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On proximity relations for
valuations dominating a two-

dimensional regular local ring

José J. Aparicio, Angel Granja and Tomas Sanchez-Giralda

Abstract. The purpose of this paper is to define a new numerical
invariant of valuations centered in a regular two-dimensional regular
local ring. For this, we define a sequence of non-negative rational num-
bers §, = {0,(j)};>0 which is determined by the proximity relations
of the successive quadratic transformations at the points determined
by a valuation v. This sequence is characterized by seven combinato-
rial properties, so that any sequence of non-negative rational numbers
having the above properties is the sequence associated to a valuation.

0. Introduction.

Valuations centered in a two-dimensional regular local ring have
been studied and classified by Zariski, Abhyankar and Lipman (see for
example [1]). More recently, there has been a revival of interest in this
subject (see [15], [13], [7], [9],--.)-

The main purpose of this paper is to define a new numerical in-
variant of valuations centered in a regular two-dimensional local ring.
One advantage of our invariant over those of [15] is that it works for
a general regular local ring of dimension two; in particular, we do not
assume that the residue field is algebraically closed.
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The idea of proximity to classify singularities of analytically irre-
ducible plane curves was developed by Enriques (see [6]) and can be
adapted to the situation above (see [7], [9], [13],...).

Several invariants can be associated to proximity relations (the re-
fined proximity matrix, the multiplicity sequence, the semigroup-length
sequence, . .., see [13]). Here we will introduce a new one which is a
sequence of non-negative rational numbers 6, = {6, (j)};>0 (later called
proximity sequence), where the proximity relations are codified.

In what follows, all rings considered will be commutative and with
a unit element. For a local ring R, we will denote by M (R) its maximal
ideal.

Throughout this paper, R will be a two-dimensional regular noethe-
rian local ring and we will consider a fixed sequence

(%) R=RyCRyC---CR,C---,

where R;;1 is a quadratic transform of R; (i.e. R;41 is a localization
at a maximal ideal of a ring R[z!M(R;)] with x € M(R;) and z ¢
(M(R;)).
For ¢ > 0, we will denote by
R;  Ri
M(R;) " M(R;_1)

€i—1 —

It should be remembered that S = U;>0R; is a valuation ring. (See [1]).
If v is the valuation of S then v is the only valuation of the quotient
field of R centered at the maximal ideal of R; for all + > 0.

The main goal of the paper is the characterization of the properties
of the proximity sequence in the following sense: the properties that a
sequence of non-negative rational numbers {0(j)};>0 must satisfy in
order to be the sequence associated to a valuation v (or equivalently to
a sequence (x)). Therefore these properties characterize the class of all
valuations with the same associated sequence d,,. This gives rise to a
notion of equisingularity of valuations.

For this, we see that all such sequence can be realized taking
R = Q(t1,...,tn,...)[[X,Y]], Q being the field of rational numbers.
In general, this is not possible for any R. If, in addition, the sequence
satisfies that §(j) is an integer for all j > 0 (or equivalently all rings of
() have the same residue field) then there is a valuation v such that
its associated proximity sequence is the given one.

We are also interested in other properties of the proximity se-
quence. In particular, if R is a complete ring then there is a non-zero
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principal prime ideal J of R such that J “goes through” R, for all
n >0 (i.e. J, # R,, where J, is the strict quadratic transform of J in
R,,) if and only if there is Ny, such that d,(n) = 0 for all n > Ny. In
this situation, ¢, characterizes the equisingularity classes of analytically
irreducible plane curves. So we also have an explicit description of the
different equisingularity classes.

The paper is organized as follows:

In Section 1 we outline some definitions and properties of proximity
relations.

Section 2 is devoted to an introduction of the invariant and to
study its properties. In particular we see that it is equivalent to the
refined proximity matrix.

In the last section we characterize §, by its properties and when
0, is an invariant for the equisingularity of plane curves.

1. Preliminaries.

First we will outline some concepts about the proximity relations
of ().

For j > ¢ we say that R; is prozimate to R; if the valuation ring
V(R;) of Ordg, contains R;, where Ordg, is the usual valuation order
of R; (i.e. Ordpg,(z) is the greatest non-negative integer d such that
r € (M(R;))?, x being a non-zero element of R;). In this case, V(R;) =
(Rj)p, where p is a height one prime ideal of R; containing M (R;)R;
and Ry is proximate to R; for ¢ < k < j.

Moreover, for j > i it is easy to verify that M(R;)R; = t?;j u?}j ,
where tinj = M(Rj_l)Rj, (t,-j,uij)Rj = M(Rj), Qg > 0 and bij Z 0.
(aij and b;; being integers). So R; is proximate to R;_; and at most
to one other ring in (x). In fact if j > ¢+ 1 and R; is proximate to R;

we can write
Ui -1
Ry = <Rk—1[ ]) ;
tik—14/ (tik,uik)

with ik = ik—1 and U o = Ui,k—l/ti,k—la 1+2>k>j. So bi,j =1
and this is also a sufficient condition for R; to be proximate to R;.
One alsohas a; j =j+i—landey_1=1,1+2<k <.
In general, for j > i+1 we say that R; is a satellite of R; if b;; # 0,
where M(R;)R; = t;}’ us;-j as above. If b;; = 0 we say that R; is free
with respect to R;.
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This is simply Zariski’s definition of satellite and free points. (See
[17]). It should be noted that R; is a satellite of R; if and only if
Ordg, (/M (R;)R;) = 2. It is also easy to verify that R; is a satellite
of R; if and only if there is a non-negative integer ¢ with 7 —1 > ¢ > 1
such that R; is proximate to I,.

2. The invariant.

In this section we will use the above notations.

We define the function v : Zg — Zg as follows: v(0) = 0 and for
j>1,v()=1+min{k : R; is proximate to Ry}, where Z, denotes
the set of non-negative integers.

Thinking geometrically, this map computes the oldest exceptional
divisor that “goes through” R;.

On the other hand, note that v(j) < j if and only if R; is a satellite
of R; for some ¢ < j — 1. So v(j) = j if and only if R; is free with
respect to R; for all ¢ < j — 1.

The most interesting properties of v are given in the following
results.

Proposition 2.1. We have the following statements:
a) v(j) < J.
b) If y(j) < i < j then v(i) = 7(j).

c¢) For all j > 0 there is a non-negative integer n such that y"(j) =
V), where 4% = 1z, and y*+! =y o,

d) Ifv(j) <j thenv(j) =j —1 ory(j) =v(j — 1).

PROOF. a) Follows from the definition of .

b) If m + 1 =v(j) < j then R; is proximate to R,, and also R; is
proximate to R, for m+1 <14 < j. So v(i) =m+ 1 =~(j).

c¢) By a) we have 0 < -+ < 4*(j) < -+ < v(4) < 4. So there is an
n such that v*(j) = y"T1(j).

d) As y(j) <, if 7(j) #j — 1 then 7(j) <j -1 <j by a). And
by b) v(j) = (7 = 1).
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In what follows we will denote by

n(j) =min{n € Zo: ¥"(j) =~+"t'(4)}.

Proposition 2.2. With the above notations, let us assume that k < 7,
then we have:

1) If v(j) = k then n(j) = n(k) + 1.
2) Ifv(5) = (k) then n(j) = n(k).

PROOF. Note that 4" +1(j) = 4nR)(k) = 4R H1(E) = An(R)+2(5) 50
n(j) < n(k)+ 1.

On the other hand, y*W =1 (k) = v (j) = D H1(j) = 40 (k),
so n(j) > n(k) + 1 and we have 1).

The proof of 2) is similar.

Now we have the conditions to define the invariant, which we will
call proxzimity sequence.

We define 0, = {6,,(j)}j>0 as follows: 0,(0) =0 and for j > 1

1

€j_1

0u(7) = n(j) +1 -

First of all, we will see that the sequence ¢, characterizes the proximity
relations of v (or equivalently of (x)).

Proposition 2.3. With the above notations, the following statements
are equivalent:

a) R; is free with respect to R; for all i < j —1.

b) 8,(j) = 1 — (1/e;-1)-

c) 0,(5) < 1.

PROOF. R; is free with respect to R; for all © < j — 1 if and only if
v(j) = j, soif and only if 6, (j) = 1—(1/e;_1) or equivalently 6, (j) < 1.

Proposition 2.4. With the above notations, if ¢« < j — 1 the following
statements are equivalent:

a) R; is proximate to R;.
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b) n(i+1)+1=26,(i+1)+1/e; = 6,(k) =06(j), i+2 < k < j.

PROOF. In order to see that a) implies b), we note that Ry, is proximate
to Rj,i+1<k<j. Sovyk)=i+1fori+2 <k < j. Then, by
definition of 0, we have 0, (i +1) +1/e; =1+ n(i+ 1) = n(k) = 6,(k),
i+2<k<j.

On the other hand, by Proposition 2.3 R; is proximate to Ry,
h<j—1.

If h < i then by a) implies b) we have that §,(k) = 6,(j) for
h+2 <k < j. In particular, 6,(i + 1) = 6,(j). Yet 6,(i +1) <
n(i+ 1) +1=4,(j), which is a contradiction.

If i < h then also by a) implies b) 6, (h + 1) < 6,(j), which is also
a contradiction.

So h =i and we have that b) implies a).

Proposition 2.5. With the above notations, the proximity sequence 6,
has the following properties:

1) 6,(j) = 0.
2) 6,(0) = 0.
3) 0,(1) < 1.
4) If 6, (j

5) If 0,(j) < 1 then 1/(1 —6,(5)) is an integer.
6) If 0,(j +1) < 0,(j) then 6,(j +1) < 1.

7) 0,(j +1) <1+6,(5).

) > 1 then 0,(i) is an integer.

e N e e N N

PRrROOF. 1) and 2) follow from the definition of d,,.

3) As y(1) =1 we have n(1) =0 and J,(1) =1—1/e; < 1.

4) If 6,(4) > 1 then v(j) # j, so R; is proximate to R,, with
g<j—1. 8oej_1=1andd,(j) =n(j) is an integer.

5) If 6,(j) < 1 then y(j) = j and 6,(j) =1 —1/ej_1, s0 ej_1 =
1/(1—=46,(j)) is an integer.

6) If 0, (j+1) < 0,(j) and 6, (j+1) > 1, then 6,(j) > 1. So Rj41 is
proximate to %4, ¢ < j and R; is proximate to Ry, h < j—1. Therefore
Yi+1)=q+1L,v(G)=h+1l,e_1=¢=1,0,(j+1)=n(y+1) =
n(g+1)+1and d,(j) =n(j) =n(h+1) + 1.
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If g <j—1then g =hand d0,(j+ 1) = d,(j), which is a contra-
diction.

Sogq=j—1and v(j +1) = j. Then by 2.2 we have n(j + 1) =
n(j) + 1 and

1 1
G+ =n(l+1)+1-—=—=n()+1+1- =6,(j) +1,
€j €j—1

which is also a contradiction. So d,(j + 1) < 1.
7) We have three possibilities:

e y(j+1) =j+1, in this case §,(j+1) < 1 and always 6, (j+1) <
0y (4) + 1.

e v(j+1) =7, in this case we have n(j+1) = n(j) +1, see 2.2. So
. . 1 .
O, (1) =n(+1)+1-—<6(j)+1.
j

e v(j4+1) =~v(j), in this case we have n(j + 1) = n(j), see 2.2. So

1
S+ 1) =n(+1)+1-—

€j
and )
o,(j) =n(j) +1- :
€j_1
then ) )
6,(j+1) =6,(j) + — = <60 +1.
€j—1 €4

To finish this section we will compare the proximity sequence with
other invariants. Namely, we will see that it defines equivalent data to
the refined proximity matrix.

It should be remembered (see [13]) that the refined proximity ma-
triz P,, = (p,g-)mzo is given by Pii = 1,

R;  R;
M(R;) = M(R;)

Dij = —

if R; is proximate to I; and p;; = 0 for the rest. Note that P, is an
upper triangular matrix.



628 J. J. Apraricio, A. GRANJA AND T. SANCHEZ-GIRALDA

Proposition 2.6. The prorimity sequence 9§, determines the refined
proximity matriz P, and vice-versa.

Proor. First we note that ppg = 1, p1op = 0 and

R, Ry 1

P MR T MR T T T e -1

So po1 and 6,(1) are the same data.

Now let us assume that 6, determines p;; for 0 <4, 7 <n, n > 1.
We have py11n+1 =1 and pp416 =0 for 0 <k < mn.

If R,,41 is free with respect to Ry, for all £ < n, then pg 41 =0
for k <n and

[ R Ry 7 1
Pt = T M (Ryp1) * M(R,) 0y(n+1)—1"

= —en

If R, 41 is proximate to Ry with £ < n then

1
nk+1)+1=0,(k+2)=0,(k+3)=---=0,(n+1) :61,(14:)+6— .
k
So
1 J—
0, (n+1)—0,(k+ 1) Phntl-
Now
_ Rn+1 . Rn — e — 1
ot T M (B " MR

and pj 41 =0 for j <mn, and j # k.
So 0, determines P, .
Similar reasoning proves that P, determines 9,,.

3. Valuations with a given 0.

Now we will prove the main result of this paper.
Theorem 3.1. Let § = {6(j)}j>0 be a sequence of non-negative ratio-
nal numbers having the seven properties of Proposition 2.5. Then there

1$ a two dimenstonal reqular noetherian local ring R and a valuation v
centered at M(R) such that its prozimity sequence is 9.
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PrROOF. We consider R = Q(t1,...,tn,...)[[X, Y]], where Q is the field
of rational numbers, {t1,...,t,,...} is a set of indeterminates over Q
and X and Y are two indeterminates over Q(¢1,...,tn,...).

We define e;_; = 1if §(j) > 1 and

1
i1 = if 6(7) < 1.
€j—1 1 — (5(]) ’ 1 6(]) <

We put R = Ry and

Fy = (R[§]>(X,(Y/X)eo—t1) ’

Now let us assume that forn > 1wehave R = Ry C Ry C --- C R,, such
that for any valuation v’ centered at M (R,,) we have that d,.(5) = 0(5),
for each 0 < 5 < mn, and

R; R;_4

_ 1/63',1 .
= t. , ife;_1>1
MR - M) i1

and
Rj . Rj_l

M(R;)  M(R;_1)’

We have two possibilities:

ifej_1=1,1<j5<n.

1) (n+1) < 1 (i.e. Ry,41 must be free with respect to R; for
all i < n). In this case, let (z,,y,) be a basis of M(R,,), such that
M(Rp_1)Rp, = 2Ry

We define

Yn

fnt1 = <R"[:rn])wn,(yn/wn)%—w) '

2) 6(n+1) > 1 (i.e. R,4+1 must be a satellite). In this case, we
have 1 4+6(n) > d(n+1) > d(n).

e If §(n+ 1) > d(n), then R, 1 must be proximate to R,_1. (See
2.4). Let (zy,,yn) be a basis of M (R,,), such that M (R, _1)R,, = 2, R,,.
We define

)
Yn (Yn,Zn/Yn) .
e If §(n+ 1) = d(n), then R, 1 must be proximate to Ry, with

k< n—1. (See 2.4). In this case, we can take (x,,y,) a basis of
M(R,,), such that M (R, —1)R,, = 2, R,, and M(Ry)R,, = 22 y, R,

Ryi1 = (Rn[
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We define
Yn

Ry = (R”[:pn])(mmyn/fﬂn) .

Now it is easy to see that R = Ry C Ry C --+ C R,, C R,,4+1 proves
that for any valuation v’ centered at M (R,,+1) we have d,:(j) = 0(j),
foreach 0 < 7 <n+1, and

Ry _  Rja (L€

M(E;)  M(E;_) 69, ifejoi > 1

and R R
j i—1 . )
= , ife;_1=1,1<j57<n+1.
M(R;)  M(Rj-1) ’

Now we will study the case in which J, (j) is an integer for all j > 0.

Theorem 3.2. Let 6 = {6(j)}j>0 be a sequence of non-negative inte-
gers having the seven properties of Proposition 2.5. Let R be any regu-
lar noetherian local ring of dimension two. Then there is a valuation v
centered at M (R) such that its prozimity sequence is 9.

PROOF. First we put e;_; =1 for all j > 0, R = Ry and

= (B[]

(x,y) being any basis of M(R).

Now let us assume that we have R = Ry C R, C --- C R,, such
that for any valuation v/ centered at M (R,,) we have 6,/ (j) = 6(j), for
each 0 < j <n,

1<j<n.

We have two possibilities:

1) 6(n+1) =0 (i.e. R, 1 must be free with respect to R;, i < n).
In this case, let (2, yn) be a basis of M(R,,), such that M (R,_1)R,, =
TR,

We define
Yn

Ryy1 = (R"[an(mn,(yn/wn)) '
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2) 6(n+1) > 1 (i.e. R,4+1 must be a satellite). In this case, we
have 1 4+6(n) > d(n+1) > d(n).

e If §(n+ 1) > d(n), then R, 1 must be proximate to R,_1. (See
2.4). Let (zy,,yn) be a basis of M (R,,), such that M (R, _1)R,, = 2, R,,.
We define

)
Yn (Yn,Zn/Yn) .
e If §(n+ 1) = 6(n), then R, 1 must be proximate to Ry, with
k < mn—1. (See 2.4). In this case, we can take (x,,y,) a basis of
M(R,,), such that M (R, —1)R,, = 2, R,, and M(Ry)R,, = 22 y, R,
We define

Ryt = (Rn[

Yn

Ry = (Rn[an(fEmyn/‘”") .

Now it is easy to see that R = Ry C Ry C --+ C R,, C R,,4+1 proves
that for any valuation v’ centered at M (R,,+1) we have d,:(j) = 0(j),
foreach 0 < 7 <n+1, and

R R,
M(R;) M(Rj_1)’

1<j3j<n+1.

It should be noted that the above theorem is not true if ¢ is not a
sequence of non-negative integers.

For example, let us consider R = R[[X, Y]], where R is the field of
real numbers. Let 6 = {6(j)};>0 be the sequence given by §(0) = 0,
d(1) = 2/3 and §(k) = 0 for k& > 2. If there is a valuation v (or
equivalently a sequence (x)) with 0 as the proximity sequence, then
R/M(R) is isomorphic to R and

eg = iy : R =3
T IM(ER) MR

which is a contradiction.

To finish the paper, we will clarify the relation between the prox-
imity sequence and the classification of plane curve singularities.

For this, we need to assume that R is a complete ring.

Proposition 3.3. Let us assume that there is a non-zero principal
prime ideal J of R = Ry such that J, # R,, J, being the strict
quadratic transform of J in R,,, n > 0. Then there is a non-negative
integer Ny such that 6,(n) =0 for n > Nj.
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ProoF. By [2, Proposition 9.4 and Theorem 10.7], there is an Ny such
that JR,, has a normal crossing for n > Ny, that is JR,, = z" y,';" R,
where (z,,,y,) is a basis of R,, and a,, and b,, are non-negative integers.

On the other hand, by definition of strict quadratic transform of J

we have
n—1

By = ([T (R ) SR
i=0
where d; = Ordg,(J;),0<i<n-—1.
We can thus assume that J, =y, R,,, with b, = 1 and

n—1

[[(M(R:)“ R, = 23" R, .

1=0

Therefore R,, is free for n > Nj.
As Jp41 # Ry,4+1 we have

Yn

Rny1 = (Rn[an(fEmyn/‘”") ’

so e, = 1, for n > N.
Now, we have y(n) = n and 6(n) = 0 for n > Nj.

Proposition 3.4. With the above notations, let us assume that there is
a non-negative integer Ny such that §,(n) =0 forn > Ny. Then, there
s a non-zero principal prime ideal J of R = Ry such that J, # R,,, J,
being the strict quadratic transform of J in R, for all n > 0.

PROOF. As d,(n) = 0 for n > Ny we have that R, is free and e,, = 1,
for n > Np.
So we can write

Yn

Ryy1 = (R" |:_/L'n:|>($n,(yn/$n)+a) ,

where (z,,y,) is a basis of M(R,,) and a,, € Ry,, n > Np.
Let us consider the ideal

JNO - (yNo + a'No 'TNO + a'No-i-l szvo T ) (RNO)* ’

where (Rp,)* is the complection of Ry, .
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It is now easy to see that J = Jn, N R is the required non-zero

principal prime ideal of R.

It should be noted that Propositions 3.3 and 3.4 characterize the

proximity sequences such that there is an analytically irreducible plane
curve that “goes through” all the rings of (x).

In addition, it is easy to verify that J, is an invariant of the eq-

uisingularity class of such a curve. For a more specific treatment of
proximity relations and plane curve singularities refer to [12].
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