) = 0 it follows from (1.5) that

L+,
(1.15) [log £4(r Ol | < b = [Reap| + log T

+ 16n

n

so that fy,(C) is well-accessible; see (1.10). We obtain from (1.5), (1.11)
and (1.15) that

lin sup |arg (fn(r¢) — fn(C)) — 87¢(r)]

(1.16) < 16n+ c3 b, + [Imay,| + 2

< o0,
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for ¢ € Ej,. Finally we set

Ej=Jeu(Ejn), §=1,2,34.

Then dimE; = 1 by (1.13), and if ¢ € E; then ¢ = ¢,((,) for some
Cn € Ejn-

Hence f(¢) = fn((n) is well-accessible, and by the Koebe distortion
theorem it is easy to deduce from (1.16) and the choice of ImT';(¢) that
a(¢) and B(¢) have the required properties.

REMARK 1. We assume now that f(D) is bounded by a rectifiable
curve. Then f € H! and thus [Du70, p. 24]

Fe) = e (3= [ sl e (~ [ 2 autc)).

where p > 0 is a singular measure. By definition f(D) is a Smirnov
domain if g = 0. Hence (1.8) holds if |f'(¢)| > 1 for almost all ¢ € T,
and (1.9) holds if f(D) is not a Smirnov domain. In particular Corollary
1.2 can be applied if f(D) is a Keldish-Lavrentiev domain, that is a
non-Smirnov domain for which |f/(¢)| = 1 for almost all { € T; see
[DuShSh66].

REMARK 2. There are local versions of Theorem 1.1 and Corollary 1.2.

We can replace T by an open subarc A and restrict ¢ and our sets E to
lie in A.

2. The proof of Theorem 1.1.

We use the martingale technique introduced by Makarov [Ma90]
into the theory of Bloch functions. For n = 0,1,... let D,, be the
family of dyadic arcs of length 27/2™ on T, that is,

(2.1) Dn:{{eit:?—nkgt<wyogk<2”}.

If I and J are any dyadic arcs then INJ =@ or I C J or J C I. Let
g€ Bandn=20,1,... We define the martingale associated to g by

(22)  Wa(¢) = Wa(l) = lim |17| g(rs)|ds|, forCeleD,,
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where | - | denotes the linear measure on T. Let ¢, cg, . .. denote suitable
positive absolute constants. We need two known results. The first is
due to Makarov [Ma90]; compare [Po92, p. 156].

Proposition 2.1 (Makarov). Let g € B, ||g|lg < 1 and let W,, be the
associated martingale. Then

1 1

(2.3) lg(rQ) =Wn(¢)| <c, for(eT, 1- on <r<l-— ot
(2.4) (Whn1(Q) = Wi(Q)] < ¢, for(eT.

We also need the following technical result [ON95], [Do97]; com-
pare [R0o93, p. 493].
Proposition 2.2 (O’Neill, Donaire). Let W,, be the martingale asso-
ciated to g € B and let ||g]lzs < 1,0 < a < w/2. Let I € D,, and
R > c¢1(e). If the stopping time
(2.5) 71(¢) = inf{n >m: [Wn(C) = Wi ()| = R}
is finite for almost all € I, then
(2.6)  Heel: larg(Wr¢)(C) = Wi(Q)) = 9| < a}] > cafa) 1],
for every 9. Here c1(a) and co(«) only depend on .
PROOF OF THEOREM 1.1. a) Let I'(¢), 0 < ¢ < 1 be some parametriza-
tion of our given curve I'. Let Fy = {T} and t; = 0. We shall recursively
construct families F; of dyadic arcs such that each arc in Fj is contained
in some arc of F;_1, furthermore stopping times
(2.7) tj(C)Etj(I) S [0,1], fOI'(EIEfj_l
constant on I such that ¢t;_1(¢) <t;(¢) and

(2.8) dist (W,,(I),C\G) > R+ ¢, for I € F; N Dy, ,

where c is the constant of Proposition 2.1.
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b) Suppose that F; and ¢; have already been defined. Let ( € I €
F;. Then I € Dy, for some m. If t;(¢) = 1 then we define ¢;,1(¢) = 1,
otherwise

(2.9)  t41(0) =t (D) = inf {t > £;(0) = |[I'(t) = Wi ()] = R},

if this set is empty we define t;11(/) =1 and A;([) = 1.

Now let ¢;41(f) < 1. Plessner’s theorem for Bloch functions [P092,
p. 140] says that, for almost all ¢ € T, either the radial limit ¢g(¢) exists
or the limit set of g(r () as r — 1 is equal to C. Hence it follows from
assumption (1.2) that

lim i{lfdist (9(r¢),C\G) =0, for almost all ( € T,
r—

so that, by (2.3),

lim inf dist (W,,(¢), C\G) < ¢, for almost all ( € T.

TL— 00

Therefore we obtain from (2.4) and (2.8) that, for almost all ¢ € I, the
stopping time 77(¢) defined in (2.5) is finite. By (2.4) we then have

(2.10) R< (W, )(€) = Wi(Q) < R+c.

Thus we can apply Proposition 2.2 with o = 1/4. We see from (2.6)
that, for R > ¢3 = max{4c¢,c1}, the set

A1) = {C e T+ Jarg (Wey () (Q) = Wn(€)
(2.11) .

—arg (Ty, 1) — Win(D))| < Z}

satisfies |A;(I)| > ca |I|. Note that A;(I) is the union of dyadic arcs
J € D, with n > m.

We define F;; as the family of the dyadic arcs J of A;(I) for all
I ¢ fj. Then

(2.12) > =14 = e [1].
JCI
JeFjt1

Furthermore it follows from (2.4) and (2.10) that 7;({) > m + R/c.
Hence

(2.13) J € Fj1, JCIeF;implies |J| < 278/<|1|.
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Now we verify (2.8) for j + 1, that is, we shall show that
(2.14) dist (W,,(J),C\G) > R+ ¢,

for J € Fjt1, ¢ € 1 € Fj, n=11(C); see (2.11). This is trivial by (2.8)
if tj11(f) = 1 and thus A;(I) = I. Therefore let t;11(/) < 1. Since
['(t) is continuous we see from (2.9) that |I'(¢;41(1)) — W (I)] = R.
Hence it follows from (2.10) and (2.11) that the quantity

_ Wn(C) _ Wm(C)
T (D WD)

satisfies 1 < |¢| < 14 ¢/R and |argq| < 1/4. Since R > ¢35 > 4c¢ we
deduce that |¢ — 1| < 1/2. Hence

Wa(0) = Dlte)| = Dlt4) = Wn(Q)l lg 11 < 5

and it follows by assumption (1.3) that

dist (W,,(¢), C\G) > dist (L', dG) — g > ? >R+ec.

This completes our construction.

c) We define

(2.15) Er=) I

j>1IeF;

It follows from (2.12) and (2.13) by a theorem [P092, p. 226] of Hunger-
ford [Hu88] and Makarov [Ma90] that

1
log | —

1 2R/c c g( )

dim By > 08(227) 7 e/
log 28/¢ Rlog?2

which proves (1.4).
Now let ¢ € Er. There are two cases.

i) First we assume that ¢;(¢) < 1 for all j. Let I; € F; be the arc
containing ¢. Then I; € Dy, for some n;. We define ¢ : [0,1) — [0,1)
by ¢c(27™) = t;(¢) and linear in between. We parametrize I' by
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= <r<l If1-27"" < ¢y < 1-— 27"+ then
t;(¢) < @e(r) < tj41(¢) and thus

ii) Now we suppose that ¢;(¢) < 1 for j < k and t;(¢{) = 1 for
j > k. Then we define ¢, as in (i) for j < k but linear in [1 — 27" 1].
If 1 —27™ <7 <1 then (see (2.9))

IP(pe(r) = WalQl < B, formn = ny

and (1.5) follows as above.

3. Balanced Bloch functions.

Let A((, p) denote the non-euclidean disk of center ¢ € D and
radius p. For g € B we define

(3.1) po(r) = sup (1—|2°)]g'(x)], 0<r<1.
r<l|z|<1

Using the maximum principle for |z| < r, we see that

(3.2) lg'(2)| < max{lug_(:l, 1”_9(|2)|2}, forreD, 0<r<1.

By definition we have g € By if pg(r) — 0 as r — 1.
We call g a balanced Bloch function if there exist ¢ > 0 and p < oo
such that

(3.3) sup (1= [21*)|g'(2)] > apg(lC]),  for (€D,
zEA(C,p)

This condition is trivially satisfied if 0 < o < |¢'(2)| < f < oo for z € D.
Balanced Bloch functions for the case g ¢ By were first considered by
P. Jones [Jo89]; see e.g. also [Ro91], [BiJo97]. Jones showed that if
J = 0f(D) is a quasicircle, then log f’ is balanced and not in By if and
only if

w1 — w] + [w — wy| : w € J between wy and wz} >1.

inf sup {

w1, we €J |U)1 —w2|
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Curves with this property are called uniformly wiggly. The prototype of
balanced Bloch functions are sufficiently regular series with Hadamard

gaps.
Theorem 3.1. Suppose that

Ng41

(3.4) 1< A< <N < o0, fork=0,1,...
a3
1 i\ < .
(3.5) M<n_k> bl < || < Mbj|,  for0<j<k

with constants M and o« < 1. Then
(3.6) g9(z) = Zbk 2" zeD,
k=0

15 a balanced Bloch function.

A typical example of a balanced Bloch function is

o0

g(z):Zk_szk, 0<y<o0.
k=1

PROOF. Let My, Ms,... denote constants that depend only on A, X,
and M. If 1 —1/n; <r <1—1/nj41 and |z| = r then, by (3.6),

j o0
20/ < Do mafbel + 3 ol exp (— -7)
k=0

-
k=j+1 I+

J o0
- g Nk

< M nj byl E ny~® + N M n;|bj] E - exp(—n‘ )
k=0 k=j+1 J+1 Jj+1

by (3.5) and (3.4). Since t e~¢ is decreasing for ¢ > 1 we therefore obtain
from (3.4) that

b

|29’ (2)] < Myng [bj] + X' Mnj [b;| Y A exp (=X") < My -2

v=0

Using the maximum principle near z = 0, we thus see from (3.1) that

1 1
(3.7) pg(r) < sup Mz |bg| < My |bjl, forl—- —<r<1- :
k>j nj Mj+1
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Now we apply a standard method [Bi69] to estimate the coefficients of
gap series. It follows from (3.4), (3.5) and [GHP087, Theorem 2] that

n;j|bj] < Mssup{lg'(2)| : z € A, p)},
for 1 — Mg/nj S |<| S 1-— M7/le. Hence

sup (1 —|2%) |¢'(2)] = Mgt (1= [C[*) mj |bj| > Mg " pg(r)
z€A(C,p)

by (3.7).

Further examples of balanced Bloch functions come from auto-
morphic forms. Let I' be a Fuchsian group with compact fundamental
domain F' in D. Let A be an analytic automorphic form of weight
1, corresponding to a differential on the Riemann surface D/T". Then
Y'hoy=htforyel and

g(z)z/ozh«)dc, €D

is a balanced Bloch function because F' C D. Note that inf yig(r) > 0.
Now we prove two results on real convex functions needed for the
next section.

Lemma 3.2. Let the real-valued functions ¢ and ¢ be continuous and
conver in the interval I C R. If the function

(3.8) x(s) =sup (p(t) —¥(t)) +9(s),  s€l

s finite, then it is also continuous and convex in I.

PROOF. The function sup {¢(t) —¢(t) : t € I, t > s} is decreasing in

s € I. Let I, = [sg, tr] be its intervals of constancy with values c;. We
define

(3.9) L (5) = { o(s), for s € I\I}, ,

ck +(s), forsel.

Since ¢(s) — ¥(s) < ¢ for s € I, we have

(3.10) p(s) <k +Y(s) = x,, (), for s, < s <tp,
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with equality for s = si and s = ;. The convex function ¢ has left and
right derivatives D¥¢ in I and DT ¢ is increasing [HLP67, p. 91-94]. If
s < s then

DTx, (s) = DT p(s) < DT g(sr) < D4p(sk) = DT x, (s1)
by (3.10). If s < s < t; then
DT x, (sk) = DT4p(sk) < DTep(s) = DTy, (s)
by (3.9). Since D=9(tx) < D—(tx) by (3.10), we furthermore have
D¥x, (s) < D74(ty) < D™o(ty) < DT o(ty) = DFx, (t) -

Using again that D¢ and DT are increasing, we deduce that D*x,
is increasing in I. Since x, is locally absolutely continuous it follows by
integration that x, is convex. Finally x = supj, x, by (3.9) and (3.10),
so x is also convex.

Lemma 3.3. The function
x(s) = log pg(e®) —log (1 —e*),  —o0<s5<0

is convex and the function u(z) = x(log|z|) with u(0) = log uy(0) is
continuous and subharmonic in D.

PROOF. Let M(r) = max{|¢g'(z)| : |z| = r}. It follows from (3.1) that
(3.8) holds with

p(s) =logM(c*),  t(s) = —log (1l —e*).

The function ¢ is convex by the Hadamard three circles theorem [Co78,
p. 137], and x is convex because 9" (s) = 4 ¢2¢ (1—e2¢)=2 > 0. Therefore
X is convex by Lemma 3.2. It follows that w is subharmonic [HaKe76,
Theorem 2.2].

4. Properties of balanced Bloch functions.
Let g be defined by (3.1). We consider the open level sets

(4.1) Ag(e) ={z€D: (L—|2") |g'(2)] < epg(l2])}
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for 0 < e < 1. We see from (4.1) and (3.1) that

0@ 2 9 S e (), for 2 g Ag(e), |2 =7

1—r? ¢|=r

If ¢' is unbounded it follows that T C Ay(e) for all € > 0. Otherwise
we would have |¢'(z)] — oo as z — I for some arc I of T, which is
impossible by the Privalov uniqueness theorem [P092, p. 140].

Let M, ... denote positive constants that depend only on a and p
in the definition (3.3) of balanced Bloch functions. In particular, if ¢
is unbounded then Ag4(e) is nonempty for 0 < ¢ < 1. By contrast, the
example g(z) = z shows that A,(e) can be empty if g’ is bounded and
e <1

Proposition 4.1. Let g be a balanced Bloch function and let zy € D.
Then the harmonic measure satisfies

(42)  wer Bz0.20) N (), Ao, 20\ Ay (€)) <

for some z1 € A(zp, p).

PROOF. We write r = |zg|, Do = A(z0,2p) and A = Ay(e). It follows
from (3.2) that

M,

(43) OIS T2 (), forz e By
It follows from (4.1) that
M. _
|g’(z)|§1_727“2,ug(7")6, for z€e AgNA.

Hence the two-constants theorem [Ah73, p. 39] implies that

M. _
(44) |g/(z)| < - 2 . ,Ug(T') EW(Z,AOHA,A()\A) ,
- T

for z € Ao\ A. By (3.3) there exists z; € A(zp, p) such that

—1

a
NE ,ug(r) > 1 —3T2 /l‘g(r)'

/
>
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Hence (4.2) follows from (4.4).

Theorem 4.2. Let g be a balanced Bloch function. Then there are
a >0 and ey > 0 such that every component of Ag(e) (0 < e < ey) lies
in some disk A(zp, €*) (20 € D) and contains a zero of g'.

PROOF. a) Let B be a component of A4 (¢), let 29 € B and let By be the
component of B N A(zp,p/2) with zg € By. Let ¢ map A(zo,2p)\Bo
conformally onto {r < |z| < 1} such that 0A(zy, 2p) corresponds to T.
Then

w(z, D20, 2p) N Bo, A(20,2p)\Bo) =

Since By C Ay(e) it follows from Proposition 4.1 and the principle of
majorization for harmonic measure [Ah73, p.39] that

os ()
0g
wCol) _ M
1 - 1\’
log (—) log (—)
r €
for some z; € A(zo,p). Since By C A(zo, p/2) a normal family argu-

ment gives |¢(z1)] < 1 — a3 where a3 > 0 depends only on a and p.
Hence r < e¢*2 and therefore

By C A(zp,e%), for0<e<as.

Since B is connected and contains zy, it follows that B = By if e* < p/2.

b) Now we prove that every component B of A,(¢) with B C D
contains a zero of ¢g’. Suppose that ¢’(z) # 0 for z € B and thus for
z € B. Then log|g'| is harmonic in B and continuous in B. Hence it
follows from Lemma 3.3 that

v(2) = log 11y (|2]) — log (1 — |2|*) — log |¢'(2)]

is subharmonic in B and continuous in B. Since B is a component of
Ay(e) and since B C D, we see from (4.1) that v(z) = log(1/e) for
z € OB and thus v(z) <log(1/e) for z € B by the maximum principle
for subharmonic functions. But this contradicts (4.1).
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Theorem 4.3. Let g be a balanced Bloch function and suppose that

! 1—7 1-—
(4.5) ,ug(r)z T)\( T), foro<r<r <1,
pg(r) 1—7r 1—7'

where A\(x) /00 as & — 0o. Then there exist € > 0 and p* < 0o such
that every disk A(C, p*) (¢ € D) contains a component of Agy(e).

Some (rather weak) condition like (4.5) is necessary as the balanced
Bloch function ¢(z) = z shows. Note that (4.5) implies that ¢’ is
unbounded.

PROOF. We claim: Given € > 0 there exists p’ < oo such that

(4.6) A p)NAy(e) # @, for every ¢ € D.

This claim implies the assertion of Theorem 4.3 with p* = p’ +2e® and
0 < e < ¢g by Theorem 4.2.

Suppose our claim is false. Then, for 0 < ¢ < 1, there exist z,, € D
such that
4.7) (1= 21*)19'(2)| > e pg(|2]), for z € A(zp,n), n=1,2,...

We write r,, = |z,| and consider the functions

1—172 s+ z
48 ho(5) = n ’( n ) D.
( ) (S) :U’g(rn) J 1+7z,s i

It follows from (4.8) and (3.2) that |h,(s)] < 4/(1 — |s]?) for s € D.
Therefore we may assume that h,, — h as n — oo locally uniformly

in D. Furthermore we may assume that z,, — ¢ € T.
Let |s| = o < 1. By (3.1) and (4.5) we have

Ng( )Zﬂg(w>> - )‘(1+Tna>#g(""n)-

1+r,0/ — 1+r,0 1—0
Hence it follows from (4.7) and (4.8) that

S+ zn
14+ 2z,s

o ()| =

ell+ 7z, s|? (1+rna)

(1+o0)(1+4+r,0) l-—o
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Since h,, — h and (,, — ( as n — o0, we conclude that

g1+ (s|? (1+a) S s)\(1+a)’

o) = >

1—0 l1—0

for Re (¢ s) > 0. Hence
|h(s)] — o0, as |s| — 1,

Re (¢ 5) > 0 which contradicts the Privalov uniqueness theorem [Pr56,
p. 208], [P092, p. 140].

Geometric interpretation. Let g be a balanced Bloch function that
satisfies condition (4.5). Let € > 0 be small but fixed. Then

(4.9) 1g'(2)| > 5% — 00, as |z| — 1, z € D\Ay(e)

by (4.5). Theorem 4.2 says that the components of A,(e) have small
hyperbolic diameter, each containing a zero of ¢’, whereas Theorem 4.3
says that there are many components. Hence the surface

{(z,y,u): z+iyeD, u=|g(z+iy)l}

rises to infinity at 9D except for very many very small but deep holes
near the zeros of ¢g’.

Ruscheweyh and Wirths [RuWi82] have studied, for any Bloch
function g, the set where (1 — |z]?)|¢’(2)| attains its maximum and
its relation to the zeros of ¢’.

J. Becker [Be87], [PoWa82, Theorem 4.2] has shown that, for any
g € B, the condition

1
d
(4.10) / fg(1)? 2
0 1—7r

implies that ¢ € VMOA (vanishing mean oscillation) and thus has finite
radial limits ¢g(¢) for almost all ¢ € T. It follows [Pr56, p. 208] that

cap{g(¢): ¢ €T, g(¢) # oo exists} > 0.
Now we turn to a condition stronger than (4.10), namely

(4.11) /0 g (r) ;ﬁnr < 00.
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It follows from (3.1) by integration that fol lg'(r¢)|dr < oo forall¢ € T

and that g is continuous in D. We show now that exactly the opposite
happens if g € B is balanced and condition (4.11) is false.

Theorem 4.4. Let g be a balanced Bloch function with

(112 | ot 155 =

If C is any curve in D ending on T, then

(4.13) [ 1g@) 1de] = .
c
Furthermore g assumes every value in C infinitely often in D.

Geometric interpretation. Let g be a balanced Bloch function that
satisfies (4.10) and (4.12). The Riemann image surface of g over C
then has many accessible boundary points; their projection to C has
positive capacity. But (4.13) shows that none of these boundary points
is accessible through a curve of finite length.

PRrROOF. Let c1,ca,... denote suitable positive constants. Since C' goes
to T, we can find z, € C, r, /1 and disks A, such that

1- n
(4.14)  An = Az, 20) C {rn < |2] < Tnsr ), # > e

Let ¢, map A, conformally onto D such that ¢, (z,) = 0. By Propo-
sition 4.1 there exist € > 0 and 2} € A(z,, p) such that

M, 5D, N A (), A\ A (e)) = w(sh, An, D\A,)

71 n’» —n
log (—)
3

where s = ©,(25) and A, = @,(A, N Ay(e)). If p, denotes the
circular projection onto the radius from 0 to T opposite to s}, then

[Ah73, p. 43], [Ne53, p. 108]

w(sy, Pn(An), D\pp (An)) < ———
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Since s} € n(A(zn,p)) = {|2| < p*} with p* < 1 depending only on p,
we see that the linear measure satisfies |p,, (A, )| < M4/ log (1/€). Since
©n(C' N A,,) connects 0 and T, we conclude that

M. 1
00 (C N AN > 1= |pu(4y)] > 1 — ——— >

: -
log (—) 2
€
if € is chosen sufficiently small. It is easy to deduce that
(CNAN\AG(e)] > e1 (1= |zn]) > crea (1 — 1)
by (4.14). Hence it follows from (4.1) that

€ Co

1 —Mg(Tn+1).
n

[ @z S o0 a0 0] >
cnay, -
Since pg(r) is decreasing we have

Tn4+1

Zugrn chz/ l_rdr—

by (4.14) and (4.12). This implies (4.13).
The last assertion is an immediate consequence of (4.13) and the
following proposition, where g need not be a Bloch function.

Proposition 4.5. Let g be analytic in D and suppose that (4.13) holds
for any curve C in D ending on T. Then g assumes every finite value
infinitely often in D.

PROOF. a) For w € C let N(w) < oo denote the number of zeros (with
multiplicity) of g — w in D. Let w,w’ € C and let L be a rectifiable
Jordan arc from w to w’ that does not meet {g(2): z €D, ¢'(z) =0}
except possibly in w and w’. At each point z of g71({w}), we consider
the maximal Jordan arcs Cy, in ¢~ (L) with initial point zx; the number
of these arcs is equal to the multiplicity of the zero zx of g—w. Therefore
there are N(w) arcs Cy altogether.

The maximal arc C, ends either at some point z;, € D with g(z;,) =
w’ or approaches T. The second case cannot arise by our assumption
because |g(Cx)| < |L| < co. The number of points zj, that coincide is
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equal to the multiplicity of g —w’ in z;.. Hence N(w') > N(w) and thus
N(w') = N(w) by symmetry. Thus we have shown

(4.15) N(w)=m < o0, for w € C.

b) Now we give a proof of the known fact that, for any function g
analytic in D, it is not possible that (4.15) holds with m < co. Let

(4.16) r(p) =sup{lz|: [g(z)|=p}, 0<p<oo.

We claim that 7(p) < 1. Otherwise there would exist w with |w| = p
and points z, € D with |z,| — 1 such that ¢g(z,) — w. But w is
assumed m times in D so that there exist distinct z,, (k =1,...,m)
with ¢(z,,) = g(z,) and z,, # z, for large n, which would imply
N(w) > m.

It follows from (4.16) that |g(z)| # p in R(p) = {r(p) < |z| < 1}.
Since g(R(p)) is an unbounded domain we conclude that |g(z)| > p
for z € R(p) for any p > 0. Hence |g(z)] — oo as |z| — 1, which
contradicts the Privalov uniqueness theorem.

Acknowledgement. We are very grateful to the referee for having
pointed out that three mathematical arguments in the original version
of this section were wrong.
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