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Controllability of analytic
functions for a wave equation

coupled with a beam

Brice Allibert and Sorin Micu

Abstract. We consider the controllability and observation problem
for a simple model describing the interaction between a fluid and a
beam. For this model, microlocal propagation of singularities proves
that the space of controlled functions is smaller that the energy space.
We use spectral properties and an explicit construction of biorthogonal
sequences to show that analytic functions can be controlled within finite
time. We also give an estimate for this time, related to the amount of
analyticity of the latter function.

1. Introduction.

Let Q be the two-dimensional square = (0,1) x (0,1) C R2.

We assume that € is filled with an elastic, inviscid, compressible
fluid whose velocity field ¥ is given by the potential & = ®(z,y,t),
v = V®. By linearization we assume that the potential ® satisfies the
linear wave equation in € x (0, co).

The boundary I' = 92 of  is divided in two parts I'g = {(0,y) :
y € (0,1)} and I'y = I'\I'g. The subset I'y is assumed to be rigid and
we impose zero normal velocity of the fluid on it. The subset [’y is
supposed to be flexible and occupied by a Bernoulli-Euler beam that
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vibrates under the pressure of the fluid on the plane where €2 lies. The
displacement of I'y is described by the scalar function W = W(y,t).
On the other hand, on I'y we impose the continuity of the normal ve-
locities of the fluid and the beam. The beam is assumed to satisfy
Neumann-type boundary conditions on its extremes. All deformations
are supposed to be small enough so that linear theory applies. Under
natural initial conditions for ® and W the linear motion of this system
is described by means of the following coupled equations

'@tt_A@:()v il’lQX(0,00),
P
g—yzo, on I'y x (0,00),
0P
%:_Wt7 on I’y x (0,00),
(1) th + Wyyyy + (I)t = 0, on Fo X (0, OO) R
W,(0,t) = W, (1,t) =0, for t > 0,
Wyyy(0,8) = Wy, (1,¢) =0, fort>0,
B(0) =D, §,(0) =,  inQ,
\ W(O):WO, Wt(O):Wl, on FO .

By v we denote the unit outward normal to 2.

In (1) we have chosen to take the various parameters of the system
to be equal to one.

System (1) is well-posed in the energy space Y = H(2) x L?(§) x
HZ%(Ty) x L3(T'y) for the variables (®, ®;, W, W;) where H% () = {v €
H?(0,1) : v,(0) = vy (1) = 0}. The energy

1 1
@ BO=; [(V0F+ o) dodyt [ (W2 + W) dy
0

remains constant along trajectories.
It is easy to see that the equilibria of these systems are of the form

(3) (q)7@t7W7 Wt) - (61707 6270) )
c1 and cy being constant functions.

We study the controllability of system (1) under the action of an
exterior force on the flexible part of the boundary I'y. The control is
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given by a scalar function 3 = 3(y, t) in the space H2(0, T; L?(T'y)). Of
course this is an arbitrary choice and many others make sense. However
this is the most natural one when solving the control problem by means
of J. L. Lions’s HUM (see [6]), as we will do. The controlled system
reads as follows

'@tt_A@:()v il’lQX(0,00),
P
g—yzo, on I'y x (0,00),
0P
%:_Wt7 on I’y x (0,00),
(4) th + Wyyyy + @t = /B, on FO X (0, OO) .
W,(0,t) = W, (1,t) =0, for t > 0,
Wyyy(0,8) = Wyyy(1,¢t) =0, fort>0,
B0) =D, B,(0)=d',  inQ,
\ W(O):WO, Wt(O):Wl, on FO .

The problem of controllability can be formulated as follows: Given
T > 2, find the space of initial data (®°,®', W° W) that can be
driven to an equilibrium of the form (3) in time 7" by means of a suitable
control 3 € H=2(0,T; L*(Ty)).-

The model under consideration is inspired in and related to that of
H. T. Banks et al. in [4]. However, there are some important differences
between these two models. First of all, we choose Neumann-type bound-
ary conditions for the beam. These are compatible with those of ® in
order to develop solutions in Fourier series. Another difference is re-
lated to the nature of the controls. In [4] the control acts on the system
through a finite number of piezoceramic patches located on I'y. This
restricts very much the set of admissible controls, that are essentially
second derivatives of Heaviside functions, and much weaker controlla-
bility results have to be expected. In [4] the controllability problem is
not addressed. Instead, they consider a quadratic optimal control prob-
lem. More recently in [2] a Riccati equation for the optimal control is
derived. The problem of the controllability of one-dimensional beams
with piezoelectric actuators has been successfully addressed by M. Tuc-
snak [9]. However, to our knowledge, there are no rigorous results on
the controllability of fluid-structure systems under such controls. In [7]
the controllability problem for a similar system with a string instead
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of a beam was studied. It was shown that a space of analytical initial
data can be controlled in any time 7" > 2. The techniques we develop
in the present article can be applied to that case and allow to show that
larger and larger classes of analytic functions can be controlled in finite
time.

The propagation of singularities for the wave equation on any seg-
ment parallel to I'y proves that the space of controlled functions will be
small. It will not contain all functions of finite energy.

Let us denote by X = H'(0,1) x L?(0,1) x C x C and by X' its
dual space. Let also Y™ = (H(0,1) x L?(0,1) x C x C) cos (n7y).

By the HUM method, we will first prove that if C'(n,T) is a se-
quence of constants such that any solution of the observation problem

(( Py — AP =0, iIlQX(0,00),
0P
%:0, Ol’l].—‘]_X(0,00),
P
g—xzwt, OIlF()X(0,00),
(5) th + Wyyyy — (I)t = 0, on FO X (0, OO) R
Wy (0,t) = W, (1,t) =0, for t >0,
Wyyy(0,8) = Wy (1,¢) =0, fort >0,
((1)7 (I)t)|t=0 = ((I)Oa (I)l) ’ n Qv
\ (W7 Wt)|t=0 = (W07 W1)7 on I'p ,

with initial conditions in Y™, satisfies

T
Wi (0,8)|%dt
T

(@, @t w2 W < co1) |
then the space of initial data

H:{ S (@0, L, WO, W), cos(nmy) |(2°, @1, WO, W), € X

n

such that Y O(n, T) (|(@°, @1, WO, W1),[[% +[2°(0)[?) < oo}

is a subset of the space of controlled functions. Remark that the space H
depends on the constants C'(n,T'): when C(n,T') “increase”, H becomes
smaller.
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This paper aims at proving that, for 7" and n large enough,
(6) C(n,T) < CexDinl
with the following property

Theorem 1. For any positive real number q, there is a constant C,
such that

Cy

7) olT) < L

It means that any initial condition whose Fourier coefficients in
y decrease like e~1"1® can be controlled if T' is larger than T'(a) =
'=y/Cy/a. This condition on the Fourier coefficients means that the
initial condition is analytic with respect to y and that it can be contin-
ued as an holomorphic function over the complex strip [Imy| < a.

Now any initial condition that is analytic with respect to y can
be continued as an holomorphic function over a such a strip [Imy| < ¢
for a positive € that depends on this initial condition. Therefore, its
Fourier coefficients with respect to y decrease like =", So according
to Theorem 1 and (6), it can be controlled if T' > T'(¢).

This means that any initial condition of finite energy that is ana-
lytic with respect to y can be controlled in a finite time (which is not
uniform).

It is important to notice that analyticity is required only with
respect to the variable y. Therefore the space of controlled functions
is not symmetric in z and y. This means that we do not use the fact
that the metrics in our problem is analytic with respect to . In [1], the
boundary control problem is studied on a surface of revolution. The
same kind of result is proved in that case, even if the surfece is only
C°°. This is posible because such surface is still “analytic” with respect
to the angular variable, even if it is only C* with respect to its axial
variable.

The rest of the article is organized as follows. In Section 2 we give
a direct estimate for the observation problem and, by using (6), we
apply Hilbert Uniqueness Method to solve our controllability problem.
We obtain that the initial data from H can be controlled in time 7. In
Section 3 we prove some spectral properties of the operator that will be
used in the proof of the main theorem in Section 4. In the last section
an explicit dependence of the space H on the time 7T is obtained.
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2. The direct estimate and the controllability problem.
2.1. Direct estimate.

Let us consider the system

( Nt — Mo +0>7°n=f, in(0,1) x(0,T),
n:(1) =0, for t € (0,7),
n:(0) = uy for t € (0,7),
®) ug +ntrtu—n(0) =g, forte(0,T),
n(0) =7, n(0)=n*,  in(0,1),
Cu(0) = u®, ug(0) = ul.

The unknowns are n = n(x,t) and u = u(t). Of course, since the coeffi-
cients of the system depend on n = 0,1, ..., solutions (1, u) depend on
n too. However, in order to simplify the notations we will not use the
index n to distinguish the solutions of (8) for the different values of n.

The energy space for system (8) is the Hilbert space X = H(0,1)x
L?(0,1) x C x C,

It is easy to see that for any (n° n',u® u') € X and (f,g) €
LY(0,T;L?(0,1) x C) system (8) has a unique solution in the class

(9) meC(0,T]H0,1)) N CH([0,T]; L*(0,1)); u € CH([0,T];0).

In other words (777 Ne, W, ut) < C([07 T]’ X)
The energy of the system

I 1
(10) F) = [ (mP + el ) ot 5 (uaf? 7 uf?)
0

satisfies

dF(t !
(11) PO~ [ 1wty mte d + 50 .
0
Therefore, when f = 0 and g = 0, the energy F' remains constant along
trajectories.
We observe that when n > 1 the square root of F' defines a norm
in X' equivalent to the canonical norm || - ||x of X

L 1/2
12wzl = ([ ol + ol + oy do 02+ 22)
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However, when n = 0 this is not the case. Actually, for n =0, (n,u) =
(c1,c2) with ¢q,co real constants are stationary solutions of (8) with
f =0, g =0 for which the energy F' vanishes.

We have the following “hidden regularity” result

Proposition 1. For any T > 0 there exists a constant C(T) > 0
independent of n =0,1,... such that

T > T
( / ul dt) -+ / (lual? + (1 0% 7% u? + (1 4+ n27%) 72(0, 8))dt
0 0

(13) ( ) (1€ )%

+ ||f||%1(0,T;L2(0,1)) + HgH%l(O,T)) )

for any (n°,nt,u’ ut) € X, f € LY(0,T; L*(0,1)) and g € L*(0,T).
If g € L*(0,T), then u € H*(0,T) and we also have

T
/0 g dt < C (n* 4 1) (| s ) 2

(14) + 1A 12 0,m020,1)) + 1191 220.1)) -

REMARK. This proposition shows that « is more smooth than what (9)
guarantees. This is due to the structure of the second order (in time)
equation that u satisfies. The fact that the constant ¢ in (13) and (14)
does not depend on the index n is worth mentioning.

PROOF OF PROPOSITION 1. It is enough to consider smooth solutions
since a classical density argument allows to extend inequalities (13) and
(14) to any solution with finite right hand side. We use a classical mul-
tiplier technique (see, for instance, [6]). We multiply the first equation
in (8) by (1 — z)n, and integrate over (0,1) x (0,7). Integrating by
parts we obtain

1 T
2 / (Imel* + e * = n® 7 0)(0, 2) dt
0

T

1
:—/ nt(l—x)nwda:‘
0

0

| R T o
+ = (n; +nz —n°m°n®)dedt+ f(1—2x)n, dedt
2Jo Jo 0o Jo
=X
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In this identity we use the notation L| = L(T) — L(0). The right hand
side of this identity can be easily bounded as follows

I I
X125 | G0 et [ @ )T de
T 1 2 2
+ [ P@ e S U o + Il oron)

T
1
< FO+PI)+ [ FOI PO lmon+5 oo

< C(IFl .0y + 1 F 172 0.7:2200.1))

with C' > 0 independent of n.

In the sequel, if some constant in the inequalities depends on n, we
will make it explicit by means of an index n on that constant.

On the other hand, from identity (11) and using Gronwall’s in-
equality it is easy to deduce that

1L 0.2y < C (N ILx0,75220,09) + 19111 0,y + F(0))

Since H'(0,1) is continuously embedded in C([0,1]; C) we also have

/OTn2(0,t) dt < C/OTF(t) dt

< C(IfI2 0,:02(0,1) + N9ll7 0,y + F(0)) .

Combining these inequalities we deduce that

T
| el )0, de
0
<O +1) (|(n°ntu’,uh)|3
(15) ( ) (I )%
+ ||f||%1(0,T;L2(0,1)) + HgH%l(O,T)) .
On the other hand

T T
nSWS/ uz(t)dt§2n47r4/ F(t)dt
0 0
(16) <Cnt([(n°,n" u® u)%

A1 0,7200,0)) + 11911 210.)) -
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Inequalities (13) and (14) are a direct consequence of (15) and (16) and
the coupling conditions between 7 and u given in system (8), i.e.

A7) (0. =ue(t),  uee(t) = g(t) + me(0,8) — nt 7hu(t),

for t € (0, 7).

2.2. A controllability result.

In this section, we solve the controllability problem (4) stated in
the Introduction by using J.- L. Lions’s HUM. This is done by Fourier
descomposition which is possible because of the boundary conditions
we have chosen for W. Indeed, W is assumed to satisfy Neumann type
boundary conditions which are compatible with those of ® to develop
solutions in Fourier series.

Indeed, let us decompose the control 3, the solutions ®, W and the
initial data in the following way

( B = Zﬁn(t) cos(nmy),
n=0

b — Z\I}n(a;,t) cos(nmy),

(18) (@0, @1) =) (W (x), ¥y, (w)) cos (ny),

W = ZVn(t) cos(nmy),

(WO, W) => (V, V. cos (nmy).

n=0

\

With this decomposition, system (4) can be split into the following
sequence of one-dimensional controlled systems for n =0,1,...

Uit — Yoy gp + n?n?W, =0, in (0,1) x (0,00),
U, (1,t) =0, fort >0,
U, (0,t) = =Vi(t), fort >0,
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Vn,tt (t) + ’n4 7'!'4 Vn (t)
(19) W, (0,8) = Bu(t), for t > 0,
U, (0) =90 W, (0)=¥), in(0,1),

Vo (0) = V2, V1 (0) =Vl .
The control # we obtain is of the form

82
B = W’%

with v € L?(T'y x (0,T)) having compact support in time. Therefore

fOT B = 0. Taking this fact into account it is easy to see that the con-
stants c¢1, co of the equilibrium we reach at time ¢t = T are determined
a priori by the initial data. Indeed, integrating the first equation of (4)
in 2 we obtain that

/ by do dax — W dy

Q Ty

remains constant in time. Therefore, necessarily,

(20) co= | Wldy— / dtdzdy .
Iy Q

On the other hand, integrating the equation satisfied by W on I'g x (0, T')
and taking into account that fOT B = 0 we deduce that

ey [ wiryay+

®(0,y,T) dy = Wldy+/ %(y,0) dy
T'o To ) To

and therefore
cr= [ W80, dy.
o

In terms of the Fourier coefficients (18) these constants can be written
in the following way

1
(22) e = VA 000), o= VO — / Ul () da
0

Therefore, the constants ¢; and ce of the equilibrium we may reach
are uniquely determined by the Fourier coefficients of the initial data
corresponding to the frequency n = 0 in the y-variable.
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This fact is related to the different nature of systems (19) for n = 0
and n > 1. While for any n > 1 system (19) is exactly controllable to
zero at any time 7' > 2, when n = 0 we can only control the system to
the equilibrium given by (22) in terms of the initial data.

In this section we suppose that for any n € N* and time T > 2
we can find a constant C(n,T) such that for any (V°, ¥l VO V1) e x,
the solution of problem

(U — Vo + 02720 =0, in (0,1) x (0,00),
U,(1,t) =0, fort >0,
U, (0,1) = Vi(t) for t >0,
(23) < Vie(t) + n* 7t V() — U (0,6) =0, fort >0,
(0) = 0O, W,(0) = ¥, in (0,1),
L V(0)=V?, Vi(0)=V!

satisfies
T

@) VOV < cnt) [ Vil
0

We shall prove (24) and we shall give estimates over C'(n,T') in Section
4, while proving Theorem 1.
When n > 1 we have the following controllability result for (19).

Proposition 2. Let X be the space H'(0,1) x L?(0,1) x Cx C. Assume
that T > 2 and n > 1. Then, for any (Y1, W0 V1 V) € X, there exists
a control 3 € H™2(0,T) with compact support such that the solution

(U, V) of (19) satisfies
(25) U(T)=T(T)=0in (0,1), V(T)=WV(T)=0.

REMARK. In the statement of Proposition 2 and in the sequel we drop
the index n from the unknowns (¥, V) to simplify the notation.

The solution (¥,V) is defined by transposition. Therefore (25)
has to be understood in a suitable weak sense. We will return to this
question in the proof of the proposition.

The proof of Proposition 2 provides the continuous dependence of
the control 3 on the initial data. More precisely

(26)  [IBlE->(0.r) < Cn, T) (I(L, ¥ VE V)R + [29(0) ),
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for any initial data (U, U1 V9 V1) as in the statement of Proposition
2. By X’ we denote the dual of the space X'. The constant C(n,T) in
(26) is the one appearing in (24) and will be evaluated in Section 4.

Proor. We use HUM to prove this result.

Given any (1%, 7%, u’ ul) € X we solve the adjoint system

( Mt — New + 02720 =0, in (0,1) x (0,7,
ne(1,t) =0, for t € (0,7),
nw(ovt)zut(t)a ( ) )
uge(t) + nt 7t u(t) —n(0,t) =0, forte (0,7),
n()—n,nt(0)=n1, in (0,1)

L w(0) =u?, u(0) =

for t €

Y

We fix, some non-negative smooth function p(0,7') — R with compact
support such that p=1in (¢,7 —¢) with T'— 2¢e > 2.
We then solve the backward system

(U — Wy + 02720 =0, in (0,1) x (0,T),
U,.(1,t) =0, for t € (0,7,
U, (0,t) = =Vi(t), for t € (0,7),

(28) ‘/tt + n4 71'4 V + ‘I’t (0, t)

_ _% (p(t) uge(t)), forte (0,7),
U(T) =9(T) =0, in (0,1),

L V(T)=V,(T)=0.

The solution of (28) is defined by transposition (see [6]). If we multiply
in (28) by any solution (7, u) of (8) and integrate (formally) by parts
we obtain the following identity

T T p1 T
/ p(t) wge () g (1) dt+/ f\I/da:dt—/ gVdt
0 0 0 0

= / (—T4(0) 7(0) + ¥(0) 7(0)) da: + V(0) 7(0, 0)
(29) ’
+ ¥ (0,0) u(0) — V(0) u(0) + V;(0) u(0) .
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Notice that when we derived (29) we have used the fact that p and its
first derivative vanish for t = 0 and T
We adopt (29) as definition of weak solution in the sense of trans-
position of (28). More precisely we say that (¥, V) solve (28) if (29)
holds for any (7°,7%,4°, ) € X and (f,§) € L*(0,T; L*(0,1) x C).
We observe that (29) can be rewritten in the following way

T T 1 T
/ p(t)utt(t)ﬂttdt—/ f\I/d:z:dt+/ GV dt
0 0 0 0

(30) = —(¥¢(0) + V(0) 8o, 1(0)) + (¥(0), 7 (
)

+ (V4(0) + ¥ (0,0)) u(0) — V(0) ut(0

where (-,-) denotes both the duality pairing between (H'(0,1))" and
H'(0,1) and the scalar product in L2(0,1) and &y € (H'(0,1))" denotes
the Dirac delta at y = 0.

We have the following existence and uniqueness result of solutions
in the sense of transposition.

0))

Y

Proposition 3. System (28) has a unique solution in the sense of
transposition. More precisely, for any solution (n,u) of (27) with initial
data in X, there exists a unique (U, V) € C([0,T]; L*(0,1)) x L*(0,T),
p® € L?(0,1), pt € (H'(0,1)), u° € C, u* € C satisfying

T T 1 T
0 0 0 0

(31) + (01, 71(0)) + (", 7(0)) + 4" w(0) + 1”1 (0)
for any solution (n,u) of (8) with
(1’7", ') € X, f € LX0,T; L(0,1)), g € L*(0,1).

REMARK. In the identity (31) p°, pt, u¥ and p! play respectively the
role of W(0), —W.(0) + V(0) dp, —V(0) and V;(0) + ¥(0,0). It is easy
to see that, in the frame of smooth functions, there is a one to one
correspondence between (p°, pt, u®, ut) and (¥(0), ¥(0), V(0), V;(0)).

PROOF OF PROPOSITION 3. In view of Proposition 1 we know that the
map

(32) (77 77 u® U 7f9 —>/ ) e () gt (1) dt
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is linear and continuous from X x L'(0,7;L%*(0,1)) x L?*(0,T) into C.
This implies the existence and uniqueness of (pt, p°, ut, u®) x (¥, V) €
X' x L*(0,T;L?(0,1)) x L*(0,T) such that (31) holds. Moreover, there
exists a constant C' > 0 such that

(¥, V)||L°°(0,T;L2(0,1))><L2(0,T) + ||(Plv Pov :U’la MO)HX'
(33) < C'Juge]|L2(0,1)
<Cl(0°ntu®,ut)]lx

The fact that ¥ € C([0,T]; L?(0,1)) can be deduced from (33) by a
classical density argument.

REMARK 4. When the data of (27) are smooth, the solution (7, u) is
smooth too. It is easy to see that (28) has a finite energy solution. In
this case one can check that the element (p°, pt, u°, ut) € X’ obtained
in Proposition 3 is such that

p'=T(0), p' =T (0)+V(0)dy, u° =-V(0), p* = V;(0)+7(0,0).

By a density argument one can then deduce that the solution (¥, V)
obtained in Proposition 3 is such that the traces

Uli—o , =¥t +Volt=0, —Vl]e=0, Vi +¥(0,1)]t=0

are well defined and coincide with (p°, pt, u®, ut).

The same arguments allows us to show that the traces are also well
defined at ¢ = T'. This suffices to assert that the weak solution of (28)
we have constructed by transposition is at rest at t =T

We can now complete the proof of Proposition 2.

END OF THE PROOF OF PROPOSITION 2. In view of Proposition 3 and
Remark 4 we can define a linear and continuous map A from X into A’
such that

A(n()? 7]17 UO, ul) - (_\Ilt + V60|t:07 \I}(O)v ‘/;5 + \IJ(Ovt)|t:07 _V|t=0) .

Taking in (31), f =0,9 =0 and (7,u) = (n,u), we deduce that

T

At ut), (' u®, ut)) = / p(t) [uee(t)]* dt
0
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and in view of (24) we deduce that there exists C' > 0 such that
A0t u ut), (%0t ul ut)) > Cll0°, ', ulut)]% .
Actually, C = (C(T,n))~!, where C(T,n) is as in (24).

This implies that A is an isomorphism.
This shows that given any (pt, p°, ut, u°) € X’ there exists

(n°,n*u’, ut) = A7 (ph 00, ut, 1)

such that the corresponding solution of (28) in the sense of transposition
satisfies

U(0)=p", =W+ Vol=o = p*,

(34) 0 .
—Vmo=p", Vi +¥(0,t)|t=0 = p -

If we want this to be equivalent to the initial data of (19) we have to
take

(35) P’ =", pt =W+ VO, =V, put=V'+0%0).

This makes sense when the data (U0, ¥ VO V1) isin X.
The control we have obtained is of the form

d2

f=—=5

(pute) ,
where u corresponds to the solution (n,u) of (27) with data
("t u® ut) = A7 (pt, o0t )

where (p°, p, u°, ul) is given by (34).
From the identities above we see that

18201y < llpwstll7z0m)

S C H(pl?povﬂ’lv NO)H.%\T"
< O (e w0, vE VO + [¥0(0)),

where C = C(T,n) is the constant obtained in (24).
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REMARK 5. In fact, in some sense, we obtain a stronger result since
we prove that we can control the problem (31) for any initial data
(p°, pt, 1%, ut) € X’. In order to give an interpretation of the control
problem in terms of the initial data (U1, &% V1 V0) we have to assure
that ¥9(0) makes sense. For this reason we consider that

(T e vivh) e x.

When n = 0 one can not expect the same controllability result due
to the conservation of the quantities (22) along the trajectories. In this
case the controllability result reads as follows

Proposition 4. Assume that T > 2 and n = 0. Then, for any
(U w0 V1 V0 € X there exists a control 3 € H=2(0,T) with compact
support such that the solution (U, V') of (19) satisfies

V() =V +0%0), W (T)=0,

(3) V(T):VO—/l\Illda:, Vi(T) =0.

REMARK 6. This result asserts that, when n = 0, any solution of
(19) can be driven to an equilibrium configuration which is a priori
determined by the initial data.

Proor. First of all we observe that proving Proposition 4 is equivalent
to showing that for any initial data as in the statement of Proposition
4 and satisfying the further assumptions

1
(37) Vi+w%0) =0, VO—/ Ul(z)dz =0,
0

then, there exists a control 8 such that
(38) U(T) =¥(T)=0in (0,1), V(T)=V,(T) =0.

Indeed, this is an imimediate consequence of the remark made in the
introduction that shows that when 3 is of zero average the following
identities hold

Vi(T) 4+ ©(0,7) = V' + 9°(0),
(39) 1 1
V(T)—/0 \Ift(x,T):VO—/O Ul(z).
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Thus, in the sequel we focus on initial data (U9, U1 V0 V1) satisfying
(39). For the adjoint system

'ntt_nwwzov in (0,1)X(0,T),

Nz (1) =0, fort € (0,7),

N (0) = ug fort € (0,7T),
(40) (0) = u (0,7)

Ut _nt(o) - 07 fOI‘ te (OvT)a

n(0) =n°, 7.(0)=n", in(0,1),

C u(0) = u®, u(0) = ul,

we consider initial data in the following subspace X of X

1
(41) XOZ{(710,711,110,111)EXul—nO(()):o7 / nldy-l—uozo},
0

It is easy to see that the subspace Xy is invariant under the flow gener-
ated by (40).

Given (n°,nt,u’ u') € Xy we solve first (40) and then the back-
ward system

(U — VU, =0, in (0,1) x (0,7),
U,(1,t) =0, for ¢t € (0,7),
U, (0,t) = =Vi(t), for t € (0,T),
(42) d2
Vie(t) + Wi (0,¢) = e (p(t) uee(t)), fort e (0,T),
U(T) =W (T) =0, in (0,1),
 V(T) =Vi(T) =0,

where p is as in the proof of Proposition 2.

Proceeding as in the proof of Proposition 3 one can show that (42)
has a unique solution defined by transposition such that the traces (38)
are well defined. On the other hand, integrating the equations in (42)
we deduce that

(43) /0 pl(z)dx =0, pt=0.
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Let us denote by Z the subspace of X’ satisfying (43). More precisely,
(44) Z ={(p", p°, pt, u°) € X' such that (43) holds} .

It is easy to check that Z is actually the dual of Xy. Indeed, the dual of
Xo is a quotient space of X’ and there is a one-to-one correspondence
between Z and this quotient space in the sense that, in Z, we have
chosen the unique element of each class of the quotient space satisfying
(43).

As in the proof of Proposition 2 we can define a linear and continu-
ous operator A : Xy — Z that associates the trace (p, p°, ut, %) € Z
in (31) to each (n°, nt,u’ ul) € Ap.

We also have

T
(AP, 7t u®, ), ('t ol ) = / p(t) [uee ()2 dt
0

Remark that inequality (24) also holds for the case n = 0 if we consider
initial data in Aj;. Hence there exists a constant C' > 0 such that

(A(°,ntu® ul), (%0t uth)y > C (% nt u, uh)| %,

for all (1%, n*, u®, u') € Xo, since the quantity (|75 |/72 (g 1) 117 1720,1)F
|ut|?)Y/2 defines a norm in Xy which is equivalent to the norm induced
by X.

We deduce that A : Xy — Z is an isomorphism.

Then, given initial data as in the statement of Proposition 4 and
such that (37) holds we define (p!, p%, ut, u°) € Z by (35). The control
we are looking for is

= (o0 (1)

where u is the second component of the solution (n,u) of (40) with
initial data (n°,nt,u% ul) = A= (pt, p°, ut, u®).

This concludes the proof of the Proposition.

Let us now state the controllability results for the two-dimensional
system (4).

We use the Fourier decomposition method described at the begin-
ning of this section. Thus we develop the initial data (®°, &1, W° W1)
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to be controlled in Fourier series

Z\Ifo cos (nmy) Z\Ifl cos(nmy),

(45)
oo oo
:ZV£cos(n7ry), lezvnlcos(nﬂy).
n=0 n=0
We assume that for every n = 0,1,... the initial data satisfy the as-

sumptions of Proposition 2 and Proposition 4. We set
(46) pp =0, pp=—Vo + V)80, 1’ ==V, up =V +¥3(0).

We introduce the following space of initial data

H = {(°, 0L, WO, WY € Y 3 Cn, 1) (o, ol 1, 1)1
(47) n=0

= [[(@°, @1, W, W3, < oo}
where the constants C(n,T') are those appearing in (24).

Proposition 5. Assume that T > 2. Then, for every initial data
(@, @1, WO W) in H there ewists a control 3 € H~%(0,T;L?*(0,1))
such that the solution (P, W) of (4) satisfies

f

&(T) = ut =/ W(y) dy+/0 WO(0,y) dy, ©,(T) =0,

(48) § W(T) = (p

/WO ) dy — // Ya,y)dedy, W(T)=0.
\

Moreover there exists a constant C > 0 such that

(49) 1Bl zr-20,7;22(0,1)) < Cll(e% ", W, Wh|x .

REMARK 7. The control time 7" > 2 is optimal. Indeed, when 7" < 2
it is easy to see that the set of controllable data is not dense in the
space of finite energy data. Actually, when 7" < 2 none of the one-
dimensional problems (19) is approximately controllable, i.e. the space
of controllable data is no even dense in ).
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REMARK 8. The constants C(n,T') play an important role in the con-
trollability problem since the space H of controllable functions depends
on them. The next two sections are devoted to the evaluation of these
constants.

PrROOF. In view of propositions 2 and 4 for any n = 0,1,... there
exists a control 3, € H~2(0,T) such that the solution (¥,,,V,,) of (19)
satisfies

(50) W (T) =W, (T)=0in (0,1),  Vu(T)=Vas(T)=0,
forn > 1 and
(51) Uo(T) = p', Vo (T) =01in (0,1),

Vo(T) = (p*, 1), Vo (T) =0.

when n = 0.
On the other hand

(52) H/BHH%{*?(O,T) < C(TL, T) ||(p117,7 p(r)w :U’rlw :U’(T)L)H?Y’ :

We construct the following control for the two-dimensional system
(53) By, t) = Zﬁn cos(nmy).
n=0

We have, in view of (52),
HBH%I*?(O,T;L?(O,I)) = Z ||5n(t)||§172(0,T)
n=0

00

n=0
= (w0, ', WO Wh||%

< 0.

Therefore 3 € H=2(0,T; L?(0,1)). On the other hand,

U(z,y,t) = Z U, (y,t)cos(nmy), Wi(y,t) = Z Vo (t) cos (nmy)

n=0
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solves (4) with the control § given in (53) and satisfies (48) at time
t="1T.
This concludes the proof of this Proposition.

3. Spectral analysis.

In this section we give some estimates on the spectrum of the dif-
ferential operator corresponding to (23) that will be used in the next
section to prove (24). In order to analyze the spectrum of (23) let
(¥(x,t),V(t)) be solution of

\I/tt_\llww+n27rzqvb:07 n ( ) ( )
(54) U,.(1)=0, for t € (0,00),

U,(0)=V;, for ¢ € (0,00),

Vg +ntatV —(0) =0, fort e (0,00).

Now if we look for solutions of (54) of the form (¥(z,t),V(t)) =
e (U(x), V), with V € R, it follows that the eigenvalues A of system
(1) are the roots of the equation

(55) 62\/W:_)‘2_m(/\2+n47r4) '
A2+ n2712 (A2 + ntrt)

We have the following first result

Lemma 1. System (1) has a two-parameter sequence of purely imagi-
nary eigenvalues { A i tnen ez given by

(56) Ang = /20 +n2n2i

if k>0 and A\ g = — A — if k <0, where {z, k }ken~ are the roots of
the equation

22 + n? w2

22+ z(n2w2 —ntnt)

(57) tan z =

Moreover, there are another two eigenvalues of (1), X% and A, with
the modulus less than n 7w, given by

(58) At =

. n27r2—(z*
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where z; s the unique positive root of the equation

22— 22+ n?n? + 2z (ntrt —n?r?)
22422 —n?n2+z(ntrt—n2x2)

(59) e =

In the last case, A;, = A\ = 0 when n = 0.

PROOF. We know that the eigenvalues A are roots of (55). Considering
the change of variable A = /(2 — n? 72 equation (55) becomes

a2 C?’—(2+n27r2+C(n47r4—n27r2)

(60) ¢ TG —n2rl 4 (ntrt—n2n?)

Figure 1.

Since the differential operator corresponding to (1) is conservative
its eigenvalues will be all purely imaginary. Hence, we have to look only
for those roots of (60) which are purely imaginary or real. It follows
that the imaginary roots of (60) are the roots of the equation (57) and
the real ones are roots of (59).
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Figure 2.

Observe that the right hand side of (57) has a pole at

z=v/n*rt —n2n2.

Let us denote by o, = n* 1t —n?7n2, v, = Vo, and let kg € N be such
that kom — m/2 < /oo, < ko +7/2.

Equation (57) has an unique root in each interval (k7 —n/2, k7 +
n/2) for k € N\ {ko}.

In (ko m—7/2, ko m+ m/2) there are two roots z, x,—1 and z, j, of
(57).

The localization of the roots {2k m }ren+ and z, . is illustrated in
figures 1 and 2, where

22 -+ n? w2
23+ z(n?27n? —ntt)

gn(z) =

and
2 =22+ n?n?+ z(ntrt —n?n?)
22422 —n?n2+z(ntrt—n2x2)

hn(z) =

The roots correspond to the points of intersection of the curves in the
figures.
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The skew adjoint operator corresponding to (1) can be diagonalised
over the orthogonal basis of eigenvectors

1
n,k

2

5 o n,k
n,k — 3

n,k
4

n,k

1
) cosh ({/n?272+ A2, (z—1))cos(nmy)
n,k ’

’

—cosh (y/n272+ X2, (x—1))cos(nmy
n,k

and the solution of (5) with initial condition &, j is such that

U (z,y,t)
\I/t (J?, Y, t) A
= én,k(l'v y) € nokt .
W (y, 1)
Wt (y7 t)
As this basis is not normalized, we will denote =, ;, = ||n k||y- Notice

that if n and k are integers,

[1]

(61) c < n,kSC

On the other hand z, , is the only positive real solution to

N(@t) —t*+n?>n®+t({*+n*n* —n?n?)

2t
¢ (1) D) t?—n?n24+¢({t2+ntnt —n2n?)

Let to(n) be the real root of D. It follows that z, . > to(n) > n=3.

Furthermore, as D(n'/2) > 0 and R(n'/?) ~ 1 < e2n'’?
large n.

) Zngx < n/2 for
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— i [p2.2 2
Therefore, as A, « = ¢ /n? w2 — Zpi o

(62) cn_sg‘%—w‘ <Cnt
and
(63) en3 < Enx < ce’’?
For any (®° &' WO W1)in ),
(@, 2L WO W = 3T 2 (),

neN
KEZ™U{*,*xx}

with {an k}nr € [%
Let us now make some notations. We will write for any
(@Y, 1, WO W) in Y that

o (P ®1 WO W) e Y™ if n # ng implies a,, = 0,

o (¥, 01, WO W?) € YU if |k| > |n| implies a,, = 0,

o (2,01, WO, W) € Y@ if |k| < |n| or k € {x, *+} implies a,, x =

o (B0, ®1, WO W) € Y»" implies (®°, &L, WO W) € YO 0y~

We can denote

(@°, ", WO, W) = (@°, &', WO, WH M + (8°, o WO, W),
with (®°, &1, W° W)@ ¢ y@),

Moreover I will be the set of (k,n) such that k € {x,*x} or |k| <

|n|, and we will agree that *x = —x. To end with, we shall also denote
Unk = Im A, i to deal with real numbers.

4. Proof of Theorem 1.

In order to prove the theorem, we will use a proposition for low
frequencies and a lemma for high ones.
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Proposition 6 (Low frequencies). For any positive e and ¢, there exists
a constant C. s, an integer ny(e) and a positive time Ta(e,8) < Cy /el T?
such that for any integer n greater than ny(e) and any (9, ®L, WO, W1t)
in Y™, the solution of (5) with initial condition (®°, ®1, WO W1) satis-
fies

T>(e,0)

1(@°, &1, WO, WHW|2, < O eI / o W00t
—42 67

This proposition will be proved in Section 4.2.

Lemma 2 (High frequencies). There ezists a constant C' and a positive
time Ty such that for integer n and any (®°, @1, WO W1) in Y™2  the
solution of (5) with initial condition (®°, &1 WO W) satisfies

C
(64) 1(@°, @', WO, Wy < v [Witll L2 ((0,70) xT0) -

The proof of Lemma 2 will be given in subsection 4.1.
Let us now prove how do Proposition 6 and Lemma 2 imply that
Theorem 1 is true.

PROOF OF THEOREM 1. Let € and d be two positive real numbers. Out
of Propositions 6 and Lemma 6, we get two positive times, denoted 77
and T(e,0). Let us define T'(e,d) = sup {11, T>(e,0)}.

Let n be a positive integer and (®°, @1, W% W1) any initial condi-
tion in Y™. Then we have

1(®%, @, WO, W[5,
= [[(@%, @, WO, WHWS + [|(2°, @1, WO, whH D3, .

So by Proposition 6 and Lemma 2, for n > nq(e),

Tg(E,(s)
1@, &1, WO, Wh|3 < Cos e’“'"'/T( W0, a

— 0,t)|"dt
+ n4/0 (W4(0,1)]

T(e,5)
< C. 5 elnl / (Wit (0, 1) |2 dt
—T(e,9)



CONTROLLABILITY OF ANALYTIC FUNCTIONS 573
c [
+ —4/ (Wi (0, )| dt
n= Jo
c [
+ F/0 W, 0,8) dt .

Therefore, by the direct estimate (14),
1(@°, @, wo, w3

T(e,9)
< C::,a 62€|n|/ T (5)|th(0, t)|2 dt + o ||((I)07 (I)lv Wov Wl)(l) ||:2)) :

So by Proposition 6,
T(e,9)
(@@ W WA < g [ w0 dr.

—T(e,9)

We can increase the constant to take care of the first n1(e) values of n.
As T'(g,0) < Tu(e,0) < C/el ™2, if we put

we get

— T]‘_q b

for any positive real number ¢ and (7) is proved.

We pass now to prove Lemma 2.

4.1. Proof of Lemma 2.

Since (®°, L, WO W1) e y2n,

((I)O,¢1,W0 1

|k|>n

(@0, @, WO, WhH®|3, = Z|ank|2
|k|>n
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On the other hand, for 77 > 0,

T
| w0
0

T,
_ 2 2 :
- / Vn,k an)k
0

—_
—

3
12
én:k eVn,k“
i,k

|k|>n
T oy i 2
= E ks fo2 2 2 : 2,9 .2 Un kti
—/ = . nem Vn,k Sln( nem Vn,k) emn
O kl>n T

Let us prove that there exists ¢ > 0 such that, for £ > n,

(66) Unk+1 — Vnk > C.

Firstly, remark that z, g+1 — 2nk > 7/2, for all k # ko — 1, ko where
ko € N is such that (ko — 1) 7+ 7/2 < /oy, < kom + 7/2. We recall
that o, = n*7* —n? w2, In order to prove that there is a gap between
Znko—1 and zy, i, let us show that, if z € ((ko — 1) 7+ /2, ko + 7/2)

then

22 +n?n? 1
(67) 23— zay, Z;'
Indeed we have
22 + 2 2
23— zay,
2
((k0—1)7r+ﬁ) +n? w2
> min p 2 ,
((k0—1)7r+§> —((ko—l)ﬂ-i——)an
2
((k0+1)7r+g) +n? 2 }
w3 s
(ko 0w+ )" = (ot )+ 5 )

oy + n? w2

>
T Qo oy

-min{ 17r , 17r }
(ko + 1) 7+ 2 = /| | (ko= )7+ 7 — yam

v
N
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From (67) it follows that max {| tan z, g,—1], | tan z, x|} > 1/7.
Hence |z, k, — Zn,ky—1| > arctan (1/m).
We can evaluate now

_ 2 2
Vi1 — Vngk = /1% T2 + “nk+1l T \/”2 T+ “n.k

(Zn,k—f—l - Zn,k) (Zn,k—f—l + Zn,k)

(2 2 2
2 n7r+zn7k

1 nnx
> arctan — ——
Tdnm

1 1
= —arctan —
™

>

and (66) holds with ¢ = (1/4) arctan (1/7).

575

By using Ingham’s inequality (see Ingham [5]) we obtain that, for

T > 27!'/6,

T,
/ Wi (t,0)2
0

>C )

|k|>n

(68)

Let us prove that

C
(69) ‘ n?n? — V%yk sin (y/n2 72 — V%yk )‘ = |2p k SI 2 1| > 3

where C' is a positive constant not depending on n and k.
Firstly, from (57), we have

| 2, + 2
Zp,k S Zp |k = —5 COS Zp k -
Zn ki + o,
Consider the following cases
i) zZnk > /0. In this case
22 . +n?w? \/ C
n,k S Zn,k (Zn,k - an) o 1 >
22—« 22—« N NG n2’
n,k n n,k n 1+ n

Zn,k

2
Qn,k . 2
— ‘ ‘,/n27r2— flksm(@/nzﬂz—z/zk)‘ .
— ) )
—n,k
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If | cos zp 1| > 1/4/2 then

2 2,2
zn,k—i-n ™ C
—5—————CO0SzZpk > —5 .

Zn,k SN Zp | = 3
n

2
Zn ki + oy

If | cos 2z, 1| < 1/+/2 then |sin z, x| > 1/v/2 and

. Zn,k vV (679
Zn.k SIN Z > = > .
| n,k n,k| juiy \/5 \/5
ii) zpk < /0. Now we have
zfl,k + n? m? 1

|tanzn7k| > inf S5 > ~§ -
2</an 2y, + Zn,k Qn n

It follows that o
|2,k SI0 29, | > i
Finally, we obtain that (69) holds.
From (65), (68) and (61) it follows that

T
1@, 8L WO, w3 < < [ Wi, 0)2
) ) ) y = n4 0 tt\b :

We still have to prove Proposition 6. This will be dealt with in the
following subsection.

4.2. Proof of Proposition 6.

This proposition deals with the lowest eigenmodes of the prob-
lem. In this part of the spectrum, the Ingham techniques do not work,
because the gap between frequencies goes to zero. The technique of
biorthogonal sequence, that we will use, is more general. Examples of
its application can be found in [3] for instance.

The idea is to find a sequence of functions h,, ;, with compact sup-
port such that /f;n,k(l/n,ko) = (5’,§0, and whose L2 norm is not too large.
Indeed, will prove the following lemma:
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Lemma 3. For any odd integer q and any positive real number €, there
exists a time Ty(q,e) smaller than C,e@)/(U=9) sych that for any
(1, ko) in N* x (Z* U {,%x}) there exists a function h¥," that satisfies

i) hEom is supported by [—Ts(q,€), Ta(q,€)).
ii) For (ko,n) € I, ||h¥om||%, < Ce%nl,
i) If k # +ko,

ko,n itV _
/h&_?q (t) ek di = 0.

iv) If n > ni(e,q) and (ko,n) € I,

c
hko, etVn. ko dt| > i
‘/ — niNa

The constants depend only on q and €. Moreover the functions h can
be chosen as even or odd. We will denote them hef?q’" or ho];?q’".

Let us show at first how to prove Proposition 6 out of this lemma.

Let n be an integer greater than ny(e), and (®°, &1 WO W) an
initial condition in Y™. Let us denote (¥, V) the solution of (5) with
these data.

We will denote K the operator that maps (®°, @1, W° W) in Y
to Wy(y = 0,-). If we denote a,, = ((®°, @1, WO, W), &, k/Z0n k), we
notice that

&
W(y7 t) = Z an,k = b

cos (mny) emkt

KEZ*U{*,xx} =k
Thus
&k :
K((I)()?@leO?Wl)(t) = - Z Qn,k .—‘n, VrzL,k e“/n,kt :
KEZ*U{*,*xx} ™
Now for (kg,n) in I and L in N*| as he is even,
ko, fn k
657q Z an k )
|k|=x*
|k|<L
&k
? k ’ ] n
S Z (An ke + Cn—k) :n h Vg,k/heefq"(t) ekt dt
En,
k:*

1<k<L
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So, out of iii), if L > ko,

&k .
- _(a",ko + an,—ko) :m ° Vrzz,,ko /helg?q’n(t) eVnikol dt |

=n,Ro

So out of iv), we get that

[ ek O K (X w5 )0

S,k
|k|=x
|k|<L
éz ko 2 C
> ko 1 Gn,—ko | S [V ko | Ny
_n?/
Z |an)k0 + any_ko | ce n2 ’
out of (63) and because, as we have already seen,
|2,k | Cy
= sin z — .
|€n ko| |Vn, 0| | n,k0| = N
If we take the limit with L — +o0,
_.2/3
‘/ heto" (1) K (9°, 1, WO, Wh)(t) dt‘ > |an ky + Qn kol €™
We can show the same way that
/
[ ot K (@0, @1 WO 0 ] 2 e, — e
So, by summing conveniently,
[ | < Ce™ ‘/ heto™ (1) K (2°, @1, WO, W)(¢) dt‘

(70)
+‘/ ol () K (0, @1, WO, W) ) )
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So for any n greater than nq(e),

[(@°, @', WO, WHWI3 = N Jan il

|k |=
|kI<[n]

So out of (70),

1(@°, @, WO, whm3,

<C Z 6"2/3

=
Jk|<|n|

€e,q

2
/ he™ ™ () Wit (0, 1) dt|  + same with h,, .

Thus, out of i),

[(@°, @, WO, whM3,

5 TZ(‘LE)
<ce™ 30 /|h’;;g(t)|2dt/ Wi (0, )[2 dt
|k|=* _TZ(‘LE)
|kI<|n|
Thus out of ii),
T2(q)6)
||(@0, @17 W07 Wl)(l)Hgi S Cecn2/3 e2e|n| / |th(0,t)|2 dt .
_T2(q)6)

When ¢ goes to the infinity, if (¢+1)/(1 —¢) = =1 =14, 6 goes to 0. So
we have proved Proposition 6.

We still have to prove Lemma 3.

First, we will introduce a sequence of functions f*o-" that will
satisfy conditions i), iii) and iv), but which L? norms will behave like
e™™, that is too large for ii). We will notice though that these norms
will be mostly concentrated within [—m n, 7 n], on the Fourier side.

Then we will build a sequence of functions g of which we will know,
by stationary phases computations, that their norms, on the Fourier
side, are exponentially small over [—m n, 7 n], and reasonably bounded
outside.

We will then put h = f % g, and show that h satisfy i) to iv), for
suitable parameters.
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4.3. Proof of Lemma 3.

In order to prove this lemma, we will build two sequences of func-
tions, denoted f and g, and put h = f x g. The functions f will have
the right zeroes (on the Fourier side), but too large an L? norm. The
functions ¢ will be small where f is large, in order to get controlled L?
norms. We will have to ensure also that they behave properly at the
zeroes of f.

Namely, we will prove he following lemmas:

Lemma 4. For any (n, ko) in N* x (Z* U {x,**}) , there is an even L*
function fFo" that satisfies:

i) fkom is supported by [—3m, 3r].

ii) For z € [-mn,mnl, |f"’k0(z)| < CeSWT =GN and for z ¢
[~mn,mn], |f**(2)| < P(n, k), where P is a polynomial.

iii) If k # £ko, [k (v 1) = 0.

iv) If n > ni(e,q) and (ko,n) € I = {(k,n): |k| = * or |k| < n},

|80 (v ko )| = /s

Lemma 5. For large enough T, for any real number 6 > 1, close to 1,
and any odd integer q, we can find three positive constants C(}, Cg T

cg 1.5 and two integers rq,n(q,0) such that for any integer n, there is a
function g%, 5 in L*(R) such that:

i) 97,5 18 supported by [T, T7.

ii) |97 4 sl < 2T, and for any real number T such that |7| < n/d,
~n <2 —TnC! min{(1/6—7/n)?/(¢=1) 1}
|gT,q,5(T)| = Yq,T € 4 .

iii) For any integer n greater than n(q,d), if ko = % or 1 < ko < n,
there is a time Ty, g, in [T, T + 1] such that

3
—~nN |Vn7k0 | > cq7T)6
g+Tn,k0aq T - \/ﬁ '

The constants depend only on q and €. Moreover the functions g can
be chosen as even or odd. We will denote them ger. , 5 0T Gorp: 4 5-
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Let us prove Lemma 3 out of those two results.
Let € be a positive real number. Let us choose §. such that

/ 1\2 €
and 7°¢ such that

(71) sup (37r\/1 - p? - C; TE((Si — ﬁ) q/(q_1)> <e.

Be(0,1/4.]

The derivative is

-3 3 g9 e /(1 1/(q—=1)
/1_ﬂz+q—1TCq(E_B) ’

we choose T¢ such that it is 0 for (. such that 37y/1 — [3..
We have

€ 2
e 1+727r2+0(5),
2
€ 2
fe=l-gmtol),
SO )
1 €
P
O 24m

hence T¢ ~ ¢, elatt)/(1=a),
Let us deﬁne positive times 17 , - as follows. For integers ko such

that |ko| < |n| or |ko| = *, we take the time Ty, , siven by Lemma 5
with T' = T¢; and for |ko| > |n|, we put T, = = Te.

n,ko
e [T, 1° + 1], SO Cé glat)/(1-a) < Ts b < 0(21 glat1)/(1=q)

’nko

Let us denote

/\kO; T
heey (1) = F*™(0) Gt 0. (=)
/\kO)n

~ R T
hOE,q (7') = fko,n(T) go%ﬁ,ko,q,(ss (;) .
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The subscript meaning that A is even or odd. We will not write this
subscript when not necessary.

We shall now prove step by step that hk°7 satisfies all the proper-
ties of Lemma 3.

PROOF OF i). By Lemma 4.i), the support of f*" is located within
[—3m, 3n].

By Lemma 5.i), g%s . is supported by [T, T ko]

n ,ko?
As h’;’f’q’" is the convolutlon product of those two functions, it is
supported by [—Ta(q,€), T2(q,€)] with Tx(q,e) = 3w + 2 elatD/(1=9),

The estimates on T, insures that Th(q,e) < CyqelrtH/(1=a),

PROOF OF ii). We will use results about the small size of ||g|| that will
compensate || f]|.
By Lemma 5.ii),

|9|L < 2T5(q,¢).

Furthermore, outside of [—m n, 7 n], the L? norm of f is bounded by a
polynomial in n, so the problems are located within this interval.

We must estimate [* |hFom(7)|? dr.

Now, out of Lemma 4.ii), we know that if 7/n belongs to [—m, x],
we have

|fk0,n(7_)|2 < CeGH\/TFZ—|T/n|2 — CveGTrrn/l—|7'/(7rn)|2 )
Thus if |[7/(7n)| > 1/8., [l (1)]> < C e,

Moreover, out of Lemma 5.ii), if |7/(7n)| is smaller than 1/, we
have

‘gTE < )‘2 < C 2Ts ko 'n03(1/55—|T/(ﬂ—n)|)Q/(q71) .
n ko)qy -~
S0 out of (71), we get msk,?z’n(T)P < Ce?™. Thus

ko2, < C e

PROOF OF iii). This is a simple consequence of Lemma 4.iii). Indeed for
any integer k different from ko, f*0"(|vy, k|) = 0. So by definition of h,

we also have /i\z’&?oq"(h/nk |) = 0, which is exactly the Fourier transcription
of ii).
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PROOF OF iv). For any couple (n, ky) in I, out Lemma 4.iv) and Lemma
5.iii), we get

~ C c C
ko, q,T<,0¢ 9,
|h’e?qn(j:|ynyko|)| Z TLN \/’f_l Z nN' ’

which is once again the Fourier transcription of the needed result.
Now we have to prove Lemmas 4 and 5.

4.3.1. Proof of Lemma 4: construction of f.

Put

F'(2) = (2 +2(n*n? —n*nh))tanz — 22 — n?7?) cos 2,
G"(z) = V22 —n?7?,
and
[*(z) = F™(G"(2)) -

The following properties hold for these functions:

f-1) fi € O(C).

f-iii) For any k in Z* U {x, *x}, fi'(vn k) = (zf;’k tan z, , — zi,k -
n? w?) cos z, ,, = 0 out of (57).

Let us evaluate f™ (v, k).

fn,(ynyk) = Gn,(ynyk)Fn/(Gn(Vnyk)) °

N—_——

Zn,k

Now |G™ (Vnk)| = [Vnk/2nk] = 1. So to bound |f™ (vy k)| from bel-

low, we only have to bound |F™ (2, )| from bellow. To simplify the

notation, put «,, = n*71* — n? 2.

F™ (2n,k)
= COS Zp i

(—2zp 5 + (zf;’k — apzng) (14 tan? 2, 1) + (3 Zi,k — o) tan z, i)

-

~

h(zn k)
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(see pictures 1 and 2.)
We recall that the first value of k for which z,, j, is larger than /vy,

is denoted by ko. If k # ko and k # ko—1, |2n . —+/0n| > 7/2.As we also

have z, p > 7/2 and 2, is a root of tan z,, x, = (22 +n?72) /(2% —ay, 2),

we get | cos zp, k| > 1/P(n, k) where P is a polynomial.
Let us consider h. For any positive € and z = z, x > /an, + ¢,

h(z) =-2z+ (z3 —apz)(1+ tan? z)+ (3 22— ap) tan z

> 224 (2 — V) (2 4 V) 2
> 2ean—2)z

>1 for large n .

For \/a,/3 < z=zpx < /On, h(z) < =2z so0 |h(z)] > 1.
And for z = 2z, 1, < \/ /3,

h(z) € =22z — (|2° — ap 2| |1 + tan® 2| — |3 2% — a,,| |tan z|),

now |1 + tan?z| > |tanz| and as 7/2 < z < /3, |2° — an 2| >
1322 — .

S0 [h(zn0)] = 2 204] > 1.

Hence we know that if & # ko and k # ko — 1,

F™" (2 1) > i
i) 2 e

Now if k = ko or k = ko — 1, zp 1 € [\/an — /2, /0, + /2] so for large
N, Znk ~ \/On. Now

z?%k + n? w2 COS Zp k
z(z+ /) sinz, i
—_———

~1/2

Znk — VOp =

So for a small fixed 7, either | cos z, | > 7, then

|zn,k — CVn| > E(’l)

and in that case we know that |h(z, )| > 1, hence |F™ (2, )| > n.
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Either | cos zy, x| <7, now

F"/(zn,k) = =22 €08 Zp i + (3 z,z%k — o) sin 2

" S/ "

-~

~
[[1<2(n+e)Von |-|>2an /112

+ Znk — /On

COS Zn, k

-

Zn,k (Zn,k + vV an) .

[1<(1/2+€)(2/y/1=n*)an

Now for small 7,
2 1
21— 12 > ﬁ(—+e),
-n

SO
|F"’(zn,k)| >ca, > 1.

So we have proved that for any n, k,

O

Let us put for any & in Z* U {x, %},

1 (sin\/z2—7r2n2)2
2

2

FEm(2) = f(2)

22— |vp 22 —q2n2
(the last term ensures that f remains in L?).
Let us show that these functions satisfy the properties of Lemma

4: by construction, they are even. R R

As fo has got zeroes at +|v, x|, f®™ € O(C). Moreover fkn €
L?(R) and for any complex number z, |ﬁ)kn(z)| < Cedlmal

So by the Paley Wienner theorem, we have property i).

Property ii) is straightforward, due to the explicit value of j?"k

As by f-iii), vy, i, is a zero of f§ for any k, it is by definition a zero
of fko if k # ko, so iii) holds

Furthermore,

sin zn,k)2 1

k,n !
) :t — n :t (
o (Elvnxl) = fo' (£lvnkl) T2 |k

Zn,k
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thus

¢
(14 n?) [k]?

C
1+ n2+ k2)N2

o™ (£ |V p

So iv) holds.

4.3.2. Proof of Lemma 5: construction of functions g.

Let ¢ be an odd integer and let us denote hy(z) the solution of
y" = 1+ y9=1 that satisfies y(0) = 0. This function is defined over
(—zq,x,) for a positive z4. It is odd, strictly increasing and analytic.
Moreover, we have hy(z) = = + a4 2?7+ o (z?) when x is near 0, with a
positive a, and when x goes to x4, h, goes to the infinity.

We shall denote H, the reciprocal function to hy. It is defined
over R, odd, strictly increasing, bounded by z,. We have H,(z) =
T — agx?+o(x9) if = is close to 0.

Let 6 be a real number, greater than 1, and close to 1, that will be
fixed later.

Let us define functions g as follows

(72) g+?7q(t) = 1(—T,T) ein(T/‘smq)h’q((‘Eq/T)t) 7
T
(73) ﬁ; q(T) = / ein(T/‘s‘Bq)h’q((‘Eq/T)t)—iTt dt .
’ -T
Let us write W, (s) = (T'/z4) Hy((6 24/T) 5),
+oo '
ﬁ;,q(’]') fr—y / e’LnS—ZT\I/q(s) \P/q(s) ds )

— 00

If we denote

1
Oq(s) = ;Hq(éiq 5),
q
we have
T T (5 inT(s/T 04(s/T
9+T7q(7') :/ 9q(f> etn (s/T—(7/n)84(s/T)) ds

+o0
_7 / 0! (0) T (/00D gy

— 00
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Let us put « =nT and = 7/n. We will estimate

bl ) = [ Oh(w) eI gy,

for a going to the infinity.
There will be two kinds of estimates depending upon the value of
[ as compared to 1/6.

e If § < 1/4. In this zone, the phases is non-stationary. So we will
get and exponential decrease.

Let us shift slightly in the imaginary direction. For any real number
v, any ( smaller than 1/ and any little ¢, we get

Im(v+ie—[0,(v+ie))
=¢e¢—[BImbO,(v+ie)
Bl (0,0 + 7€) — 0,(v))

vtie
:s—ﬁIm/ 0,(2) dz
0dz
1+ 0991 :rg_l zq-1

vtie
=¢c— ﬂIm/
! du

:E—ﬁséRe/ — -
o 1+ tad™ (v+icu)r1
> ¢ if 6<0.

If 3 is positive,

du

Y(o4ieu)a-tl

1
Im(’”"‘i‘f_ﬁeq(v‘i'ig))Zg_ﬁsé‘/ 1+ 691 gd™
0 q

Now for any real v,

< 1
~ 1—cgert’

/1 du
0 1+00- 128 (v +icu)a?

(. J

I

because either v > ¢ and then

I<—% <1,
~ 14wt T
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or v < Mye and then

lv+icu|t™t < C ett

implies
11 +(5q_1mg_1 (v+icu)i™H >1—cpe?t
implies
1
I<—.
T 1—c¢qeat
Thus
. . Bde
Im(U—f—’lé‘—ﬁgq(U—f—Zf’:))Zc‘:—?’Eq_l
>e(1-80) -, Bet
1
28(5_ﬁ>_0:158q'
Now
1 1 q/(g—1) 1 q/(g—1)
T _3)_ q_ (2 _ 1/(1=q) > /1 Z _
m?“((s B) calle Cq(a 5) p —Cq(5 B) '

We can choose a real number € and a very small ¢, such that for any
real number v,

) ) 1 q/(q—1) . 1
Im(v—kze—ﬂ%(v—kze))Zcq(g—ﬂ) , 1f[3€(0,g],
Im(v+ie—p04v+ic)) >cq, if 3<0.

Now we can shift the integration line over v from R to R + ¢
Bl ) = [ Oyfo-+ i) elerie st gy,

To end with, as

)
1+ (0zg(v+ie)?—1"

Oy (v+ic) =

we get

C
1 . q
0, (v+ig)| < TFpe 1
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hence for any real number o and any < 1/6,

C —ac, min _pye/(a—1)
|@b(a,ﬁ)|§/ﬁe min{(1/6-8)0/@ D1} g

S Cq e~ % min{(l/zs_ﬁ)Q/(qfl),l} .
So if 7/n < 1/6,
(74) T3, (T)] € Cy T e Teamin{(1/6=r/myt/ 74,13

e If 5 >1 (>1/4). Through the stationary phase formula (see |7,
p. 431]), we get

(0. 9)=C (Halcosexpafs,9) (220220 Z“;f}) @),

where rg 5(a) < C’g/ozN‘F1 and o > Ag 5; Hp 5 denoting the square root
of the Hessian at the critical points.

Moreover, in this formula, C' and A are continuous with respect
to # and ¢, and a;(5,0) depends on the first 2j + 1 derivatives of
v O4(v) at v =v9(0,0).

Let us compute po(3,0).

0 : . 36

—((v—-p0 = f ly if 1-— =

90 (v—=L304v) =0 if an only i T 0
implies 1+ 0" 227 vd™H(B,0) = B0
implies  vo(6,0) = % (64— 1)/

Lq

If 3 takes the values |v, i |/(n ) for any couple (n, k) such that |k| < n,
we have 1 < 8 < 72,
Moreover, if § = |vy, «|/(n ), by (62),

p21- L2

as soon as n > ng(d).
So for any n greater than ng(J), if (n, k) belongs to I and § =

Vil / (), C = 08,5, [po(B, )], |Ha sl > cs, thus 1 > 6 (v (5, 6))
> cq- Moreover a;(3,6) < Cj .
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Let T be a positive real time. As |po(3,0)| > ¢, for any n greater

than ng(d), and ko such that (n, kq) belongs to I, one can pick a time
Tk, in [T,T + 1] such that

v
cos (nkaO po(m, 5)) > .
nm

Thus for T' > T,,, n > n(q,6), « = T'n, (ko,n) € I and B=|vy i, |/(n7),

03(v0(8.9)) | <~ a;(8,0)| _ 104(vo(, )
BV +;aj\/a‘2 e

, [Hp s 04 (vo(83,0))
rp,6()| < c§ iva -

And in the same conditions, there is a time T, j, in [T', 7'+ 1] such that

Vn.,k
/HG/( < 7075)>
‘w(nTnk,|Vn’k°|>‘>%| a0 nm > _°

o T T AT VR

We have proved that for any time 7' greater than T, for any n larger
than n(q, 0) and ko such that |ko| = = or |ko| < n, there is a time T, g,
in [T, T + 1] such that

—~n |Vn7k0 | CT)q)(S
(75) g+Tn,k0,q< — )‘ > -

By changing t into —t, we can prove two estimates similar to (74) and
(75) for the functions

n

g in(T/dzq)hq((wq/T)t)
— .

q 5(t) = 1(_T7T) €

I 81

As 9-T g6 = 94745 We have: Ty, ko + = T iy, —-
So if we put

08 0t) = 1rimycos (n 5y (1))

we have

1
9eT,q,6(t) = Regarg5(t) = 5 (947,4,5(t) +9-7,4,6(1)) .
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Let us show that this even function satisfies the properties of Lemma
5.

i) By definition, it is supported by [T, T].

ii) is an easy consequence of the definition and (73) for the L*°
estimate, and (74) for the other one.

iii) If n > n(q,0) and (|ko] < n or |ko| = %), C’g,Te_”TC; <
cgyT,5/(2 \V/n), so , if n is large enough, by (74) and (75),

__ _ [Vn,ko |
|gi;n,k0,q,5(7')| < |g:F;n,k0,q,6(T)| ) for 7= F"0

As we can increase the constants to cope with the finite number of
(n, k) in I for which n is not large enough, we get for (n, ko) in I and
T = tvn |/,

—n cg, T, 0

|geTn,k0,q,5(7')| > Jn .

Of course, similar results hold for the odd function
1) . T T
9ol 4a(t) = Ly sin (n Sy (?q 1))

This ends the proof of Lemma 5.
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