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�� Introduction�

���� Ginzburg�Landau functionals�

Let � be the annulus fx � R� � ��� � jxj � �g � R� � For
maps u � H����R�� 	 W ������R�� we consider the Ginzburg
Landau
functional

����� E��u� 	
�

�

Z
�

jruj� � �

� ��

Z
�

��� juj��� �

where � is a small parameter� For  � R� we de�ne the energy level
set E�

� as

����� E�
� �	 fu � H����R�� � E��u� � g �

One of the main purposes of this paper is to show that given  � �� for �
small enough� E�

� may be multiply connected� Moreover� the connected
components of E�

� may be classi�ed by the degree of u �since u is not
S�
valued� we have to be careful in order to de�ne its degree � this is
the main technical problem of our work��

Functionals like E� play an important role in many low temper

ature physics phenomena like super�uidity� We can also �nd closely
related functionals in the theory of superconductivity and in two
di

mensional Higgs models� In our work we will consider one of these su

perconductivity models� the gauge
covariant Ginzburg
Landau model�

���
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where the energy functional may be written as

F��u�A� 	
�

�

Z
R�

jdAj� � �

�

Z
�

jrA uj� � �

� ��

Z
�

��� juj��� �

where u � H����R��� as before� and A � H��R� �R�� is the gauge
potential one
form�

A 	 A� dx
� � A� dx

� �	
�
A�

A�

�
	 �A�� A�� �

Here� as we will often do in this paper� we used the natural identi�cation
�given by the R� scalar product� between the one
form A and the vector
with the same components which we also denote by A� In equation
����� the expression rA u denotes the covariant derivative of u� i�e�

rA u 	 ru� �Au�
This model was introduced by Ginzburg and Landau in the ���s

for the study of phase transitions in superconducting materials �see the
remarks on physics below��

The main feature of the functional F� is its invariance under gauge
transformations� For a function 	 � W ����R� �R�� the gauge transfor

mation associated to 	 is the map �u�A� ��� �u�� A�� given by

�����

�
u� 	 exp �� 	�u � in � �

A� 	 A� d	 � in R� �

In this case we say that �u�A� is gauge
equivalent to �u�� A�� and we
denote this by �u�A� � �u�� A��� Saying that F� is gauge
invariant
means that

����� F��u�� A�� 	 F��u�A� � for all 	 �W ����R� �R� �

This gauge
invariance follows easily from the facts that

�u�� A�� � H����R���H��R� �R�� � ju�j 	 juj �
dA� 	 dA� d d	 	 dA ������

rA�
u� 	 exp �� 	�rA u � and thus jrA�

u�j 	 jrA uj ������

The only quantities which are signi�cant from the physics point of view
are those� like juj� rA u and the magnetic �eld h 	 
dA� which are in

variant under gauge transformations� Other important gauge
invariant
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quantities are the current J 	 �� u�rA u� and� the one which we are
more concerned about in this paper� the degree of u along a smooth
closed curve �� di�eomorphic to S�� such that juj 		 � on �� In integral
form� this degree is given by

����� deg �u� �� 	
�

��

Z
�

u

juj � �

� u

juj
�
d� �

where � denotes the unit tangent to ��
It is easy to see that gauge
equivalence de�nes an equivalence re


lation in H����R�� � H��R� �R��� A physical state of our system
is associated not with an individual con�guration �u�A�� but with a
whole equivalence class �u�A� �	 f�v�B� � H����R�� � H��R� �R�� �
�v�B� � �u�A�g� We denote the physical space by Hgi 	 �H����R���
H��R� �R���� �� and also consider F� as a functional de�ned on Hgi�

As in the case of E�� we de�ne the energy level sets of F� by

F�
� �	 f�v�B� � Hgi � F���v�B�� � g �

Since the functional E� does not involve the connection� it is a little
easier to deal with than the functional F�� Nevertheless� as we will see in
our work� most of the mathematical di�culties are already encountered
in the study of E�� In fact� after some additional technical arguments�
we deduce the classi�cation result for the components of the level sets
of F�� from the corresponding result for E�� Therefore� we start by
considering the functional E� given by ������

���� Degree of a map and de�nition of topological sectors�

We consider a �xed number  � �� and focus our attention on the
level set E�

� de�ned by ������ First� we remark that since the notion of
degree we de�ne is continuous in W ������
E�

� and that smooth maps
are dense in W ������ 	 H����� it su�ces to consider the case where
u � W ������ 
 C�� Hence� without loss of generality� we will always
assume that u is smooth in this paper�

Based on the work of B� White ���� �see also the work of F� Bethuel
����� for maps u � W ������ S��� i�e� for the case when juj � �� we can
de�ne the degree of u in �� deg �u���� as the degree of the restriction
of u to a one
dimensional skeleton of � � for instance� in case u is
continuous� this can be any circle Sr 	 fx � jxj 	 rg� for ��� � r � �
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�if u is not continuous we might need to move the circle slightly in
order to have a �nice� restriction�� The degree can then be written� in
integral form� as

����� deg �u��� 	 deg �u� Sr� 	
�

��

Z
Sr

u

juj � �
� u

juj
�
d� �

This de�nition of the degree will always give us an integer� and it clas

si�es the homotopy classes of W ������ S��� Our purpose is to extend
this notion to all u � E�

� for � su�ciently small� In this context� our
�rst result is given by the following Theorem�

Theorem �� Given  � R� � there exists �� � �� depending only on �
such that for � � ��� we can de�ne a continuous map

������
� � E�

� �� Z �
u ��� deg �u��� �

such that this map coincides with the classical notion of degree men�

tioned above when u has values in S� �i�e� when u �W ������ S��
E�
� ��

Usually we call the map � the global degree in � and� as above�

we denote ��u� 	 deg �u���� For each n � Z� ����n� 	 fu � E�
� �

deg �u��� 	 ng� is an open and closed subset of E�
� which we call the

nth topological sector of E�
� � and we also denote it by topn�E

�
� ��

Remark� In fact� what we prove in Theorem � is that the degree of u is
constant inside each connected component of E�

� � we do not show that
di�erent connected components correspond to di�erent values of the
degree� which would give us a complete classi�cation of the components
by the degree of its members� We will come back to this question later
on�

The asymptotic behavior� when � �� � of critical points of the
functionals E� and F� was extensively studied by many authors� Among
them we would like to single out the work of F� Bethuel� H� Brezis and
F� H elein ��� regarding the functional E�� and those of F� Bethuel and
T� Rivi!ere ��� and ���� which concern the functional F��

We will give a rough description of the proof of Theorem � at the
end of the Introduction� This proof is rather technical and will be done
in sections � to �� The Euler
Lagrange equations for the functional E�

are called the Ginzburg
Landau equations� They can be written as

������ �"u 	
�

��
u ��� juj�� � in � �
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In the context of the gauge invariant model� we can also extend the
de�nition of degree to any con�guration �v�B� � F�

� provided � is small
enough� In fact� we prove

Theorem �� Given  � R� � there exists �� � �� depending only on �
such that for � � ��� we can de�ne a continuous map

������
#� � F�

� �� Z �

�u�A� ��� deg ��u�A���� �

such that this map coincides with the classical notion of degree men�

tioned above when u has values in S� �i�e� when u �W ������ S��
F�
� ��

Usually we call the map #� the global degree in � and� as above� we de�

note #��u�A� 	 deg ��u�A�����

Minimizing E� inside each component of E�
� �or F� inside each

component of F�
� �� we will obtain solutions of ������ which are locally

minimizing� i�e� critical points of E� �respectively� F�� which are lo

cal minima� These are the solutions that should be associated with
permanent currents�

Moreover� we will show in the next subsection� that as a corollary
of Theorems � and �� we can also prove the existence of mountain

pass points for E� �which correspond to mountain
pass type solutions
of �������� An analogous reasoning gives the existence of mountain

pass points for F�� This result is stated in Theorem �� Unlike the
solutions obtained minimizing the energy inside each topological sector�
the solutions of ������ we obtain in Theorem � will not necessarily be
local minimizers of E�� and are probably unstable�

��	� Mountain�pass solutions and threshold energies�

We start by the crucial� although elementary� remark that when
 	 �� we have that E�

� 	 H����� i�e� the whole a�ne space
H����R��� This space has obviously an unique component and fur

thermore� given any two elements u�� u� � H����R�� there is a natural
path between them� the straight line segment � � ��� �� �� H����R���
de�ned by

������ ��s� �	 ��� s�u� � s u� � for s � ��� �� �
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Likewise� F�
� 	 Hgi� which is the projection �continuous image� of

H� � H�� and thus is connected� Given two states �u��� �u�� � Hgi

we may consider the straight line between two of their representatives�
u�� u� � H����R���H��R� �R�� and consider the projection in Hgi of
the straight line in H� �H� between u� and u��

An important example of a map of degree n � Z� in H���� S�� �
H����R�� �and for which we can thus use the classical de�nition of the
degree�� is the map

������ wn�r� �� �	 exp �� n �� 	
zn

jzjn �

Using ����� it is easy to check that deg �wn��� 	 n and moreover� we
can see that the energy� E��wn�� of the maps wn� n � Z� is independent
of � and is given by

������ E��wn� 	
�

�

Z
�

jrwnj� 	 �

�

Z �

���

r

Z ��

�

n�

r�
d� dr 	 � n� log � �

Hence� given  � R� � let

n� �	

�s


� log �

�
�

be the largest integer less than or equal to
p

���� log ��� From equa

tion ������ it follows that� at least for n � ��n�� � � � � n��� the topological
sector topn�E

�
� � will be non
empty� and this independently of the value

of � � ��
Likewise� for F� we could take wn�r� �� �	 ��exp �� n ��� ���� All the

rest of the discussion also easily extends to the case of F��
Let  � R� be given� and let � � �� �where �� is as in Theorem

��� Suppose that for some n � Z both topn�E
�
� � and topn���E

�
� � are

non
empty� and consider two maps

u� � topn�E
�
� � � u� � topn���E

�
� � �

Let � � ��� �� �� H���� be a path between u� and u� �i�e� ���� 	 u�
and ���� 	 u��� Recall that� as we mentioned above� such a path always
exists because H����R�� is an a�ne space� Then� � cannot be entirely
contained in E�

� � if this were so� u� and u� would be in the same
path component of E�

� � and hence also in the same component of E�
�
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which contradicts our assumption �since� by Theorem �� the topological
sectors topn�E

�
� � and topn���E

�
� � are disjoint open and closed subsets

of the energy level set E�
� �� Hence� there exists some s � ��� �� such

that ��s� 	� E�
� � which is equivalent to saying that E����s��  � A

standard Min
Max argument will then yield the existence of generalized
critical values of E� of the form

������ cn �	 inf
��V

max
s�����	

E����s�� �

where V �	 f� � C����� ��� H����R��� � ���� 	 u�� and ���� 	 u�g� is
the space of continuous paths in H���� between u� and u�� The value
cn will be a generalized critical value of E�� To make sure it is actually
a critical value we use the following

Theorem 	� The functionals E� and F� satisfy the Palais�Smale con�

dition �in H����R�� and Hgi� respectively��

This implies that cn is a critical value of E� and hence� there exists
a map u � H���� such that u is a critical point of E� and E��u� 	 cn�
This u is probably not a local minimum of E�� All this discussion
extends to the case of F�� Thus� we have proved

Theorem 
� Suppose that for some  � R� � we have that for some

� � �� �where �� is given Theorem �� there exists n � Z such that

the topological sectors topn�E
�
� � and topn���E

�
� � are both non�empty�

Then� there are mountain�pass type critical points of E� or� equiva�

lently� there exist mountain�pass type solutions of the Ginzburg�Landau

equations �������
More precisely� consider two maps

u� � topn�E
�
� � and u� � topn���E

�
� � �

and let cn be de�ned as in ������� Then� there exists a map u �
H����R�� such that u is a critical point of E� and E��u� 	 cn�

Likewise� if we consider two states $� � topn�F
�
� � and $� �

topn���F
�
� �� and let cn be de�ned by

������ cn �	 inf
��V

max
s�����	

F����s�� �

where now V �	 f� � C����� ��� Hgi� � ���� 	 $�� and ���� 	 $�g� is
the space of continuous paths in Hgi between $� and $�� Then� there
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exists a state $ 	 ��u�A�� � Hgi such that $ is a critical point of F�
and F��$� 	 cn�

Remark �� The number cn de�ned by ������ is called the threshold

energy for the transition from the state u� to the state u�� It will be
the in�mum of the energies for which such a transition is possible� This
concept will play a crucial role in the physical behavior of our system�
We will come back to this point in the remarks on physics �see below��

Remark �� In Theorem �� for simplicity� we just considered transitions
from a state u� � topn�E

�
� � to a state u� belonging to the adjacent state

topn���E
�
� �� However� both the concept of threshold energy and the

result stated in Theorem � are immediately generalizable to the case
where u� � topn�E

�
� � and u� � topk�E

�
� �� for any two distinct integers

n� k � Z� As usual� this remark and the previous one extend to the
setting of the gauge
covariant functional F��

Remark �� All these results extend to the setting of more general
domains considered in Theorem �� stated below�

��
� Remarks on physics�

��
��� Ginzburg�Landau theory�

In the Ginzburg
Landau theory of superconductivity� the conduct

ing electrons are described as a �uid existing in two phases� the super

conducting one and the normal one� In the superconducting state the
material has an in�nite electrical conductivity and magnetic �elds are
repelled from the interior of the sample �this is the so called Meissner
e�ect��

On a microscopic scale� the superconducting state is described by
the theory of Bardeen� Cooper and Schrie�er �BCS�� In this theory�
the existence of superconductivity is due to a pairing of the conducting
electrons forming the so called Cooper pairs� For small applied forces�
these pairs behave as a single particle �a boson� of twice the charge of
the electron� At a macroscopic scale the behavior of the Cooper pairs is
described by a complex
valued function u� called the condensate wave
function �or order parameter�� The density ju�x�j� is proportional to
the density of pairs of superconducting electrons�
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The Ginzburg
Landau model is a phenomenological model which
extends Landau�s theory of second order phase transitions� It was pro

posed well before the microscopic theory �BCS� existed� but it can be
obtained as an approximation to the macroscopic consequences of this
theory� This model gives us a system of equations which describe the
interaction between the condensate wave function� u� and the electro

magnetic vector potential� A� In this model the parameter � 	 ���

�which depends on the material we consider and on the temperature�
plays a crucial role in determining the behavior of our system�

If � � ��
p
�� the material is called a type I superconductor� If

one applies an exterior magnetic �eld to the sample� then there is a
critical value� Hc� such that when the applied magnetic �eldH increases
beyond Hc� the sample passes suddenly from the superconducting phase
to the normal phase� On the other hand� if �  ��

p
�� the behavior

is quite di�erent and the transition between the superconducting and
the normal phase is done gradually� These materials are called type II
superconductors and they are characterized by two critical values of the
applied magnetic �eld� the �rst� Hc�� corresponds to the critical �eld
above which the two phases coexist� and the second� Hc�� corresponds to
the critical �eld above which all the sample will be in the normal phase�
Between these two critical values the normal and superconducting phase
will coexist� the normal state will be con�ned in vortices or �laments
whose number will increase as the applied �eld increases� The �ux lines
of the magnetic �eld inside the material will be concentrated inside
these vortices �since they are repelled by the part of the sample that is
in the superconducting phase�� For a detailed description of the physics
involved in the phenomena of superconductivity and super�uidity see�
for instance� the works of D� Saint
James� G� Sarma and E� J� Thomas
����� and of D� Tilley and T� Tilley ����� For a more mathematical
approach see the work of A� Ja�e and C� Taubes �����

��
��� Permanent currents�

A very interesting phenomenon in superconductivity� that moti

vates our work� is the existence of permanent currents in a supercon

ducting ring� The experiment is the following� a ring of supercon

ducting material in the normal state is submitted to a �xed external
magnetic �eld �subcritical�� and then the temperature of the system
is decreased until temperatures below the critical temperature corre
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sponding to the applied �eld are attained� The applied �eld is then
turned o� and there is a current that persists inside the superconduct

ing ring� Furthermore it was observed that such a current does not dis

sipate with time � there were experiments where the current persisted
for several years without any dissipation� thus the name permanent
current�

This behavior of the system indicates that we should be in presence
of an energy functional having multiple wells �local minima� separated
by very high barriers� The main purpose of our work is to show that
even in the simple models considered in this paper� the energy func

tionals E� and F� have this type of structure�

The big height of the barriers would be associated to the �perma

nent� character of these currents� In fact� considering the possibility of
the system tunneling through the barrier� thus moving from one energy
well into another �and eventually to the ground state�� the associated
probability should be proportional to exp ��h�� where h is the height
of the barrier relative to the initial state of the system� Thus� having
very high barriers will yield transition probabilities close to zero and
therefore justify the �permanent� character of our currents�

��
�	� Transitions between states and threshold energies�

The natural question is then to describe the transitions between
two di�erent sectors � thus� the notion of threshold energy for such
transitions �de�ned in equation ������� is a crucial one for the physical
behavior of our system� We remark that in the setting of the gauge

invariant model� as we mentioned before� physical states of the system
are represented by gauge
equivalence classes �de�ned by ������ of con

�gurations of our system � thus the con�guration �u�A� is just a partic

ular representative of the state �u�A�� Therefore� we shouldn�t consider
paths between con�gurations in the space H����R���H��R� �R��� but
paths between states in the quotient space of H����R���H��R� �R��
by the gauge
equivalence relation� which we denote by Hgi �this is the
physical space��

The threshold energy cn for a transition between a state �u�� A�� �
topn�F

�
� � and a state �u�� A�� � topn���F

�
� � will be of the order of

j log �j� It is easy to see that it is at most of this order� Indeed� we can
prove the following upper bound for the transition energy�
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Theorem �� Let cn be the threshold energy for the transition between

the state �u�� A�� � topn�F
�
� � and the state �u�� A�� � topn���F

�
� ��

de�ned as in ������� Then�

������ cn �Mnj log �j� Ln �

where Mn and Ln are constants that depend only on n and our domain

��

We will give an intuitive proof of Theorem �� Let  � � log ��� �n�
��� and suppose that we want to describe a path from the con�g

uration �un� An� 	 �exp �� n ��� �� � topn�F

�
� � to the con�guration

�un��� An��� 	 �exp �� �n � �� ��� �� � topn���F
�
� �� We remark that

once we construct a path in the space H����R�� � H��R� �R�� be

tween �un� An� and �un��� An���� we can obtain a path between the
corresponding physical states �un� An� and �un��� An��� in the quotient
space Hgi by projecting the original path� The general case of a tran

sition between �v�� B�� � topn�F

�
� � and �v�� B�� � topn���F

�
� � can be

proved in a similar way�
Physically� the path we construct corresponds to bringing a positive

unit charge of size � from a point P arbitrarily close to in�nity� to the
origin� By a positive unit charge of size � at a point zs � C � we mean
the map

������ fzs�z� 	
z � zs
jz � zsj ���z � zs� �

where ����� 	 ������� and � � C�
� �R�� is such that

������

	



�




�

��x� 	 � � if jxj � � �

��x� 	 � � if jxj � � �

� � ��x� � � � for all x �

jr��x�j � � � for all x �

Hence fzs is a unit vortex at zs which is �smoothened out� in a ball of
radius � � around zs� Then�

������ F��fzs � �� � C� j log �j� C� �

where C� and C� are constants�
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Let M � R� be an arbitrarily big number� and let zs 	 �� �
s� ��M� � C � for s � ��� ��� This will be a path from the point ��M�
in the negative real axis� to the origin� Using zs we construct the path
in H����R���H��R� �R�� de�ned by

�vs� Bs� �	 �fzsun� �� � for s � ��� �� �

We can check that �v�� B�� is arbitrarily close inH
���� norm to �un� An�

� in fact� we would obtain the con�guration �un� An� if we chose M 	
��� Hence� in particular� for big values of M � we certainly have
�v�� B�� � topn�F

�
� �� Furthermore� �v�� B�� 	 �un��� An��� and we

can obtain estimate ������ as a consequence of the bound �������
Hence we see that the path corresponding to passing a positive unit

charge �of size �� from the outside of our annulus� to the hole inside the
annulus� corresponds to increasing by one the degree of our map and
requires that we go to an energy level of order j log �j� To prove that
any transition between topn�F

�
� � and topn���F

�
� � also requires passing

through energy levels of order j log �j� thus proving that cn is of order
j log �j� is a very delicate problem� We will show a way to solve this
problem and obtain very precise estimates for the threshold energies in
a forthcoming work ������

���� The case of more general domains�

In Theorem � we considered a very particular domain � the annulus
� 	 fx � R� � ��� � jxj � �g� However� once we have the result for
the annulus� it is not hard to extend it to the case of a general open
subset D � R� � or even the case of a domain in a Riemannian manifold
M� We de�ne the energy functional just as in ����� but replacing � by
our new domain D�

������ E��u�D� 	
�

�

Z
D

jruj� � �

� ��

Z
D

��� juj��� �

and we de�ne the corresponding level sets

E�
� �D� �	 fu � H��D�R�� � E��u�D� � g �

We start by �xing a set of representatives of generators of ���D� �the
�rst homotopy group of D�� f�j � j � Jg� such that each �j � S

� �� D�
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is an injective closed smooth curve inside our open set D� Hence� �j
will have a tubular neighborhood %j � �� We may suppose that for
each j there is a positive number� �j � �� such that for each j

i� %j 	 fx � D � dist �x� �j� � �jg�
ii� There is a di�eomorphism

$j � %j �� S� � ��� �� �

such that �j��� 	 $��j ��� ����� and the Jacobian of $j is uniformly
bounded from above and away from zero� i�e� there is a constant Cj � �
such that

������
�

Cj
� jr$j�x�j � Cj � for all x � %j �

Let #� �	 S� � ����� ����� This set is topologically an annulus just
like our standard set � considered before� Let Yj �	 $��j �#��� Given

a map u � E�
� �D� we consider the map wj 	 u � $��j � #� �� R� �

The map wj belongs to E
�
� �#��� where � is a constant that depends only

on  and the constant Cj in ������� Thus� we can apply Theorem �

replacing � and  by #� and �� respectively� Hence for � su�ciently
small deg �wj � #�� is well de�ned� We set� for each j � J �

������ deg �u� Yj� �	 deg �wj � #�� �

Suppose that the index set J is �nite �J 	 f�� � � � �mg�� i�e� suppose
that we �x a �nite number of �representatives of� generators of ���D��
We de�ne the topological type of u � E�

� �D� as the m
tuple of integers

������ ��u� �	 �deg �u� Y��� � � � � deg �u� Ym�� �

By the previous argument� this ��u� � Zm is well de�ned for su�ciently
small �� The continuity of � in W ����D�R�� topology inside E�

� �D�
�which is an immediate consequence of the continuity of deg �u���
proved in section �� will then allow us to assert that� since Zm is dis

crete� for each P � Zm� its inverse image by �� i�e� ����P � 	 fu �
E�
� �D� � ��u� 	 Pg� will be an open and closed subset of E�

� �D�� For
each P � Zm� we call ����P � the P 
topological sector of E�

� �D�� We
have thus proved the following Theorem which extends the classi�cation
given by Theorem � to this more general setting�
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Theorem �� Let D be an open subset of R� or a domain in a Riemann

manifold M� Let ��� � � � � �m be simple� closed and smooth curves which

are a set of representatives of generators of ���D�� Given  � � there

exists �� � �� depending on � such that for � � �� we can de�ne a

continuous map

������
� � E�

� �D� �� Zm �

u ��� �deg �u� Y��� � � � � deg �u� Ym�� �

such that for the special case where u � E�
� �D� 
 W ����D�S��� we

recover the classical notion of degree of a S� valued map� Therefore�

given P 	 �P�� � � � � Pm� � Zm� the subset ����P � � E�
� �D� will be an

open and closed subset of E�
� �D��

The same argument in the context of the superconductivity model
will give a similar extension of Theorem ��

���� Idea of the proof of Theorem ��

The maps u � E�
� may take values close to zero� which creates big

technical problems for de�ning their degree� However� this can only
happen in a set of small measure� We will start by studying� in sections
�� � and � the set G��� where juj is smaller than an appropriately chosen
� � ����� ����� For technical reasons �to avoid problems that may
appear near the boundary �� we will concentrate on the components
of G��� that intersect an interior annulus

Y �	
n
x � R� �

�

�
� jxj � �

�

o
�

Using Sard�s Lemma we will see that for su�ciently small �� these com

ponents of G may be included in a �nite number of simply
connected
sets� which we denote by Wk� k 	 �� � � � � &N � Their boundaries will be
closed smooth curves� Vk 	 Wk� and juj 	 � on each of the Vk�s�

In Section � we see� using the coarea formula� that the sum of
the lengths of the Vk�s will tend to zero when � �� �� Furthermore�
the coarea formula also gives us a bound on the L� norm of ru on
V 	

S
Vk� Since juj 	 � � ��� on Vk� it makes sense to talk about

deg �u� Vk��
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In Section � we the obtain an uniform bound on
P jdeg �u� Vk�j

using the estimate for krukL�
V � �and consequently we will also have
uniform bounds on jdeg �u� Vk�j for each k�� Thus� we see that for all
u � E�

� the number of Vk�s such that deg �u� Vk� 		 � �which we call the
�charged� Vk�s� is uniformly bounded by a constant depending only on
� Suppose that the charged Vk�s are V�� � � � � VN�

�
In Section � we will focus our attention on the �uncharged� Vk�s

�i�e� those for which deg �u� Vk� 	 ��� We will see� again using the
estimate for krukL�
V � obtained in Section �� that the number of �un

charged� Vk�s such that the oscillation of u is bigger than or equal
to ���� is also uniformly bounded� Suppose they are VN���� � � � � VN �
Moreover� for the remaining Vk�s� i�e� the �uncharged� ones such that
the oscillation of u is smaller than ��� �which will be VN��� � � � � V �N ��
we are able to prove that the energy minimizing extension toWk of ujVk
will have absolute value which is uniformly bounded away from zero �
hence we will show that these sets are rather �harmless��

In Section �� thanks to the uniform bound on N �the number of
�charged� Vk�s plus that of �uncharged� Vk�s such that the oscillation
of u is bigger than or equal to ����� we can cover V�� � � � � VN by a �nite
�uniformly bounded� number of balls� B�� � � � � Bm� of radius of order
at most �	 for some � � ���� and which are far away from each other
�in the sense that suitable dilations of the Bi�s are pairwise disjoint��
Furthermore� we will see that deg �u� Bi� 	 �� for all i� This means
that though we may have individual singularities that are charged� at
a scale of order ���� they cluster to form neutral structures�

In Section � we will �nally give the good de�nition of the global
degree of u in �� deg �u���� Let

T �	
n
r �

��
�
�
�

�

�
such that Sr 
G��� 		 �

o
�

and let

A �	
��
�
�
�

�

�
n T �

We show that jT j �� �� when � �� �� and hence jAj �� ���� when
� �� �� For r � A we de�ne

������ f�r� �	 deg �u� Sr� 	 deg
� u

juj � Sr
�
� Z �

This function is well de�ned since for r � A� ju�r� ��j  �� As we
mentioned before� for u � W ������ S�� this function is constant� In
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our case this might not be true� but by the results of Section �� it
cannot change too much� as a matter of fact� for � su�ciently small�
the value of f can only change when Sr intersects one of the balls Bi�
and even when this occurs� the absolute value of f remains bounded
by a constant that depends only on � Outside these balls �i�e� when
Sr 
 B 	 �� where B �	

S
Bi� f�r� will always have the same value

�since deg �u� Bi� 	 ��� This is the value we use to de�ne deg �u����
which will thus automatically be an integer� To recover this integer we
can also integrate f�r� over A and divide by the measure of A� thus
de�ning

������ �adeg �u��� �	
�

jAj
Z
A

f�r� dr �

This quantity� �adeg �u���� is called the approximate degree of u in ��
In general� it is not an integer� but it will tend to the integer deg �u���
as � �� �� In fact� let Q 	 A 
 B 	

S
�A 
 Bi�� The measure of Q

tends to zero when � �� � �it is bounded by jBj which� in turn� is at
most� of order �	 � ������ Furthermore� f remains uniformly bounded
even inside Q� and hence� we can see that

������ j�adeg �u���� deg �u���j � �

�
�

for su�ciently small �� Thus we can recover the integer deg �u��� as

the closest integer to �adeg �u��� for � small�
In Section � we will prove� for su�ciently small �� the continuity

of �adeg �u��� �and thus also of deg �u���� in W ������ norm� inside the
level set E�

� we �xed� Using this continuity we will then conclude the
proof of Theorem � in Section ��

Finally� in the Appendix �Section ��� we prove a general covering
Lemma of which we used a special case to obtain the balls Bi in Section
��

��� Open questions and related results�

As we saw� many questions about this subject remain open� in
particular in the borderline between the mathematics and the physical
behavior of these systems� a considerable amount of work remains to be
done� In this subsection we will discuss some of these problems shortly
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and mention some results of related interest� We start by mentioning a
few problems we are working on at the moment�

In ��� we are able to carry out a more detailed study of the proper

ties of the threshold energies we introduced above� In particular� using
some techniques introduced by F� Bethuel and the author in ���� we can
prove a more accurate version of the upper bound for the threshold en

ergy cn stated in Theorem �� More precisely� we show that there exists
a constant �n� not depending on �� such that cn � � j log �j� �n�

This estimate is crucial to succeeding in obtaining �see ���� a lower
bound for cn which is of the same order of the above� i�e� to showing
that cn  � j log �j � �n� Such a bound� as we mentioned� implies
that the energy barriers have a height of at least � j log �j � �n� and
therefore� since � is supposed to be small� we will have very high barriers
separating the wells� This agrees with what we expected considering
the physical behavior of our system� as we described above�

Regarding the extension of our results to the �
dimensional case�
there is a substantial part we are able to do� but there are still some
technical di�culties �which stem from the higher degree of liberty of the
equivalent of the Vk�s� which� in this setting� will be two
dimensional
surfaces�� Once we succeed in de�ning the degree� we can obtain
mountain
pass solutions just as for the dimension �� but proving that
the threshold energy� cn� is of order j log �j should be considerably harder
�for results on the structure of the singularities of the Abelian Higgs
model in R � see the works of T� Rivi!ere ���� and ������

Our work was also motivated by the paper of S� Jimbo and Y�
Morita ����� In ���� the authors establish the existence of stable non

trivial solutions for the Ginzburg
Landau equations in the case the do

main � � R is a solid of revolution obtained by rotating a convex
cross
section around the z
axis in R � Thanks to this special geometry�
they can �nd solutions using a separation of variables method� They
show that the solutions constructed are stable for variations in a linear
space that is transversal to the gauge
invariance of the problem�

Very recently� while this work was being �nished� the author re

ceived a series of preprints of S� Jimbo� Y� Morita and J� Zhai ����� �����
���� where they improve the techniques developed in ���� and introduce
some new ideas to obtain very interesting results about stationary so

lutions of the Ginzburg
Landau equations in topologically non
trivial
domains� The author also received recently a preprint J� Rubinstein
and P� Sternberg ����� where the ideas of B� White and F� Bethuel con

cerning the homotopy classes for Sobolev functions are used� together
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with variational techniques� in a very ingenious way� to obtain a homo

topy classi�cation for the minimizers of the Ginzburg
Landau energy
in the case the domain is topologically a torus in R � One fundamental
di�erence between these works and ours is that� since their authors are
looking at critical points� they rely strongly on the Ginzburg
Landau
equation to prove nice properties for these critical points� and then
succeed in de�ning the degree of the stationary solutions using these
properties� In our case� since we look at the whole level set of the en

ergy� we cannot rely on the equation to help us de�ne the degree� This�
as we saw� poses many technical problems� but gives us a considerable
amount of new information� Such information should enable us to have
a better understanding about the formation of permanent currents and
the transition processes between physical states�

Another important question is that of the evolution equation for
Ginzburg
Landau� Recently there was some work of F� H� Lin ����� �����
and of S� Demoulini and D� Stuart ���� on the heat �ow for Ginzburg

Landau� The author� F� Bethuel and Y� Guo have also obtained some
results regarding the dynamical stability of symmetric vortices in the
Maxwell
Higgs model �see ���� and �����

Remarks on notation�

� � is the annulus fx � R� � ��� � jxj � �g � R� � Its boundary�
�� has two connected components� �� 	 S���� the inner circle� and
�� 	 S�� the exterior circle� On �� ��x� stands for the exterior unit
normal to � at x� Hence ��x� 	 �x�jxj on ��� and ��x� 	 x�jxj on
��� For x � �� ��x� stands for the unit tangent vector to � at x�
pointing in the sense of increasing ��

� � denotes the wedge product of di�erential forms� and � repre

sents the exterior product of two vectors in R� �it is considered as a
real number��

� We often use the natural identi�cation between an one
form and
the associated vector �given by the scalar product in R���

� Although we would normally prefer to write vectors as columns�
we will often write them as rows because it makes it easier to insert
them in the text�

� We identify the vector �v�� v�� � R� with the complex number
v� � � v�� The scalar product in C is denoted by � � �� So �u� v� 	
�u v � v u���� With this notation we have that u � u� 	 �� u� u� ��
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Although this permanent switch between the vector and the complex
number notation may be slightly confusing at the beginning� later on
the reader will appreciate the convenience that stems from having both
notations available�

� d denotes the exterior derivative and 
 denotes the Hodge star
operator� which in R� is the linear operator on R
valued forms de�ned
by


� 	 dx� � dx� � 
dx� 	 dx� � 
dx� 	 dx� � and 
dx� � dx� 	 � �

We have that for k
forms on R� � 

 	 I
k
��k��� where I denotes the
identity� Hence 
 
 � 	 �� if � is a zero
form or a two
form� and

 
 � 	 ��� if � is a one
form�

� d
 denotes the operator 
��d
� where 
�� stands for the inverse
operator of 
�

� In many of the estimates we obtain during the proof of Theorem
�� there are constants which depend on the domain considered� How

ever� since we will have �xed as domain the annulus �� we will usually
not mention such dependence explicitly in the text�

�� Coarea formula and control of the bad set�

As we mentioned before� the bad set consists of the places where
juj is close to zero� Nevertheless� the presence of the potential term in
E� �in particular� the presence of the ��� factor�� assures us that for
u � E�

� � the measure of the set fx � juj � ���g will be very small when
� �� �� In fact� as we will see in this section� a more careful analysis
using the coarea formula will allow us to prove much more about this
set�

Suppose  and � given and �x an element u � E�
� 
 C����� For

each � � ����� ����� let

V ��� 	 fx � � � ju�x�j 	 �g �
By Sard�s Lemma we know that for almost every �� V ��� is a one

dimensional submanifold of �� hence we will suppose that the � we
choose is in these conditions� We will now de�ne as our bad set� the set
G where juj is smaller than �� Let

G��� �	 fx � � � ju�x�j � �g � � �
h�
�
�
�

�

i
�
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It is easy to see that for small �� the measure of G��� will be very small�
In fact�

�����

Z
G
��

��� juj��� 
Z
G
��

��� ����

 jG���j ��� ����


� �

��

��
jG���j �

and�

�����

Z
G
��

��� juj��� � � ��
�

� ��

Z
�

��� juj��� � � ��  �

Combining ����� and ����� we obtain the desired bound on jG���j�

����� jG���j �
���
�

��
� ��  	 C �� ��

���
� �

where C is a constant depending only on the energy bound �

���� The coarea formula�

Using the coarea formula of Federer and Flemming� we can obtain
a considerable amount of information about the Vk�s and the behavior
of ujVk � for � conveniently chosen�

Here we will apply a special case of this formula which can be
stated as follows �for a proof and more general forms of this result see�
for instance� L� Evans and R� Gariepy ������

Theorem  �coarea formula �change of variables��� Let f � R� �� R

be Lipschitz� Then� for every Lebesgue summable function g � R� �� R�
we have that

i� The restriction gjf��fyg is Hausdor� H��measurable for almost

every y�

ii� For every measurable set X � R� �Z
X

gjrf j dx 	

Z
R

�Z
f��fyg�X

g dH�
�
dy �
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Remark� By Rademacher�s Theorem� since f is Lipschitz� it is di�er

entiable almost everywhere� and hence rf is de�ned almost everywhere
x � X�

���� Upper�bound for the length of the Vk�s�

We start by proving that the length �Hausdor� one
dimensional
measure� of the Vk�s is small for small �� As a matter of fact� if we
denote ' �	 fx � ��� � juj � ���g� it follows from the co
area formula
that

�����

Z ��

���

H��V ���� d� 	

Z
�

jrjuj j

�
Z
�

jruj

�
�Z

�

jruj�
����

j'j��� �

where we used Cauchy
Schwarz for the last inequality� Moreover�

�

�

Z
�

jruj� � E��u� �  �

hence�

�����
�Z

�

jruj�
����

�
p
� �

On the other hand� the measure of ' can also be estimated using the
energy bound �just like we did for G���� in fact ' 	 G������� We obtain

����� j'j �
���
�

�� Z
�

��� juj��� �
���
�

��
�� �

From ������ ����� and ������ it follows that

Z ��

���

H��V ���� d� � ��
p
�

�
� �
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Hence� except for � in a set Z� � ����� ���� of measure at most
p
���� �

�����

����� H��V ���� � ��p
�

��
p
�

�
 � 	 ��� � �

��	� Upper�bound for the L��V ���� norm of ru�

A di�erent application of the coarea formula yields

�����

Z
�����

Z
V 
��

jruj 	
Z
�

jrjuj j jruj �
Z
�

jruj� �

Since we assume that u � E�
� � from ����� it follows that

�����

Z
�����

Z
V 
��

jruj � �E�
� �u� � � �

Using Fubini�s Theorem� we will then have that except for � in a set
Z� � ����� ���� of measure at most �����

������

Z
V 
��

jruj � �� �

Thus� except when � belongs to the set Z� � Z�� whose measure is at
most ����� estimates ����� and ������ will be valid� For the rest of
this paper we will choose a � � ����� ���� such that estimates �����
and ������ are valid� and that V ��� is a one
dimensional submanifold of
�� Hence� V ��� consists of a �nite number of simple curves in �� Let
V�� � � � � V �N � denote the connected components of V ���� Equation �����
gives us an upper
bound on the length of each Vk�

������

�NX
k��

H��Vk� � H��V ���� � ��� � �

In particular�

������ H��Vk� � ��� � � for all k 	 �� � � � � (N �
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Hence� for small �� the length of each Vk will be small �the same being
true for the sum of their lengths��

	� Properties of the Vk�s which are far from ��

We consider the interior subdomain Y �	 f�r� �� � ��� � r �
���g � �� i�e�� the interior annulus consisting of the points whose dis

tance to the origin lies between ��� and ���� For technical reasons� we
will also have to consider a slightly enlarged subdomain� #Y �	 f�r� �� �
��� � r � ���g� Hence� Y b #Y b ��

We start by proving that for � su�ciently small� the Vk�s that
intersect #Y are closed curves that stay away from the boundary of ��

Lemma �� If � is su�ciently small� then Vk 
 #Y 		 �� implies that Vk
is a closed curve and dist �Vk� �� � �����

Proof� Suppose that Vk 
 #Y 		 �� Then� since dist � #Y � �� 	 ���� for
dist �Vk� �� to be smaller than ����� it is necessary that diam�Vk� 
����� However� from ������ it follows that

diam �Vk� � H��Vk� � ��� � �

Hence� for � � ����� we must have that diam�Vk� � ����� and thus�
dist �Vk� �� � �����

The fact that Vk is then a closed curve� follows from it being a
one
dimensional submanifold of � which does not touch ��

Henceforth� we will always suppose that � is chosen su�ciently
small for the result in Lemma � to be true� Suppose that the Vk�s
that intersect #Y are V�� � � � � VN � They will be closed curves and thus�
by Jordan�s Curve Theorem� we can de�ne the domain Wk enclosed
by Vk �Wk is the bounded component of R� n Vk� and in particular�
Vk 	 Wk��

Among V�� � � � � VN we will only consider those which are maximal
in the following sense� for i� j � N � if Vi � Wj then we disregard Vi
and just keep Vj in our list �so we always keep only the exterior curves��

Suppose that V�� � � � � V �N � for some &N � N � are the maximal curves we
obtain� These are the Vk�s that will interest us for the rest of this paper
�unless stated otherwise� henceforth we will always assume k � &N��
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	��� Estimates for deg �u� Vk��

By the de�nition of V ���� the restriction of u to Vk will have values
in the circle of radius �� i�e� ujVk � Vk �� S� � where we denote S� 	
fz � R� � jzj 	 �g� Therefore� we can de�ne the degree of u� as usual
we consider the map

v 	

�
v�

v�

�
�	

u

juj � Vk �� S� �

and we de�ne

����� deg �u� Vk� �	 deg �v� Vk� �	
�

��

Z
Vk

v � v

�
d� �

where � denotes� as usual� the arc
length parameter on Vk�
Since u 	 juj v� we have that

����� ru 	 r�juj v� 	


BB�
juj
x�

v� � juj v
�

x�
juj
x�

v� � juj v
�

x�

juj
x�

v� � juj v
�

x�
juj
x�

v� � juj v
�

x�

�
CCA �

Thus�

jruj� 	 juj�
��v�

x�

��
�
�v�
x�

��
�
�v�
x�

��
�
�v�
x�

���
� ��v��� � �v����

�
��juj

x�

��
�
�juj
x�

���
�juj juj

x�

�
v
v

x�

�
�juj juj

x�

�
v
v

x�

�
�

�����

But since jvj 	 Cte 	 �� it follows that

�v��� � �v��� 	 jvj� 	 � �

and�

v
v

xi
	

�

�



xi
�v v� 	 � �

Thus� ����� yields

����� jruj� 	 juj� jrvj� � jrjuj j� �
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Hence� in particular�

����� jruj�  juj� jrvj� �

For x � Vk� since ju�x�j 	 �  ���� this yields

����� jruj�  �� jrvj�  �

�
jrvj� �

which� in turn� implies that on Vk�

����� jruj  �

�
jrvj �

From equations ����� and ����� it follows that

jdeg �u� Vk�j 	 jdeg �v� Vk�j �
Z
Vk

���v � v

�

��� d� � Z
Vk

jrvj � �

Z
Vk

jruj �

Therefore� using equation ������� we obtain a bound on the absolute
value of the degree of u in each of the Vk� for all k 	 �� � � � � &N �we
remark that this bound is also valid for &N � k � #N as long as Vk is a
closed curve � so that we have no problem de�ning deg �u� Vk���

����� jdeg �u� Vk�j � �

Z
Vk

jruj � �

Z
V 
��

jruj � ��� �

Moreover� we even have a bound on the sum of the absolute values of
these degrees�

�����

�NX
k��

jdeg �u� Vk�j � �

�NX
k��

Z
Vk

jruj � �

Z
V 
��

jruj � ��� �

which gives a bound on the number N� �	 )fk � Vk 
 #Y 		 �� and
deg �u� Vk� 		 �g� i�e�� the number of �charged� Vk�s that intersect #Y �
In fact� we obtain

������ N� �
�NX

k��

jdeg �u� Vk�j � ��� �
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Remark� We will often refer to a Vk such that deg �u� Vk� 		 � as a
�charged� �or topologically charged� singularity of u� and to one such
that deg �u� Vk� 	 � as a �uncharged� �or neutral or topologically un

charged� singularity of u� This terminology is unprecise but helps con

vey the essential di�erence between the behavior of u on these two types
of sets�

Using this terminology� the charged Vk�s that intersect #Y are
V�� � � � � VN�

� and the neutral ones are VN���� � � � � V �N �


� The �uncharged� Vk�s�

Although the charged Vk�s are the only ones that may change the
value of f�r� 	 deg �u� Sr�� de�ned in ������ in order to prove that these
cannot be isolated� we will need some control of u on the uncharged
Vk�s �i�e�� VN���� � � � � V �N �� and on the energy minimizing extensions of
u to the Wk�s that lie inside them� Thus� in this section we will always
suppose k � fN� � �� � � � � &Ng�

The restriction of u to Vk 	 Wk� gk � Vk �� S� � has degree zero
�since we are considering only the �uncharged� Vk�s� and Wk is simply
connected� hence gk can be written as

����� gk 	 � exp �� �k� �

where �k � Vk �� R� is a smooth lifting of ujVk � For x � Vk we have
that

jr�kj� 	 jr�exp �� �k��j� 	
���r� u

juj
����� �

Therefore� by ������

����� jruj� 	 �� jr�kj� � jrjuj j� �

and� in particular�

����� jr�kj � jruj
�

�

As usual� we de�ne the oscillation of �k as

����� osc ��k� �	 sup
x�Vk

��k�x��� inf
x�Vk

��k�x�� �
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We will prove that the number of Vk�s for which �k can oscillate con

siderably� is uniformly bounded �by a constant depending only on the
energy bound ��

Lemma �� Given  � R� � there is a constant M � R� such that� for

all � � �� for all u � E�
� � if

I �	
n
k � fN� � �� � � � � &Ng� such that osc ��k� �

�

�

o
�

then�

����� )I �M 	
���

�
�

Proof� By the fundamental Theorem of Calculus�

osc ��k� 	 sup
x�y�Vk

��k�x�� �k�y�� �
Z
Vk

����k
�

��� � Z
Vk

jr�kj �

Then� using equations ������ and ����� we obtain

�

�
)I �

X
k�I

osc ��k�

�
X
k�I

Z
Vk

jr�kj

�
X
k�I

�

�

Z
Vk

jruj

� �

Z
V 
��

jruj

� ��� �

Hence�

����� )I � �

�
��� 	

���

�
 �

Thus� we have proven Lemma � with M 	 ������
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If deg �u� Vk� 	 �� we know that there exist smooth extensions of
g 	 ujVk � Vk �� S� to W k� where S� 	 fx � R� � jxj 	 �g � S�� and
Wk is the domain inside Vk �in the sense of Jordan�s curve Theorem��
Let H�

g �	 fu � H��Wk� C � � u 	 g on Vkg� Then� as in the work of F�
Bethuel� H� Brezis and F� H elein ���� we know that

����� �g �	 min
u�H�

g

E��u� �

is achieved by some map u�� and furthermore� u� satis�es the Euler
equation

�����

	�
� �"u� 	 �

��
u� ��� ju�j�� � in Wk �

u� 	 g 	 u � on Vk �

This elliptic system will allow us to prove some sort of maximum prin

ciple for u� which will give us upper and lower bounds for ju�j in terms
of the oscillation of g 	 ujVk or� more precisely� in terms of osc ��k�� In
particular� we will be able to prove that if the oscillation of �k is small
enough� then ju�j stays bounded away from zero in Wk� Together with
Lemma � this will imply that the number of Wk�s for which ju�j can be
close to zero� is uniformly bounded�

We start by proving an upper bound for ju�j� The following Lemma
is just an adaptation of ��� Proposition �� to our situation�

Lemma 	� Let u� be a solution of ������ Then� ju�j � �� in Wk�

Proof� We start by observing that

"�ju�j�� 	 �u�"u� � � jru�j� �

Hence� by ������

����� "�ju�j�� 	 �

��
ju�j� �ju�j� � �� � � jru�j�  �

��
ju�j� �ju�j� � �� �

Therefore� v� �	 ju�j� � �� will satisfy

	�
�

"v� � �

��
ju�j� v�  � � in Wk �

v� 	 �� � � � on Vk 	 Wk �
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Since ������� ju�j� � �� the maximum principle implies that �see� for
instance� ���� Corollary �����

������ sup
Wk

v� � sup
Vk

v� �

where v��x� �	 maxfv��x�� �g� Hence� since v��x� �	 max f����� �g 	
�� on Vk� it follows that

sup
Wk

ju�j� � � 	 sup
Wk

v� � � �

Thus�

������ sup
Wk

ju�j � � �

This concludes the proof of Lemma ��

Using this Lemma and equation ������ we are now able to obtain

Proposition �� Suppose that osc ��k� � ���� Let u� be the minimizer

of ������ Then�

������ ju��x�j  �

�
�  �

�
� for all x �Wk �

Proof� If osc ��k� � ���� then u�Vk� is contained in an arch #� of S� �

of amplitude at most ���� Let a and b be the endpoints of #�� and let B
be the domain bounded by the straight line #r passing through a and b�
and the unit circle S�� We claim that the maximum principle implies
that

������ u��Wk� � B �

By Lemma � we already know that ju�j � �� so it su�ces to prove that
u��Wk� and the origin lie on opposite sides of the straight line #r de�ned
above�

Choose coordinates y�� y� in the image space such that the y� axis
is parallel to #r �i�e�� it is the straight line through the origin parallel to
the segment a b�� and the y� axis cuts the segment a b perpendicularly
at its midpoint� In these coordinates we may write

u��x� 	

�
u���x�

u���x�

�
	 � exp �� �k� �
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where� we are taking the positive y� axis as the origin for the angle �k�
Since the amplitude � �	 osc ��k� � ���� the y� coordinate of the

endpoints a and b satis�es

������

� �	 y��a�

	 y��b�

	 min
x�Vk

y��u�x��

	 � cos
��
�

�
 � cos

��
�

�

	
�

�

 �

�
�

On the other hand� since u� is a minimizer of E�� hence a critical point�
it is a solution of equation ������ In particular u�� will satisfy

������

	�
�
�"u�� 	

�

��
u�� ��� ju�j�� � in Wk �

u��  � � on Vk 	 Wk �

Doing a re�ection of u across the y� axis in order to make the image lie
in the right half
plane� we obtain the map

&u��x� 	

�
&u���x�

&u���x�

�
�	

� ju���x�j
u���x�

�
�

which satis�es

E��&u�� 	 E��u�� 	 min
v�H�

g
Wk�C�
E��u� �

Hence� &u� is also a minimizer� and thus critical point� of E�� and there

fore� &u�� 	 ju��j� satis�es

������

	�
�
�"&u�� 	

�

��
&u�� ��� ju�j�� � in Wk �

&u��  � � on Vk 	 Wk �
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Using Lemma � we see that the right
hand side of ������ is always non

negative� Hence� �"&u�  �� and thus the maximum principle assures
us that

min
Wk

&u�� 	 min
Vk

&u��  � �

Consequently� using ������ we obtain

������ min
Wk

ju��j  �  �

�
 �

�
�

Since u�� is continuous and Wk is connected� u���Wk� has to be con

nected� Thus� using ������ and the fact that u���x�  � on Vk� we know
that we must have

������ u���x�  � � for all x �Wk �

This� together with equation ������� proves claim ������� In particular�
from ������ it follows that

������ ju�j 	
p
�u���

� � �u���
�  ju��j  �  �

�
 �

�
� for all x �Wk �

which is equation �������

Remark� The same method we used to prove claim ������ will give us
the slightly more precise result

������ u��Wk� � A � B �

where A is the closed set bounded by the half
lines *� a and *� b� the
segment a b and the circle S�� In fact� all we have to do to prove this
result is to� instead of using a re�ection relative to an axis parallel to the
segment a b� as before� we have to consider re�ections with respect to
axii which approach � a �and others which approach � b� on the outside
of the set A de�ned above�
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�� Blow�up of the energy around an isolated �charged� singu�

larity�

���� The covering argument�

For simplicity� we will do one more renumbering of the Vk�s� k 	
�� � � � � &N such that

a� deg �u� Vk� 		 � and Vk 
 Y 		 � if and only if k � f�� � � � � N�g�
b� deg �u� Vk� 		 �� Vk 
 #Y 		 � and Vk 
 Y 	 � if and only if

k � fN� � �� � � � � N�g�
c� deg �u� Vk� 	 �� Vk 
 #Y 		 � and osc ��k� � ��� if and only if

k � fN� � �� � � � � Ng�
d� deg �u� Vk� 	 �� Vk 
 #Y 		 � and osc ��k� � ��� if and only if

k � fN � �� � � � � &Ng�
From ������ it follows that

����� N� � N� � ��� �

On the other hand� Lemma � implies that

����� N 	 N� �)I � ��� �
���

�
 � ��� �

We remark that ����� gives a bound for N which is valid for all u � E�
�

and which� moreover� depends only on  and not on �� We have no sim

ilar bound for &N � the total number of Vk�s that intersect #Y � However�
as we will see in this section� a bound on N like ����� is enough since
Proposition � will allow us to prove that the Vk�s in condition d� �i�e��
those for which deg �u� Vk� 	 � and osc ��k� � ��� are �harmless� � in
fact� Proposition � gives us a good enough control over the behavior of
u inside these Vk�s for our estimates of lower bounds on the energy of an
isolated charged singularity to go through� regardless of the the pres

ence of Vk�s of type d� in its neighborhood� We will need the following
two rather technical Lemmas to obtain these lower bounds�

The �rst one is a covering argument that will allow us to see that
W�� � � � �WN can be subdivided into groups� each of which is contained
in some ball of radius of order bigger than

p
�� and that the di�erent

balls are� in some sense� far apart �this type of technique has recently
been used by several authors like M� Str+uwe or F� Bethuel� H� Brezis
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and F� H elein or still F�H� Lin in ���� � our approach is closer to that
of the latter��

The second Lemma will then serve to prove that if any of the balls
Bj which intersect Y were charged� then we would have to pay a very
high price �of order j log �j� in energy�

Lemma 
� Fix  � R� � Let u � E�
� � and W�� � � � �WN be de�ned

as above� Then� for � su�ciently small� there is an integer m � N �

a family of numbers ��� � � � � �m � ����� ��� and a family of balls Bj�

j 	 �� � � � �m� of centers xj and radii rj such that

i� rj � C�	j �

ii�
N�
i��

Wi �
m�
j��

Bj�

iii� The enlarged balls &Bj �	 B�xj� �
�	j�
�

N����� rj� are pairwise

disjoint�

Proof� We have �xed  � R� � and we are looking at maps u � E�
� �

for � su�ciently small �to be chosen later�� We de�ne W�� � � � �WN as
above �thus they will be open� simply
connected subsets of � � R� �
such that Wk 	 Vk�� By equation ����� we know that there exists
a uniform bound on N depending only on the energy level  we are
considering� and not on � � to be able to change � while having an
uniform bound on the number m of balls used in the covering is crucial
for our argument to work�

On the other hand� by ������ we have that

������ diam�Wk� � �

�
H��Vk� � ��� � �

Hence our Lemma follows from the more general covering argument
stated in Lemma � of the Appendix� In fact� it corresponds to the
special case where C 	 ��� and � 	 ��

���� Lower�bound for the energy around an isolated charged

singularity�

Lemma �� Let R�� R� � R� be such that R� � R�� Let � be the

annulus � 	 B��� R�� nB��� R��� and u � H���� C � be such that exists
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� � R� such that ju�x�j  � � �� for all x � �� and deg �u� SR�
� 	

deg �u� SR�
� 	 d 		 �� Then�

����� E��u�  � d� �� log
�R�

R�

�
�

Proof� We have that

����� E��u�  �

�

Z
�

jruj� � for all u � H���� C � �

Hence� we will concentrate on obtaining a lower bound for the Dirichlet
energy of u �the right hand side of ������� Since� by hypothesis� juj 
� � �� we may de�ne

v �	
u

juj � H���� S�� � and deg �v� SR�
� 	 deg �v� SR�

� 	 d 		 � �

By ����� we know that

����� jruj�  juj� jrvj�  �� jrvj� �
We de�ne

Vd 	 fv � H���� S�� � deg �v� SR�
� 	 deg �v� SR�

� 	 dg �
From ����� and ����� it follows that

����� E��u�  �

�

Z
jruj�  �� inf

v�Vd

��
�

Z
jrvj�

�
�

The problem of determining

inf
v�Vd

��
�

Z
jruj�

�
has already been extensively studied� In fact we can reduce it� using an
associated linear problem �see� for instance� ��� Theorems I�� and II���
and their Corollaries��� to determining the Dirichlet energy of a har

monic map $ such that

�����

	






�







�

"$ 	 � � in � �

$ 	 � � on SR�
�

$ 	 C � on SR�
�Z

SRi

$

�
	 �� d �
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where C is some constant� and � is the outward normal to BR�
and

also the outward normal to BR�
�so � will point inside � on SR�

and
outside on SR�

��
We can easily check that $ 	 d log �r�R�� is a solution of ������

Therefore� by the proof of ��� Theorem I��� �see step � of that proof �
it is essentially a consequence of Poincar e�s Lemma� we know that for
all v � H���� S��� deg �v� SRi

� 	 d� i 	 �� ��

�����

Z
�

jrvj� 
Z
�

jr$j�

	

Z
�

���d
r

����

	

Z ��

�

d�

Z R�

R�

r
d�

r�
dr

	 �� d� log
�R�

R�

�
�

Combining equations ����� and ����� we obtain

E��u�  � �� d� log
�R�

R�

�
�

which is the desired result�

We are now ready to prove the main result of this section�

Theorem �� Let  � R be �xed and u � E�
� � Then� there exists �� � �

�depending only on � such that if � � ��� then Bj 
 Y 		 � implies

that deg �u� Bj� 	 �� where the balls Bj are given by Lemma ��

Proof� Suppose that for some �� su�ciently small to apply Lemma
�� there exists u � E�

� such that in Lemma � we obtained a ball Bj

such that Bj 
 Y 		 � and deg �u� Bj� 		 �� Since Bj 
 Y 		 �� if � is

su�ciently small �depending only on � &Bj � #Y �because the radius of
&Bj tends to zero when � �� ��� Thus� since in the covering argument

we took care of all the Vk�s such that Vk 
 #Y 		 � and deg �u� Vj� 		 �

or osc ��k� � ���� we know that the annulus Dj �	 &Bj n Bj may only
intersect uncharged Vk�s such that osc ��k� � ��� �what we called Vk�s
of type d� in the beginning of this section��
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We may suppose� without loss of generality� that the Vk�s that
intersect Dj are VN��� � � � � V �N � for some #N � &N � We know that

osc ��k� � ���� k 	 N ��� � � � � #N � However� we cannot apply Lemma �
directly to u on Dj since a priori we have no lower bound on juj inside
WN��� � � � �W �N � Nevertheless� if we replace u inside each of the Wk�

k 	 N � �� � � � � #N � by the corresponding minimizer of ������ we will
decrease the energy and� at the same time� by Proposition �� we will
have a lower bound on the absolute value of the map obtained� Let

������ &u �	

	

�


�

u � in Dj n
�N�

k�N��

Wk �

u� � in Wk � k 	 N � �� � � � � #N �

where u� is the minimizer of E� in Wk with boundary value u� In
particular� u� satis�es equation ������ By construction� j&uj  �  ���

in Dj n
S �N
k�N��Wk� and by Proposition �� j&uj 	 ju�j  ��� in Wk�

k 	 N � �� � � � � #N � Therefore�

������ j&uj  �

�
� in Dj �

Hence� deg �&u�  &Bj� 	 deg �&u� Bj� 	 d 		 ��Thus� we may apply
Lemma � to &u in Dj � Denoting the energy of a map w in a domain
G by

E��w�G� �	
�

�

Z
G

jrwj� � �

� ��

Z
G

��� jwj��� �

this Lemma yields

������ E��&u�Dj�  �d�
��
�

��
log ���	j�
�

N������ �

Since �j  ��� �by Lemma ��� we have that

������ E��&u�Dj�  � d�

��
log �����
�
�

N������� 	 � � d�

�� ��N�� � ��
log � �

We claim that� for � su�ciently small

������ E��u���  E��&u�Dj� �
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Proof of claim �����	� We have that

������

E��&u�Dj� 	 E�

�
&u�Dj n

�N�
k�N��

Wk

�
�

�NX
k�N��

E��&u�Wk 
Dj�

� E�

�
&u�Dj n

�N�
k�N��

Wk

�
�

�NX
k�N��

E��&u�Wk� �

By construction� &u 	 u on Dj n
S �N
k�N��Wk� we have that

E�

�
&u�Dj n

�N�
k�N��

Wk

�
	 E�

�
u�Dj n

�N�
k�N��

Wk

�
�

and� on the other hand� by the de�nition of u� as the minimizer of ������
we also have that

E��&u�Wk� � E��u�Wk� � for k 	 N � �� � � � � #N �

Therefore� it follows from ������ that

E��&u�Dj� � E�

�
u�Dj n

�N�
k�N��

Wk

�
�

�NX
k�N��

E��u�Wk�

	 E��u�Dj �WN�� � � � � �W �N �

� E��u��� �

since Wk � #Y � �� k 	 N � �� � � � � #N � if � is su�ciently small� This
concludes the proof of claim �������

Combining ������ and ������ we have that for � su�ciently small�

������ E��u���  � � d�

�� ��N�� � ��
log �  C d� j log �j �

where C is a positive constant only depending on  �in fact� using
equation ����� we may choose C 	 ����� �������� ��� � ���

If� as we supposed� d 		 �� then� since u � E�
� � we would have that

C d�j log �j � � for all � su�ciently small� However� this is clearly not
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true for � � exp ����C d���� Hence� d must be zero� which concludes
the proof of Theorem ��

Remark� Theorem � proves rigorously our idea that as � gets small the
charged Vk�s have to cluster� giving rise to �neutral� �deg 	 �� Bj�s� or
to �drift� towards the boundary � �thus exiting the interior domain
Y �� Hence� in the interior of �� and for a distance scale of order �����
the charged singularities shouldn�t be �perceptible��

�� De�nition of the degree of u in ��

In this section we de�ne the degree of u in �� which is an integer�
and show that this integer is well de�ned�

Let

v �	
u

juj �
#Y n

�N�
k��

Wk �� S� �

and

A �	
n
r �

��
�
�
�

�

�
� Sr 
 Vk 	 � � for all k 	 �� � � � � &N

o
�

As before� for r � A� we de�ne

����� f�r� �	
�

��

Z
Sr

v � v

�
	 deg �u� Sr� �

and we de�ne the approximate degree as

����� adeg �u� �	
�

��jAj
Z
A

Z
Sr

v � v

�
d� dr 	

�

jAj
Z
A

f�r� dr �

The function f may only change value when we cross a charged Vk since
if r�� r� � A� r� � r�� then

f�r��� f�r�� 	
X

k�Ir��r�

deg �u� Vk� ������

Ir��r� 	 fk � Vk � B��� r�� nB��� r��g �

By ������ ������ Lemma � and Theorem �� inside Y we can cover all
the charged Vk�s by an uniformly bounded number of balls B�� � � � � Bm�
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with m � ���� and such that rj 	 radius �Bj� � ��� ����� and
deg �u� Bj� 	 �� Hence the function f will always have the same value

in (A �	 A n B� where B �	
Sm
j��fr � SR 
 Bj 		 �g� This is the value

we use to de�ne deg �u��� � Z�
When � �� � the approximate degree �adeg �u�� approaches this

value� In fact� from ����� and Lemma �� it follows that

����� jBj � �
mX
j��

rj � �m ��� ���� � ������ ���� �

Furthermore� even inside A 
 B the value of f�r� 	 deg �u� Sr� is uni

formly bounded � equations ����� and ����� imply that

����� jf � deg �u���j �
N�X
k��

jdeg �u� Vk�j � ��� �

Thus� using ������ ����� and ������ we obtain

�����

jadeg �u�� deg �u�j 	
��� �

jAj
Z
A

f�r� dr� �

jAj
Z
A

deg �u��� dr
���

� �

jAj
Z
A

jf�r�� deg �u���j

� �

jAj jBj ���

� �����

�
��
�
�H��V ����

� ����

� �����

�

�
� ��� �

���� �

Since this bound depends only on  and � �and not on u�� we will have
that adeg �u� will converge to deg �u��� � Z� uniformly in u � E�

� �
Hence� given � we know that for � su�ciently small

jadeg �u�� deg �u�j � �

�
�

and therefore� the knowledge of adeg �u� will determine the integer
deg �u� as desired�
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Remark� Of course we can also obtain deg �u��� by evaluating f�r� 	
deg �u� Sr� for any r � (A 	 A n B� The problem is that the process of
obtaining the balls Bj that de�ne B is very elaborate � hence our choice
of also showing how to obtain deg �u��� using the approximate degree�
We remark also that the Bj�s obtained using Lemma �� and thus also B�
are not uniquely determined� However� using estimate ������ it is easy
to check that �for su�ciently small �� as usual� the value of deg �u���
obtained by evaluating f�r� in (A� is independent of the particular Bj �s
used in the process�

� Continuity of deg �u����

This section is devoted to showing that the notion of deg �u���
we de�ned in the previous section �Section �� is continuous in H����
topology inside each level set of the Ginzburg
Landau energy ������
This result will be stated in Theorem � at the end of the section�

Let  � R� be given and � � �� �with �� de�ned as in Theorem ��
and consider u�� u� � E�

� � Suppose B
i
�� � � � � B

i
mi

� are the balls obtained

when applying Lemma � to ui� i 	 �� �� and V i
k � k 	 �� � � � � &Ni� i 	 �� ��

denote the corresponding Vk�s� We de�ne� as before� vi �	 ui�juij�

Ai �	
n
r �

��
�
�
�

�

�
� Sr 
 V i

k 	 �� for all k 	 �� � � � � &N�

and Sr 
 Bi
j 	 �� for all j 	 �� � � � �mi

o
�

fi�r� �	
�

��

Z
Sr

vi � vi
�

d� � for r � Ai �

Then� denoting A �	 A� 
 A��

����� deg �ui��� 	
�

jAij
Z
Ai

fi�r� dr 	
�

jAj
Z
A

fi�r� dr �

since fi�r� 	 Cte 	 deg �ui��� in Ai �hence also in A � Ai�� Therefore�
denoting G �	 f�r� �� � r � A� � � ��� ���g�
jdeg �u����� deg �u����j

	
�

��jAj
��� Z

A

Z
Sr

� u�
ju�j � �

� u�
ju�j

�
� u�
ju�j � �

� u�
ju�j

��
d� dr

���
�����
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�

��jAj
��� Z

A

Z
Sr

� u�
ju�j� �

u�
�

� u�
ju�j� �

u�
�

�
d� dr

��� �
since

ui
juij � �

� ui
juij

�
	

ui
juij �

� �

juij
ui
�

�
�

ui
juij �

�
ui �

� �

juij
��

	
ui
juij �

� �

juij
ui
�

�
�

because ui � ui 	 ��
Furthermore� from equation ������ and Lemma �� it follows that

jA�j� jA�j and jAj �� ��� uniformly when � �� �� and thus� in partic

ular� we have that for � su�ciently small �independent of the particular
choice of u�� u� � E�

� �� jAj � ������� Hence� equation ����� yields that
for all � as above�

�����

jdeg �u����� deg �u����j

	
�

��jAj
��� Z

A

Z
Sr

� u�
ju�j� �

u�
�

� u�
ju�j� �

u�
�

�
d� dr

���
� �

��jAj
Z
G

��� u�
ju�j� �

u�
�

� u�
ju�j� �

u�
�

���
�
��� u�
ju�j� �

u�
�

� u�
ju�j� �

u�
�

���
L�
G�

�

We can write the integrand in ����� as

u�
ju�j� �

u�
�

� u�
ju�j� �

u�
�

	
�

ju�j
u�
ju�j �

u�
�

� �

ju�j
u�
ju�j �

u�
�

	
� �

ju�j �
�

ju�j
� u�
ju�j �

u�
�

� �

ju�j
� u�
ju�j �

u�
�

� u�
ju�j �

u�
�

�
�

�����

Moreover� one can write the last factor in ����� as

u�
ju�j �

u�
�

� u�
ju�j �

u�
�
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�

ju�j
�
u� � u�

�
� u� � u�

�

�
�
� �

ju�j �
�

ju�j
�
u� � u�

�

	
�

ju�j
�
�u� � u��� u�

�
� u� � �u� � u��

�

������

�
� �

ju�j �
�

ju�j
�
u� � u�

�
�

From ����� and ����� it follows that

u�
ju�j� �

u�
�

� u�
ju�j� �

u�
�

	
� �

ju�j �
�

ju�j
� u�
ju�j �

u�
�

�
�

ju�j ju�j
�
�u� � u��� u�

�

�

�
�

ju�j
� u�
ju�j �

�u� � u��

�

�
�
� �

ju�j �
�

ju�j
��

u� � u�
�

�
�

�����

On the other hand� since juij  ��� in G� we have that

�����
�

juij � � � i 	 �� � � and
�

ju�j ju�j � � � in G �

Furthermore� we have the following estimates for vi 	 ui�juij���� ui
juij

���
L�
��

	 � ������

��� ui
juij

���
L�
G�

�
��� ui
juij

���
L�
G�

jGj��� � jGj��� � jY j��� 	
p
��

�
������

Regarding the tangential derivatives� we have that jui�� j � jruij�
and thus�

������
���ui
�

���
L�
G�

� kruikL�
G� � kruikL�
�� �

and also that ����u� � u��

�

��� � jr�u� � u��j �
which implies that

������
����u� � u��

�

���
L�
G�

� kr�u��u��kL�
G� � kr�u��u��kL�
�� �
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Finally� we can easily check that

��� �

ju�j �
�

ju�j
��� 	 j ju�j � ju�j j

ju�j ju�j � ju� � u�j
ju�j ju�j � � ju� � u�j �

which� in turn� yields

������
��� �

ju�j �
�

ju�j
���
L�
G�

� � ku� � u�kL�
G� � � ku� � u�kL�
�� �

Moreover� since we supposed that ui � E�
� � we have� as in ������

������ kruikL�
G� � kruikL�
�� �
p
�E��ui� �

p
� �

Using the Cauchy
Schwarz inequality and equations ������ ������ ������
������ ������� ������� ������ and ������� it follows from equation �����
that

jdeg �u����� deg �u����j

�
��� u�
ju�j� �

u�
�

� u�
ju�j� �

u�
�

���
L�
G�

�
��� u�
ju�j

���
L�
G�

��� �

ju�j �
�

ju�j
���
L�
G�

kru�kL�
G�

� � ku� � u�kL�
G� kru�kL�
G�
� �

��� u�
ju�j

���
L�
G�

kr�u� � u��kL�
G�

�
��� u�
ju�j

���
L�
G�

��� �

ju�j �
�

ju�j
���
L�
G�

kru�kL�
G�

� � kru�kL�
G� ku� � u�kL�
G� � � kru�kL�
G� ku� � u�kL�
G�
� � jY j��� kr�u� � u��kL�
G� � � kru�kL�
G� ku� � u�kL�
G�

� �� kru�kL�
�� � � kru�kL�
��� ku� � u�kL�
��

� �

p
��

�
kr�u� � u��kL�
��

� ��
p
� ku� � u�kL�
�� �

p
��

�
kr�u� � u��kL�
��

� C ku� � u�kH�
�� �
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where C is a constant that depends only on the energy bound  �we may
take C 	 ��

p
� �

p
������ Therefore� we have proven the following

Theorem which is the main result of this section�

Theorem �� Let  � � be given and � be su�ciently small� Then�

inside the level set E�
� the degree de�ned as above is continuous in

H���� topology� and there is a constant C� depending only on � such
that for all u�� u� � E�

�

������ jdeg �u����� deg �u����j � C ku� � u�kH�
�� �

�� Proof of Theorem � and Theorem ��

We start by proving Theorem �� i�e� the case where � is of the
special form we studied �the annulus � 	 fx � R� � ��� � jxj � �g��
In this case we de�ned in Section � the map deg �u��� which has all the
required properties of ��u�� Thus� we de�ne ���� �	 deg ����� � E�

� ��
Z� Theorem � states that this map is continuous inside each level set of
the Ginzburg
Landau energy� Since � is a continuous map with values
in the discrete set Z� for each k � Z� ����k� 	 fu � E�

� � ��u� 	 kg�
will be an open and closed subset of E�

� �in H� topology�� We have thus
succeeded in de�ning topological sectors inside E�

� � This concludes the
proof of Theorem �� Theorem � follows from Theorem � as described
in the Introduction�

�� The Palais�Smale condition� proof of Theorem 	�

Suppose that un is a Palais
Smale sequence for E�� i�e� that there
exists a constant M such that

E��un� �M � for all n ������

dE��un� �� � in �H��� as n �� �� ������

where �H��� is the dual of H����R��� and dE��un� denotes the dif

ferential of E� at un� We want to show that then un has a strongly
convergent subsequence in H�� This shall be achieved in two steps�
�rst we prove that un is bounded in H����R�� and then we �nd a
convergent subsequence�
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���� Step �� un is bounded in H��

Equation ����� can be written as

�����
�

�

Z
�

jrunj� � �

� ��

Z
�

��� junj��� �M � for all n �

and equation ����� means that there is a sequence Cn  �� such that
for all v � H����R���

�����
��� Z

�

run � rv � �

��

Z
�

��� junj��un � v
��� � Cn kvkH�
��R�� �

which implies that there exists a sequence bn�v� such that � � bn�v� �
Cn� for all n� v �and hence bn �� �� and

�����
��� Z

�

run � rv
��� 	 bn kvkH�
��R�� �

��� �
��

Z
�

��� junj��un � v
��� �

Taking v 	 un in ����� we obtain

�����
��� Z

�

jrunj� � �

��

Z
�

��� junj�� junj�
��� � Cn kunkH�
��R�� �

and thus

�����
��� Z

�

jrunj�
��� � Cn kunkH�
��R�� �

��� �
��

Z
�

��� junj�� junj�
��� �

First� using the Cauchy
Schwarz inequality and ������ we notice that���� �
��

Z
�

��� junj�� junj�
��� 	 ��� �

��

Z
�

��� junj��� � �

��

Z
�

��� junj��
���

� �M �
�

��

�Z
�

��� junj���
����

j�j��������

� �M �
�

�
M��� j�j��� �

Second� the same type of estimate yields

�����

��� Z
�

junj�
��� 	 ��� Z

�

�� junj� � �
���

�
��� Z

�

�� junj�
���� j�j

� �M��� j�j��� �� j�j
	 j�j� o ��� �
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From ����� and ����� it follows that

������

Z
�

jrunj� � Cn �kunkL� � krunkL�� � �M �
�

�
�M��� j�j��� �

and� using ������ this yields

������

krunk�L� � Cn krunkL� � Cn ��M
��� j�j��� �� j�j����

� �M �
�

�
�M��� j�j���

	 #C�M� �� �

Since Cn �� � this implies that krunkL�
�� is bounded� Together with
������ which gives us a bound on kunkL�
��� this yields

������ kunkH�
�� � C�M� �� �

which concludes the proof of the �rst step�

Step �� un has a strongly convergent subsequence in H��

Since by ������ un is bounded in H����R��� it has a subsequence�
which we will still denote by un which is weakly convergent in
H����R��� Hence� using the fact that we have a compact embedding
H����R�� �� L����� we know that� up to passing to a subsequence�
there exists u � H����R�� such that

������ un �� u in L���� and run � ru in L���� �

Therefore� we just need to prove strong convergence in L���� of the
gradients� run �� ru in L����� By ������ we already have weak
convergence run � ru� thus we just need to prove the convergence of
the L���� norms in order to obtain strong convergence�

Since H���� �� Lp���� for all � � p � ��� we have that

������ un � u in H� implies un �� u in Lp � for all � � p � �� �

In particular

un �� u in L���� and junj� �� juj� in L���� �
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Thus� using H+older�s inequality�

��� junj��un �� ��� juj��u in L���� �

��� junj��un � u �� ��� juj�� juj� in L���� �������

and� since un �� u in L�����

������ ��� junj��un � un �� ��� juj�� juj� in L���� �

Taking v 	 u � H� in equation ����� we obtain

������
��� Z

�

run � ru
��� 	 bn kukH�
��R�� �

��� �
��

Z
�

��� junj��un � u
��� �

Passing to the limit n �� ��� using the fact that run � u weakly in
L����� bn �� � and ������� inequality ������ yields

������

Z
�

jruj� 	
��� �
��

Z
�

��� juj�� juj�
��� �

On the other hand� passing to the limit in ������ using the fact that
Cn �� �� ������� ������ and ������� we obtain

������ lim
n���

Z
�

jrunj� �
��� �
��

Z
�

��� juj�� juj�
��� 	 Z

�

jruj� �

Since by the lower semi
continuity of the L� norm in weak topology we
have that Z

�

jruj� � lim
n���

Z
�

jrunj� �

equation ������ implies that

������

Z
�

jruj� 	 lim
n���

Z
�

jrunj� �

which concludes the proof of Theorem � for E�� For the case of the
functional F� the same proof will work once we �x the Coulomb gauge�
The reader interested in seeing how the gauge invariance a�ects Palais

Smale sequences in this problem may take a look at the appendix of
����
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��� Threshold energies and components of E�
� �

We can reformulate the statement of Theorem � and state the
following Proposition�

Proposition �� Suppose that for some  � R� � we have that for some

� � �� �where �� is given Theorem �� there exist n� k � Z� n 		 k�
such that the topological sectors topn�E

�
� � and topk�E

�
� � are both non�

empty� Then� there are mountain�pass type critical points of E� or�

equivalently� there exist mountain�pass type solutions of the Ginzburg�

Landau equations �������
More precisely� consider two non�empty components of E�

� � ,� �
topn�E

�
� � and ,� � topk�E

�
� �� and let cn�k�,��,�� be de�ned as in

������� Then� there exists a map u � H����R�� which is a critical

point of E� and such that E��u� 	 cn�k�,��,���

Since H���� is locally pathwise connected and the level sets E�
�

are open� their path components coincide with their components� so
we can use the two concepts indistinguishably� Let n� k � Z be two
distinct integers� and let ,� and ,� be components of E�

� such that
,� � topn�E

�
� � and ,� � topk�E

�
� �� Then� given u�� u

�
� � ,� and

u�� u
�
� � ,�� we know that there exist two paths �i� i 	 �� �� such that

�i � ��� �� �� ,i � �i��� 	 ui � �i��� 	 u�i � i 	 �� � �

In particular�

������ �i�s� �  � for all s � ��� �� �

As usual� we de�ne the composition operation for paths� let � be a path
from p to q� and � be a path from q to r� then � 	 � � is the path from
p to r de�ned by

��s� �	

	
�

�

��� s� � for � � s � �

�
�

��� s� �� � for
�

�
� s � � �

And we de�ne the inverse path of �� which we denote by ���� as
����s� �	 ����s�� for s � ��� ��� Then� to any path � � ��� �� �� H����
between u� and u�� one can associate a path �� 	 ���� � �� � ��� �� ��
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H���� from u�� to u��� And vice
versa� to any path �� � ��� �� �� H����
between u�� and u��� one can associate a path � 	 �� �

� ���� � ��� �� ��
H���� from u� to u�� With these de�nitions� from equation ������ it
follows that

������ max
s�����	

E����s�� 	 max
s�����	

E���
��s��   �

And hence�

������ inf
��V

�
max
s�����	

�E����s���
�
	 inf

��V�

�
max
s�����	

�E���
��s���

�   �

where�

V �	 f� � C����� ��� H����R��� � ���� 	 u�� and ���� 	 u�g �

and

V � �	 f�� � C����� ��� H����R��� � ����� 	 u��� and ����� 	 u��g �

Thus� cn� the threshold energy for a transition from u� to u� de�ned in
������� is well de�ned as a transition energy from a component ,� of
topn�E

�
� � to a component ,� of topk�E

�
� �� We can de�ne�

������ cn�k�,��,�� �	 inf
��Vn�k
������

�
max
s�����	

�E����s���
�
�

where�

Vn�k�,��,��

�	 f� � C����� ��� H����R��� � ���� � ,� � topn�E
�
� ��

and ���� � ,� � topk�E
�
� �g �

By the Mountain Pass Theorem we know that cn�k�,��,�� is a gen

eralized critical value of E� and� since by Theorem � the functional
E� satis�es the Palais
Smale condition� this implies that cn�k�,��,�� is
also a critical value of E�� thus concluding the proof of Proposition �
and Theorem ��

Remark� For small � and n 		 k� cn�k�,��,�� shouldn�t depend on the
speci�c components ,� � topn�E

�
� � and ,� � topk�E

�
� �� but only on

n and k �i�e� only on the topological sectors themselves�� This leads
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us back to the question of how many distinct components can there be
inside a topological sector and how do they change when  changes� We
expect that for certain values of � topn�E

�
� � may not be connected� but

that as we increase  the di�erent components which existed at lower
energies� should increase in size and eventually intersect thus becoming
the same component� As a matter of fact� in ��� we will be able to
prove that all the components in topn�E

�
� � can be connected by paths

wich involve energies of� at most� something like �� while to connect
di�erent topological sectors we will need energies like � j log �j� which
for small enough � is much bigger than �� In this case cn�k�,��,��
will depend only on n and k as we said�

Remark� As usual� similar results are valid for F��

��� A model for superconductivity�

In this section we will consider the gauge
invariant Ginzburg
Lan

dau model ������ and prove that inside the level sets F�

� we can de�ne
topological sectors in a similar way to the one used for de�ning such
sectors inside the level sets E�

� in theorems � and � which we proved in
Section ��

����� Gauge �xing�

Given a con�guration �v�B� � F�
� � we will show in this section

how to choose a gauge equivalent con�guration� �u�A� � �v�B�� such
that we have the necessary control on A to allow us to bound the L�

norm of ru by a constant depending only on the energy level � In
fact� to achieve this� all we need to do is to �x a Coulomb gauge over
the unit disk D 	 B��� �� 	 � � B��� �����

Proposition 	� Given a con�guration �v�B��H�� there exists �u�A��
�v�B� such that

������

�
d
A 	 � � in D �

A � � 	 � � on D 	 S� �
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The proof is just the same as that of ��� Propositions I�� and I����
Now we remark that� since D is simply
connected� ������ implies that

there exists � � H��D�R� such that writing #� 	 � dx� � dx� 	 
 ��

������

�
A 	 d
#� 	 
 d� � in D �

� 	 � � on D �

It follows from ������ and ������ that � satis�es

������

�
"� 	 d
 d� 	 
 dA � in D �

� 	 � � on D �

This implies� using standard elliptic estimates� that

k�kW ���
D� � #C kdAkL�
D� �

which� together with ������ yields

������

kAk�W ���
D� 	

Z
D

jAj� �
Z
D

jrAj�

	

Z
D

jr�j� �
Z
D

jr��j�

� k�k�W ���
D�

� #CkdAk�L�
D�

� #C F��u�A�

� #C  �

where #C is a constant�

����� Global control of jruj��

The purpose of this subsection is to show how to obtain a bound
on krukL�
�� by a constant depending only on the energy level �

Lemma �� Given �v�B� � F�
� � let �u�A� be as in Proposition �� Then�

������

Z
�

jruj� � C �
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where C is a constant which only depends on �

Proof� Since� by construction� F��u�A� 	 F��v�B� � � we have
that� in particular�

������

Z
�

jrA uj� 	
Z
�

jru� � A uj� � �F��u�A� � � �

Hence� Z
�

jruj� 	
Z
�

jru� � A u� � A uj�

� �

Z
�

jru� � A uj� � �

Z
�

jAuj�

� �F��u�A� � �

Z
�

jAj� juj�������

� � � �

Z
�

jAj� �juj� � �� � �

Z
�

jAj�

� � � �

Z
�

jAj� j�� juj�j� �

Z
�

jAj� �

Using H+older�s inequality� and the fact that from the energy bound it
follows that

k�� juj�k�L�
�� � � �� F��u�A� � � ��  �

we obtain

������

Z
�

jruj� � � � � kA�kL�
�� k�� juj�kL�
�� � � kAk�L�
��

� � � � ���� kAk�L�
�� � � kAk�L�
�� �

Since we are in a two
dimensional domain it follows from the Sobolev
Embedding Theorem that W ������ �� Lq���� for all q � ��� hence�
in particular� there exists a constant &C such that

������ kAkL�
�� � &C kAkW ���
�� �

Furthermore� from ������ we know that

������� kAkW ���
�� � kAkW ���
D� �
p

#C  �
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From equations ������� ������ and ������� it follows that for � � � �as
mentioned before� it is the case where � is small that interests us��

�������

Z
�

jruj� � � � � ���� &C� kAk�W ���
D� � � kAk�W ���
D�

� � � ���� &C� #C  � � #C 	 C �

where C is a constant depending only on �

���	� De�nition of deg ��v�B���� and proof of Theorem ��

Once we have the estimate ������� we can de�ne deg �u��� as in
the case of the initial model ������ since we will have all the estimates
we used in the work that culminated with the de�nition of the degree
in Section �� Thus� for � su�ciently small� deg �u��� is well de�ned�
and hence we may de�ne

deg ��v�B���� �	 deg �u��� �

Once we have achieved this� Theorem � follows from the corresponding
result for deg �u��� which� thanks to estimate ������� can be proven
in a similar way to that we used for proving Theorem � �therefore� we
omit this proof��

The generalization of Theorem � to the setting of Riemannian man

ifolds will then follow from Theorem � in an analogous way as Theorem
� followed from Theorem ��

��� Appendix� Covering Lemma�

This section is devoted to a general covering Lemma we used to
prove Lemma ��

Lemma � Let � � � and W�� � � � �Wn be connected open subsets of R�

such that there exist C�� � � such that diam�Wl� � C �	� Then� for �
su�ciently small� there is a family of numbers ��� � � � � �m  ���� and
a family of balls B�� � � � � Bm� with m � n� such that� denoting by xj the
center of Bj� and by rj its radius�

i� rj � C�	j �
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ii�
n�
l��

Wl �
m�
j��

Bj�

iii� The enlarged balls &Bj �	 B�xj� �
�	j�
�

n����� rj� are pairwise

disjoint�

Proof� We start by de�ning

qn �	
�n��

�n�� � �
�

pk �	
�

kX
j��

��j

	
�k

�k�� � �
�

for k 	 �� � � � � n�
The proof of this Lemma is done by induction on the number k

of components of A 	
Sn
l��Wl� For k 	 �� it su�ces to consider a

unique ball of radius r� 	 C �	� � with �� 	 ���� 	 �p�� since� for �
su�ciently small�

������ diam �A� �
nX
l��

diam �Wl� � nC �	 � C ��	� �

Hence� we can �nd a ball B�� of radius r� � C��	� containing
Sn
l��Wl�

Suppose that the result is always true if A has n components� for all
n � k�� � n��� and� furthermore� the number m of balls obtained in
the covering process is at most n and each of the �j �s obtained satis�es

������ �j  �
nX
j��

��j

	 �pn  �pk�� �

To complete the induction argument� we just have to show that then
the result will still be true when A has k components� and that in this
case m � k � n and we can �nd �j �s such that

�j  �
kX

j��

��j

	 �pk �
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Let A�� � � � � Ak be the connected components of A� Suppose that

������ diam�A� � �nC �	qnpk�� �

Then� for � su�ciently small� we can include A in a ball B� of radius
r� � �	pk � In fact� it su�ces that

�nC �	qnpk�� � C �	qnpk �

This is always true� provided that � is su�ciently small� since

� qn pk�� � �pk if and only if
pk��
pk

�
�

qn
�

and

pk��
pk

	 � �
��k

pk��
� � �

�

�k��
	

�k��

�k�� � �
 �n��

�n�� � �
	

�

qn
�

Thus� if ������ is true� our proof will be completed� Hence� we may
suppose that this is not so� i�e�� that

������ diam�A�  �nC �	qnpk�� �

Let y�� y� � A be such that jy��y�j 	 diam�A�� and consider the family
of balls B�y�� r� for r � ��� diam�A��� De�ne Gj �	 fr � B�y�� r�
Aj 		
�g� j 	 �� � � � � k� Each Gj will be an interval� and the sum of the lengths
of the Gj �s will be smaller than the sum of the diameters of the Wl�s�
which is at most nC�	� Since nC �	 � nC �	qnpk�� � for all � � �� it
follows that the set

#G �	 ��� diam�A�� n
k�

j��

Gj �

will have a measure of at least

�nC�	qnpk�� � nC �	qnpk�� 	 �nC �	qnpk�� �

Moreover� the set #G is the union of� at most� k � � subintervals of
��� diam�A�� since it was obtained from the latter by removing the
k open intervals Gj �among which one had endpoint � and another
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had endpoint diam �A��� Consequently� at least one of its components�
which we will denote by �a�� b��� will be such that

������ b� � a�  j #Gj
k � �

 �n

k � �
�	qnpk�� � � �	qnpk�� �

Let #A 	 A 
 B�y�� a��� and &A 	 A n B�y�� b��� Then� A 	 #A � &A� and
both #A and &A include at least one of the Aj �s� Hence� both #A and &A
have at most k�� components and thus we can apply the induction step
to each of them� It yields� since the sum of the number of components
of #A and &A is k� that there will be a total of m � k balls B�� � � � � Bm�
such that

a� #A � B� � � � � �Bm� &A � Bm�� � � � � � Bm� for some m � m�

b� Each Bj has center xj and radius rj � C �	j � where �j 
�pk��  �pk�

c� The enlarged balls &Bj �	 B�xj � �
�	j�
�

n����� rj� are pairwise
disjoint for j � f�� � � � �mg and also for j � fm� �� � � � �mg�

However� to obtain the disjointness of two &Bj� one corresponding

to #A �i�e� j � m� and the other to &A �i�e� j � m�� we need to use
equation ������� In fact� if j� � m and j� � m� then

������ jxj� � y�j � a� � C �	j� � a� � C �	qnpk�� �

since Bj� 
 #A 		 �� #A � B�y�� a�� and by b�� �j�  �pk�� � qn �pk���
Similarly� we have that

������ jxj� � y�j � b� � C �	j� � b� � C �	qnpk�� �

since Bj� 
 &A 		 �� &A � A n B�y�� b�� and� by b�� �j�  �pk�� �
qn �pk���

Therefore� combining ������ and ������ we have

������ jxj� � xj� j � �C �	qnpk�� �

Since &Bji has radius

C �qn	ji � C �	qnpk�� �

equation ������ implies that

&Bj� 
 &Bj� 	 � �
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as desired� Consequently� the balls Bj obtained satisfy all the conditions
required for the induction argument� and thus the proof of Lemma � in
completed�

Remark� Relative to the similar covering argument of Lin ����� our
result has the advantage that we are able to keep the �j always bigger
than ���� which corresponds to keeping the balls Bj rather small � in
Lin�s result �j may tend to zero when n ���� However� we also lose
something� both because our proof is technically more complicated� but
also because we obtain smaller �and more complex� expansion factors
for the &Bj �s� In fact� even Lin�s expansion factors ���	j�� go to �

when n ���� but ours ���	j�
�
n������ will decrease to � considerably

faster�
We prefered to privilege the scale of the balls because it enables

us to assert that in our problem� at least at a scale ����� things appear
neutral to an outside observer �and it also makes the energy explosion
estimate ������ slightly neater�� Using Lin�s result� the scale would
depend on n� and hence on � which would be less satisfactory�
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