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Absolute values
of BMOA functions

Konstantin M. Dyakonov

Abstract. The paper contains a complete characterization of the mod-
uli of BMOA functions. These are described explicitly by a certain
Muckenhoupt-type condition involving Poisson integrals. As a conse-
quence, it is shown that an outer function with BMO modulus need
not belong to BMOA. Some related results are obtained for the Bloch
space.

1. Introduction.

Let D denote the disk {z € C: |z| < 1}, T its boundary, and m the
normalized arclength measure on T. Further, let u, be the harmonic
measure associated with a point z € D, so that

def 1 — |Z|2

Ik

1= (C) m(¢),  CeT.

The space BMO consists, by definition, of all functions f € L(T,m)
satisfying
def

191 sup [176) = 1) dna(©) < o0,
zE
where f(z) stands for [ fdu,. Alternative characterizations of BMO,
as well as a systematic treatment of the subject, can be found in [G,

Chapter VI] or [K, Chapter X|. Meanwhile, let us only recall that the
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Garsia norm
def 1/2
Il sup ([ 117 au: = 11)E) "
z€D

defined originally for f € L?(T,m), is in fact an equivalent norm on
BMO.
We shall also be concerned with the analytic subspace

BMOA % BMO N H!

(as usual, we denote by HP, 0 < p < oo, the classical Hardy spaces of
the disk). It is well known that

H>™ c BMOA C ﬂ H?
0<p<oo

Now one of the basic facts about H? spaces (see e.g. [G, Chapter II])
is this: In order that a function ¢ > 0, living almost everywhere on T,
coincide with the modulus of some nonzero HP function, it is necessary
and sufficient that ¢ € LP(T, m) and

(1.1) /1og<pdm> —00.

On the other hand, the very natural (and perhaps no less important)
problem of characterizing the moduli of functions in BMOA seems to
have been unsolved (or unposed?) until now, and the present paper is
intended to fill that gap.

Thus, we look at a measurable function ¢ > 0 on T and ask whether

(1.2) e =|fl, for some f € BMOA, f#0.
The two immediate necessary conditions are (1.1) and
(1.3) ¢ € BMO.

(To see that (1.2) implies (1.3), use the following simple fact: If for any
z € D there is a number ¢(z) such that

(1.4) sup / 19(0) — e(2)] dp (€) < 00,

z€D
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then ¢ € BMO. Now, given that (1.2) holds, (1.4) is obviously fulfilled
with ¢(z) = |f(z)|.) However, we shall see that (1.1) and (1.3) together
are not yet sufficient for (1.2) to hold.

Assuming that (1.1) holds true, we consider the outer function O,
given by

0p2) @ exp [ 2 1ogp()am(©), =D,

and note that (1.2) is equivalent to saying that

(1.5) 0, € BMOA.

Indeed, since |O,| = ¢ almost everywhere on T, the implication (1.5)
implies (1.2) is obvious. The converse is also true, because the outer
factor of a BMOA function must itself belong to BMOA (in fact, if
f = FI with F € H? and I an inner function, then it is easy to see that
lIfllc = ||F||lg)- The problem has thus been reduced to ascertaining
when (1.5) holds.

In this paper we point out a new crucial condition (reminiscent,
to some extent, of the Muckenhoupt (A,) condition, cf. [G, Chap-
ter VI]) which characterizes, together with (1.1) and (1.3), the non-
negative functions ¢ with O, € BMOA; this is contained in Section 2
below. Further, in Section 3, we exhibit an example of a BMO function
¢ > 0 with log ¢ € L(T,m) for which our Muckenhoupt-type condition
fails. In other words, we show that the obvious necessary conditions
(1.1) and (1.3) alone do not ensure the inclusion O, € BMOA. Finally,
in Section 4 we find out when an outer function with BMO modulus
lies in the Bloch space B.

2. Outer functions in BMOA.

Given a function ¢ € L*(T, m), ¢ > 0, we recall the notation

¢(z) dg/s@duz, z€D,
and introduce, for a fixed M > 0, the level set

Qp, M) € {zeD: p(z) > M}.
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In order to avoid confusion, let us point out the notational distinction
between

o < (o)) = ([ wdn:)”

and

@) @) = [ du.
(here p > 0 and z € D). Finally, we need the function
1 - 0<t<l1
log_td:ef{ I ’
0, t>1.
Our main result is

Theorem 1. Suppose that ¢ € BMO, ¢ > 0, and

/1og<pdm> —00.

The following are equivalent.
i) O, € BMOA.

ii) For some M > 0, one has

sup{go(z)z/log_ odu, : z € Q((p,M)} < 00.

REMARK. The latter is vaguely reminiscent of the well-known Muck-
enhoupt (A,) condition [G, Chapter VI] which can be written in the
form

sup {(p(z)T/go_T du, : z € D} < 00,
where 7=1/(p—1) and 1 < p < 0.
The proof of Theorem 1 makes use of the following elementary fact.

Lemma 1. The function

e ]_
R(u)d:floga-i-u—l, u>0,
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1s nonnegative and satisfies

R(u) <2 (u—1)2, for u >

DO | =

Indeed, since R(u) is the remainder term in the first order Taylor
formula for log 1/u, when expanded about the point u = 1, one has

1

R(u) = 55

(u—1)%,

where £ = {(u) is a suitable point between u and 1.

We also cite, as Lemma 2, the “harmonic measure version” of the
classical John-Nirenberg theorem (see Section 2 and Exercise 18 in [G,
Chapter VIJ).

Lemma 2. There are absolute constants C' > 0 and ¢ > 0 such that

pAC €T IF(Q) = f(2)] > M < Coxp ( - H(}ﬁ*) ,

whenever z € D, f € BMO and XA > 0 (here again f(z f fdu,).

PrROOF OF THEOREM 1. Since ¢ € BMO, we know that
(2.1) lelle = Sup (¥*(2) = ¢(2)%) < 00.

Similarly, condition i) of Theorem 1 is equivalent to

10, ||a—sup( “(2) = 10,(2)*) < o0

and hence, in view of (2.1), to

(2.2) sup (0(2)* =0y (2)]*) < 0.

z€D

In order to ascertain when (2.2) holds, we note that

|O<P(Z)| = €xp (‘/10g(’0d'u,z> = (,O(Z) e_‘](z) ,
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where

def
J(z) = log p(2) —/logwduz,

and rewrite (2.2) in the form

(2.3) sup p(2)? (1 —e™ 7)) < 0.
z€D

We remark that J(z) > 0 by Jensen’s inequality. Further, we claim
that (2.3) is equivalent to the following condition

(2.4) sup{p(2)?J(2): z€ Q(p,M)} < 0, for some M > 0.

Indeed, to deduce (2.3) from (2.4), one uses the inequality 1 —e™* < z
and the obvious fact that

sup {@(2)2 (1 —e 27y 2 e D\ Q(p, M)} < M2,

Conversely, to show that (2.3) implies (2.4), let K be the value of the
supremum in (2.3) and put M 4 /2 K. Tt then follows from (2.3) that

sup{J(z): z € Qp, M)} < o0,

and so 1 — e~27(2) is comparable to J(z) as long as z € Q(p, M).

We have thus reduced condition i) to (2.4), and we now proceed
by looking at (2.4) more closely. To this end, we fix a point z € Q(¢p, 2)
and introduce the sets

B =B() ¥ {CeT: p(0) 2 5 0(2)

and

By=FEs(2) T\ E, .

Using the function R(u) from Lemma 1, we write

/
(2.5) N /
/
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where

I;(2) d:ef[ER(gp(o)duz(g), i=1,2.

Now if ( € Fq then ¢(¢)/p(z) > 1/2, and Lemma 1 tells us that

R(@(C)) <9 (@((L(—z;p(z)f_

Integrating, we get

1) € —55 [0 =0l a0 < 5l

so that

(2.6) L(z) = o(@) .

In order to estimate I5(z), we observe that

phz(Ea) = m{(z p(C) < %w(Z)}

= uz{C: p(z) = p(¢) > %90(2)}

< ¢ 19() — 9O > 5 9(2)}

2
<cen (- 3i0)

as follows from Lemma 2. Besides, for ¢ € E5 one obviously has

Q) —w(@)| _, ¥
(28) it
and
¢(z)
(2.9) log 2(0) >log2>0.

Further, we set

457
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and

S(z) déf/E %cﬁu((ﬂ/ﬁ log Zgz; dp (C)

We have then

dpi, (C) .

(2.10) I)(z) = S(z) + / _log 4,0(1()

Using (2.8) and (2.9), we see that

[ H D )] < )

and

05 [ o8 B de(€) < ) o (o).
Consequently,

1S(2)] < p (Ez) (12 (ES) + (B3 ) log (2)

<Cexp( ) 1+ logp(z

where the last inequality relies on (2.7). The function
t — t2exp (—at) (1 + logt), t>2,

being bounded for any fixed a > 0, we conclude from (2.11) that

Together with (2.10), this means that

(2.12) (z) = o(ﬁ) +/_ log <p(1<) A (C).
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A juxtaposition of (2.5), (2.6) and (2.12) now yields

(2.13) J(z) = 0(@) + /E log <,0(1C) i (C).

Finally, recalling the assumption z € Q(¢, 2), we note that
Ey ={CeT: ¢(¢) <1}

(indeed, if ¢ € T and ¢(¢) < 1, then ¢(¢) < ¢(2)/2, so that ( € Es).
Thus, (2.13) can be rewritten as

J(z) = 0(@) +/10g_<pdﬂz :

and this relation has been actually verified for z € Q(¢p, 2).
It now follows that condition (2.4) (in which one can safely replace
the words “for some M > 0” by “for some M > 2”) holds if and only if

sup {go(z)2/10g_<pduz D Z € Q((p,M)} < 00,

for some M > 0; we have thus arrived at ii). On the other hand, we
have seen that (2.4) is a restatement of i). The desired equivalence
relation is therefore established.

We proceed by pointing out a few corollaries of Theorem 1.

Corollary 1. Let ¢ € BMO, ¢ > 0, and [logpdm > —oco. If O, €
BMOA and 0 < p < 1, then Oy (= OL) € BMOA.

PrRoOOF. Since ¢ € BMO, we have also ¢? € BMO (this is easily
deduced from the inequality |a? — bP| < |a — b|P, valid for a, b > 0 and
0 < p < 1). By Theorem 1, the inclusion O, € BMOA yields

(2.14) sup {(p(z)2 /log_go dp, : z € Q((p,M)} < 00,

for some M > 0, and hence also for some M > 1. Holder’s inequality
gives
pP(z) <p(z)?,  zeD,
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whence
eP(z) < (),  z€Q(p1),
and
Q(p", M) € i, M).

Therefore, (2.14) with M > 1 implies the condition

sup { (¢ ())? [ log e dp. 2 € Q. 17} < 0,
which in turn means, by Theorem 1, that O, € BMOA.

Corollary 2. Let ¢ € BMO, ¢ > 0, and [logpdm > —oco. Assume,
in addition, that ¢ possesses (after a possible correction on a set of
zero measure) the following property: For some ¢ > 0, the set {( €

T : o(C) < e} is closed and consists of continuity points for ¢. Then
0, € BMOA.

PrROOF. We may put € = 1 (otherwise, consider the function ¢, def
@/€). Thus, we are assuming that the set

K {CeT: o) <1}

is closed, while ¢ is continuous at every point of K. We now claim that
(2.15) K nNclosQ(p,2) =92.

Indeed, if ¢, € K Nclos (e, 2), then one could find a sequence {z,} C
D such that ¢(z,) > 2 and z, — (p. On the other hand, since
¢ is continuous at (p, we would have lim,, o, ©(z,) = @({o) < 1, a
contradiction.

From (2.15) it follows that

5§ X dist (K, Q(e,2)) > 0.

Hence, for z € Q(¢p, 2), one has

/1og_<pdu = Gl log L dm(()
z —_ |2
216) PR
1— |22
< 5 [ log &|| L1 (T ,m) -
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An easy estimate for the Poisson integral of a BMO function gives
2

(2.17) cp(z):O(logil | |), zeD.
— |z

Combining (2.16) and (2.17) yields

w(Z)z/log_%Od#z
(2.18) 2 \21— [z
< const(log 1= |z|) 52 | log ¢l L1 (1 m) »

for all z € Q(¢p,2). Since

92 2
1— |22 (1 7) = 0(1 D
(A=) (g 1) =0@).  =zeD,
the right-hand side of (2.18) is bounded by a constant independent of
z. Thus,

sup {(p(z)z/log_cpdpz : 2 € Qo 2)} < 00,
and the desired conclusion follows by Theorem 1.
Corollary 3. If ¢ € BMO and esCs i%lfgo(() > 0, then O, € BMOA.
€

PROOF. For a suitable ¢ > 0 one has {( € T: ¢(¢) < e} = @, so it
only remains to apply Corollary 2.

3. An outer function with BMO modulus that does not belong
to BMOA.

Although Theorem 1 provides a complete characterization of the
moduli of BMOA functions, one may still ask whether the obvious neces-
sary conditions (1.1) and (1.3) are also sufficient for O, to be in BMOA
(equivalently, whether condition ii) of Theorem 1 follows automatically
from (1.1) and (1.3)). An affirmative answer might parhaps seem plau-
sible in light of corollaries 2 and 3 above. However, we are now going
to construct an example that settles the question in the negative. In
other words, we prove
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Theorem 2. There is a nonnegative function ¢ € BMO with

/1og<pdm > —00
such that O, ¢ BMOA.

Actually, we find it more convenient to deal with the space
BMO(R) of the real line, defined as the set of functions f € L (R, dt/(1+
t2)) with

def
1912 sup [ 170~ ()] dpe(t) < 0.
ZE(C+ R
Here C, denotes the upper half-plane {Imz > 0}, the harmonic mea-
sure ji, is now given by

1 Imz

dp,(t) = dt , 2ze€Cy, teR,

7|t — 2|2

and f(z) stands for [, fdu,. The subspace BMOA(C, ) consists, by
definition, of those f € BMO(R) for which f(z) is holomorphic on C, .
Using the conformal invariance of BMO (see [G, Chapter VIJ), one can
restate Theorem 2 as follows.

Theorem 2'. There is a nonnegative function ¢ € BMO(R) with

|
/ og p(t) Q> —oo
r 1+ t2

such that the outer function

O, (2) défexp (%/(zit -l—tzi_l)log(p(t)dt), ze€Cy ,
R

fails to belong to BMOA(C, ).
The proof will rely on the following auxiliary result.

Lemma 3. Let E and I be two (finite and nondegenerate) subintervals
of R having the same center and satisfying

[E] qer
1]
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(here | - | denotes length). Then there exists a function ¥ € BMO(R)
such that

(3.1) 0<y <1, almost everywhere on R,
(32) ¢|E =1, ¢|R\I =0,
and
15\ -1
. . < =)
(3.3) ]l < ¢ (1og )

where C' > 0 is some absolute constant.

PrROOF OF LEMMA 3. By means of a linear mapping, the general case
is reduced to the special one where £ = [—0,0] and I = [—1,1]. This
done, we define the function ¢ by (3.2) and by

_ log|t|

o<t <1.

t) =
v = 2,
Now (3.1) is obvious, while (3.3) follows from the well-known facts that
log |t| € BMO(R) and that BMO(R) is preserved by truncations (see
Section 1 and Exercise 1 in [G, Chapter VI)).

REMARK. A more general (and much more difficult) version of Lemma
3, where F is an arbitrary measurable set contained in the middle third
of I, is due to Garnett and Jones [GJ]; see also Exercise 19 in [G,
Chapter VI|. We have, nonetheless, found it worthwhile to include a
short proof of the version required.

PROOF OF THEOREM 2'. For k =1,2,..., set oy et exp (—k?) and let
the numbers
O=a1<bi<as<by<---

be such that
b, —ar = oy, and ak+1—bk:k_5/4ak
. . def def
Consider the intervals I, = [ag,bg] and Ji = [bg, ags1]. Further, let

def Of + bk def o

(3.4) Th 5 Yk = O
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and ) )
def
B 2 — =y, =
k Tk = 5 Yk Tk T 5 Yk
Since |Eg| = o0 = oy |Ix], Lemma 3 provides, for every k € N, a

function 1y € BMO(R) such that

0§¢k§17 ODR,
Yile, =1, Yrlr\g, = 0

and

ol < € (o5 )

Finally, we set

Ok

and define the sought-after function ¢ by

def
p = X\ U, T, +Z(C¥k¢k+5kxjk)
K

(here, as usual, x , stands for the characteristic function of the set A).
In order to show that ¢ enjoys the required properties, we have to verify
several claims.

Claim 1. ¢ € BMO(R).
This follows at once from the inclusions

o= arty € L°(R)
K

and

> g € BMO(R),
k

where the latter holds true because

S anlalle <0 Y an(los ) = O Yk < oo,
k k k
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Claim 2. logp € LY(R,dt/(1 + t?)).
Indeed, since ¢(t) < 1 if and ounly if ¢ € |J,, Jx, we have
1 1
log~ @ dt = /10 —dt = |Jillog— = k* < x.
Jk
Thus log~¢ € L*(R,dt). Observing, in addition, that log ¢ = 0 outside

the finite interval wt
S = U I U U Ji
k k

and noting that Claim 1 implies ¢ € L(S, dt), whence also
log*p (= |log p| —log™¢) € L*(S,dt),
we eventually conclude that
logp € LY(R, dt).
A stronger version of Claim 2 is thus established.

Claim 3. For every M > 0, one has
(3.5) sup {(p(z)z /log_(pdp,z cz2€Cy, p(z) > M} = 0.

To verify (3.5), we set zg def xr + iy, (here xp and yy are defined by
(3.4)) and show that both

(3.6) lim ¢(zx) = 0o
k— o0
and
(3.7) lim <p(zk)2/10g_go dpty, = 0.
k—oo

To this end, we first note that p,, (Ex) = const, and so

(3.8) ol(zx) = / odi,, > /E o dptn, = (g + 1) iz, (Ex) > const g |
k
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which proves (3.6). Further, we write

- _ 1
(39) /1Og 14 d:qu > / 1Og 14 d:qu = Mz (Jk) log 2
i Bk

Together with the simple fact that
oz, (Jx) > const ||,

the inequality (3.9) gives

1
(3.10) /1og_<p dpi,, > const |Jg|log e
k

Finally, combining (3.8) and (3.10), we obtain

1
o(2r)? /1og_<p dpi,, > const o |Jx| log 5 const k/4 .
k

This proves (3.7), and hence also Claim 3. In view of Theorem 1 (which
admits an obvious restatement for BMO(R)), Claim 3 is equivalent to
saying that

0, ¢ BMOA(C, ),

so the proof is complete.

4. Outer functions with BMO moduli lying in the Bloch space.

Recall that the Bloch space B is defined to be the set of analytic
functions f on D with

1£]l5 < sup (1 —|2]) | f/(2)] < o0
z€D

(see [ACP] for a detailed discussion of this class). We now supplement
Theorem 1 from Section 2 with the following result.

Theorem 3. Let

(4.1) v € BMO, ¢ >0, and /logcpdm>—oo.
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Suppose that, for some M > 0,

(4.2) sup {go(z)/log_go du, : z € Q((p,M)} < 0.
Then O, € B.
The proof hinges on

Lemma 4. If ¢ satisfies (4.1), then

(43) (1= | |OL(2)] < comst + 2() [ log™dus
whenever z € Q(p, 2); the constant on the right depends only on ¢.

ProoF or LEMMA 4. Differentiating the equality

0p2) = e ([ 2 oge()am(©),  zeD.

04(2) = 0,() [ =53 o8 p(C) dm(0)

(4.4)

where we have also used the fact that

2¢ B
_/((—z)2 dm(¢)=0.

From (4.4) one gets

©(C)
¢(2)

@5) (1= IO, < 210,()] [ |1og 23] au:(0).

and we proceed by looking at the integral on the right. Following the
strategy employed in the proof of Theorem 1, we set

def

B= B2 {CeT: 002 5 o)



468 K. M. DYAKONOV

and

By=Es(2) ¥T\ E, .

Using the elementary inequality

|logu| < 2|u—1], uzé,
we obtain
o(0) o(0)
/El 105 23 di(0) < 2/& 23 1] a0
(46) < 5 [ WO =@l ()
el
= p(z) I

Repeating again some steps from the proof of Theorem 1, we introduce
the sets

Ef € {Ce B Q) >1},

Ey Y {CeB: o() <1},

and note that, since z € (p,2) (which is assumed from now on), we
actually have

(4.7) Ey ={(eT: o) <1}.
This done, we write
¢(C) - o P2
/Ez log 2123 di-(0) = /E21 5 25 (O
(4.8) = z(E2)log ¢(2) +/E+ log (p(lg) dpi(C)

1
+ [E log 15 0= (0).

2

The estimate (2.7) from Section 2 says

(49) j(B2) < Cexp (-~ 52050,
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where C' > 0 and ¢ > 0 are certain absolute constants. Besides, we
obviously have

(4.10) /E+ log <p(1<) dp(¢) < 0
and
1 _
(4.11) / 1o () = [ 108760 ()

(the latter relies on (4.7)). Using (4.9), (4.10) and (4.11) to estimate
the right-hand side of (4.8), we get

[ 1o £ a0
(4.12) B2
< Cexp ( — ;[’Téﬁi) log p(z) + /log_<p dp, .
Since

supte *logt < oo,
t>2

for any a > 0, (4.12) implies

©(C) const _
wi g 2 () < 57 [ 1oe g ..
Combining (4.6) and (4.13) yields

©(C) const _
(4.14) [E‘log <p(z)‘d 2(0) < o02) +/log odu,

Finally, substituting (4.14) into the right-hand side of (4.5) and noting
that |0, (2)| < ¢(2) (say, by Jensen’s inequality), one eventually arrives
at (4.3).

PROOF OF THEOREM 3. Let M > 2 be a number for which (4.2) holds.
Further, set ¢ < /5. Then ¢ € BMO, logy) € L(T, m), and

¢(z)2 < gp(z), ze€D.
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In particular,

Qy, VM) C Q(p, M)

(similar observations were made in the proof of Corollary 1 in Section
2). Condition (4.2) therefore yields

sup {w(z)z/log_w du, : z € Q(w,\/]\_/l)} < 00.

By Theorem 1, it follows that O, € BMOA. Since BMOA C B, we
also know that Oy € B. In order to derive the required estimate

(4.15) |04, (2)| < const (1 — |2])7,

we distinguish two cases.
Casel. ze D\ Q(p, M).

We have then
0y(2)] < 9(2) < p(2)/? < VM,
and so
|05,(2) = [(0})(2)] = 2[0p(2)] |0} (2)| <2VM [|Oy]l5 (1 - |2])7*.
Case 2. z € Q(p, M).

Since Q(¢, M) C Q(p,2), a juxtaposition of (4.3) and (4.2) imme-
diately yields
(1= [2]) |0, (2)| < const < oco.

Thus, (4.15) is established for all z € D, and the proof is complete.

Before proceeding with our final result, we point out two elemen-
tary facts.

Lemma 5. Let ¢ satisfy (4.1). For any M > 0, the following are
equivalent.

(a) sup {(p(z)z/log_godyz Dz € Q((p,M)} < 00.
(b) sup {¢* (2

)/log_(pdp,z: ZGQ((p,M)} < 0.
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PROOF. Since ¢(2)? < ¢?(2), the implication (b) implies (a) is obvious.
Conversely, let C' be the value of the supremum in (a). For z € Q(p, M),
condition (a) implies

/log_(p dp, < e

and hence
(02(2) — p(2)%) / log™pdyu, < C M~ o]},
which leads to (b).

Lemma 6. Let v € BMO, ¢ > 0. Suppose the numbers M > 0 and
M; > 0 are related by

(4.16) My = M?* + [|9]|g -
Then Q(y?, My) € Q(p, M).
PROOF. If 92(z) > Mj, then
h(2)? = 9*(2) = (P2 (2) — 9(2)*) > My — [[9l|g = M?,
so that ¥(z) > M.

Now we are in a position to prove

Theorem 4. If f € BMOA is an outer function with |f|? € BMO,
then f? € B.

PROOF. Set 9 def |f|and ¢ def ¥?, so that f = Oy and f2 = O,. Since
Oy € BMOA, Theorem 1 yields

(4.17) sup {w(z)z/log_w du, : z € Q(w,M)} < 00

with some M > 0. By Lemma 5, we can replace ¢ (z)? by 9?(z) (=
©(z)); by Lemma 6, the arising condition will remain valid if we replace
Q(1p, M) by the smaller set (¢, M7), where M; is defined by (4.16).
Consequently, (4.17) implies

sup {(p(z) /1og_<pduz : Z € Q((p,Ml)} < 00.



472 K. M. DYAKONOV

Since ¢ € BMO, the desired conclusion that O, € B now follows by
Theorem 3.

REMARKS. 1) Of course, there are outer functions f € BMOA with
f? ¢ B. For example, this happens for f(z) = log (1 — 2), where log is
the branch determined by log1 = 2mi.

2) Let ¢ > 0 on T. Recalling Muckenhoupt’s (A4,) condition (see
Section 2 above), we have the implications

¢ € BMO N (43/,) implies O, € BMOA

and
¢ € BMO N (Az) implies O, € B.

To see why, use Theorems 1 and 3 together with the inequality 7log™ ¢
< =7 (1 > 0). It would be interesting to determine the full range of
p’s for which ¢ € BMO N (A4,) implies O, € BMOA or O, € B.

3) There used to be a question whether there existed a function
lying in all HP classes with 0 < p < oo and in B, but not in BMOA.
Various constructions (based on different ideas) of such functions were
given in [CCS]|, [HT] and [D2]. Our current results show how to con-
struct an outer function with these properties. Namely, it suffices to
find a function ¢ satisfying (4.1) and (4.2), with some M > 0, but such
that

sup {cp(z)2/log_<pd,uz RS Q((p,M)} = o0,

for all M > 0. (An explicit example can be furnished in the spirit
of Section 3 above.) This done, one has Op € (g .o, HY (because
¢ € Nocpcoo LP) and Oy € B\ BMOA, as readily seen from Theorems
1 and 3.

4) While this paper deals with outer functions only, in [D1] and
[D2] we have studied the interaction between the outer and inner factors
of BMOA functions. Besides, we have characterized in [D3], [D4], [D5]
the moduli of analytic functions in some other popular classes, such as
Lipschitz and Besov spaces. In this connection, see also [Sh, Chapter II].
Finally, we mention the recent paper [D6], which is close in spirit to the
current one.
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