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A Lieb�Thirring bound for a

magnetic Pauli Hamiltonian� II
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Abstract� We establish a Lieb�Thirring type estimate for Pauli Hamil�
tonians with non�homogeneous magnetic �elds� Besides of depending
on the size of the �eld� the bound also takes into account the size of
the �eld gradient� We then apply the inequality to prove stability of
non�relativistic quantum mechanical matter coupled to the quantized
ultraviolet�cuto� electromagnetic �eld for arbitrary values of the �ne
structure constant�

�� Introduction�

We continue here our analysis of Lieb�Thirring type estimates for
Pauli Hamiltonians� which we begun in ��	 
henceforth called I� and
present its applications to the stability of matter coupled to the 
ultra�
violet�cuto�� quantized electromagnetic �eld� The one�particle Hamil�
tonian we consider describes a spin ��� electron and is once more


���� H  D
� � � V �

acting on H  L�
R�� � C � � where D  p � A and D
�
 D � �� Here�

A
x� is the magnetic vector potential� � is the vector of Pauli matrices�
and V 
x� � � is a scalar potential� In I� the paradigm was given by
the well�known Lieb�Thirring estimate ���	 for the case B  r�A  �
and our estimate 
I����� aimed at estimating the e�ect of B � � 
see

���
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��	� ��	� ���	� ���	� ��	� ���	 for other results in this direction�� Here� by
contrast� the starting point is the following bound� due to Lieb� Solovej
and Yngvason ���	� on the sum of the negative eigenvalues �ei of 
�����


����
X

ei � C

Z
V 
x���� 
V 
x� � B� d�x �

which holds for the case in which the �eld B is constant� Our goal is
to generalize it to the case where B is not constant� or� more precisely�
that of estimating the e�ect of r�B  
�iBj�i�j������ � � on 
����� We
remark that an estimate having the same purpose� but quite di�erent
assumptions on B� has been derived in ��	� ��	�

In I� the role of B
x� was expressed by means of a length scale
r
x� de�ned through B
x� non�locally 
incorporating insight of ��	� ���	�
���	�� Similarly here� the role ofr�B will be re�ected in a second length
scale l
x�� These two length scales satisfy

Z
r
x��� d�x � C

Z
B
x�� d�x �
����

Z
l
x��� d�x � C

Z

r� B
x��� d�x �
����

as well as some local variants thereof� We can now state our general�
ization of 
�����

Theorem �� For su�ciently small � � � there are constants C �� C �� �
� such that for any vector potential A � L�

loc
R
� �R��


����

X
ei � C �

Z
V 
x���� 
V 
x� � bB
x�� d�x

� C ��
Z
V 
x�P 
x���� 
P 
x� � bB
x�� d�x �

where bB
x� is the average of jB
y�j over a ball of radius � l
x� centered
at x� and

P 
x�  l
x��� 
r
x��� � l
x���� �

As noticed in ��	� 
���� yields� by the variational principle� a bound
on the density n
x�  E
x� x� of zero modes of D

�
� where E
x� y� is
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the integral kernel of the spectral projection E corresponding to the
possible ���	 eigenvalue � of D

�
� The bound is

n
x� � C �� P 
x���� 
P 
x� � bB
x�� �
and� as it should� it vanishes in the case of a homogeneous magnetic
�eld� where l 	�

In Section � we discuss the properties of the two length scales
mentioned above� The main part of the proof of Theorem � is given
in Section �� while some more technical aspects are deferred to Section
�� In order to keep these sections reasonably short we shall be brief on
details which have already been discussed at length in I�

We now turn to the implications of estimate 
���� regarding sta�
bility of non�relativistic matter coupled to quantum electromagnetic
�eld� We recover a result of ��	 establishing stability for any value of
the �ne structure constant �� with a bound depending however on the
ultraviolet cuto� � 		� The details of the model are as follows� The
electromagnetic vector potential is 
in appropriate units ��	�


����

A�
x� 
 A
x�  A�
x� �A�
x� � A�
x�  A�
x�
� �

A�
x� 
����

�


Z
�
k� jkj����

X
���

a�
k� e�
k� e
ikx d�k �

The cuto� function �
k� satis�es j�
k�j � � and supp � � fk � R
� �

jkj � �g� the operators a�
k�� and a�
k� are creation and annihilation
operators on the bosonic Fock space F over L�
R�� � C

� 
with C
�

accounting for the helicity states of the photon� and satisfy canonical
commutation relations

�a�
k�
	� a��
k

��		  � � �a�
k�� a��
k
���	  ���� �
k � k�� �

Moreover� for each k� the direction of propagation �k  k�jkj and the po�
larizations e�
k� � C � are orthonormal� The free photon Hamiltonian
is

Hf  ���
Z
jkj

X
���

a�
k�
� a�
k� d

�k �

Matter consists of K nuclei of charge Z � � with arbitrary positions
Rk� 
k  �� � � � � K� and N electrons obeying the Pauli principle� The
Hamiltonian for both matter and �eld� acting on 
�NH��F � is

H  Hm �Hf �
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where

Hm 
NX
i��

D
� �

i
� VC �

VC 
NX

i�j��

i�j

�

jxi � xj j �
N�KX
i�k��

Z

jxi �Rkj �
KX

k�l��

k�l

Z�

jRk �Rlj �

The energy per particle is bounded below as shown by the following
result� previously established in ��	�

Theorem �� The Hamiltonian H satis�es

H � �C 
Z� ���� 
N �K� �

where

C
Z� ����  const z�
 log 
� � z��Z� 
� � z���Z�� �

with z�  � � Z��� and Z�  Z � ��

The proof� given in Section �� rests on a stability result ��	 for
matter coupled to a classical magnetic �eld� which is here established
in Section �� This is actually where estimate 
���� enters�

�� The basic length scales�

We de�ne the length scales we mentioned in the introduction as
the solutions r  r
x� � � respectively l  l
x� � � of the equations

r

Z

�y � x

r

�
B
y�� d�y  � �
����

l�
Z

�y � x

l

�

r� B
y��� d�y  � �
����

The function  � R� �� R� 
z�  
�� z������ is the same as in I and
satis�es

z � r
z� � � �
����

jD� � � �Dnj �  � n � N �
����
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where Dj  �i� 
i  �� �� �� or Dj  z � r� Here and in the following
X � Y means X � C Y for some constant C independent of the data�
i�e�� of A� V �

The solutions of 
���� and 
���� exist and are unique� except for
the case B 
 � 
almost everywhere�� respectively r � B 
 � 
almost
everywhere�� where we set r 
 	� respectively l 
 	� They are smooth
as a function of x � R� 
see Section I����

We �rst discuss how these length scales are semi�locally controlled
by the original quantities B and r � B� To this end let �R  fx �
dist 
x��� 	 Rg for R � � and � � R

� �

Lemma �� The length scales r
x� and l
x� satisfy 
����� 
����� More�

over� for any R � � and � � R
� there is a function ���R
x� � �

satisfying k���Rk� � � and k���Rk� � j�Rj� uniformly in �� R� such
that Z

�R

r
x��� d�x �

Z
���R
x�B
x�

� d�x� j�RjR�� �
����

Z
�R

l
x���d�x �

Z
���R
x� 
r�B
x��� d�x� j�RjR�� �
����

Proof� Estimates 
���� and 
���� were proven in Lemmas I�� and I����
The same proofs are valid for the remaining two estimates once the
following remark about the proof of Lemma I�� has been made� We
replace there r
x� by l
x�� Because of g�
jxj� � �� 
I����� implies

g�
jxj�� 
� z � x

g�
jxj�
�
� 
z� �

which after integration against 
r�B
z��� d�z implies l
x� � g�
jxj��
Then the proof continues as before�

The length scales r
x� and l
x� are tempered in the following sense�

Lemma ��

j��l
x�j � l
x���j�j�� � j�j � � �
����

j��r
x�j � r
x���j�j��min
n
��
�r
x�
l
x�

����o
� j�j � � �
����
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where � � N
� is a multiindex�

Proof� We omit the proof of 
���� since it consists of a minor adapta�
tion of that of 
I������ For r
x� � l
x� 
���� reduces to 
I������ so that
we may assume r
x� 	 l
x�� We discuss this case using a variant of the
argument given in I� We recall that it was based on the equation


���� 
��m
x�� �ir
x�  mi
x� �

where

m
x�  r
x�

Z
z �r
z�U
y� d�y � mi
x�  r
x�

Z

�i�
z�U
y� d

�y �

with z  
y � x��r
x�� Moreover� we denoted by Vn� n � N � the space
of �nite sums of functions of the form

f
x�  r
x���n�� P 
f��rg�
Z
�
z�B
y�� d�y �

where � is of the formD� � � �Dk and P is a monomial in the derivatives
f��rgj�j�n of order � in the sense that it contains as many powers of
� as of r� In addition we consider here the subspace eVn � Vn obtained
by restricting f to satisfy� i� some ��r with � � j�j � n occurs among

the factors of P � or else ii� D�  �i� i�e�� �  �i e� with e� of the form
previously stated for �� One veri�es that �iVn � eVn�� and r�� eVn �eVn���

The induction assumption states that 
���� holds for � � j�j � n�

It is empty for n  ��� We now prove it for n� � instead of n� First�

we claim that f � eVn satis�es
jf
x�j � r
x��n

�r
x�
l
x�

����
�

In case i� this follows directly from the induction assumption� in case
ii� by integration by partsZ

�i e�
z�B
y�� d�y  � r
x� Z e�
z�B
y� � �iB
y� d�y �
which by 
���� and the Cauchy�Schwarz inequality is bounded in abso�
lute value by

� r
x�
�Z


z�B
y�� d�y
�����Z


z� 
r� B
y��� d�y
����

� r
x���
�r
x�
l
x�

����
�
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In the last estimate we used that the �rst integral equals r
x���� where�
as the second may be estimated by replacing z by 
y � x��l
x�� since
r
x��� � l
x��� and 
z� is radially decreasing� Hence that integral is
bounded by l
x���� We can turn to 
����� Applying ��� 
j�j  n� to


���� and using m � V� we obtain 
� �m
x�� ���ir
x� � ��mi � eVn�
The last set is eVn 
even for j�j  n  ��� since mi � eV�� The result
follows with m � ��

We remark that 
���� implies 
see 
I�������


����� jx� yj � � l
x� implies
�

�
� l
y�

l
x�
� �

for � � � small enough� A partition of unity based on the length scale
l
x� is

jy
x�  
� l
x��
���� �

�
x� y

� l
x�

�
� y � R

� �

where � 	 � � � and � � C�� 
R
�� with supp� � fz � jzj � �g andR

�
z�� d�z  �� Analogously to Lemma I�� we have

Lemma 	�

Z
jy
x�

� d�y  � �
�����

Z
j��jy
x� ��jy
x�j d�y � 
� l
x����j�j�j�j �
�����

for any �� � � N� � where �  ���x�

The length scale l
x� will be the one most frequently used in the
following sections� At one point however 
in the proof of Lemma ���
we will use the length scale �
x� de�ned by �
x���  r
x��� � l
x����
It also satis�es 
���� and 
����� 
with l replaced by ��� and Lemma �
applies accordingly to the partition based on �
x��

Finally we point out that Lemma � 
in particular� the improvement
of 
���� over 
I������ implies


����� jrP 
x�j � P 
x� l
x��� � j�P 
x�j � P 
x�� �
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Combining 
����� with 
����� we also �nd that for jx � yj � � l
x� we
have j logP 
y�� logP 
x�j � �� and hence


�����
�

�
� P 
y�

P 
x�
� � �

for � � � small enough�

�� The eigenvalue sum�

In this section we present the framework of the proof of 
����� with
large parts of it deferred to the next section� We begin by applying� as
in I� the Birman�Schwinger principle ���	


����
X

ei � �
Z �

�

n

D
� �
� E����� 
V � E�

���
� � �� dE �

where n
X��� is the number of singular values � � � � � of a compact
operator X� i�e�� the number of eigenvalues �� � �� of X�X� We then
decompose the operator in 
���� as K�
E� �K�
E� with

K�
E�  
D
� �
� ���P � E����� 
V � E�

���
� �

K�
E�  

D
� �
�E����� � 
D� �

� ���P � E������ 
V �E�
���
� �

for some su�ciently small � � �� and note that 
see e�g� ��	� ���	�


���� n
K� �K�� s� � s�� � n
K�� s�� � n
K�� s�� �


we take s�  s�  ����� For the last term we shall prove the bound


���� n
�
K�
E��

�

�

�
� n

D

� �
� ���P ��� ���PV ���� constE���� �

For the purpose of estimating n
K�� ���� and n
K�� ���� we introduce

some auxiliary objects� starting with the Hilbert space bH 
R �
R�
H d�y

and the linear map

J � H �� bH � J 

Z �

R�

jy d
�y �
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see also Section I���� Next we de�ne

bH � bH �� bH � bH 

Z �

R�

eify Hy e
�ify d�y �

where Hy  H
By� � ���P 
y�� H
B�  

p� 
����B � x� � ���� fy
x�
is a function to be speci�ed later and By  jKyj��

R
Ky

B
x� d�x is

the average magnetic �eld in the ball Ky  fx � jx � yj 	 � � l
y�g�
In summary� bH acts on �bers of bH as a Pauli Hamiltonian with con�

stant magnetic �eld� The Pauli operator D
� �

compares to the above
construction as


���� 
D
� �
� ���P �� � J� bH�J �

This inequality� which is at the center of our analysis� is obtained by

�rst localizing 
D
� �
� ���P �� and then by locally replacing the �elds

B  r� A by a constant magnetic �eld and P by a constant� Indeed�

���� results from the combination of the following two inequalities�

Lemma 
�


D
� �
� ���P �� �

Z
jy

�
D
� �
�
�

�
���P �

�
jy d

�y �
����

jy

�
D
� �
�
�

�
���P �

�
jy � jyH

�
y jy �
����

Let us point out that 
���� implies the weaker inequality 
see

I������


���� D
� �
� ���P � J� bHJ �

Proof of ������ Let

bH� � bH �� bH � bH� 

Z �

R�

eify H
By� e
�ify d�y �

Then bH � bH� and� as in I� we obtain from 
����


���� n
�
K�
E��

�

�

�
� n

 bH� �E�����J
V � E�

���
� � const�
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by means of 
����� From now on the computation closely follows the
line given in ���	� where the contribution of the lowest Landau band is
split from that of the higher bands� We set

b � bH �� bH � b  Z �

R�

eify  
By� e
�ify d�y �

where  
B� is the projection in L�
R�� � C � onto the lowest band of
H
B�� Its integral kernel is

 
B�
x� x��


jBj
�


exp
�
i 
x� � x���

B

�
� 
x� � x���

� jBj
�

�
�
x� � x���P	 �


����

in coordinates x  
x�� x�� where B  
�� jBj�� and P	  
�� ����� is
the projection in C � onto the subspace where B � �  jBj� We remark
that b commutes with bH�� The operator appearing on the right hand

side of 
���� is then split as 
 bH��E�����J 
V �E�����  K�
E��K�
E��
with

K�
E�  
 bH� � E����� b J
V � E�
���
� �

K�
E�  
 bH� � E����� 
�� b �J
V �E�
���
� �

so that by 
���� it su�ces to estimate n
Ki
E�� const�� i  �� �� sepa�
rately� The �rst term is bounded by

n
K�
E�� const� � trK�
E�
�K�
E�



Z
d�y tr 
jy 
V � E�

���
�  
By� 
H
By� � E���

� 
By� 
V � E�
���
� jy�
�����

 
�
E������
Z
d�y d�x 
V 
x��E�� jy
x�

� jByj

where the last estimate is ���� 
�����	� Note that the gauge trans�
formation eify disappeared from the trace by cyclicity� For the sec�
ond term we use the inequality before ���� 
�����	� which states that
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�H
By��� � D�
y 
 
p � 
����By � x�� on the orthogonal complement

Ran 
�� 
By�� of the lowest Landau band� We hence get


����� bH� � �

�

Z �

R�

eifyD�
y e

�ify d�y 
 bHS

on Ran 
�� b �� as well as 
�� b � 
 bH� � E��� 
�� b � � 
 bHS � E����

because b and bHS commute� Together with n
X� �� � tr 

X�X��� this
yields

n
K�
E�� const�

� tr 

V � E�
���
� J�
 bHS � E���J
V � E��

� J�
 bHS � E���J
V �E�
���
� �



Z
tr
�
jy jy� e

i�fy�fy�  
V �E��

��
�
D�
y �E

���
� jy jy� e�i�fy�fy�  
V � E��

��
�
D�
y� � E

����
d�y d�y� �

Using the pointwise diamagnetic inequality ���	 for the resolvent kernel


�����
�����
�
D�
y �E

���

x� x��

��� � ��
�
p� � E

���

x� x�� �

the trace under the integral is bounded as in 
I����� by

�

�


� �

�E

���� Z

V 
x�� E��� jy
x�

� jy�
x�
� d�x �

This leads to n
K�
E�� const� � E����
R

V 
x��E��� d�x by 
����� and�

together with 
������ to


�����

Z �

�

n
�
K�
E��

�

�

�
dE

�

Z
d�xV 
x����

�
V 
x� �

Z
d�y jByj jy
x��

�
�

We now turn to K�� The inequalityZ �

�

n
�
K�
E��

�

�

�
dE � ��� tr 
V ���PJ� bH��JPV ����
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follows from 
����� from
R�
�

n
X������ d�  tr X�X� and from 
�����

We then split bH��  b bH��b � 
�� b � bH��
�� b �� The contribution
of the �rst term isZ

d�y tr 
jy V
���P  
By� 
H
By� � ���P 
y���� 
By�P V ��� jy�


�

�


Z

���P 
y������ jByjP 
x�� V 
x� jy
x�� d�y d�x �

because of 
���� and of  
B� 
H
B� � E���   
B� 
p�� � E��� in
the coordinates used there� For the second term we use 
see 
������bH� � 
 bHS � bP �� on Ran 
�� b �� since bH and bHS � bP commute� wherebP  ���

R �
R�
P 
y� d�y� This yields a contribution bounded by

Z
tr
�
jy V

��� P
��
�
D�
y � ���P 
y�

���
P V ��� jy

�
d�y

� �

�


Z � �

� ���P 
y�

����
P 
x�� V 
x� jy
x�

� d�y d�x �

where we used again 
������ Taking into account 
����� and 
����� we
thus obtainZ �

�

n
�
K�
E��

�

�

�
dE

�

Z
d�xV 
x�

�
�����P 
x���� � �����P 
x����

Z
d�y jByj jy
x��

�
�


�����

In order to put the result� i�e�� the sum of 
����� and 
������ into the
form given in Theorem � we estimate

jByj�jKyj��
Z
Ky

jB
z�j d�z jKy j��
Z
jB
z�j �
jz � yj 	 � � l
y�� d�z �

where �
A� is the characteristic function of the set A� so thatZ
d�y jByj jy
x��

�
Z
d�z jB
z�j

Z
d�y jKyj�� �
jz � yj 	 � � l
y�� jy
x�� �


�����



A Lieb	Thirring bound for a magnetic Pauli Hamiltonian� II ���

We recall that supp jy � fx � jx� yj � � l
x�g� Using again 
����� and
the triangle inequality jx� zj � jx� yj� jz � yj we bound 
����� by a
constant times

jKxj��
Z
d�z jB
z�j �
jx� zj 	 � � l
x��

Z
d�y jy
x�

�

 jKxj��
Z
jx�zj�
	l�x

d�z jB
z�j �

i�e�� by bB
x� after a rede�nition of ��
At this point Theorem � is proven� except for Lemma � and 
�����

�� Proofs�

In this section we give all the proofs we omitted in the previous
one in order to complete the derivation of 
�����

Lemma �� Let U � L���
R��� Then


���� U � �

�

�

�

�����
kUk���D� �

For a proof� see Lemma I�� and subsequent remark�

Lemma ��


���� Dl��D � D
� �
P � PD

� �
� ���P � �

Proof� The �rst step towards 
���� consists in showing


���� Dl��D � D
� �
l�� � l��D

� �
� ���P � �

This statement is closely related to Lemma I�� and� similarly� its proof
reduces to that of


���� l�� jBj � ���� 
Dl��D � ���P �� �

This is again proven as in I� except for the fact that we use here 
and
only here� a partition of unity based on the length scale ��
x� as dis�
cussed at the end of Section �� with �
x���  r
x��� � l
x���� In
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particular� we now set eKy  fx � jx� yj 	 ��
x�g with characteristic
function e�y � It then still holds that

kl�� jBj e�yk��� � kl�� e�yk� kBe�yk� ke�yk�
� l
y��� r
y����� 
� r
y�����

 ���� l
y��� �

where� we used �
x� � l
x� in estimating the �rst factor� �
x� � r
x�
and 
���� in the second� and again �
x� � r
x� in the last one� We
hence obtain� just as in I�

l�� jBj � ����
�
Dl��D � l��

Z

rjy�� d�y

�

with the integral bounded by 
� �
x���� due to 
������ The proof of

����� and hence of 
����� is completed by noticing that l�����  P ��
We now come back to 
����� We have


D� �
f � fD

� � � �D�f D�� � �D
�
PD
�
� ���P � �

for f  l�� or f  P � Indeed� the left hand side is

�D�� �D�� f 		  �i �D��rf � �	  �X�X � �D
�
PD
�
� ���P��
rf��

with X  
� P ����D
�  i 
� P �����rf � � and 
rf�� � P � due to 
����

respectively 
������ Taking f  l�� we �rst obtain from 
����

Dl��D � D
�
l��D

�
� �D

�
PD
�
� ���P � � ���P � � � 
D�PD�� ���P �� �

and then� with f  P � we obtain 
�����

Proof of ������ The localization argument begins as that given for

I������ with b replaced by P � i�e�� we have

D
� �


Z �
jy D
� �
jy �

�

�

�jy� �jy� D

� �
		� D
� �
� � �jy� D

� �
	�
�
d�y �

with the estimate

�
Z
�

�

�jy� �jy� D

� �
		� D
� �
� d�y � �

�
��� 
D

� �
P � PD

� �
� � ��
P �
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for the �rst localization error� The other one is estimated similarly

�
Z
�jy� D

� �
	� d�y � const 
���Dl��D � ��� l���

� �

�
��� 
D

� �
P � PD

� �
� � ��
P � �

by using 
����� The conclusion then is as in I�

Lemma  
��	�� Let K  fx � jxj 	 �g be the unit ball� and K�  �K�

Let B � L�
K��R�� be a vector �eld with r �B  � 
as a distribution�
and


����

Z
K

B
x� d�x  � �

Then there is a vector �eld A such that


���� r �A  B � r �A  � �

and


���� kAk��K � kr � Bk��K� �

Proof� A solution A to 
���� is constructed as in I� i�e�� as A  r�F �
where F is the solution of ��F  B with boundary conditions 
I�������
By kFk��K� � kBk��K� and the elliptic estimate

kr
�Fk��K � kFk��K� � k�Fk��K� � kr ��Fk��K�

we have

kr
�Ak��K � kBk��K� � kr �Bk��K� � kr � Bk��K� �

In establishing the last inequality we used that a Poincar!e inequality

see e�g� ���� Theorem �����	� applies to kBk��K�� due to 
����� Another
Poincar!e type inequality 
���� Corollary �����	� yields

kA� �� � xk��K � kr
�Ak��K �

for �i  jKj�� R
K
Ai
x� d

�x and �ij  jKj�� R
K
�jAi
x� d

�x� This
proves 
���� for A� � � � x instead of A� Equation 
���� is preserved
under this replacement� since it implies �ij � �ji  � and tr �  ��
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Proof of ������ Let By  jKyj��
R
Ky

B
x� d�x be the average mag�

netic �eld over Ky  fx � jx � yj 	 � � l
y�g� It is generated by the
vector potential Ay
x�  
����By � 
x � y�� On the other hand� leteAy
x� be the vector potential of eBy
x�  B
x�� By� which by scaling
corresponds to the one constructed in the previous lemma� It satis�es


���� j eAy
x�j � ���� l
y��� �

for x � Ky because of 
����� 
����� Since B  r � 
Ay � eAy�� we may

assume� upon making a gauge transformation� A  Ay� eAy� The Pauli
operators corresponding to D

�
y
 
p� Ay� � � and D

�
are related as

D
� �

y
 
D

�
� eAy � ���  D

� �
� 
 eAy�

� � f eAy � ��D
�g

 D
� �
� 
 eAy�

� � f eAy� Dg� eBy � � �

This and r � eAy  � yield

D
� �

y
� � 
D� �

� 
 eAy�
� � �D 
 eAy�

�D � 
 eBy�
�� �

After multiplying from both sides with jy we may replace eAy by �y eAy

and similarly for eBy� where �y 
x� is the characteristic function of Ky�
Note that� besides of 
����� we have by 
���� and k�yk� � � l
y�

k eB�
y �yk��� � k eB�

y �yk� k�yk� � k
r� B�� �yk� k�yk� � � l
y��� �

We can thus estimate� using 
�����

jy D
� �

y
jy � jy 
D

� �
� �� l
y��� � �Dl
y���D� jy

and �nally� using 
������ 
������ 
�����

jy 
D
� �

y
� ���P 
y��� jy � � jy 
D

� �

y
� ���P 
y��� jy

� jy

�
D
� �
�
�

�
���P 
x�� � �Dl
x���D

�
jy

� jy 
D
� �
� ���P �� jy �
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Proof of ������ The proof can be taken over literally from that of

I������ after replacing b by P � To be checked however is that f  logP
satis�es 
rf�� � l�� � P and j�f j � P � as well as D 
rf��D �

D
� �
P � PD

� �
� ���P �� This follows from 
������ 
�����

	� Stability of matter�

As an application of 
����� we state and prove a stability estimate
for matter coupled to a classical magnetic �eld� It is essentially iden�
tical to a result of ��	� except for exhibiting a somewhat more explicit
dependence of the stability bound on the parameters involved� The
system we consider consists of N spin ��� electrons 
with Hilbert space
�NH� H  L�
R��� C �� interacting with K static nuclei� having posi�
tions Rk and charges Z � �� and with a classical magnetic �eld B� The
theorem then reads�

Theorem ��� Let R  fRkgKk�� and R� Z� "� � � �� There is

C
Z�"� �� and a function �R
x� � � with


���� k�Rk� � � � k�Rk� � R�K �

uniformly in R� Z� such that the N �body Hamiltonian

HN 
NX
i��

D
� �

i
� VC

� "

Z
�R
x� 
B
x�

� � � R� 
r� B�
x��� d�x �


����

VC 
NX

i�j��

i�j

�

jxi � xj j �
N�KX
i�k��

Z

jxi �Rkj �
KX

k�l��

k�l

Z�

jRk �Rlj �

acting on �NH� satis�es


���� HN � �C
Z�"� �� 
Z � ��R�� 
N �K�

for arbitrary R � 
Z � ����� For " � Z � � and � � � � z� one can

take


���� C
Z�"� ��  const 
z� � z
����� log 
z
�������
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with z  � � 
Z � �� "���

Remark� One may modify the de�nition 
���� of l
x� by replacing

r�B�� by 
r�B�� �R�� for some R � �� Theorem � continues to
hold� On the right hand side of 
���� a term R�� should also be added
to 
r�B��� but it can be absorbed into the last term� The purpose of
this variant is to ensure


���� l
x� � R �

Proof� By monotonicity� it will be enough to prove the theorem for
Z � �� " � Q and � � z�� We partition ��	 R� into Voronoi cells
"j  fx � jx � Rj j � jx � Rkj for k  �� � � � � Kg� j  �� � � � � K� Let
Dj  min fjRj � Rkj � j � kg��� For any � � � the reduction to a
one�body problem reads ��	� ���	


����

HN �
NX
i��

hi � � N �
Z�

�

KX
j��

D��
j

� "

Z
�R
x� 
B
x�

� � � R� 
r� B�
x��� d�x �

where h  D
� � � 
W � ��� and W is a potential satisfying W 
x� �

Q jx� Rjj�� for x � "j � with Q  Z �
p
�Z � ����

We choose �  QR�� and apply Theorem � 
in the variant dis�
cussed above� to obtain


����

NX
i��

hi � �
Z
V 
�� d�x�

Z
P ���V d�x

�
Z bB V ��� d�x�

Z bBP ��� V d�x �

where V  
W � QR����� Comparing with 
���� it appears to be
enough to show that each of the integrals 
����� which we shall denote
by i��iv� below� is bounded by the bound 
���� or by a small 
universal�
constant times


����
Z�

�

KX
j��

D��
j � "

Z
�R
x� 
B
x�

� � � R� 
r�B�
x��� d�x �
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i� Note that supp V � �R for �  fRj � j  �� � � � � Kg� This
integral is thus bounded by constQ
��R���K � QR��K�

ii� We note that for any �� � �


���� P ��� �
p
� l���� 
r�����l����� �

p
�
��
�
r���

p
�
�
��

����

�

�
l��

and we estimate the contributions to ii� of the two terms separately�
For the �rst one we use that

Z
�R

r
x��� V 
x� d�x � Q

Z
�R
x�B
x�

� d�x�Q
KX
j��

D��
j �QR��K �

as was shown in Section I��� This is consistent with the bound 
����
if �� � minfQ�� "� �g� 
By a � b we mean a  const b for some
su�ciently small universal constant�� For the last term in 
���� we use
instead

Z
�R

l
x��� V 
x� d�x

� ��
�

Z
�R

l
x��� d�x�
����

�

Z
�R

V 
x�� d�x

� ��

Z
�R
x�
r� B�
x�� d�x� 
��R

�� � ���� Q�R�K �

due to 
����� The desired bound holds provided we pick z ��� � " � R��

iii� We split the integral into K inner integrals over Uj  fx �
jx�Rjj � bDjg� bDj  min fDj � � l
Rj�� Rg for some small � � �� and one
outer integral over R� nSK

j�� Uj � The inner integrals can be estimated
as

Z
Uj

bB
x�V 
x���� d�x � 
 sup
x�Uj

bB
x�� bD���
j Q���

� �

�
bD�
j 
 sup

x�Uj

bB
x��� � ���

�
Q� �
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Because of 
����� we have l
Rj��� � l
x� � � l
Rj� for x � Uj and thus


�����

bB
x��  jKxj��
�Z

Kx

jB
y�j d�y
��

� jKxj��
Z
Kx

B
y�� d�y

� 
� l
Rj��
��

Z
�
jy � Rj j � � � l
Rj��B
y�

� d�y �

Altogether we �nd for any � � �Z
�Kj��Uj

bB
x�V 
x���� d�x � �

Z
�
y�B
y�� d�y � ���Q�K �

�
y� 
KX
j��

bD�
j 
� l
Rj��

�� �
jy �Rj j � � � l
Rj�� �

For � � " this will be bounded as claimed once we show that

� � ��R �

First� supp� � �R for small � � � because of 
����� It thus su�ces to
show k�k� � �� from bDj � � l
Rj�� the triangle inequality and 
�����
we �nd

k�k� � sup
y

KX
j��


� l
Rj��
�� �
jy � Rj j � � � l
Rj��

�
Z
Uj

�
jx�Rj j � � l
Rj�� d
�x

� sup
y

KX
j��


� l
y����
Z
Uj

�
jx� yj � � � l
y�� d�x

� � �

since the Uj are disjoint�
The outer integral can be written and estimated asZ

�Rn��Kj��Uj

d�xV 
x���� jKxj��
Z
d�y jB
y�j �
jx� yj 	 � l
x��
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� ��
�

Z
�RR�

d�x d�y jB
y�j� jKxj�� �
jx� yj 	 � l
x��

�
����

�

Z
�Rn��Kj��UjR

�

d�x d�y V 
x�� jKxj�� �
jx� yj 	 � l
x�� �


�����

By the usual argument 
������ the �rst integral is bounded by a constant
times

R
�
y� jB
y�j� d�y for

�
y�  jKyj��
Z
�R

�
jx� yj 	 � � l
y�� d�x � � �

Moreover� supp� � ��R as before� It thus su�ces to take �� � "� In
the second term on the right hand side of 
����� the integration over y
is explicit� and the integral is


�����

Z
�Rn��Kj��Uj

V 
x�� d�x �
KX
j��

Q� logR bD��
j

� ��Q
�

KX
j��

R bD��
j � 
log ���� �Q�K �

where we used that log t � �� t � log �
��
� for t� �� � �� We shall take

"�� ���Q�R� �� so that the last term is of the desired form� The �rst
one reduces to an arbitrarily small constant times Q

PK
j��

bD��
j � Note

that


����� bD��
j � ���

�Z
Uj

l
x��� d�x
����

�D��
j �R�� �

In fact� by 
������ the integral is bounded below by a constant times


� l
Rj��
�� bDj � and thus the whole right hand side by

bD��
j

�� bDj

� l
Rj�

��
�
bDj

Dj
�
bDj

R

�
� bD��

j �

by de�nition of bDj � The contribution of the last two terms of 
����� are
then controlled by the �rst term 
����� respectively by 
����� For the

integral� I� we use I��� � � ������ �� � �� I�� and choose Q � �� ��� �
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" z��R�� Note that the Uj are disjoint� allowing for the application of

�����

iv� Using


����� P ��� � l���� 
r���� � l����� � ��
�
r�� �

�
� �

����

�

�
l�� �

we estimate the contributions to iv� of the two terms separately� The
�rst integral isZ

�R

d�x r
x��� V 
x� jKxj��
Z
d�y jB
y�j �
jx� yj 	 � l
x��

� Q

�

Z
�RR�

d�x d�y jB
y�j� jKxj�� �
jx� yj 	 � l
x��

�
Q��

�

Z
d�x d�y r
x��� V 
x�� jKxj�� �
jx� yj 	 � l
x�� �


�����

The �rst term on the right hand side is like the corresponding one in

����� and hence acceptable provided �� �Q� "� The second integral�

Q��
R
r
x���V 
x��d�x� is dealt with by splitting it with respect to eUj 

fx � jx�Rj j 	 eDjg� eDj  min fDj � � r
Rj�� Rg 
see Section I���� ThenZ
eUj

r
x��� V 
x�� d�x � r
Rj�
��

Z
eUj

V 
x�� d�x � ��Q� eD��
j �

andZ
R�n��K

j��
eUj

r
x��� V 
x�� d�x

� ��Q��

�

Z
R�n��K

j��
eUj

V 
x�� d�x�
���Q�

�

Z
�R

r
x��� d�x �

Since the �rst integral is bounded above by constQ�
PK

j��
eD��
j we have

that

Q��
Z
r
x��� V 
x�� d�x

� Q
KX
j��

eD��
j �Q

Z
�R

r
x��� d�x

� Q
KX
j��

D��
j �Q

Z
�R
x�B
x�

� d�x�QR��K
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due 
I����� 
augmented by R��� and 
����� These terms �t 
���� for our
choice of ���

The integral corresponding to the last term in 
����� is estimated
similarly to iii� and is split accordingly� The inner integrals can be
estimated as


�����

Z
Uj

bB
x� l
x��� V 
x� d�x
� 
 sup

x�Uj

bB
x� l
x���� bD�
jQ

� � �
���
�

�
bD�
j 
 sup

x�Uj

bB
x� l
x������� � ����

�
Q� �

where


����� 
 bB l������ � �

�
�����R���� 
� bB� � �R� l��� �

The term coming from bB� will be dealt with by 
������ the other one
by using bD�

j sup
x�Uj

l
x��� �

Z
Uj

l
x��� d�x �

Choosing z � ����� �����R���� � " ensures that both terms 
����� are
controlled by 
���� and 
����� The contribution of the last term 
�����
is then of order z � ���� Q�K � z
 �����QR��K� The estimate of the
outer integral follows the line of 
�����Z

�Rn��Kj��Uj

d�x l
x��� V 
x� jKxj��
Z
d�y jB
y�j �
jx� yj 	 � l
x��

� ��
�

Z
�RR�

d�x d�y jB
y�j� jKxj�� �
jx� yj 	 � l
x��

�
����

�

Z
�Rn��Kj��UjR

�

d�x d�y l
x��� V 
x�� jKxj��

� �
jx� yj 	 � l
x�� �

The �rst term just requires z�� � "� The second one isZ
R�n��K

j��
Uj

l
x��� V 
x�� d�x

� �

�
�
����
�

Z
R�n��K

j��
Uj

V 
x�� d�x�
�

�
��

Z
�R

l
x��� d�x �
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To accomodate the last term� after application of 
����� we require
z� "�� � �� � " z��R�� The �rst term is dealt as in 
������ with
�� � z�� there�


� Proof of Theorem ��

We split the total Hamiltonian into two parts ��	� ��	

H  HI �HII �

with

HI 
NX
i��

D
� �

i
� VC � "

Z
�R
x� 
B
x�

� � � R� 
r� B�
x��� d�x �

HII  Hf � "
Z
�R
x� 
B
x�

� � � R� 
r� B�
x��� d�x �

where B  r�A� and �R is the positive function appearing in Theorem
��� " and � will be chosen later�

All the �elds appearing in HI are multiplication operators in the
same Schr#odinger representation of F ��	� Thus Theorem �� applies
and yields


���� HI � �C
Z�"� �� 
Z � ��R�� 
N �K� �

We now turn to HII� Let F 
x� be either B
x� or r�B
x�� As in 
�����
we may write F 
x�  F�
x� � F�
x� and obtain

F 
x�� � F 
x�� � 
F�
x�� F�
x��
�
F�
x�� F�
x��

� � 
�F�
x�F�
x� � �F�
x�� F�
x�	� �

where the commutator is a multiple of the identity� independent of x�
We then integrate against f
x� d�x with f � � and bound the �rst term
using f
x� � kfk� and Parseval$s identity� This yieldsZ

f
x�B
x�� d�x

� �
 � kfk�
Z
d�k jkj j�
k�j�

X
���

a�
k�
� a�
k� �

���



kfk� �
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respectivelyZ
f
x� 
r� B�
x�� d�x

� �
 � kfk�
Z
d�k jkj� j�
k�j�

X
���

a�
k�
� a�
k� �
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Note that the integrals on the right hand side are bounded by �Hf and
���Hf � respectively� In particular� for f  �R we �nd
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We may now optimize over "� �� R� within the ranges allowed by The�
orem ��� in such a way that the factor in front of Hf is less than ��
The resulting choice is as follows� We pick " � Z� 
� � Z� ����� and
R  ����� 
� � Z� 
Z� ��������� As a result� the factor in front of Hf

is indeed less than � and


���� HII � �Z� �������K �

We �nally choose �  z� with z as in Theorem ��� Since z � ��Z� ��

we have R � Z���� so that 
���� applies

HI � �z� 
� � log z�Z�R�� 
N �K�

� �z
 
� � log z�Z� 
� � Z� 
Z� ������ 
N �K� �

This is also a lower bound to 
����� because of � � � � Z� ���

Acknowledgements� We thank J� Fr#ohlich for very useful discussions�
This work would not have been possible without his collaboration at
an earlier stage�

References�

�	� Bugliaro L� Fe�erman C� Fr�ohlich J� Graf G� M� Stubbe J� A

Lieb�Thirring Bound for a Magnetic Pauli Hamiltonian� Comm� Math�

Phys� ��� �	���� ������
�



�	� L� Bugliaro� C� Fefferman and G� M� Graf

�
� Bugliaro L� Fr�ohlich J� Graf G� M� Stability of quantum electro�

dynamics with non�relativistic matter� Phys� Rev� Lett� �� �	����

����������

��� Dunford N� Schwartz J� T� Linear Operators� Part II� Spectral The�

ory� Interscience 	����

��� Erd�os L� Magnetic Lieb�Thirring inequalities� Comm� Math� Phys�

��� �	���� �
������

��� Erd�os L� Solovej J� P� Semiclassical eigenvalue estimates for the Pauli

operator with strong non�homogeneous magnetic �elds� I� Non�asymp�

totic Lieb�Thirring type estimates� To appear in Duke Math� J�

��� Erd�os L� Solovej J� P� Semiclassical eigenvalue estimates for the Pauli

operator with strong non�homogeneous magnetic �elds� II� Leading or�

der asymptotic estimates� Comm� Math� Phys� ��� �	���� ��������

��� Fe�erman C� On electrons and nuclei in a magnetic �eld� Advances in

Math� ��� �	���� 	���	���

��� Fe�erman C� Fr�ohlich J� Graf G� M� Stability of ultraviolet�cuto�

quantum electrodynamics with non�relativistic matter� Comm� Math�

Phys� ��� �	���� ��������

��� Lieb E� H� Loss M� Solovej J� P� Stability of matter in magnetic

�elds� Phys� Rev� Lett� �� �	���� ��������

�	�� Lieb E� H� Solovej J� P� Yngvason J� Asymptotics of heavy atoms

in high magnetic �elds� II� Semiclassical regions� Comm� Math� Phys�

�	� �	���� ���	
��

�		� Lieb E� H� Thirring W� Bound for the kinetic energy of fermions which

proves the stability of matter� Phys� Rev� Lett� 
� �	���� ��������

�	
� Lieb E� H� Yau H� T� The stability and instability of relativistic mat�

ter� Comm� Math� Phys� ��� �	���� 	���
	��

�	�� Loss M� Yau H� T� Stability of Coulomb systems with magnetic �elds�

III� Zero energy bound states of the Pauli operator� Comm� Math� Phys�

��� �	���� 
���
���

�	�� Reed M� Simon B� Methods of Modern Mathematical Physics IV�

Analysis of Operators� Academic Press 	����

�	�� Shen Z� On the moments of negative eigenvalues for the Pauli operator�

To appear in J� Di�� Equations�

�	�� Simon B� Functional integration and quantum physics� Academic

Press 	����

�	�� Sobolev A� V� On the Lieb�Thirring estimates for the Pauli operator�

Duke Math� J� �� �	���� ��������

�	�� Sobolev A� V� Lieb�Thirring inequalities for the Pauli operator in three

dimensions� IMA Vol� Math� Appl� �� Springer 	����



A Lieb	Thirring bound for a magnetic Pauli Hamiltonian� II �	�

�	�� Yafaev D� R� Mathematical scattering theory� general theory� AMS

	��
�

�
�� Ziemer W� P�Weakly di�erentiable functions� Graduate Texts in Math�

ematics� ��� Springer 	����

Recibido� �� de junio de �����

Luca Bugliaro� Gian Michele Graf
Theoretische Physik
ETH�H#onggerberg

CH����� Z#urich� SWITZERLAND
lucabu�itp�phys�ethz�ch

gmgraf�itp�phys�ethz�ch

and

Charles Fe�erman
Department of Mathematics

Princeton University
Princeton� NJ ������ USA
cf�math�princeton�edu


