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�� Introduction�

The objective of our note is to prove that� at least for a convex
domain� the ground state of the p�Laplacian operator

����� �pu 	 div �jrujp��ru�

is a superharmonic function� provided that 
 � p � �� The ground
state of �p is the positive solution with boundary values zero of the
equation

���
� div �jrujp��ru� � � jujp�� u 	 �

in the bounded domain 
 in the n�dimensional Euclidean space� Notice
that for p 	 
 we have the ordinary Laplacian � 	 ��� and in this case
the inequality �u � �� expressing the superharmonicity� is evident from
the equation �u� �u 	 �� since � � � and� by convention� u � ��

The underlying phenomenon is most clearly visible in the case p 	
�� when our operator is to be understood as

����� ��u 	
nX

i�j��

�u

�xi

�u

�xj

��u

�xi �xj
�

��
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The superharmonicity is a consequence of two ingredients in the proof�
i� �pu � � and ii� log u is concave in a convex domain� Our argument
is based on the identity

����� �� log u�
��u

jruj�
	

�u

jruj
�

from which we can read o� that� if �� logu � � and ��u � �� then the
desired inequality �u � � holds� Unfortunately� the second derivatives
needed to evaluate ����� do not always exist pointwise� making the
identity di�cult to use� The remedy is to interpret inequalities like
��u � � in the viscosity sense�

The important term �� log u calls for an explanation� The expres�
sion

���v 	 � div
rv

jrvj

is the mean curvature of the level surfaces of the function v� In the case
of two independent variables this is the familiar expression

k 	 �
v�y vxx � 
 vx vy vxy � v�x vyy

�v�x � v�y�
���

for the curvature of the level lines �v�x� y� 	 constant�� The operator�

�� is �covariant�

����� ��u 	 �� logu �

The reason for passing to the logarithm is that� by Sakaguchi�s extension
�S� of the celebrated theorem of Brascamp and Lieb� log u is concave�
where u denotes the ground state of �p in a convex domain� This has
the e�ect that �� logu � � in the viscosity sense�

Equations like �pu 	 �
 �the torsional creep problem� are also
susceptible of our proof� In connexion with the p�harmonic capacitory
function in convex rings similar phenomena have been detected by J�
Lewis� cf� �Le�� See also �Ja� Lemma 
����Our proofs do not work
directly for p � 
� but we know that in the one�dimensional case the
ground state is superharmonic for all p � �� On the other hand the

�
As a matter of fact� the logarithm in ����	 can be replaced by an arbitrary function�

Instead of log
concave functions we may study so called quasi
concave functions� See �F��
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assumption about convexity can be replaced by local convexity� except
in Corollary �����

The content is organized as follows� Viscosity supersolutions and
the ground states are de�ned in Section 
� The main result is The�
orem ���
 and Corollary ���� in Section �� Section � is a digression
about concave functions and viscosity supersolutions� It can be read
independently of the other sections�

�� Some de�nitions�

The concept of viscosity �super�solutions will be de�ned in this
section� For a general introduction to this topic we refer to �C� and
�CC�� However� we begin with distributional solutions�

We assume that 
 is a bounded domain in the Euclidean n�dimen�
sional space� The problem of minimizing the Rayleigh quotient

�
��� �p 	 min
u

Z



jru�x�jp dx
Z



ju�x�jp dx

among all functions u in the Sobolev space W
��p
� �
� has the Euler�

Lagrange equation ���
�� when � � p � �� �The right limit equation
as p ��� is given in �JLM��� This is usually interpreted in the distri�
butional sense� especiall y� when it comes to questions about existence
and regularity�

De�nition ���� We say that u � C�
� �W
��p
� �
� is an eigenfunction

of �p� if

�
���

Z



jrujp��ru 	 r�dx 	 �

Z



jujp�� u� dx �

for all � � C�� �
�� Here � � p ���

The ground state is the eigenfunction corresponding to the small�
est possible value of �� viz� the above mentioned minimum �p of the
Rayleigh quotient� The ground state up exists and the eigenvalue �p is
simple� It does not change sign in 
 and our convention is that up � ��
On the other hand� an eigenfunction that does not change sign must
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be a ground state� For all this we refer to �Li� and the references given
there�

The case p 	 � is more intricate�The ground state satis�es the
equation

maxf�� � jr logu�x�j � ��u�x�g 	 � �

in the viscosity sense �see the de�nition below�� At each point� take the
larger of the quantities� The eigenvalue

�� 	 lim
p��

p
p
�p

is the radius of the largest ball that can be inscribed in 
� The
variational ground state u� of �� is obtained as a limit of up�s as
p �� �� Unfortunately� the question of uniqueness has not been set�
tled for p 	�� We refer to �JLM� for a detailed discussion�

De�nition 
�
 is not suitable to us� It is crucial that we can work
with inequalities interpreted in the viscosity sense�

De�nition ���� Suppose that 
 � p � �� Let u � C�
�� We say that

�pu � � in 
 in the viscosity sense� if at each given point x � 
 we

have �p��x� � � for all test�functions � touching u from below at x�
That is� � � C��
�� ��x� 	 u�x�� and ��y� � u�y� when y 
	 x�

A synonymous expression is that u is a viscosity supersolution to
the equation �pu 	 �� Notice that ��u � � in the viscosity sense
exactly when u is a continuous superharmonic function�� �The de�ni�
tion� when written for lower semi�continuous functions� characterizes
the whole class of superharmonic functions in the case p 	 
�� The
family of test�functions depends on the point x�

Lemma ���� Suppose that 
 � p � �� The ground state up is a

viscosity supersolution to the equation �pu 	 ��

Proof� The proof of this simple fact has been written out in �JLM�
Lemma �����

�
As a mnemonic rule� recall that a superharmonic function can be approximated

from below by smooth functions and� accordingly� the test
function should touch from

below�
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	� Superharmonicity and concavity�

Our aim is to prove the superharmonicity of the ground state of
�p� 
 � p � �� The case p 	� will be based on the identity

����� jr�j�������� 	 jr�j����

and the cases 
 � p �� on the identity

���
� �p� 
� jr�j�����
�p�

jr�jp��
	 �p� �� jr�j���� �

both valid for smooth functions� At points where r� 	 � we interpret
the expressions so that there is no actual division by zero� for example

�p�

jr�jp��
	 jr�j���� �p� 
���� �

We want to establish that �� logu � �� when log u is concave� This
has to be done in the viscosity sense� Recall ������

Lemma 	�	� Suppose that 
 is a convex domain� Let u � C�
�� If

u � � and logu is concave in 
� then

����� jruj���u � �

in the viscosity sense� That is� the inequality holds for positive test�

functions touching u from below�

Proof� Fix a point x � 
� Let � � � be any test�function touching u

from below at x� We have to prove that the expression

jr�j���� 	 jr�j�������

is less or equal than � at the given point x� Now the function 	 	 log�
will do as test�function at x for the concave function v 	 logu� Because

����� jr�j���� 	 �� jr	j���	

our claim is

����� jr	�x�j���	�x� � � �
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To this end� observe that 	 must be �concave at the point x�� i�e��

����� h
�D�	�x� 
i � � �

for all vectors 
 � R
n � �See Proposition ��� for the notation�� Let

A 	 D�	�x�� The matrix A is negative semi�de�nite and symmetric�
Hence its eigenvalues ��� ��� � � � � �n are negative or zero� The inequality

jr	�x�j��	�x����	�x� � � �

which is our claim ������ can be written in the form

����� j
j�Trace �A� � h
� A 
i �

where 
 	 r	�x�� Diagonalizing the symmetric matrix A as

A 	 U �U�� � � 	 diag ���� ��� � � � � �n� �

where U is a unitary matrix� and denoting � 	 U��
 we can write �����
as

j�j� ��� � �� � 	 	 	� �n� � �� �
�
� � �� �

�
� � 	 	 	� �n �

�
n �

This inequality is obviously true� because �� � �� �� � �� � � � � �n � �
and j�j� � ��j � This proves ������

At this stage we had better formulate an auxiliary result about the
right�hand side in ����� and ���
��

Lemma 	�
� Suppose that 
 is a convex domain� If u � �� logu is

concave� and

������ jruj��u � �

in 
 in the viscosity sense� then u is superharmonic in 
�

Proof� Fix x � 
 and let � denote a positive test�function touching
u from below at x� By the assumption

������ jr��x�j����x� � � �

We claim that ���x� � �� This is clear� if r��x� 
	 ��
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If r��x� 	 �� then a simple computation yields

��x�� log��x� 	 ���x�

and hence our claim is that � log��x� � � in this case� The function
log� touches logu from below at x� Since logu is concave� log� must
be �concave at x� and hence � log��x� � �� �See Proposition �����

Thus ���x� � � in both cases� Because u�x� � �� the restriction
that � be positive has no in�uence on our conclusion that �u � � in
the viscosity sense� Functions that are superharmonic in the viscosity
sense are superharmonic �in the ordinary sense��

Our main result is the following�

Theorem 	���� Let 
 be a convex domain and suppose that u � C�
�
satis�es �

i� u � � and logu is concave

ii� �pu � � in the viscosity sense for some p� 
 � p � ��

in 
� Then u is superharmonic in 
�

Proof� Fix a point x � 
 and let � be a positive test�function touching
u from below at x� In the case p 	� we use Equation ������ According
to Lemma ��� the �rst term is less or equal than � and so is the second
term according to ii�� Thus

jr��x�j����x� � � �

The desired superharmonicity follows from Lemma ���� This was the
case p 	 ��  The cases 
 � p � � are based on Equation ���
�� but
otherwise similar�

Remark� A little more can be proved� If logu is concave and if �pu �
� for some p � 
� then �qu � � for all q in the range 
 � q � p� the
inequalities being interpreted in the viscosity sense� To see this� use the
identity

������ �p� 
�
�q�

jr�jq��
	 �p� q� jr�j���� �q � 
�

�p�

jr�jp��
�
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Corollary 	���� In a convex bounded domain 
 the ground state of

the operator �p is a superharmonic function� provided that 
 � p ���
The same concerns any variational ground state of ���

Proof� By �S� Theorem �� logu is concave and by Lemma 
�� �pu � �
in the viscosity sense� The result follows from Theorem ���
�

As we indicated in the Introduction� the solution of the �torsional
creep equation� �pu 	 �
� 
 � p � � is superharmonic in a convex
domain� Indeed� if the solution u has boundary values zero� then the
function u����p is concave a ccording to �S� Theorem 
�� Thus condi�
tion i� holds a fortiori� Condition ii� has been established in �BDM��
 Needless to say� there are many other interesting situations where
Theorem ���
 applies�

�� About Concave Functions�

It is well�known that the negative semi�de�niteness of the Hessian
matrix characterizes concave functions with continuous second partial
derivatives� Interpreted in the viscosity sense this characterizes all �lo�
cally� concave functions� This is likely� to be known to the experts in
the �eld�

Proposition ���� Let u � C�
�� where 
 is a convex domain� Then

the function u is concave in 
 if and only if

���
� h
�D�u 
i 	
nX

i�j��

��u

�xi �xj

i 
j � �

in the viscosity sense for all 
 � R
n � That is� whenever x � 
 and

� � C��
� are such that

i� ��x� 	 u�x��

ii� ��y� � u�y�� when y 
	 x�

then

����� h
�D���x� 
i � � �

�
Added in proof� See �Hessian Measures II�� Annals of Mathematics �to appear	�

by N� Trudinger and X�
J� Wang� for reaching extensions of Proposition ����
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for all 
 � R
n �

Notice that� as usual� each point in 
 requires its own family of
test�functions � touching from below� If ����� holds for all such �� it
also holds for all � with ii� weakened to � � u�

Proof of the Proposition� Assume that u is concave� Fix a vector

 
	 � and let x be a point in 
� Let � be any test�function touching u
from below at x� Then � must be �concave at x�� that is

d���x� t 
�

dt�
� � � at t 	 � �

since otherwise i� and ii� would contradict the concavity of u itself�
After di�erentiation� this inequality is exactly ����� and so we have
proved the �rst half of the proposition�

For the other direction of the proof� we assume that u is not con�
cave� We may assume that the ball jxj � 
 is comprised in 
 and� by
adding a linear function and scaling� that

u���� �� � � � � �� � 
 � u��� �� � � � � �� 	 � �

There is a small � � � such that u�x� � �� when jxj 	 � and x�� � 	 	 	�
x�n � ���

We will construct a test�function of the form

����� ��x� 	 a� 
 x�� �
x�� � 	 	 	� x�n




touching u from below at some point x with jxj � �� The touching
point is to be determined later! We assume that a � � and � � 
 � ��
Then

���� 	 a � � 	 u��� �

Let
m 	 min

jxj��
u�x�

and �x 
 so that

� � 
 �
��

��m
�

notice that m � �� We claim that

����� ��x� � u�x� � when jxj 	 � �
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This is independent of a � �� To see this� consider �rst the points
where u�x� � �� Always

��x� � a� 
 	 � � �

and so we have only to check the points where jxj 	 � and x���	 	 	�x
�
n �

��� There

��x� � a� 
�
��



� ��

��



� m � u�x� �

Thus ����� is veri�ed�
If a is negative enough� ��x� � u�x� when jxj � �� Select the

largest a such that ��x� � u�x�� when jxj � �� The corresponding �

must touch u at some point x with jxj � �� since ��x� � u�x�� when
jxj 	 � for all a � �� At this point � will do as test�function� However�
the inde�nite quadratic form

h
�D���x� 
i 	 
 
 
�� �





�
�� � 	 	 	� 
�n�

violates ������ This concludes our proof�

In passing� we mention that� usually� classical solutions are viscos�
ity solutions� but this is not the case for the Monge�Amp"ere equation

uxx uyy � u�xy 	 �

in two variables� A plain example is

u�x� y� 	 cos y �

It de�nitely satis�es the equation� though not in the viscosity sense�
The following curious fact seems to have passed unnotized in the liter�
ature�

Proposition ���� Let u � C�
�� where 
 is a convex domain in R
� �

Then u is concave if and only if

u�xy � uxx uxy � �

in the viscosity sense� the test�functions touching u from below�
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We skip the proof� because this is far o� from our central theme�
It can be based on Proposition ���� A more direct construction is to
determine the touching point of the test�function as in the proof of
Proposition ����
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